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Abstract
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1. Introduction

For decades, gravity equations have been used as a workhorse model of international

trade. They relate bilateral trade flows to country-specific characteristics of the exporters and

importers such as economic size, and to bilateral characteristics such as trade frictions between

the trading partners. A large body of empirical literature is devoted to understanding the impact

of trade frictions on international trade. The impact of distance and geography, currency unions,

free trade agreements and WTO membership have all been studied in great detail with the help of

gravity equations.

Theoretical foundations for gravity equations are manifold. In fact, various prominent

trade models of recent years predict gravity equations in equilibrium. These models include the

Ricardian framework by Eaton and Kortum (2002), the multilateral resistance framework by

Anderson and van Wincoop (2003), as well as the model with heterogeneous firms by Chaney

(2008). Likewise, Deardorff (1998) argues that a gravity equation also arises from a Heckscher-

Ohlin framework where trade is driven by relative resource endowments.1

The above trade models all result in gravity equations with a constant elasticity of trade

with respect to trade costs. This feature means that all else being equal, a reduction in trade costs

– for instance a uniform tariff cut – has the same proportionate effect on bilateral trade regardless

of whether tariffs were initially high or low or whether a country pair traded little or a lot. This is

true when the supply side is modeled as a Ricardian framework (Eaton and Kortum, 2002), as a

framework with heterogeneous firms (Chaney, 2008) or simply as an endowment economy

(Anderson and van Wincoop, 2003).

Recent research has drawn attention to the idea that a reduction in trade costs, for

example through a free trade agreement or falling transportation costs, may lead to an increase in

competition. Melitz and Ottaviano (2008) and Behrens and Murata (2012) demonstrate this

effect theoretically. Feenstra and Weinstein (2010) provide theory as well as evidence for the

US. Badinger (2007) as well as Chen, Imbs and Scott (2009) provide evidence for European

countries. This line of research emphasizes more flexible demand systems that respond to

changes in the competitive environment.

1 Also see Bergstrand (1985). Feenstra, Markusen and Rose (2001) as well as Evenett and Keller (2002) also show
that various competing trade models lead to gravity equations.
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In this paper, I adopt such a demand system and argue that it is fundamental to

understanding the trade cost elasticity. In particular, in section 2 I depart from the constant

elasticity gravity model and derive a gravity equation from homothetic translog preferences in a

general equilibrium framework. Translog preferences were introduced by Christensen, Jorgenson

and Lau (1975) in a closed-economy study of consumer demand.2 In contrast to CES, translog

preferences are more flexible in that they allow for richer substitution patterns across varieties.

This flexibility breaks the constant link between trade flows and trade costs.3 Instead, the

resulting translog gravity equation features an endogenous elasticity of trade with respect to

trade costs. The effect of trade costs on trade flows varies depending on how intensely two

countries trade with each other. Specifically, the less the destination country imports from a

particular exporter, the more sensitive is their bilateral trade to trade costs. Trade costs therefore

have a heterogeneous trade-impeding impact across country pairs. Despite this increase in

complexity, the translog gravity equation is parsimonious and easy to implement with data.

In section 3, I attempt to empirically contrast translog gravity with the traditional constant

elasticity specification. Based on trade flows amongst OECD countries, I find strong evidence

against the constant elasticity specification. The results demonstrate that ‘one-size-fits-all’ trade

cost elasticities as implied by standard gravity models are not supported by the data. Instead,

consistent with translog gravity, I find that the trade cost elasticity increases in absolute size, the

less trade there is between two countries. To be precise, all else being equal bilateral trade is

more sensitive to trade costs if the exporting country provides a smaller share of the destination

country’s imports. An implication is that a given trade cost change, for instance a reduction of

trade barriers through a free trade agreement, has a heterogeneous impact across country pairs.

The translog gravity framework can therefore shed new light on the effect of institutional

arrangements such as free trade agreements or WTO membership on international trade. For

2 Recent applications of translog preferences include Feenstra and Weinstein (2010) who are concerned with
estimating the welfare gains from increased variety through globalization, Feenstra and Kee (2008) who estimate the
effect of expanding export variety on productivity, as well as Bergin and Feenstra (2009) who estimate exchange
rate pass-through. More generally, the translog functional form has been used widely in other fields, for example in
the productivity literature. See Christensen, Jorgenson and Lau (1971) for an early reference.
3 Although Melitz and Ottaviano (2008) work with quadratic preferences at the individual product level, their
preferences have CES-like characteristics at the aggregate level in the sense that their gravity equation also features
a constant trade cost elasticity. It has a zero income elasticity although population can be a demand shifter. Also see
Behrens, Mion, Murata and Südekum (2009) for a model with non-homothetic preferences and variable markups but
a constant trade cost elasticity. The constant trade cost elasticity is also a feature of the ‘generalized gravity
equation’ based on the nested Cobb-Douglas/CES/Stone-Geary utility function in Bergstrand (1989). See Markusen
(1986) for an additional specification with non-homothetic preferences.
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example, it can help explain why trade liberalizations often lead to relatively larger trade creation

amongst country pairs that previously traded relatively little.4

Although not explored in this paper, another potentially useful feature of the translog

demand system is that it is in principle consistent with zero demand. It is well-known that zeroes

are widespread in large samples of aggregate bilateral trade, and even more so in samples at the

disaggregated level. If bilateral trade costs are sufficiently high, the corresponding import share

in translog gravity is zero.5 This feature is a straightforward implication of the fact that the price

elasticity of demand is increasing in price and thus increasing in variable trade costs. In contrast,

a CES-based demand system is not consistent with zero trade flows unless fixed costs of

exporting are assumed on the supply side (see Helpman, Melitz and Rubinstein, 2008).

The paper builds on the gravity framework by Anderson and van Wincoop (2003), but

instead of CES it relies on the homothetic translog demand system employed by Feenstra (2003).

Another related paper in the literature is by Gohin and Féménia (2009) who develop a demand

equation based on Deaton and Muellbauer’s (1980) almost ideal demand system and estimate it

with data on intra-European Union trade in cheese products. They also find evidence against the

restrictive assumptions underlying the CES-based gravity approach and stress the role of variable

price elasticities. But in contrast to my paper, they adopt a partial equilibrium approach and

abstract from trade costs. Volpe Martincus and Estevadeordal (2009) use a translog revenue

function to study specialization patterns in Latin American manufacturing industries in response

to trade liberalization policies, but they do not consider gravity equations. Lo (1990) models

shopping travel behavior in a partial equilibrium spatial translog model with varying elasticities

of substitution across destination pairs. But her approach does not lead to a gravity equation.

The theoretical note by Arkolakis, Costinot and Rodríguez-Clare (2010) examines the

relationship between translog gravity and gains from trade based on the continuous translog

expenditure function by Rodríguez-López (2011). They assume that firm productivity follows a

Pareto distribution. This parametric assumption is crucial in generating a log-linear gravity

4 Komorovska, Kuiper and van Tongeren (2007) refer to the ‘small shares stay small’ problem as the inability of
CES-based demand systems to generate substantial trade creation in response to significant trade liberalization if
initial trade flows are small. In contrast, translog demand predicts large trade responses if initial flows are small.
Kehoe and Ruhl (2009) find evidence consistent with this prediction in an analysis of trade growth at the four-digit
industry level in the wake of the North American Free Trade Agreement and other major trade liberalizations.
5 The translog demand system allows for choke prices beyond which demand is zero. See Melitz and Ottaviano
(2008) for a specification with choke prices in a linear demand system.
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equation with the standard constant trade cost elasticity. In contrast, my translog gravity equation

gives rise to variable and endogenous trade cost elasticities.

2. Translog Preferences and Trade Costs

This section outlines the general equilibrium translog model and derives the theoretical

gravity equation based on an endowment economy framework.6 Following Diewert (1976) and

Feenstra (2003), I assume a translog expenditure function. As Bergin and Feenstra (2000) note,

the translog demand structure employed here is more concave than the CES. It can be

rationalized as a second-order approximation to an arbitrary expenditure system (see Diewert,

1976).

I assume there are J countries in the world with j=1,…,J and J ≥2. Each country is 

endowed with at least one differentiated good but may have arbitrarily many, and the number of

goods may vary across countries.7 Let [Nj-1+1,Nj] denote the range of goods of country j, with

Nj-1≤ Nj and N0≡0. NJ≡N denotes the total number of goods in the world. The translog

expenditure function is given by

0
1 1 1

1
(1) ln( ) ln( ) ln( ) ln( ) ln( ),

2

N N N

j j j m mj km mj kj
m m k

E U p p p  
  

    

where Uj is the utility level of country j with m and k indexing goods and γkm=γmk. The price of

good m when delivered in country j is denoted by pmj. I assume trade frictions such that

pmj=tmjpm, where pm denotes the net price for good m and tmj≥1 ∀ m,j is the variable trade cost

factor. I furthermore assume symmetry across goods from the same origin country i in the sense

that pm=pi if m ϵ [Ni-1+1,Ni], and that trade costs to country j are the same for all the goods from

origin country i, i.e., tmj=tij if m ϵ [Ni-1+1,Ni]. But I allow trade costs tij to be asymmetric for a

given country pair such that tij≠tji is possible.

As in Feenstra (2003), to ensure an expenditure function with homogeneity of degree one

I impose the conditions:

1 1

(2) 1, and 0.
N N

m km
m k

 
 

  

6 I follow Anderson and van Wincoop (2003) in calling this framework general equilibrium (also see section 3.5).
7 CES can be rationalized as an aggregator for a set of underlying goods so that the assumption of one differentiated
good per country as in Anderson and van Wincoop (2003) is reasonable. However, that assumption would not be
harmless with translog demand. The number of goods is therefore allowed to vary across countries.
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In addition, I let all goods enter ‘symmetrically’ in the γkm coefficients. Following Feenstra

(2003), I therefore impose the additional restrictions:

(3) ( 1) and with 0.mm kmN m k m
N N

 
         

It can be easily verified that these additional restrictions satisfy the homogeneity conditions in

(2).8

The expenditure share smj of country j for good m can be obtained by differentiating the

expenditure function (1) with respect to ln(pmj):

1

(4) ln( ).
N

mj m km kj
k

s p 


 

This share must be non-negative, of course. Let xij denote the value of trade from country i to

country j, and yj is the income of country j equal to expenditure Ej. The import share xij/yj is then

the sum of expenditure shares smj over the range of goods that originate from country i:

1 11 1 1

(5) ln( ) .
i i

i i

N N N
ij

mj m km kj
m N m N kj

x
s p

y
 

     

 
   

 
  

To close the model, I impose market clearing:

1

(6) .
J

i ij
j

y x i


 

2.1. The Translog Gravity Equation

To obtain the gravity equation, I substitute the import shares from equation (5) into the

market-clearing condition (6) to solve for the general equilibrium. Using pkj=tkjpk, I then solve

for the net prices pk and substitute them back into the import share (5). This solution procedure is

similar to the one adopted by Anderson and van Wincoop (2003) for their CES-based model.

