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1 Introduction

A small group of individuals can influence the long-run outcome in a large
population through local interactions. Such a phenomenon is called con-
tagion, also called diffusion or infection interchangeably, and has attracted
much attention. Analyzing 2 × 2 coordination games, Morris (2000) shows
that an action can spread contagiously in some network if and only if it is
the risk-dominant action, and a simple linear network is more contagion-
inducing than any other network in the sense that if contagion occurs in
some network, it occurs in the simple linear network. In this paper, we ex-
tend his analysis to a particular 3×3 game, which we call the bilingual game.
The purpose of this exercise is two-hold: (1) to analyze whether and how
the presence of the bilingual option affects the possibility of contagion; (2)
to investigate finer structures of networks than what the previous analysis
on 2× 2 games can reveal.

Consider an infinite population of players who are connected with each
other through a graph (“social network”). Suppose that each player uses
one of two computer programming languages, or two types of technologies
in general, A and B. The payoff from each interaction with his neighbors is
given by the following 2× 2 coordination game:

A B

A a, a b, c

B c, b d, d

where a > c and d > b, so that (A,A) and (B,B) are strict Nash equilibria.
We assume that a > d, i.e., (A,A) Pareto-dominates (B,B), while a − c <
d−b, i.e., (B,B) risk-dominates (A,A). We further assume that d ≥ c (which
together with the above assumptions implies that a ≥ b), i.e., coordination
on some action is always better than miscoordination. It is well known (see,
e.g., Morris (2000)) that the risk-dominant action B spreads contagiously
from a finite subset of players to the entire population in some network, and
that it is never invaded by the other action A in any network. Thus, in 2×2
coordination games, the risk-dominant action is always both contagious and
uninvadable. In fact, contagion and uninvadability are equivalent in this
class of games.

Now suppose that players can adopt a combination of the two actions,
a “bilingual option” AB , with an additional cost e > 0. A player who
plays AB receives a (gross) payoff a (d, resp.) from an interaction with an
A-player (B-player, resp.). When two AB -players interact, they adopt the
superior action A and receive a. This situation is described by the following
payoff matrix:1

1This game has been studied by Galesloot and Goyal (1997), Goyal and Janssen (1997),
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A AB B

A a, a a, a− e b, c

AB a− e, a a− e, a− e d− e, d

B c, b d, d− e d, d

where (A,A) and (B,B) are the only pure-strategy Nash equilibria. One
may expect that, when the value of the cost parameter e is large, the action
AB is not much relevant so that the situation is close to the previous 2× 2
case, while as e becomes smaller, AB becomes closer to dominating B so
that eventually B will be abandoned and only A will survive.

In this paper, we completely characterize when an action is contagious
and when it is uninvadable in this class of 3× 3 games. Conforming to the
conjecture in the previous paragraph, we show that if e is large, then B is
contagious and uninvadable, while if e is small, then A is contagious and
uninvadable. Generically, either A or B is contagious, but, in contrast to
the 2 × 2 case, both actions are each contagious if e is in a medium range
(which is nonempty and open under an additional condition on parameter
values), i.e., A spreads contagiously in some networks while B does in some
others. In other words, uninvadability is a strictly stronger property than
contagion.

Our proofs for the above characterization provide new insights on how
the network structure affects contagion. A class of networks is called critical
if these networks induce all possible contagion, i.e., whenever an action can
spread contagiously in some network, it does so within this class of networks.
We show that the class of all “linear” networks is not critical in determining
contagion in the bilingual game, and provide an example of a critical class
that includes “non-linear” networks.

We also ask a comparative question: which network is more likely to
induce contagion? We say that a network is more contagion-inducing than
another network if any action that is contagious in the latter network is also
contagious in the former network. This preorder is incomplete, unlike the
“contagion threshold” that characterizes contagion for 2 × 2 coordination
games (Morris (2000)). We introduce the notion of weight-preserving node
identification between two networks, and show that this notion provides a
sufficient condition for a network to induce more contagion than another.

In his series of papers, Morris (1997, 1999, 2000) defines general notions
of contagion and uninvadability, develops a method using potential functions
to provide a sufficient condition for uninvadability (and hence a necessary
condition for contagion), and gives an example of a symmetric 4 × 4 game
to demonstrate the multiplicity of contagious actions. In particular, in his
4 × 4 example, contagion of these actions occurs in “linear” networks. For

Immorlica et al. (2007), and Easley and Kleinberg (2010).
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our class of games, we utilize the potential method to show uninvadability,
while we construct a “non-linear” network to obtain contagion of one of the
two actions.

Contagious behavior in the bilingual game is analyzed by Goyal and
Janssen (1997) and Immorlica et al. (2007). Both papers, however, focus
on specific classes of networks and provide only sufficient (necessary, resp.)
conditions for contagion (uninvadability, resp.), which are strictly stronger
than the condition we obtain as a full characterization. This implies that
their classes of networks are not critical.

As Morris (1997, 1999) argues, local interaction games and incomplete
information games have formal connections, and both belong to a more
general class of “interaction games”. Accordingly, our results on local in-
teraction games can be interpreted in the context of incomplete information
games, whereby we provide interesting implications on global games and
robustness to incomplete information.

2 Local Interaction Games

Let X be a countably infinite set of players, and P : X ×X → R+ a function
such that

1. P (x, x) = 0 for all x ∈ X ,

2. P (x, y) = P (y, x) for all x, y ∈ X , and

3. 0 <
∑

y∈X P (x, y) <∞ for all x ∈ X .

A local interaction system, or network, (X , P ) defines an undirected graph
with vertices X and edges weighted by P .2 (We will use the terms “local
interaction system” and “network” interchangeably.) We will restrict our
attention to unbounded local interaction systems; i.e.,

∑
(x,y)∈X×X P (x, y) =

∞. Write Γ(x) = {y ∈ X | P (x, y) > 0} for the set of neighbors of player
x ∈ X . Denote

P (y|x) =
P (x, y)∑

y′∈Γ(x) P (x, y′)
,

which is well defined due to property 3 above.
Players have a (common) finite set of actions S and a (common) payoff

function u : S×S → R. With the action set S fixed, a local interaction game
is represented by the tuple (X , P, u). Let ∆(S) denote the set of probability

2One could instead focus on local interaction systems with constant weights, where
P (x, y) ∈ {0, 1} for all x, y ∈ X . All the results in this paper would remain unchanged since
any local interaction system with rational weights can be replicated by a local interaction
system with constant weights.
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distributions over S. Given payoff function u, write br(π) for the set of pure
best responses to π ∈ ∆(S):

br(π) = {h ∈ S | u(h, π) ≥ u(h′, π) for all h′ ∈ S}, (2.1)

where u(h, π) =
∑

k∈S πku(h, k).
An action configuration is a function σ : X → S. Given an action con-

figuration σ, we denote by π(σ|x) ∈ ∆(S) the action distribution, weighted
by P (·|x), over the actions of player x’s neighbors: i.e.,

πh(σ|x) =
∑

y∈Γ(x):σ(y)=h

P (y|x).

The payoff for player x ∈ X playing action s ∈ S is given by the weighted
sum (with respect to P (·|x)) of payoffs from the interactions with his neigh-
bors:

U(s, σ|x) =
∑
y∈Γ(x)

P (y|x)u(s, σ(y)),

which equals u(s, π(σ|x)). Write BR(σ|x) for the set of pure best responses
for player x to action configuration σ:

BR(σ|x) = {s ∈ S | U(s, σ|x) ≥ U(s′, σ|x) for all s′ ∈ S}, (2.2)

which equals br(π(σ|x)).
We consider the sequential best response dynamics on network (X , P ) as

defined below. (There being finitely many actions, for a sequence of actions
(st)∞t=0, limt→∞ s

t = s if and only if there exists T such that st = s for all
t ≥ T .)

Definition 1. A sequence of action configurations (σt)∞t=0 is a best response
sequence if it satisfies the following properties: (i) for all t ≥ 1, there is at
most one x ∈ X such that σt(x) 6= σt−1(x); (ii) if σt(x) 6= σt−1(x), then
σt(x) ∈ BR(σt−1|x); and (iii) if there exists T ≥ 0 such that s /∈ BR(σt|x)
for all t ≥ T , then limt→∞ σ

t(x) 6= s.

Property (i) requires that in each period at most one player revise his
action,3,4 while property (ii) requires that the revising player switch to a
myopic best response to the current distribution of his neighbors’ actions.
Property (iii) requires that actions that are never a best response be aban-
doned eventually. In particular, (ii) and (iii) imply that if there exists T such
that s /∈ BR(σt|x) for all t ≥ T , then there exists T ′ such that σt(x) 6= s

3In continuous time models, this assumption would be replaced by the one that action
revision timings follow Poisson processes independent among players.