Appendix A provides a detailed derivation.

As the final result, I obtain a translog ‘gravity’ equation for import shares as
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8 The assumption of γ>0 ensures that the price elasticity of demand exceeds unity. The estimation results below
confirm this assumption. The elasticity is also increasing in price (see Feenstra, 2003).
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where Wy denotes world income, defined as
1

JW
jj

y y


 , and 1i i in N N   denotes the

number of goods of country i. The variable ln( )jT is a weighted average of (logarithmic) trade

costs over the trading partners of country j akin to inward multilateral resistance in Anderson and

van Wincoop (2003). As Appendix A shows, it is given by

1 1

1
(8) ln( ) ln( ) ln( ).

N J
s

j kj sj
k s

n
T t t

N N 

  

Note that the last term on the right-hand side of equation (7) only varies across the exporting

countries i but not across the importing countries j. However, the third term on the right-hand

side of equation (7),  lni jn T , varies across both.

To be clear, I refer to expression (7) as a ‘gravity’ equation although its appearance

differs from traditional gravity equations in two respects. First, the left-hand side variable is the

import share xij/yj and not the bilateral trade flow xij. Second, the right-hand side variables are not

multiplicatively linked. However, expression (7) and traditional gravity equations have in

common that they relate the extent of bilateral trade to both bilateral variables such as trade costs

as well as to country-specific variables such as the exporter’s and importer’s incomes and

multilateral resistance.

2.2. A Comparison to Gravity Equations with a Constant Trade Cost Elasticity

The important feature of the translog gravity equation is that the import share on the left-

hand side of equation (7) is specified in levels, while logarithmic trade costs appear on the right-

hand side. This stands in contrast to ‘traditional’ gravity equations. For example, Anderson and

van Wincoop (2003) derive the following gravity equation:
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where Πi and Pj are outward and inward multilateral resistance variables, respectively, and σ is

the elasticity of substitution from the CES utility function on which their model is based.9 To be

more easily comparable to the translog gravity equation (7), I divide the standard gravity

equation (9) by yj and take logarithms to arrive at

9 Note that in the absence of trade costs (tij=1∀i,j), the CES and translog gravity equations coincide as xij/yj=yi/y
W.

With positive trade costs the models are non-nested (see section 3.3 for a discussion).
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Although the dependent variable of gravity equations in the literature is typically ln(xij) as

opposed to the logarithmic import share ln(xij/yj), I will nevertheless refer to the CES-based

gravity equation (10) as the ‘standard’ or ‘traditional’ specification as opposed to the translog

specification in equation (7).

The log-linear form of equation (10) is the key difference to the translog gravity equation

(7). The log-linear form is also a feature of the Ricardian model by Eaton and Kortum (2002) as

well as the heterogeneous firms model by Chaney (2008).10 It implies a trade cost elasticity η

that is constant, where η is defined as11

.
)ln(d

)/ln(d
)11(

ij

jij

t

yx


Thus, the traditional gravity equation (10) implies ηCES=-(σ-1).12

However, translog gravity breaks this constant link between trade flows and trade costs.

The translog (TL) trade cost elasticity follows from equation (7) as

).//()12( jiji
TL
ij yxn 

It thus varies across observations. Specifically, ceteris paribus the absolute value of the elasticity,

TL
ij , decreases as the import share grows larger. Intuitively, given the size yj of the importing

country and the number of exported goods ni, a large trade flow xij means that the exporting

country enjoys a relatively powerful market position. Demand for the exporter’s goods is

buoyant, and consumers do not react strongly to price changes induced by changes in trade costs.

On the contrary, a small trade flow xij means that demand for an exporting country’s goods is

10 The trade cost coefficient in Eaton and Kortum (2002) is governed by the technology parameter θ, which is the
shape parameter from the underlying Fréchet distribution. The trade cost elasticities in Chaney (2008) and Melitz
and Ottaviano (2008) are governed by the parameter that determines the degree of firm heterogeneity, drawn from a
Pareto distribution. Other differences include, for instance, the presence of bilateral fixed trade costs in the Chaney
gravity equation.
11 The elasticity η as defined here focuses on the direct effect of tij on xij/yj. It abstracts from the indirect effect of tij

on xij/yj through the multilateral resistance terms. These are general equilibrium effects that operate in both the CES
and the translog frameworks. See section 3.5 for a discussion.
12 The gravity equation by Eaton and Kortum (2002) implies ηEK=-θ. Likewise, the gravity equations by Chaney
(2008) and Melitz and Ottaviano (2008) also imply a constant trade cost elasticity, given by the Pareto shape
parameter.
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weak, and consumers are sensitive to price changes. As a result, small exporters are hit harder by

rising trade costs and find it more difficult to defend their market share.

3. Estimation

In this section, I first estimate a translog gravity regression as derived in equation (7), and

separately I also estimate a traditional gravity regression as in equation (10). I then proceed by

testing the hypothesis whether the trade cost elasticity is constant (as predicted by the traditional

gravity model) or variable (as predicted by the translog gravity model).

3.1. Data

I use exports amongst 28 OECD countries for the year 2000, sourced from the IMF

Direction of Trade Statistics and denominated in US dollars. These include all OECD countries

except for the Czech Republic and Turkey. The maximum number of bilateral observations is

28*27=756, but seven are missing so that the sample includes 749 observations in total.13

Income data for the year 2000 are taken from the IMF International Financial Statistics.

I follow the gravity literature by modeling the trade cost factor tij as a log-linear function

of observable trade cost proxies (see Anderson and van Wincoop, 2003 and 2004). For the

baseline specification, I use bilateral great-circle distance distij between capital cities as the sole

trade cost proxy, taken from www.indo.com/distance. For other specifications I add an adjacency

dummy adjij that takes on the value one if countries i and j share a land border. The trade cost

function can thus be written as

,)ln()ln()13( ijijij adjdistt  

where ρ denotes the distance elasticity of trade costs and δ is the adjacency coefficient.

To estimate translog gravity equation (7), I also require data on ni, the number of goods

that originate from country i. Naturally, such data are not easy to obtain and the theory does not

provide guidance as to how it should be measured. However, Hummels and Klenow (2005)

construct a measure of the extensive margin across countries based on shipments in more than

5,000 six-digit product categories from 126 exporting countries to 59 importing countries for the

13 The countries are Australia, Austria, Belgium, Canada, Denmark, Finland, France, Germany, Greece, Hungary,
Iceland, Ireland, Italy, Japan, Korea, Luxembourg, Mexico, the Netherlands, New Zealand, Norway, Poland,
Portugal, the Slovak Republic, Spain, Sweden, Switzerland, the United Kingdom and the United States. As some
data for the Czech Republic and Turkey were missing, these countries were dropped from the sample.
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year 1995. The extensive margin is measured by weighting categories of goods by their overall

importance in exports, consistent with the methodology developed by Feenstra (1994). Their

Table A1 reports the extensive margin of country i relative to the rest of the world. I use this

fraction as a proxy for ni. Hummels and Klenow (2005) document that the extensive margin

tends to be larger for big countries. For example, the extensive margin measure is 0.91 for the

United States, 0.79 for Germany and 0.72 for Japan but only 0.05 for Iceland. I will also go

through a number of robustness checks to ensure that my results do not solely depend on this

particular extensive margin measure.

3.2. Estimating Translog Gravity

The first and last terms on the right-hand side of equation (7) can be captured by an

exporter fixed effect Si since they do not vary over the importing country j:

.ln
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I substitute this exporter fixed effect into equation (7) to obtain
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where I also add a mean-zero error term εij. Then I substitute the trade cost function (13) into the

multilateral resistance term (8). This yields

,)ln()ln( adj
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where the terms on the right-hand side are defined as

.and)ln()ln()15(
11





J

s
sj

sadj
j

J

s
sj

sdist
j adj

N

n
Tdist

N

n
T

Using the trade cost function (13) once again for ln(tij), the translog estimating equation follows
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I construct the explanatory variables ln( )i ijn dist and i ijn adj by multiplying the underlying trade

cost variables by the extensive margin proxy ni taken from Hummels and Klenow (2005). The
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)ln( dist
jT and adj

jT terms are constructed for each country j according to equation (15) and then

multiplied by the extensive margin proxy ni.

Table 1 presents the regression results. Column 1 estimates equation (16) with bilateral

distance as the only trade cost proxy.14 As expected, import shares tend to be significantly lower

for more distant country pairs. Column 2 adds the adjacency dummy. As typically found in

gravity estimations, this coefficient is positive and significant. The coefficients of the individual

regressors and the corresponding multilateral resistance regressors are similar in magnitude as

predicted by estimating equation (16). For example, the distance coefficient in column 1 is

estimated at -0.0296, whereas the corresponding trade cost index term is 0.0207. These two

values are reasonably close in absolute magnitude, although a formal test of their equality is

rejected (p-value=0.00). However, for the two adjacency regressors in column 2 a test of their

equality in absolute magnitude cannot be rejected (p-value=0.81).

As an alternative to the Hummels and Klenow (2005) measure, I devise an unweighted

count of six-digit product categories to account for the extensive margin. The correlation

between the two measures stands at 77 percent.15 I use this alternative measure as a robustness

check to re-estimate columns 1 and 2 of Table 2, finding qualitatively very similar results.

Furthermore, in Appendix B.1 I estimate equation (16) non-parametrically in order to provide

further robustness checks that do not rely on the Hummels and Klenow (2005) measure. Overall,

I yield results that are consistent with the translog model.

As an additional specification, I adopt a related estimating equation where the dependent

variable is the import share xij/yj divided by the extensive margin measure ni for the exporting

country. The resulting variable can be interpreted as the average import share per good of the

exporting country. From equation (16) I obtain

,ˆˆ)ln(
/

)17( ijjiijij

i

jij
SSadjdist

n

yx
 

14 I cluster around country pairs regardless of the direction of trade. For example, one cluster is formed for the trade
flows from the United States to Canada and from Canada to the United States.
15 I use UN Comtrade bilateral export data at the six-digit level for the year 2000 (HS 1996 classification). I exclude
very small bilateral trade flows (those with values below 10,000 US dollars) since those tend to disappear frequently
from one year to the next. Following Hummels and Klenow (2005), I normalize the extensive margin measure by
constructing it relative to the total number of six-digit product categories that exist across all countries (5130
categories). This alternative measure is 0.99 for the US, 0.95 for Germany, 0.89 for Japan and 0.10 for Iceland.
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where ij denotes the error term. The exporter fixed effect iii nSS /ˆ  now absorbs the extensive

margin measure ni, and the multilateral resistance terms associated with distance and adjacency

can be captured by an importer fixed effect jŜ given by

.)ln(ˆ adj
j

dist
jj TTS  

I prefer specification (17) to (16) because any possible measurement error surrounding ni is

passed on to the left-hand side and estimation can be carried out with both exporter and importer

fixed effects, as is frequently done in the gravity literature.

The regression results are reported in columns 3 and 4. As before, distance enters with

the expected negative coefficient and adjacency with a positive coefficient.16 As an additional

check, I refer to Appendix B.2 where I estimate specifications similar to equations (16) and (17)

but with a multiplicative error term instead of the additive error term. That estimation is carried

out with nonlinear least squares.

As a final check, in columns 5 and 6 I make the simplifying assumption that each country

is endowed with only one good (ni=1 ∀ i).17 Naturally, the magnitudes of the coefficients shift

but they retain their signs and significance. Overall, given an R-squared of 50 percent or more, I

conclude that the translog gravity equation passes its first test of being reasonable.

Apart from translog gravity, I also estimate the standard gravity specification. I substitute

the trade cost function (13) into equation (10) to arrive at the estimating equation for traditional

gravity:

,
~~

)1()ln()1(ln)18( ijjiijij

j

ij
SSadjdist

y

x
 















where I add an error term ξij.
18

iS
~

and jS
~

are exporter and importer fixed effects defined as

16 As an additional robustness check, I re-estimate columns 1-4 of Table 1 with an alternative measure of the
extensive margin. In particular, I use both yi and ln(yi) as measures of ni. The results are qualitatively similar and
therefore not reported here.
17 Alternatively, I could also set ni=n where n is any arbitrary positive integer. Since the regression is linear, the
estimated coefficients would simply be scaled by the factor 1/n.
18 An estimating equation based on the Eaton and Kortum (2002) model would merely replace σ-1 by θ. Here, the
crucial feature is that the trade cost elasticity is constant. This feature would also arise for the other gravity models
mentioned above.
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The logarithmic form of the dependent variable is the key difference to the translog specification.

Regression results for equation (18) are presented in columns 1 and 2 of Table 2. As

typical, bilateral distance is negatively related to import shares with a coefficient in the vicinity

of -1, whereas adjacency is associated with higher shares.19 Consistent with the gravity literature,

the log-linear regressions in Table 2 have a high explanatory power with R-squareds close to 90

percent.

Although the R-squareds associated with the regressions in Table 1 are around 55 percent

and thus lower, they are not directly comparable to those in Table 2 because the dependent

variables are not the same. It is therefore useful to get a visual impression of the fit of the two

models. For that purpose, I plot the fitted values against the actual values of import shares for

each model and also the corresponding residuals. For the translog specification, I use column 3

of Table 1. For the standard specification, I use a regression that corresponds to column 1 of

Table 2 but with ln((xij/yj)/ni) as the dependent variable (see footnote 19). These two

specifications are similar in the sense that apart from various fixed effects, the log of distance is

the only regressor. The dependent variable of the translog specification is (xij/yj)/ni. To generate

visual impressions of the two models that are more easily comparable, I exponentiate the fitted

and actual values for the standard model and compute the residuals as their difference. I thus

obtain import shares and residuals expressed in the same units for both specifications, that is, in

units of (xij/yj)/ni.

The results can be seen in Figure 1. The two panels on the left-hand side are based on the

translog model, and the right-hand side panels are based on the standard model. The top panels

plot the fitted against the actual import shares, and the bottom panels plot the corresponding

residuals. Both models do fairly well in fitting small import shares in the sense that the

corresponding residuals are clustered closely around zero. For intermediate import shares in the

range from 0.05 to 0.15 the translog model still generates a reasonably good fit, whereas the

19 For completeness, I rerun the regressions in columns 1 and 2 of Table 2 with the log import share per good of the
exporting country, ln((xij/yj)/ni)), as the dependent variable. The measure for ni is entirely absorbed by the exporter
fixed effects so that the coefficients of interests and their standard errors remain the same. However, the R-squareds
are reduced to 85 percent.
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residuals for the standard model tend to grow. For large import shares both models produce

larger residuals, and the translog model in particular underpredicts the actual import shares.

Those large residuals can in part be explained by the nature of the dependent variable,

(xij/yj)/ni. Using xij/yj instead as in column 1 of Table 1 and column 1 of Table 2 implies a smaller

range of values for the dependent variable so that the residuals would be smaller. The reason is

that Hummels and Klenow (2005) express the extensive margin measure ni relative to the rest of

the world so that 0<ni<1, pushing up values for (xij/yj)/ni compared to xij/yj. For example, the

largest value for (xij/yj)/ni is 0.41 for imports to Luxembourg from Belgium. The corresponding

value for xij/yj would only be 0.19.

3.3. Comparing Traditional and Translog Gravity

The next objective is to examine how the data relate to different aspects of the traditional

gravity model on the one hand and translog gravity on the other. The difficulty is that the two

competing models are non-nested. This problem arises because the traditional gravity model has

the logarithmic trade share as the dependent variable, whereas the dependent variable of the

translog model has the trade share in levels. Before I compare the performance of the two models

more directly at the end of this section, I first turn towards tests that center on the question of

whether the trade cost elasticity is constant.

Does the trade cost elasticity vary?

As equation (12) shows, translog gravity implies that the absolute value of the trade cost

elasticity decreases in the import share per good, i.e.,
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In contrast, standard gravity equations imply a constant trade cost elasticity. I form two

hypotheses, A and B, to test whether the elasticity is indeed constant. Hypothesis A is based on

the standard gravity estimation as in equation (18), while hypothesis B is based on the translog

gravity estimation as in equation (17).

The premise of hypothesis A is that the standard gravity model is correct and that trade

cost elasticities should not vary systematically. To implement this test, I allow the trade cost
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coefficients in the traditional specification (18) to vary across import shares per good. Since

estimating a separate distance coefficient for each observation would leave no degrees of

freedom, I allow the distance coefficient to vary over intervals of import shares per good. That is,

I set the distance coefficient for observation ij equal to λh if this observation falls in the hth

interval with h=1,...,H. H denotes the interval with the largest import shares per good, and the

number of intervals is sufficiently small to leave enough degrees of freedom in the estimation. I

also add interval fixed effects. For simplicity, I drop the adjacency dummy from the notation so

that the estimating equation becomes
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denotes the interval fixed effect and ωij is an error term. Hypothesis A states – as

predicted by the traditional gravity model – that the λh distance coefficients should not vary

across import share intervals, i.e., λ1= λ2=...=λH. The alternative is – consistent with the translog

gravity model – that the λh distance coefficients should vary systematically across intervals as

implied by equation (12). Specifically, the absolute elasticity should decrease across the

intervals, i.e., λ1> λ2>...> λH.20

How exactly should the intervals be chosen? If the intervals were chosen based on

observed values for import shares, this selection would be based on the dependent variable and

would lead to an endogeneity bias in the coefficients of interest, λh. More specifically, I carried

out Monte Carlo simulations demonstrating that this selection procedure would lead to an

upward bias in the distance coefficients (i.e., λh coefficients closer to zero) since both the

dependent variable and the interval classification would be positively correlated with the error

term.21

The endogeneity bias can be avoided if intervals are chosen based on predicted import

shares. In particular, I first estimate equation (18) and obtain trade cost coefficients that are

20 To be clear, equation (19) does not represent a formal test of non-nested hypotheses. The same applies to equation
(20).
21 I simulated import shares under the assumption that the Anderson and van Wincoop (2003) gravity equation (10)
is the true model, using distance as the trade cost proxy based on the trade cost function (13) and assuming various
arbitrary parameter values for the distance elasticity ρ and the elasticity of substitution σ. The variance of the log-
normal error term was chosen to match the R-squared of around 90 percent as in Table 2. I then divided the sample
into intervals based on the simulated import shares and ran regression (19) with OLS, replicating this procedure
1000 times. The resulting bias can be severe, in some cases halving the magnitudes of coefficients compared to their
true values.
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common across all observations. Based on those regression results I then predict import shares

and divide the sample into H intervals of predicted import shares. By construction, this interval

classification is uncorrelated with the residuals of regression (18). Indeed, Monte Carlo

simulations confirm that with this two-stage procedure, estimating equation (19) no longer

imparts a bias on the λh coefficients.22

Table 3 presents regression results for equation (19) under the assumption of H=5, i.e.,

with five import share intervals. Consistent with equation (12), the intervals in columns 1 and 2

are chosen based on predicted import shares per good, (xij/yj)/ni. As a robustness check, the

intervals in columns 3 and 4 are chosen based on predicted import shares only, xij/yj.

Columns 1 and 3 report results with distance as the only trade cost regressor. A clear

pattern arises: the λh distance coefficients decline in absolute value for intervals with larger

import shares, as consistent with the translog model. For example, in column 1 the distance

elasticity for the smallest import shares is -1.4960 whereas it shrinks in magnitude to -1.0790 for

the largest import shares. Hypothesis A, which states that the distance coefficients are equal to

each other, can be clearly rejected (p-value=0.01 in column 1, p-value=0.00 in column 3).

Columns 2 and 4 add adjacency. Since no adjacent country pair in the sample falls into

the interval capturing the smallest predicted import shares, the corresponding regressor drops

out. The addition of the adjacency dummies does not alter the pattern of distance coefficients.

Those still decline monotonically in magnitude across all specifications and their equality can be

rejected (p-values=0.00). There is no such monotonic pattern for the adjacency coefficients, but

their point estimates for intervals 2 and 3 are substantially larger than those for intervals 4 and

5.23 Overall, their equality can be clearly rejected in column 2 (p-value=0.00) although not in

column 4 (p-value=0.34). But the specification in column 2 is preferable since it is based on

intervals of predicted import shares per good, as warranted by equation (12).

I also experimented with different numbers of intervals, in particular H=3 and H=10 (not

reported here). The results are not qualitatively affected and the same coefficient patterns arise as

in Table 3. This suggests that the systematic inequality of trade cost elasticities across import

22 In Appendix B.3 I present an alternative stratification procedure in terms of right-hand side variables, not in terms
of predicted import shares.
23 A clear monotonic pattern for the adjacency coefficients does emerge in column 2 of Table 3 if the alternative,
unweighted measure is used for the extensive margin ni.
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share intervals is a robust feature of the data. In summary, therefore, the results provide evidence

against the constant elasticity gravity specification.