4While Proposition 2 will rely on this assumption, all the other results would hold
also under the simultaneous best response dynamics and others. See the discussion after
Definition 2 and Appendix A.1.
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for all t ≥ T ′. Note that for a given initial action configuration, there are in
general multiple best response sequences, as properties (i) and (iii) do not
specify which player revises actions in which period.

We are concerned with the following questions. Is it possible in some
network and some finite group of players such that if that group initially
plays action s∗, then the whole population will eventually play s∗? In this
case, s∗ is said to be contagious. Or, is it always the case in any network
that if s∗ is played by almost all players, it continues to be played by almost
all players? If so, s∗ is said to be uninvadable. Below we formally define the
relevant concepts following Morris (1997, 1999).

Definition 2. Given an unbounded local interaction system (X , P ), action
s∗ is contagious in (X , P ) if there exists a finite subset Y of X such that
every best response sequence (σt)∞t=0 with σ0(x) = s∗ for all x ∈ Y satisfies
limt→∞ σ

t(x) = s∗ for each x ∈ X . Action s∗ is contagious if it is contagious
in some unbounded local interaction system.

Note that contagion of s∗ in (X , P ) requires that, once the finite set Y of
initial s∗-players is chosen, s∗ be eventually played by all the players along
any best response sequence.

One can define the notion of contagion differently. For example, one
allows for simultaneous best responses, or requires only some best response
sequence to converge. As we show in Appendix A.1, however, all such def-
initions turn out to be equivalent to the original one for any (generic) su-
permodular game. For the concreteness, we use the notion of contagion as
defined in Definition 2 throughout the main text.

For uninvadability, the notion “almost all” is formalized by “except for
a set of players whose weight with respect to P is finite”.5 For an action
configuration σ and a subset of actions S′ ⊂ S, we write

σP (S′) =
1

2

∑
(x,y):σ(x)∈S′ orσ(y)∈S′

P (x, y).

In particular, for an action s∗ ∈ S, σP (S \ {s∗}) =
(1/2)

∑
(σ(x),σ(y))6=(s∗,s∗) P (x, y), which is the total weight of pairs of

players who play action profiles other than (s∗, s∗).

Definition 3. Given an unbounded local interaction system (X , P ), action
s∗ is uninvadable in (X , P ) if there exists no best response sequence (σt)∞t=0

such that σ0
P (S \ {s∗}) < ∞ and limt→∞ σ

t
P (S \ {s∗}) = ∞. Action s∗ is

uninvadable if it is uninvadable in any unbounded local interaction system.

By definition, if s∗ is contagious, then actions other than s∗ are not unin-
vadable; if s∗ is uninvadable, then actions other than s∗ are not contagious.

5A finite set has a finite weight, and the converse is true if the neighborhood weights
are bounded away from 0: i.e., for some c > 0,

∑
y P (x, y) ≥ c for all x.
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Here, uninvadability as well as contagion are defined for the universal
domain of unbounded networks. Our main result (Theorem 1) characterizes
this strong (weak, resp.) form of uninvadability (contagion, resp.). In Sec-
tion 5, we will consider several restricted domains of networks and examine
whether an action that is invaded (contagious, resp.) in the universal domain
becomes uninvadable (remains contagious, resp.) in restricted domains.

We conclude this section with the remark that the characterization of
contagious actions would be immediate if we allowed for asymmetric inter-
action weights, P (x, y) 6= P (y, x). That is, s∗ is contagious in some network
with asymmetric interaction weights if and only if (s∗, s∗) is a strict Nash
equilibrium in u. Thus we focus on symmetric interaction weights hereafter.

3 The Bilingual Game

Hereafter, we consider the class of 3×3 games described in the Introduction.
We denote the actions A, AB , and B by 0, 1, and 2, respectively, so that
S = {0, 1, 2}, and let the payoff function u : S × S → R be defined by


0 1 2

0 a a b

1 a− e a− e d− e
2 c d d

, (3.1a)

where we assume

b < c ≤ d < a, a− c < d− b, e > 0. (3.1b)

Action profiles (0, 0) and (2, 2) are the only pure-strategy Nash equilibria.
By the assumption that d < a, (0, 0) Pareto-dominates (2, 2), while by
a − c < d − b, (2, 2) pairwise risk-dominates (0, 0).6 By the additional
assumption that c ≤ d, this game is supermodular with respect to the order
on actions 0 < 1 < 2, i.e., u(h′, k) − u(h, k) ≤ u(h′, k′) − u(h, k′) if h < h′

and k < k′.
We will exploit the property of supermodular games, that the best re-

sponse correspondence is nondecreasing in the stochastic dominance order.
For π, π′ ∈ ∆(S), we write π - π′ (and π′ % π) if π′ stochastically dominates
π, i.e., if ∑

k≥h
πk ≤

∑
k≥h

π′k

for all h ∈ S. If u is supermodular, then

max br(π) ≤ max br(π′)

6In Appendix A.8, we analyze the case where (0, 0) is both Pareto-dominant and
pairwise risk-dominant.
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min br(π) ≤ min br(π′)

whenever π - π′.