Hypothesis B is based on the translog gravity estimating equation (17). Its premise is that

the translog specification is correct and that trade cost coefficients in that estimation should not

vary systematically across import shares. I adopt the same strategy as above in that I allow the

trade cost coefficients to vary across intervals h=1,...,H of import shares per good, also adding

interval fixed effects. For simplicity, I again drop the adjacency variable from the notation so

that the estimating equation becomes
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where κh denotes the trade cost coefficients, hŜ denotes the interval fixed effect and υij is an

error term. Hypothesis B states – as predicted by the translog gravity model – that the κh distance

coefficients should not vary across intervals of import shares per good, i.e., κ1= κ2=...=κH. The

alternative is – consistent with the standard gravity model – that the magnitude of the κh distance

coefficients should increase in the import share per good.24

As with hypothesis A, one needs to be careful in constructing the intervals. If they were

chosen based on observed values of import shares per good, one would incur an upward

endogeneity bias in the coefficients of interest, κh. But this bias can be avoided if one first

estimates equation (17) to obtain common trade cost coefficients, predicts the corresponding

import shares and then divides the sample into H intervals of predicted import shares per good. I

verified the validity of this estimation strategy with Monte Carlo simulations.25

Table 4a presents regression results for equation (20) under the assumption of H=5, i.e.,

with five import share intervals. In column 1 where distance is the only trade cost regressor, the

24 To see this, divide the constant elasticity gravity equation (9) by yj and take the derivative with respect to ln(tij).
The result is d(xij/yj)/d ln(tij)=-(σ-1)xij/yj, implying that the absolute value of this derivative is increasing in xij/yj. In
the translog gravity equation (7), this derivative is given by d(xij/yj)/d ln(tij)=-γni. If constant elasticity gravity were
the true specification, then γni should also be increasing in xij/yj, or equivalently γ should be increasing in (xij/yj)/ni.
Thus, in equation (20) the κh distance coefficients should be increasing in (xij/yj)/ni.
25 I simulated import shares under the assumption that the translog gravity equation (7) is the true model, using
distance as the trade cost proxy based on the trade cost function (13) and assuming various arbitrary values for the
distance elasticity ρ and the translog parameter γ. The variance of the error term was chosen to match the R-squared
of around 55 percent as in Table 1. I divided the sample into intervals based on either the simulated import shares or
predicted import shares from a first-stage regression of equation (17). I then ran regression (20) with both types of
intervals, replicating this procedure 1000 times. Forming intervals based on the simulated import shares leads to a
severe upward bias in the κh coefficients.
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distance coefficients appear to generally rise in magnitude across import shares and the

hypothesis that they are equal can be rejected (p-value=0.00). However, this rejection is driven

by the coefficient for the first interval (equal to -0.0449), which deviates most from the other

coefficients. Indeed, the hypothesis that the coefficients for intervals 2-5 are equal cannot be

rejected (p-value=0.44). Neither can the hypothesis of equality between all distance coefficients

be rejected when I rerun regression (20) with more intervals.26

In column 2, I add adjacency. Since all adjacent country pairs in the sample fall into the

fifth interval, the adjacency variables for the other intervals drop out. With adjacency included, I

no longer obtain a monotonic pattern of distance coefficients. In fact, the point estimates for

intervals 4 and 5 are smaller in magnitude than for interval 3, and they are not statistically

different from each other (p-value=0.69). This evidence is inconsistent with the pattern of

distance coefficients that one would expect under the constant elasticity gravity model.27

In Table 4b I present corresponding results based on equation (16) with xij/yj as the

dependent variable. Multilateral resistance terms now appear as regressors. As in Table 4a, in

columns 1 and 2 intervals are chosen based on predicted import shares per good. As a robustness

check, the intervals in columns 3 and 4 are chosen based on predicted import shares only.

Distance is the only trade cost regressor in columns 1 and 3. Adjacency is added in columns 2

and 4.

As noted above, if gravity with a constant elasticity were the true underlying model, one

should observe a monotonic increase in the absolute distance coefficients across the intervals.

However, such a pattern is generally not supported by the estimations. For example, in column 1

the distance coefficient for the first interval (equal to -0.0535) is larger in absolute size than

those for intervals 2 and 3 but smaller than those for intervals 4 and 5. In column 2 the smallest

distance coefficient is associated with the second interval (equal to -0.0351); in column 3 the

smallest coefficient is for the fourth interval (equal to -0.0332); in column 4 the smallest

coefficient is for the second interval (equal to -0.0327). Nevertheless, formal tests of coefficient

equality across intervals (i.e., hypothesis B) can still be rejected because the coefficients are

tightly estimated.

26 For example, with H=10 the test of coefficient equality cannot be rejected (p-value=0.24).
27 I also estimated equation (20) with nonlinear least squares and a multiplicative error term instead of the additive
error term (see Appendix B.2 for details of this estimation procedure). The results are qualitatively similar to those
in Table 4a.
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Overall, the tests of heterogeneous distance coefficients in Tables 3, 4a and 4b appear

inconsistent with coefficient patterns one should expect under the constant elasticity gravity

model. They are instead consistent with the predictions of the translog gravity model.

Comparing the goodness of fit

I now turn towards comparing the performance of the two models more directly. As their

dependent variables differ, their associated R-squareds are not directly comparable. To facilitate

a comparison I estimate the standard gravity equation in levels as opposed to logarithms. The

left-hand side variable then becomes the same as for the translog specification.

Specifically, I take the standard gravity equation (9), divide it by yj on both sides so that

the left-hand side variable becomes xij/yj. I carry out the estimation with nonlinear least squares,

using (exponentiated) exporter and importer fixed effects to absorb yi and the multilateral

resistance terms and using distance as the only trade cost regressor (based on the exponentiated

version of trade cost function 13).

I estimate two specifications. The first uses a multiplicative error term ije


where ij is

assumed normally distributed. As this specification is the levels analog of the logarithmic

regression in equation (18), it yields exactly the same results as reported in column 1 of Table 2.

In particular, this specification yields an R-squared of 0.89. The second specification is also

estimated in levels but with an additive error term. This makes it comparable to the translog

estimations reported in Table 1, which are also based on an additive error term. The result is a

slightly larger distance coefficient in absolute value (-1.4258 instead of -1.2390 in column 1 of

Table 2) but a similar R-squared of 0.88. In summary, the levels specification is characterized by

essentially the same degree of explanatory power as the logarithmic specification, regardless of

whether it is estimated with a multiplicative or an additive error term.

Which translog specifications are the relevant points of comparison? The relevant

comparison for the first specification is a translog regression with xij/yj as the dependent variable

and a multiplicative error term. This regression is reported in column 1 of Table B2 (see

Appendix B.2 for details). The associated R-squared is 0.91 and thus somewhat higher than 0.89.

The relevant comparison for the second specification is the translog regression in column 1 of

Table 1 since it is also estimated with an additive error term. The R-squared there is only 0.52

and thus lower than 0.88. Overall, I therefore conclude that in terms of explanatory power, the
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translog model performs worse with an additive error term but equally well as the standard

model when a multiplicative error term is used.

A Box-Cox transformation of the dependent variable

The difficulty in distinguishing the two models econometrically in a more formal way is

that they are non-nested with different functional forms of the left-hand side variable. In

particular, based on equation (17) the translog model can be written as
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Rewriting equation (18) for the standard model yields
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where the dependent variable is ln((xij/yj)/ni) instead of ln(xij/yj) and where the exporter fixed

effect absorbs the ni term as
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For simplicity I drop the adjacency dummy. The advantage of the two above specifications is

that they share the same right-hand side regressors in the estimation (logarithmic distance as well

as exporter and importer fixed effects). They only differ on the left-hand side in terms of their

functional form.

I adopt the popular Box-Cox transformation of the dependent variable according to
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The case of θ=0 corresponds to log-linearity as
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and θ=1 corresponds to the linear case. The right-hand side variables are not transformed. A

regression with the Box-Cox transform as the dependent variable yields a point estimate of
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0.1201 for θ with a standard error of 0.0108. This result means that θ is significantly different

from 0 and 1, and both the log-linear and the linear cases are rejected (p-values=0.00).28 The

coefficient on logarithmic distance follows as -0.6871 and is thus roughly in the middle of the

corresponding coefficients for the translog model in column 3 of Table 1 (equal to -0.0250) and

the standard model in column 1 of Table 2 (equal to -1.2390).

Overall, the Box-Cox procedure therefore produces an inconclusive outcome. Such

outcomes often occur with non-nested tests as well as in Box-Cox applications (see the

discussion in Pesaran and Weeks, 2007). The reason is that these tests typically involve two

different null hypotheses that can each be rejected, in this case the hypotheses θ=0 and θ=1. My

interpretation is that whilst the results cannot be seen as a statistical endorsement of the translog

model, they still highlight weaknesses of the standard log-linear gravity model. There are bound

to be models that fit the data even better than the one-parameter translog model developed in this

paper. But nevertheless, the translog specification indicates the direction in which the demand

side of trade models could be sensibly modified to yield gravity equations with varying trade

cost elasticities.

3.4. Discussion

The crucial result from the preceding gravity estimations is that a constant ‘one-size-fits-

all’ trade cost elasticity is inconsistent with the data. Instead, the trade cost elasticities vary with

the import share, as predicted by translog gravity. What are the implied values for these

elasticities? This question can be answered by considering the elasticity expression in equation

(12). The elasticities ηij depend on the translog parameter γ, the import share xij/yj and the number

of goods of the exporting country ni.

The values for xij/yj and ni are given by the data, and the translog parameter γ can be

retrieved from the estimated distance coefficient in a translog regression. As the translog

estimating equation (16) shows, the coefficient on the variable ni ln(distij) corresponds to the

negative product of the translog parameter γ and the distance elasticity of trade costs ρ. As an

illustration, I take 0.0296 from column 1 of Table 1 as an absolute value for this coefficient, i.e.,

28 Sanso, Cuairan and Sanz (1993) also estimate a generalized functional form of the gravity equation defined by a
Box-Cox transformation, also transforming the regressors. Consistent with my results, they find evidence against the
standard log-linear specification based on trade flows amongst 16 OECD countries over the period from 1964 to
1987. However, they do not provide a theory that might justify the non-loglinear functional form.
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γρ=0.0296. To be comparable to the gravity literature, I choose a value of ρ that is consistent

with typical estimates, ρ=0.177.29 The value of the translog parameter then follows as

γ=0.0296/ρ=0.167.30 To be clear about my approach, I only choose a value of ρ for illustrative

purposes. The analysis below does not qualitatively depend on this particular value.

The trade cost elasticities can now be calculated across different import shares. I first

calculate the trade cost elasticity evaluated at the average import share in the sample. This

average share is xij/yj=0.01. The average of the extensive margin measure is ni=0.50. The trade

cost elasticity therefore follows as ηij =-γni /(xij/yj)=-0.167*0.50/0.01=-8.4.31 Thus, if trade costs

go down by one percent, ceteris paribus the average import share is expected to increase by 8.4

percent. Under the assumption of an elasticity of substitution equal to σ=8, which falls

approximately in the middle of the range [5,10] as surveyed by Anderson and van Wincoop

(2004), this value would be close to the CES-based trade cost elasticity, ηCES=-(σ-1), which

equals 7.32

However, in contrast to the CES specification, the trade cost elasticities based on the

translog gravity estimation vary across import shares. A given trade cost reduction therefore has

a heterogeneous impact on import shares. As an example, I illustrate this heterogeneity with

import shares that involve New Zealand as the importing country. I choose New Zealand because

its import shares vary across a relatively broad range so that the heterogeneity of trade cost

29 I obtain this value as follows. In standard gravity equations such as equation (18), the distance coefficient
corresponds to the parameter combination -(σ-1)ρ. It is typically estimated to be around -1 (see Disdier and Head,
2008), and in column 1 of Table 2 I obtain a reasonably close estimate of -1.239 for my sample of OECD countries.
Under the assumption of an elasticity of substitution equal to σ=8, the distance coefficient estimate implies
ρ=1.239/(8-1)=0.177. But one does not have to rely on a standard gravity regression to obtain a parameter value for
ρ. Limão and Venables (2001, Table 2) report values for ρ in the range of 0.21-0.38 based on regressions of
logarithmic c.i.f./f.o.b. ratios on logarithmic distance. See Anderson and van Wincoop (2004, Figure 1) for further
evidence that ρ=0.177 is a reasonable value.
30 Based on an estimation of supply and demand systems at the 4-digit industry level, Feenstra and Weinstein (2010)
yield a median translog coefficient of γ=0.19. My value of γ=0.167 is reasonably close and would match Feenstra
and Weinstein’s (2010) estimate exactly in the case of ρ=0.156.
31 The extensive margin measure taken from Hummels and Klenow (2005) more closely corresponds to the fraction
ni/N since they report the extensive margin of country i relative to the rest of the world. However, this does not
affect the implied trade cost elasticities. The reason is that the elasticities as expressed in equation (12) depend on
the product γni. If ni is multiplied by a constant (1/N), the linear estimation in regression (16) leads to a point
estimate of γ that is scaled up by the inverse of the constant (N) so that their product is not affected (Nγ*ni /N = γni).
32 Based on the above way of calculating ρ, for alternative values of σ it would also be true that the translog trade
cost elasticity evaluated at the average import share is close to the underlying CES-based trade cost elasticity. For
instance, under the assumption of σ=5, it follows ρ=0.31 and γ=0.095 so that the trade cost elasticity evaluated at the
average import share is -4.8. Under the assumption of σ=10, it follows ρ=0.138 and γ=0.214 so that the trade cost
elasticity is -10.7.
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elasticities can be demonstrated succinctly. Of course, the analysis would be qualitatively similar

for other importing countries.

Specifically, the Australian share of New Zealand’s imports is the biggest (7.2 percent),

followed by the US share (3.8 percent), the Japanese share (2.4 percent) and the UK share (0.9

percent). The corresponding trade cost elasticities, computed in the same way as before, are -1.3

for Australia, -4.0 for the US, -5.0 for Japan and -14.4 for the UK. Figure 2 plots these trade cost

elasticities in absolute value against the import shares, adding various additional countries that

export to New Zealand.33 Dashed lines represent 95 percent confidence intervals computed with

the delta method based on the regression in column 1 of Table 1. The figure shows that trade

flows are more sensitive to trade costs if import shares are small. The impact of a given trade

cost change is therefore heterogeneous across country pairs. This key feature stands in contrast to

the trade cost elasticity in the standard CES-based gravity model, which is simply a constant

(σ-1=7 in this case).

3.5. General Equilibrium Effects

The trade cost elasticity η as defined in equation (11) focuses on the direct impact of a

change in trade costs tij on the import share xij/yj. However, it does not take into account the

indirect impact of a trade cost change through general equilibrium effects, as forcefully

demonstrated by Anderson and van Wincoop (2003). To illustrate the role of general

equilibrium, I decompose how import shares are affected by the direct and indirect effects and

how this decomposition varies across import share intervals. But as I clarify further below,

general equilibrium effects are not able to explain the pattern of declining distance coefficients as

found in Table 3.

I demonstrate the role of general equilibrium effects based on the constant elasticity

gravity model in equation (10). As a simplification I assume trade cost symmetry such that

outward and inward multilateral resistance terms are equal (Πi = Pi ∀ i). As a counterfactual

experiment, I will assume a reduction in trade costs tij for a specific country pair. To understand

the effect on the import share, I take the first difference of equation (10) to arrive at
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33 In order of declining import shares, the other countries are Germany, Italy, Korea and France.
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The left-hand side of equation (21) indicates the percentage change of the import share. It can be

decomposed into three components. The first term on the right-hand side is the direct effect of

the change in bilateral trade costs scaled by (1-σ). The second and third terms are the general

equilibrium effects, i.e., the change in the exporting country’s income share and most

importantly the change in multilateral resistance terms scaled by (σ-1).

I am interested in how the decomposition in equation (21) varies across import shares. To

that end, I first compute an initial equilibrium of trade flows based on the income data for the

year 2000 and bilateral distance data for the 28 countries in the sample. Then, for each of the

28*27=756 bilateral observations I compute a counterfactual equilibrium under the assumption

that all else being equal, bilateral trade costs for that observation have decreased by one percent,

i.e., Δln(tij)=-0.01, assuming an elasticity of substitution of σ=8. I use the trade cost function (13)

with distance as the only trade cost variable, assuming a distance elasticity of ρ =1/7.34

Table 5 presents the decomposition results that correspond to equation (21). The rows

report the average changes for each import share interval. Given the parameter assumption of

σ=8, the direct effect of a one percent drop in bilateral trade costs is an increase in the import

share of seven percent across all intervals (see column 2). While changes in the income shares in

column 3 do not vary systematically across import shares, the multilateral resistance effects in

column 4 are largest in absolute size for the interval capturing the largest import shares. In total,

the general equilibrium effects dampen the direct effect for larger import shares (see the total

effect in column 1). Intuitively, large countries like Japan and the US are less dependent on

international trade such that changes in bilateral trade costs have little effect on multilateral

resistance. As large countries are typically associated with small bilateral import shares (they

mainly import from themselves), the indirect general equilibrium effects are often negligible for

small import shares. However, for small countries like Iceland and Luxembourg a given change

in bilateral trade costs shifts multilateral resistance relatively strongly. As those countries are

typically associated with larger import shares, general equilibrium effects tend to be stronger in

that case so that the total effect is dampened. The trade cost elasticities in columns 5a and 5b

34 The counterfactual equilibria are computed in the same way as in Anderson and van Wincoop (2003, Appendix
B). The required domestic distance data are taken from the CEPII, see
http://www.cepii.fr/anglaisgraph/bdd/distances.htm. This distance elasticity is close to the value chosen in section
3.4 for illustrative purposes. The results are qualitatively not sensitive to alternative values. I also experimented with
alternative parameter assumptions for the substitution elasticity (σ=5 and σ=10) and different trade cost declines (5
percent and 10 percent). The overall results are qualitatively very similar.
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summarize these effects. Columns 6a and 6b report the implied distance elasticities. From

equation (18) the direct distance elasticity is simply given by -(σ-1)ρ, which equals -1 in this

case.

It is important to stress that the distance elasticities in Tables 2 and 3 only represent the

direct elasticities. General equilibrium effects work in addition to the direct effect and are

absorbed by exporter and importer fixed effects. To verify this claim, I conduct Monte Carlo

simulations as in section 3.3 for the constant elasticity model. The simulations are now based on

the counterfactual scenario that all bilateral trade costs decline by one percent, leaving domestic

distances unchanged. Thus, the simulated import shares are shifted by both direct and indirect

effects. I then re-estimate gravity regression (19), dividing the sample into five import share

intervals and allowing the distance elasticities to vary across these intervals. The results show

that the distance coefficients are consistently estimated as the parameter combination -(σ-1)ρ

across all five intervals. They do not reflect general equilibrium effects. Thus, general

equilibrium effects cannot account for the systematic pattern of distance elasticities reported in

Table 3.

3.6. Alternative Trade Cost Specifications

The log-linear trade cost function (13) is the standard specification in the gravity

literature. However, I also examine other specifications to ensure that the coefficient patterns in

the regression tables do not hinge on this particular functional form.

In Table 6 I add more trade cost variables apart from distance and adjacency. In

particular, I add three variables that are commonplace in the gravity literature: a common

language dummy, a currency union dummy and a dummy capturing a common colonial

history.35 The purpose is to check whether the distance coefficient patterns in Tables 3 and 4a are

driven by the omission of these trade cost variables. I therefore add them to those regressions.

In particular, for the standard gravity case I rerun the regression in column 1 of Table 3

with the added variables. The result is reported in column 1 of Table 6. Clearly, the pattern of

declining absolute distance coefficients is still in place. The distance coefficients monotonically

35 The language dummy takes on the value one if two countries have at least one official language in common
according to the CIA World Factbook. Given the countries listed in section 3.1 the currency union dummy only
captures the Euro, whose member countries irrevocably fixed their exchange rates in 1999. The colonial dummy
captures relationships between the United Kingdom as the colonizer and Australia, Canada, Ireland, New Zealand
and the United States.
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decline in absolute value from 1.4463 to 0.8155. Their equality is rejected (p-value=0.00). The

added trade cost regressors have the expected (positive) signs but are not always significant. For

the translog gravity case, I rerun the regression in column 1 of Table 4a with the added variables.

The result is reported in column 2 of Table 6. As in Table 4a there is no clear pattern of distance

coefficients. For example, the distance coefficient in the second interval (equal to -0.0473) is

larger in absolute value than the one in the first interval (equal to -0.0398) but smaller than those

in the third, fourth and fifth intervals (equal to -0.0464, -0.0460 and -0.0447). Table 6 thus

confirms the earlier results.

Table 7 attempts to address a more fundamental identification problem. The elasticity of

trade with respect to distance is the combination of the elasticity of trade with respect to trade

costs and the elasticity of trade costs with respect to distance. That is,

.
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The standard gravity case yields ).1()ln(d/)/ln(d  ijjij tyx The basic trade cost function

(13) implies a constant distance elasticity, .)ln(d/)ln(d ijij distt But as can be seen in equation

(18), estimation only yields an estimate of their product, .)1(   To separately identify

variation in )ln(d/)/ln(d ijjij tyx and )ln(d/)ln(d ijij distt when I allowed for heterogeneous

distance coefficients in Table 3, some structure needed to be imposed on the trade cost function.

For that purpose I maintained the assumption that trade cost function (13) is correct. That is, I

held ρ constant. Due to this identifying assumption all variation in the distance coefficients was

attributed to variation in )ln(d/)/ln(d ijjij tyx .

A similar reasoning applies to the translog case. Running regression (17) yields an

estimate of . Given trade cost function (13) all the variation in the distance coefficients in

Tables 4a and 4b was therefore attributed to variation in γ.

Of course, this identification procedure is only valid to the extent that trade cost function

(13) is correct. The purpose of Table 7 is to substitute an alternative, more flexible trade cost

function. Apart from logarithmic distance I add a quadratic in logarithmic distance:

  .)ln(~)ln()ln()22(
2

ijijij distdistt  
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The distance elasticity of trade costs follows as )ln(~2)ln(d/)ln(d ijijij distdistt   and is thus

no longer constant (a non-CES transport technology). For the standard gravity case the elasticity

of trade with respect to distance is therefore equal to  .)ln(~2)1( ijdist 

Methodologically, I want to be clear that equation (22) represents only one specific trade cost

function (albeit arguably a reasonable one) out of an infinite number of potential possibilities.

Since gravity estimates only yield products of structural elasticity parameters and trade cost

parameters, identification in this context inevitably has to rely on a particular assumed functional

form.