4 Characterization

In this section, we show that the Pareto-dominant action 0 prevails if the
bilingual cost e is small, while the pairwise risk-dominant action 2 survives
if e is large. The thresholds will be constructed based on two parameters:

e∗ =
(a− d)(d− b)

2(c− b)
,

e∗∗ =
(a− d)(d− b)(a− c)

(c− b)(d− b) + (a− c)(a− d)
.

Verify that e∗ Q e∗∗ if c − b Q a − c. The following result characterizes
contagious and uninvadable actions in the bilingual game, quantifying our
argument in the Introduction.

Theorem 1. Let u be the bilingual game given by (3.1).
(i) 0 is contagious if e < max{e∗, e∗∗} and uninvadable if e < e∗. (ii) 2

is contagious if e > e∗ and uninvadable if e > max{e∗, e∗∗}.

- e
e∗ e∗∗

0 is contagious 2 is uninvadable

0 is uninvadable 2 is contagious

(1) c− b < a− c

- e
e∗e∗∗

0 is contagious
and uninvadable

2 is contagious
and uninvadable

(2) c− b ≥ a− c

Note that for any (generic) value of e, at least one action is contagious
and at most one action is uninvadable; when e ∈ (e∗, e∗∗) (which is nonempty
if c− b < a− c), the two actions 0 and 2 are each contagious (in respective
networks) and hence neither action is uninvadable.

One can verify that e∗ and e∗∗ increase as (i) b increases or c decreases
or (ii) a and c increase by the same amount or d and b decrease by the same
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amount; that is, the contagion and uninvadability regions (in the space of
e) of action 0 expand as action 0 becomes (i) less risky (i.e., b increases
or c decreases) or (ii) more efficient (i.e., a increases with a − c held fixed
or d decreases with d − b held fixed). This comparative statics is in stark
contrast with that in the 2 × 2 case, where the risk-dominance and hence
the characterizations for contagion and uninvadability are not affected by
any payoff change with a− c and d− b held fixed.

In Subsections 4.1 and 4.2, we prove the contagion and the uninvadability
parts of Theorem 1, respectively.

Example 1. Let a = 11, b = 0, c = 3, and d = 10: the game is represented
by 

0 1 2

0 11 11 0
1 11− e 11− e 10− e
2 3 10 10

.
Thus, c− b = 3 < a− c = 8, and e∗ = 5/3 and e∗∗ = 40/19. By Theorem 1,
if e > 40/19, 2 is contagious and uninvadable; if 5/3 < e < 40/19, both 0
and 2 are contagious; and if e < 5/3, 0 is contagious and uninvadable.

4.1 Contagion

We restate the contagion part of Theorem 1:

Proposition 1. Let u be the bilingual game given by (3.1).
(i) 0 is contagious if e < max{e∗, e∗∗}. (ii) 2 is contagious if e > e∗.

We decompose the proof into two lemmas. Lemma 1 provides sufficient
conditions for contagion of actions 0 and 2 in general 3 × 3 supermodular
games. Lemma 2 then checks by direct computation when those conditions
are satisfied in the bilingual game. Our main theoretical contribution is
in the proof of Lemma 1, where we explicitly construct networks in which
contagion occurs as desired.

To better understand how contagion occurs in the bilingual game, con-
sider a population of players indexed by integers x ∈ X = Z, where player
x interacts with players x± 1 with equal weights; see Figure 1.