Column 1 of Table 7 reports a standard gravity regression as in equation (18) but with the

additional quadratic distance term based on trade cost function (22). The estimate for  )1( 

is negative at -0.2677 but not significant. The estimate for  ~)1(  is -0.0644 and significant

at the five percent level.

Then, as in section 3.3, I allow the distance coefficients to vary across import share

intervals. The intervals are given by predicted import shares based on the results in column 1. As

before, the identifying assumption is that the trade cost function is correct. In the context of

specification (22) this means that I have to hold ρ and ~ constant. Of course, I do not know the

values for ρ and ~ as column 1 of Table 7 only reveals their products with ).1(   However,

based on the point estimates I can calculate their ratio as  ~/ =-0.2677/-0.0644=4.16.36 To be

consistent with the identifying assumption of a constant ρ and a constant ~ , I constrain the ratio

of the two distance regressors in each interval to this particular value. All variation in the

elasticity of trade with respect to distance is therefore attributed to )ln(d/)/ln(d ijjij tyx . If

standard gravity is the true model, the coefficients on )ln( ijdist and  2)ln( ijdist should not vary

across intervals.

Column 2 of Table 7 reports the results. To reduce the number of parameters to be

estimated, I only adopt three intervals instead of five. The )ln( ijdist coefficients are -0.3216,

-0.2942 and -0.2542, and the  2)ln( ijdist coefficients are -0.0773, -0.0707 and -0.0611. Thus,

36 As ρ in particular is imprecisely estimated, a concern might be that the true ratio could be different. The 95
percent confidence interval for the ratio is given by the values -12.91 and 20.42. The results are qualitatively the
same based on either of those two values.
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their absolute values exhibit the same declining pattern as already found in section 3.3, and the

differences are statistically significant (p-value=0.00). As before, this result casts doubt on the

standard gravity specification but it is consistent with the translog model.

The remaining two columns of Table 7 go through the same procedure for the translog

specification as in equation (17) with the additional quadratic distance term. Based on the results

in column 3 the estimates for  and ~ are -0.0933 and 0.0045, respectively. Their ratio

follows as  ~/ =-20.73. Column 4 allows the coefficients to vary across import share intervals,

with the ratio of the two distance regressors constrained to the value of -20.73. The )ln( ijdist

coefficients are -0.1182, -0.1407 and -0.1355, and the  2)ln( ijdist coefficients are 0.0057,

0.0068 and 0.0066. Although the differences are significant (p-values=0.00) as the coefficients

are tightly estimated, there is no monotonic pattern. This finding is consistent with the translog

model.

4. Conclusion

Leading trade models from the current literature imply a gravity equation that is

characterized by a constant elasticity of trade flows with respect to trade costs. This paper adopts

an alternative demand system – translog preferences – and derives the corresponding gravity

equation. Due to more flexible substitution patterns across goods, translog gravity breaks the

constant trade cost elasticity that is the hallmark of traditional gravity equations. Instead, the

elasticity becomes endogenous and depends on the intensity of trade flows between two

countries.

In particular, all else being equal, the less two countries trade with each other and the

smaller their bilateral import shares, the more sensitive they are to bilateral trade costs. I test the

translog gravity specification and find evidence that strongly supports this prediction. That is,

trade cost elasticities are heterogeneous across import shares, and the traditional specification

with a constant trade cost elasticity can be clearly rejected.

The empirical results presented in this paper are based on aggregate trade flows. A

natural extension would be an application to more disaggregated data. In that regard, I have

obtained some preliminary results based on import shares between OECD countries at the level

of 3-digit industries. When I allow gravity distance coefficients for individual industries to vary
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across import shares in CES-based gravity equations, their absolute values are characterized by

the same declining pattern as in Table 3 for industries as diverse as food products, plastic

products and electric machinery. This additional evidence suggests that varying trade cost

elasticities are a distinct feature of international trade data also at the industry level. Exploring

industry-level data in more detail along those lines is thus an important topic for future research.
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Appendix A. Deriving the Translog Gravity Equation

This appendix outlines the derivation of the translog gravity equation (7). Substituting the

expenditures shares implied by (4) into the market-clearing condition (6) yields
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where the first summation index on the right-hand side is changed from j to s. Then substitute the

last equation back into the import share (5):

1 1

1

1

1 1 1 1 1

1 1 1 1

1

ln( ) ln( )

ln( ) ln( )

ln

i i

i i

i

i

i

N NN J N
ij i s

m km kj m km ksW W
m N k s m N kj

NJ N N
i s

km kj km ksW W
s m N k k

N
kji s

kmW W
m N k ks

x y y
t t

y y y

y y
t t

y y

ty y

y y t

   

 



 





      

    

 

   
       

   

 
   

 

  
     

  

    

   


1 1

.
iNJ

s 

 

Use (3) to arrive at

 
1

1

1 1 1,

1 1 1

ln 1 ln

ln ln .

i

i

i

i

NJ N
ij kj mji s

W W
s m N k k mj ks ms

NJ N
kj mji s

W W
s m N k ks ms

x t ty y
N

y y y N t N t

t ty y

y y N t t

 








    

   

    
        

    

    
       

    

  

  

To ease notation define the geometric mean of trade costs in country j as

1/

1

NN

j kj
k

T t


 
  
 


so that

11 1

ln ln .
i

i

NJ
ij j mji s

W W
s m Nj s ms

x T ty y

y y y T t
 

  

    
       

    
 



33

Recall that tmj=tij if m ϵ [Ni-1+1,Ni] so that the previous equation can be rewritten as
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where 1i i in N N   denotes the number of goods of country i. Note that ln( )jT can be rewritten

as a weighted average of trade costs over the trading partners of country j:
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Appendix B. Empirical Appendix

B.1. Robustness checks for the extensive margin measure

The right-hand side variables of translog gravity equation (16) contain a measure of the

extensive margin, ni. But the specific measure based on Hummels and Klenow (2005) that I use

for ni in the regressions in columns 1 and 2 of Table 1 might not be suitable. As a robustness

check, I therefore re-estimate equation (16) non-parametrically in two ways.

First, I replace ni by a set of exporter dummy variables. Thus, I interact the bilateral

distance and adjacency variables with these dummy variables. But given that )ln( dist
jT and adj

jT

are importer-specific, it becomes impossible to estimate the two variables involving these terms

because all degrees of freedom would be exhausted. They are therefore dropped. All 28 resulting

distance coefficients are negative and almost all of them are significant at the one percent level.

The average distance coefficient is 0.0062 in absolute value. The smallest distance coefficient in

absolute value is 0.0001 for Iceland, and the largest distance coefficient in absolute value is

0.0310 for Australia followed by 0.0286 for Germany. As to the interacted adjacency variables,

some drop out of the estimation because the corresponding exporting countries are not adjacent

to any other countries in the sample. These countries are Australia, Greece, Iceland, Japan, Korea

and New Zealand. But the estimated interacted adjacency coefficients have the expected positive

sign and most of them are significant. Only one coefficient has a negative sign but it is

insignificant. Overall, the R-squared stands at 77 percent.

The translog model in equation (16) suggests that the trade cost coefficients should be

correlated with the extensive margin. I therefore compare the interacted distance and adjacency

coefficients to empirical measures of the extensive margin. Specifically, I compute the

correlation between the estimated coefficients and three different measures. First, I consider the

extensive margin measure by Hummels and Klenow (2005). The correlation is 44 percent with

the absolute values of the distance coefficients and 50 percent with the adjacency coefficients.

Second, I consider the unweighted count of six-digit product categories as an extensive margin

measure (see section 3.2). The correlations are 47 percent and 53 percent, respectively. Third, I

use (the logarithm of) the exporting country’s income (GDP), ln(yi), as a simple proxy of the

extensive margin. This proxy captures the idea that larger countries tend to export a larger range

of goods. The correlations are 58 percent and 64 percent, respectively. Figure B1 plots the

individual distance and adjacency coefficients against the three extensive margin measures. In
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general I find that the trade cost coefficients are related to the extensive margin proxies as

suggested by the translog model.

As the second, related way of re-estimating equation (16), I stratify based on intervals of

the extensive margin. I divide the sample into five intervals and allow the coefficients on

distance and adjacency to vary across these intervals. This stratification is carried out for the

three extensive margin measures mentioned above. As the translog model suggests, the intervals

representing the smallest extensive margins, denoted by h=1, are expected to have the lowest

coefficients in absolute value, and vice versa for the intervals representing the largest extensive

margins, denoted by h=5.

The regression results are reported in Table B1. In all three specifications the distance

coefficients are lowest in absolute value for the first interval and highest for the fifth interval. In

column 2 the distance coefficients are strictly increasing in absolute value, although the pattern is

more varied in columns 1 and 3. Formal tests of whether the distance coefficients are equal are

rejected for all three specifications (p-values=0.00). A broadly similar pattern arises for the

adjacency coefficients. As expected, the highest coefficients are estimated for the fifth intervals,

and they tend to become lower for intervals representing smaller extensive margins. Formal tests

of whether the adjacency coefficients are equal can be rejected for all specifications (the p-values

range between 0.00 and 0.02). As a final remark, I obtain identical distance and adjacency

coefficients if I run separate regressions for each interval instead of the joint regressions in

columns 1 to 3 of Table B1.

In summary, I therefore conclude that the non-parametric regressions of equation (16)

yield results that are consistent with the translog model.

B.2. A multiplicative error term

The traditional gravity specification, for instance in equation (18), typically has the trade

flow variable in logarithmic form as the dependent variable with an additive error term. That is,

in levels this would correspond to a multiplicative lognormal error term. However, the translog

gravity equations (16) and (17) have the trade flow in levels as the dependent variable plus an

additive error term.

Here I introduce a multiplicative error term for the translog specification. Instead of the

additive error term in equation (14), I assume a multiplicative error term of the following form:
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and xij/yj are log-normally distributed.

I carry out the estimation with nonlinear least squares (NLS) running the regressions that

correspond to columns 1-4 of Table 1. The results are reported in Table B2. As expected,

distance is negatively and adjacency is positively related to import shares. The signs and

significance of the coefficients are exactly the same as in Table 1. But the values of the

individual coefficients are of course not the same because the error term is specified differently

(multiplicative in Table B2 as opposed to additive in Table 1). For example, the distance

coefficient in column 1 is -0.0133 compared to -0.0296 in the corresponding column of Table 1.

The R-squareds are substantially higher. They fall in the range of 0.91-0.93 compared to

the range of 0.50-0.59 in Table 1, indicating that the multiplicative error term produces a better

fit. How can this fit be compared to that of the traditional gravity equations in Table 2? Instead

of the log-linear specification underlying Table 2, the traditional gravity equations can also be

estimated in levels with nonlinear least squares, based on equation (9) with the usual

multiplicative error term. This yields exactly the same coefficients and R-squareds as reported in

Table 2. Therefore, as the dependent variables are the same, the R-squareds in the range of 0.91-

0.93 in Table B2 are directly comparable to the value of 0.89 in Table 2 for the traditional

gravity specification. Based on a multiplicative error term the goodness of fit is thus not worse in

the translog model than in the traditional model.37

B.3. An alternative stratification procedure

The issue of stratification in the context of equations (19) and (20) is important.

Stratifying in terms of observed import shares would come down to selection on the endogenous

variable and would thus lead to an estimation bias. In line with results from Monte Carlo

simulations, in the main part of the paper I resort to a two-step procedure whereby the sample is

stratified in terms of intervals of predicted import shares. Nevertheless, it might still be a concern

that the stratification is in terms of the (predicted) dependent variable. As a robustness check, I

37 Note that a logarithmic version of the above equation (i.e., taking logarithms on both sides) could also be
estimated with nonlinear least squares. The crucial difference would be that the fitted values for import shares would
have to be positive as the conditional expectation of import shares would be constrained to be positive due to the
logarithmic form. This constraint would lead to lower R-squareds in the range of 0.43-0.74.
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therefore adopt an alternative stratification procedure in terms of the right-hand side gravity

variables.

Translog gravity theory implies that trade cost elasticities vary across import shares (see

equation 12). To be consistent with the guidance from theory, the stratification should thus be

based on an indicator of right-hand side variables that is closely related to the import shares. But

a problem with the estimating equations is that most right-hand side variables are fixed effects. It

therefore makes sense to focus on right-hand side variables that are observable. More

specifically, the standard gravity equation (18) has three such variables. The first two are

logarithmic distance and the adjacency dummy. The third is the logarithmic income of the

exporting country, which is part of the exporter fixed effect iS
~

. The remaining variables

embedded in the fixed effects would be the multilateral resistance terms but those are

unobservable.

I proceed by constructing an indicator based on these three variables. Adjacency and the

exporter’s income are supposed to be positively related to import shares, while distance is

expected to be negatively related. The difficulty is how to combine these three variables. I first

standardize them to remove differences in units of measurement. I then construct a simple

unweighted indicator for import shares by adding the standardized variables for adjacency and

exporter’s income and subtracting the standardized variable for distance. The resulting indicator

has a correlation of 77 percent with the observed logarithmic import shares. For example, the

three biggest values of the indicator are for the US share of Canadian imports, the Austrian share

of Slovakian imports and the French share of Belgian imports, all of which seem sensible. Most

importantly, the indicator is based on a combination of arguably exogenous right-hand side

variables. It is not based on a first-stage prediction of import shares.

As the final step, I construct five import share intervals based on the indicator and run

regression (19). The results are reported in columns 1 and 2 of Table B3. They correspond to

columns 1 and 2 of Table 3. The smallest import shares according to the indicator are in interval

h=1, and the largest import shares are in interval h=5. As before, hypothesis A puts forward the

equality of distance coefficients, i.e., λ1= λ2=...=λ5. The alternative, consistent with the translog

gravity model, is a declining pattern in the absolute distance coefficients, i.e., λ1> λ2>...> λ5. In

column 1 of Table B3 the distance coefficients clearly decline in absolute value except for the

last interval. But once adjacency is added as a control in column 2, the last coefficient shrinks in
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magnitude and becomes the smallest. The hypotheses that the distance coefficients are equal are

rejected (the p-values are 0.02 and 0.00 in columns 1 and 2, respectively). As in section 3.3, I

therefore find evidence against hypothesis A.

I carry out a similar procedure for translog gravity and hypothesis B. Specifically, I focus

on observable right-hand side variables in equation (17). These are distance, adjacency and the

exporter’s income and, through the importer fixed effect jŜ , also the two multilateral resistance

terms )ln( dist
jT and adj

jT . I standardize them and construct an indicator by adding the variables

for adjacency, exporter’s income and the multilateral resistance term for distance and by

subtracting the variables for distance and the multilateral resistance term for adjacency. I then

run regression (20). The results are reported in columns 3 and 4 of Table B3. They correspond to

columns 1 and 2 of Table 4a. Hypothesis B states that the distance coefficients should be equal,

i.e., κ1= κ2=...=κ5. In column 3 the distance coefficients show an increasing pattern in absolute

value although their equality marginally cannot be rejected (p-value=0.14). Once adjacency is

added as a control in column 4, the monotonically increasing pattern disappears and the equality

of the coefficients clearly cannot be rejected (p-value=0.35).

Overall, I conclude that the alternative stratification procedure in terms of right-hand side

variables leads to similar results as those discussed in section 3.3.
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Table 1: Translog gravity

Multiple goods per country One good per country (ni=1)

Dependent variable xij/yj xij/yj (xij/yj)/ni (xij/yj)/ni xij/yj xij/yj

(1) (2) (3) (4) (5) (6)

ni ln(distij) -0.0296*** -0.0190***

(0.0041) (0.0029)

ni ln(Tj
dist) 0.0207*** 0.0105***

(0.0049) (0.0034)

ni adjij 0.0510***

(0.0117)

ni Tj
adj -0.0471**

(0.0192)

ln(distij) -0.0250*** -0.0159*** -0.0149*** -0.0094***

(0.0033) (0.0021) (0.0022) (0.0016)

adjij 0.0450*** 0.0273***

(0.0090) (0.0053)

R-squared 0.52 0.59 0.50 0.57 0.50 0.56

Observations 749 749 749 749 749 749
Notes: Robust standard errors clustered around country pairs (378 clusters) reported in parentheses, OLS
estimation. Columns 1 and 2: exporter fixed effects not reported. Columns 3-6: exporter and importer fixed effects
not reported. ** significant at 5% level. *** significant at 1% level.
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Table 2: Constant elasticity gravity

Dependent variable ln(xij/yj) ln(xij/yj)

(1) (2)

ln(distij) -1.2390*** -1.1697***

(0.0625) (0.0713)

adjij 0.3440**

(0.1720)

R-squared 0.89 0.89

Observations 749 749
Notes: Robust standard errors clustered around country
pairs (378 clusters) reported in parentheses, OLS
estimation. Exporter and importer fixed effects not
reported. ** significant at 5% level. *** significant at 1%
level.
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Table 3: Testing constant elasticity gravity (Hypothesis A)

Intervals based on (xij/yj)/ni Intervals based on (xij/yj)

Dependent variable ln(xij/yj) ln(xij/yj) ln(xij/yj) ln(xij/yj)

(1) (2) (3) (4)

ln(distij), h=1 -1.4960*** -1.4490*** -1.6523*** -1.5970***

(0.1377) (0.1313) (0.1080) (0.1044)

ln(distij), h=2 -1.4636*** -1.3405*** -1.3936*** -1.3190***

(0.1223) (0.1117) (0.1180) (0.1140)

ln(distij), h=3 -1.3668*** -1.2502*** -1.3369*** -1.2131***

(0.1092) (0.1043) (0.1123) (0.1017)

ln(distij), h=4 -1.2235*** -1.0662*** -1.3311*** -1.1551***

(0.1024) (0.0968) (0.0947) (0.0946)

ln(distij), h=5 -1.0790*** -0.8297*** -1.0662*** -0.8251***

(0.1000) (0.1045) (0.0910) (0.0972)

adjij, h=2 1.9499*** 1.1283*

(0.2279) (0.6657)

adjij, h=3 2.3218*** 1.6318***

(0.2150) (0.5925)

adjij, h=4 0.7333*** 0.5197***

(0.2345) (0.1910)

adjij, h=5 0.6221*** 0.6359***

(0.1500) (0.1556)

R-squared 0.90 0.90 0.89 0.90

Observations 749 749 749 749
Notes: The index h denotes intervals in order of ascending predicted import shares. The
intervals in columns 1 and 2 are based on predicted import shares divided by ni. The intervals in
columns 3 and 4 are based on predicted import shares only. The adjij regressor for interval h=1
drops out since no adjacent country pair falls into this interval. Robust standard errors clustered
around country pairs (378 clusters) reported in parentheses, OLS estimation. Exporter and
importer fixed effects and interval fixed effects not reported. * significant at 10% level. ***
significant at 1% level.
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Table 4a: Testing translog gravity (Hypothesis B)

Intervals based on (xij/yj)/ni

Dependent variable (xij/yj)/ni (xij/yj)/ni

(1) (2)

ln(distij), h=1 -0.0449*** -0.0347***

(0.0068) (0.0039)

ln(distij), h=2 -0.0518*** -0.0383***

(0.0077) (0.0042)

ln(distij), h=3 -0.0516*** -0.0412***

(0.0078) (0.0046)

ln(distij), h=4 -0.0543*** -0.0411***

(0.0079) (0.0045)

ln(distij), h=5 -0.0567*** -0.0380***

(0.0084) (0.0057)

adjij, h=5 0.0608***

(0.0103)

R-squared 0.64 0.71

Observations 749 749
Notes: The index h denotes intervals in order of ascending
predicted import shares. The intervals are based on predicted
import shares divided by ni. The adjij regressors for intervals
h=1-4 drop out in column 2 since no adjacent country pair falls
into these intervals. Robust standard errors clustered around
country pairs (378 clusters) reported in parentheses, OLS
estimation. Exporter and importer fixed effects and interval
fixed effects not reported. *** significant at 1% level.
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Table 4b: Testing translog gravity (Hypothesis B)

Intervals based on (xij/yj)/ni Intervals based on (xij/yj)

Dependent variable xij/yj xij/yj xij/yj xij/yj

(1) (2) (3) (4)

ni ln(distij), h=1 -0.0535*** -0.0406*** -0.0403*** -0.0369***

(0.0090) (0.0064) (0.0085) (0.0061)

ni ln(distij), h=2 -0.0446*** -0.0351*** -0.0338*** -0.0327***

(0.0081) (0.0052) (0.0075) (0.0054)

ni ln(distij), h=3 -0.0507*** -0.0376*** -0.0334*** -0.0337***

(0.0085) (0.0054) (0.0069) (0.0053)

ni ln(distij), h=4 -0.0585*** -0.0406*** -0.0332*** -0.0343***

(0.0095) (0.0062) (0.0061) (0.0055)

ni ln(distij), h=5 -0.0627*** -0.0476*** -0.0601*** -0.0439***

(0.0087) (0.0077) (0.0079) (0.0084)

ni ln(Tj
dist), h=1 0.0430*** 0.0286*** 0.0291*** 0.0258***

(0.0076) (0.0049) (0.0065) (0.0047)

ni ln(Tj
dist), h=2 0.0300*** 0.0189*** 0.0201*** 0.0183***

(0.0067) (0.0037) (0.0057) (0.0039)

ni ln(Tj
dist), h=3 0.0343*** 0.0199*** 0.0195*** 0.0189***

(0.0072) (0.0043) (0.0058) (0.0040)

ni ln(Tj
dist), h=4 0.0391*** 0.0207*** 0.0184*** 0.0163***

(0.0085) (0.0055) (0.0055) (0.0044)

ni ln(Tj
dist), h=5 0.0417*** 0.0256*** 0.0413*** 0.0242***

(0.0084) (0.0067) (0.0083) (0.0079)

ni adjij, h=5 0.0536*** 0.0529***

(0.0161) (0.0161)

ni Tj
adj, h=5 -0.1309** -0.0933*

(0.0647) (0.0501)