Figure 1: Nearest neighbor linear interaction

Suppose that at time t = 0, all players play B except for players −1,
0, and 1 who play A, and assume that the bilingual cost e is small so that
e < (a − d)/2 (where (a − d)/2 ≤ e∗). We demonstrate that A spreads
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contagiously. (For concreteness, we here consider a particular best response
sequence, while one can verify that contagion occurs for all best response
sequences as the definition requires.) Note that, since A is pairwise risk-
dominated by B, no player is willing to switch from B to A. Suppose that
player 2 adjusts his action at t = 1. With his two neighbors playing A and
B, respectively, he abandons B and switches to AB since e < (a − d)/2 ≤
(a − c)/2. Suppose next that player 3 revises his action at t = 2. Since he
has one AB -neighbor and one B-neighbor, by e < (a − d)/2 he abandons
B and switches to A or AB (depending on the payoff parameter values);
let us assume that he chooses AB . Now let player 2 revise back again at
t = 3. This time his neighbors are playing A and AB (instead of B), and
hence he now switches to A. In this way, the region of A-players spreads,
together with the “bilingual” region of AB -players between the A- and the
B-regions; see Table 1.

· · · −2 −1 0 1 2 3 4 · · ·
t = 0 · · · B A A A B B B · · ·
t = 1 · · · B A A A AB B B · · ·
t = 2 · · · B A A A AB AB B · · ·
t = 3 · · · B A A A A AB B · · ·

Table 1: Contagion of action A

The above construction, which works only for e < (a− d)/2, is extended
to obtain contagion of A for e < e∗ (and symmetrically that of B for e > e∗)
in Lemma 1(1) where we construct a “linear” network with four neighbors
(two for each side) with appropriately chosen weights (Figure 2). In order
to obtain contagion further for the range [e∗, e∗∗) (which is nonempty when
c− b < a− c), however, such a construction does not work and we need to
construct a “non-linear” network in Lemma 1(2), in which different players
may have different types of interacting neighborhoods (Figure 3).

For p ∈ (0, 1/2) and q, r ∈ (0, 1), r ≤ q, let

πa =
(

1
2 , p,

1
2 − p

)
, πb =

(
1
2 − p, p,

1
2

)
,

and

πc =
(

1+q
2 , 0, 1−q

2

)
, πd =

(
1−r

2 , 0, 1+r
2

)
, πe =

(
0, q+r2q ,

q−r
2q

)
,

ρc =
(

1−q
2 , 0, 1+q

2

)
, ρd =

(
1+r

2 , 0, 1−r
2

)
, ρe =

(
q−r
2q ,

q+r
2q , 0

)
.

The conditions for contagion of actions 0 and 2 are stated in terms of best
responses to the above mixed actions.

Lemma 1. Let u be any 3× 3 supermodular game.
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(1) (i) If for some p ∈ (0, 1/2),

max br(πa) = 0, max br(πb) ≤ 1, (4.1)

then 0 is contagious. (ii) If for some p ∈ (0, 1/2),

min br(πa) ≥ 1, min br(πb) = 2, (4.2)

then 2 is contagious.
(2) (i) If for some q, r ∈ (0, 1) with r ≤ q,

max br(πc) = 0, max br(πd) ≤ 1, max br(πe) = 0, (4.3)

then 0 is contagious. (ii) If for some q, r ∈ (0, 1) with r ≤ q,

min br(ρc) = 2, min br(ρd) ≥ 1, min br(ρe) = 2, (4.4)

then 2 is contagious.

Proof. (1) Since cases (i) and (ii) are symmetric, we only show case (i). Let
p ∈ (0, 1/2) satisfy (4.1). We construct a local interaction system (X , P ) in
which action 0 spreads contagiously from a finite set of players Y ⊂ X .

Let X = Z, and P be defined by

P (x, y) =


p if |x− y| = 1
1
2 − p if |x− y| = 2

0 otherwise.

The defined local interaction system is depicted in Figure 2.

Figure 2: Linear interaction

We will use the following properties of this system.

Observation 1.

(a) If σ(x − 2) = σ(x − 1) = 0 and σ(x + 1) ≤ 1 (or symmetrically if
σ(x− 1) ≤ 1 and σ(x+ 1) = σ(x+ 2) = 0), then max BR(σ|x) = 0.

(b) If σ(x− 2) = 0 and σ(x− 1) ≤ 1 (or symmetrically if σ(x+ 1) ≤ 1 and
σ(x+ 2) = 0), then max BR(σ|x) ≤ 1.
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Proof. (a) Suppose that σ(x − 2) = σ(x − 1) = 0 and σ(x + 1) ≤ 1. Then
by construction, the distribution over the actions of player x’s neighbors,
π(σ|x) ∈ ∆(S), satisfies

π(σ|x)(0) ≥ P (x− 2, x− 1|x) =
1

2
,

π(σ|x)(0) + π(σ|x)(1) ≥ P (x− 2, x− 1, x+ 1|x) =
1

2
+ p,

which implies that π(σ|x) - πa = (1/2, p, 1/2−p). By the assumption (4.1)
and the supermodularity of u, it follows that max BR(σ|x) = 0.