R-squared 0.64 0.69 0.64 0.68

Observations 749 749 749 749
Notes: The index h denotes intervals in order of ascending predicted import shares. The intervals in
columns 1 and 2 are based on predicted import shares divided by n i. The intervals in columns 3 and 4
are based on predicted import shares only. The ni adjij regressors for intervals h=1-4 drop out in column
2 since no adjacent country pairs fall into these intervals (intervals h=1, 2 and 4 in column 4). The n i Tj

adj

regressors for intervals h=1-4 in columns 2 and 4 are included but not reported here. Robust standard
errors clustered around country pairs (378 clusters) reported in parentheses, OLS estimation. Exporter
fixed effects and interval fixed effects not reported. * significant at 10% level. ** significant at 5% level.
*** significant at 1% level.
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Table 5: General equilibrium effects in response to a counterfactual decline in trade costs

Total effect Direct effect Indirect GE effect Trade cost elasticity Distance elasticity

Import share interval Δ ln(xij/yj) = (1-σ) Δ ln(tij) + Δ ln(yi/yW) + (σ-1) Δ ln(PiPj) Total Direct Total Direct

(1) (2) (3) (4) (5a) (5b) (6a) (6b)

h=1 0.0702 = 0.07 + -0.0007 + 0.0009 -7.02 -7 -1.00 -1

h=2 0.0699 = 0.07 + -0.0007 + 0.0007 -6.99 -7 -1.00 -1

h=3 0.0696 = 0.07 + -0.0008 + 0.0003 -6.96 -7 -0.99 -1

h=4 0.0690 = 0.07 + -0.0006 + -0.0003 -6.90 -7 -0.99 -1

h=5 0.0637 = 0.07 + -0.0007 + -0.0056 -6.37 -7 -0.91 -1

Notes: This table reports logarithmic differences of variables between the initial equilibrium and the counterfactual equilibrium. The initial equilibrium is based
on country income shares yi/y

W
for the year 2000 and bilateral distance data for the 28 countries in the sample (28*27=756 bilateral observations). For each

bilateral observation a counterfactual equilibrium is computed under the assumption that bilateral trade costs tij for this observation have decreased by one
percent all else being equal, yielding 756 counterfactual scenarios. The table reports the logarithmic differences between the initial and the counterfactual
equilibria averaged across five import share intervals denoted by h. Import share intervals are in ascending order and based on the initial equilibrium. Assumed
parameter values: σ=8 and ρ=1/7. Column 1: change in the import share; column 2: change in bilateral trade costs scaled by the substitution elasticity; column
3: change in the exporting country's income share; column 4: change in multilateral resistance scaled by the substitution elasticity; columns 5a and 5b: implied
trade cost elasticities based on total effect and direct effect (=1-σ); columns 6a and 6b: implied distance elasticities based on total effect and direct effect (=(1-
σ)*ρ).
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Table 6: Additional trade cost variables

Constant elasticity gravity Translog gravity

Dependent variable ln(xij/yj) (xij/yj)/ni

(1) (2)

ln(distij), h=1 -1.4463*** -0.0398***

(0.1369) (0.0061)

ln(distij), h=2 -1.3789*** -0.0473***

(0.1168) (0.0068)

ln(distij), h=3 -1.2841*** -0.0464***

(0.1030) (0.0068)

ln(distij), h=4 -1.0150*** -0.0460***

(0.0992) (0.0068)

ln(distij), h=5 -0.8155*** -0.0447***

(0.1060) (0.0072)

adjij 0.5859*** 0.0292***

(0.1711) (0.0071)

common languageij 0.1999 0.0091**

(0.1356) (0.0045)

currency unionij 0.0159 0.0073**

(0.1128) (0.0034)

colonialij 0.6286** 0.0146

(0.2509) (0.0159)

R-squared 0.90 0.69

Observations 749 749
Notes: The index h denotes intervals in order of ascending predicted import shares. The
adjij, common languageij, currency unionij and colonialij regressors do not vary across
intervals. Robust standard errors clustered around country pairs (378 clusters) reported in
parentheses, OLS estimation. Exporter and importer fixed effects and interval fixed effects
not reported. ** significant at 5% level. *** significant at 1% level.
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Table 7: Alternative distance specification

Constant elasticity gravity Translog gravity

Dependent variable ln(xij/yj) ln(xij/yj) (xij/yj)/ni (xij/yj)/ni

(1) (2) (3) (4)

ln(distij) -0.2677 -0.0933**

(0.4176) (0.0442)

(ln(distij))2
-0.0644** 0.0045

(0.0278) (0.0028)

ln(distij), h=1 -0.3216*** -0.1182***

(0.0191) (0.0209)

ln(distij), h=2 -0.2942*** -0.1407***

(0.0196) (0.0231)

ln(distij), h=3 -0.2542*** -0.1355***

(0.0184) (0.0284)

(ln(distij))2, h=1 -0.0773*** 0.0057***

(0.0046) (0.0010)

(ln(distij))2, h=2 -0.0707*** 0.0068***

(0.0047) (0.0011)

(ln(distij))2, h=3 -0.0611*** 0.0066***

(0.0044) (0.0014)

R-squared 0.89 0.89 0.52 0.59

Observations 749 749 749 749
Notes: The index h denotes intervals in order of ascending predicted import shares. Robust standard errors
clustered around country pairs (378 clusters) reported in parentheses, OLS estimation. Exporter and importer
fixed effects and interval fixed effects not reported. ** significant at 5% level. *** significant at 1% level.
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Table B1: Non-parametric estimation of equation (16)

Intervals based on different extensive margin measures ni

ni=HK (2005) ni=unweighted count ni=ln(yi)

Dependent variable xij/yj xij/yj xij/yj

(1) (2) (3)

ni ln(distij), h=1 -0.0009*** -0.0011*** -0.0011***

(0.0003) (0.0003) (0.0003)

ni ln(distij), h=2 -0.0150*** -0.0040*** -0.0061***

(0.0042) (0.0011) (0.0015)

ni ln(distij), h=3 -0.0085*** -0.0041*** -0.0144***

(0.0033) (0.0011) (0.0048)

ni ln(distij), h=4 -0.0074*** -0.0106*** -0.0066*

(0.0021) (0.0022) (0.0035)

ni ln(distij), h=5 -0.0201*** -0.0338*** -0.0268***

(0.0047) (0.0075) (0.0056)

ni adjij, h=1 0.0019 0.0046** 0.0046**

(0.0011) (0.0019) (0.0019)

ni adjij, h=2 0.0187* 0.0049* 0.0017

(0.0110) (0.0027) (0.0028)

ni adjij, h=3 0.0137 0.0182*** 0.0245**

(0.0097) (0.0060) (0.0098)

ni adjij, h=4 0.0174*** 0.0205* 0.0227

(0.0063) (0.0115) (0.0159)

ni adjij, h=5 0.0568*** 0.0392*** 0.0451***

(0.0181) (0.0136) (0.0147)

R-squared 0.62 0.68 0.66

Observations 749 749 749
Notes: The index h denotes intervals in order of ascending extensive margin measures. The
intervals in column 1 are based on the measure by Hummels and Klenow (2005). The intervals
in column 2 are based on the unweighted count of six-digit product categories. The intervals in
column 3 are based on the logarithmic income of the exporter. The ni Tj

dist
and ni Tj

adj
regressors

are included but not reported here. Robust standard errors clustered around country pairs (378
clusters) reported in parentheses, OLS estimation. Exporter fixed effects not reported. *
significant at 10% level. ** significant at 5% level. *** significant at 1% level.
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Table B2: Translog gravity, nonlinear least squares estimation

Dependent variable xij/yj xij/yj (xij/yj)/ni (xij/yj)/ni

(1) (2) (3) (4)

ni ln(distij) -0.0133*** -0.0119***

(0.0008) (0.0010)

ni ln(Tj
dist) 0.0027*** 0.0029***

(0.0004) (0.0010)

ni adjij 0.0226***

(0.0050)

ni Tj
adj -0.0071**

(0.0033)

ln(distij) -0.0164*** -0.0133***

(0.0011) (0.0008)

adjij 0.0174***

(0.0042)

R-squared 0.91 0.93 0.92 0.92

Observations 749 749 749 749
Notes: Robust standard errors clustered around country pairs reported in parentheses, NLS estimation.
Columns 1 and 2: exporter fixed effects not reported. Columns 3-4: exporter and importer fixed effects
not reported. ** significant at 5% level. *** significant at 1% level.
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Table B3: Stratification in terms of right-hand side variables

Constant elasticity gravity Translog gravity

(Hypothesis A) (Hypothesis B)

Dependent variable ln(xij/yj) ln(xij/yj) (xij/yj)/ni (xij/yj)/ni

(1) (2) (3) (4)

ln(distij), h=1 -1.4742*** -1.4788*** -0.0122*** -0.0137***

(0.1613) (0.1570) (0.0022) (0.0021)

ln(distij), h=2 -1.3132*** -1.3366*** -0.0135*** -0.0164***

(0.1323) (0.1189) (0.0041) (0.0038)

ln(distij), h=3 -1.0595*** -1.1110*** -0.0170*** -0.0214***

(0.1181) (0.1115) (0.0047) (0.0044)

ln(distij), h=4 -0.8761*** -0.8920*** -0.0177*** -0.0207***

(0.1366) (0.1229) (0.0049) (0.0044)

ln(distij), h=5 -1.0044*** -0.7824*** -0.0285*** -0.0219***

(0.1114) (0.1187) (0.0074) (0.0067)

adjij, h=4 0.0211***

(0.0079)

adjij, h=5 0.8003*** 0.0501***

(0.1745) (0.0104)

R-squared 0.89 0.89 0.56 0.59

Observations 749 749 749 749
Notes: The index h denotes intervals in order of ascending stratified import shares. See
Appendix B.3 for details of the stratification. The adjij regressors for intervals h=1-4 in column 2
drop out since no adjacent country pair falls into these intervals (intervals h=1-3 in column 4).
Robust standard errors clustered around country pairs (378 clusters) reported in parentheses,
OLS estimation. Exporter and importer fixed effects and interval fixed effects not reported. ***
significant at 1% level.
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Figure 1: Fitted import shares and residuals plotted against actual import shares. The left-hand
side panels are based on the translog gravity model, and the right-hand side panels are based on

the standard gravity model.
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Figure 2: Trade cost elasticities (in absolute value) plotted against import shares for the case of
New Zealand. The dashed lines represent 95 percent confidence intervals.
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Figure B1: Non-parametric estimates of distance and adjacency coefficients. In the top panels the absolute values of distance coefficients are plotted
against three extensive margin measures, and in the bottom panels the values of adjacency coefficients are plotted against the three measures. The

extensive margin measures are by Hummels and Klenow (2005) in the left-hand side panels, an unweighted count of six-digit product categories in the
middle panels and the logarithmic income of the exporter in the right-hand side panels.