(b) Suppose that σ(x− 2) = 0 and σ(x− 1) ≤ 1. Then by construction,

π(σ|x)(0) ≥ P (x− 2|x) =
1

2
− p,

π(σ|x)(0) + π(σ|x)(1) ≥ P (x− 2, x− 1|x) =
1

2
,

which implies that π(σ|x) - πb = (1/2− p, p, 1/2). By the assumption (4.1)
and the supermodularity of u, it follows that max BR(σ|x) ≤ 1.

Continuing the proof of Lemma 1(1), let Y = {−3, . . . , 2}, and consider
any best response sequence (σt)∞t=0 such that σ0(x) = 0 for all x ∈ Y . We
want to show that

lim
t→∞

σt(x) = 0 (♦x)

holds for all x ∈ X . We only consider players x ≥ 0; the analogous argument
applies to x < 0.

We first show (♦0) and (♦1), or more strongly, that

σt(x) = 0 for x = −2, . . . , 1

σt(x) ≤ 1 for x = −3, 2

for all t ≥ 0. Indeed, this holds for t = 0 by construction, and if it holds for
t− 1, then we have σt(x) = 2 for x = −2, . . . , 1 and σt(x) ≤ 1 for x = −3, 2
by properties (a) and (b) in Observation 1, respectively.

Assume (♦x−2) and (♦x−1). Then, there exists T0 such that σt(x−2) =
σt(x − 1) = 0 for all t ≥ T0. By Observation 1(b), this implies that there
exists T1 such that σt(x) ≤ 1 for all t ≥ T1. By Observation 1(b) applied for
x+ 1 in place of x, this implies that there exists T2 such that σt(x+ 1) ≤ 1
for all t ≥ T2. By Observation 1(a), this implies that there exists T3 such
that σt(x) = 0 for all t ≥ T3, meaning that (♦x) holds.

(2) Since cases (i) and (ii) are symmetric, we only show case (i). Let
q, r ∈ (0, 1), r ≤ q, satisfy (4.3). We construct a local interaction system
(X , P ) in which action 0 spreads contagiously from a finite set of players
Y ⊂ X .

11



Let X = {α, β} × Z, and P be defined by

P ((α, i), (α, j)) =

{
1− q if |i− j| = 1

0 otherwise,

P ((α, i), (β, j)) = P ((β, j), (α, i)) =


q + r if i = j

q − r if i = j + 1 and j ≥ 0

q − r if i = j − 1 and j ≤ 0

0 otherwise,

P ((β, i), (β, j)) = 0 for all i, j.

The defined local interaction system is depicted in Figure 3.

Figure 3: Non-linear interaction

We will use the following properties of this system.

Observation 2.

(c) For i ≥ 1, if σ(α, i − 1) = σ(β, i − 1) = σ(β, i) = 0 (or symmetri-
cally for i ≤ −1, if σ(α, i + 1) = σ(β, i + 1) = σ(β, i) = 0), then
max BR(σ|(α, i)) = 0.

(d) For i ≥ 1, if σ(α, i− 1) = σ(β, i− 1) = 0 (or symmetrically for i ≤ −1,
if σ(α, i+ 1) = σ(β, i+ 1) = 0), then max BR(σ|(α, i)) ≤ 1.

(e) If σ(α, i) ≤ 1, then max BR(σ|(β, i)) = 0.

Proof. (c) Suppose that σ(α, i − 1) = σ(β, i − 1) = σ(β, i) = 0. Then by
construction,

π(σ|(α, i))(0) ≥ P ((α, i− 1), (β, i− 1), (β, i)|(α, i)) =
1 + q

2
,

which implies π(σ|(α, i)) - πc = ((1+q)/2, 0, (1−q)/2). By the assumption
(4.3) and the supermodularity of u, it follows that max BR(σ|(α, i)) = 0.

(d) Suppose that σ(α, i− 1) = σ(β, i− 1) = 0. Then by construction,

π(σ|(α, i))(0) ≥ P ((α, i− 1), (β, i− 1)|(α, i)) =
1− r

2
,
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which implies π(σ|(α, i)) - πd = ((1−r)/2, 0, (1+r)/2). By the assumption
(4.3) and the supermodularity of u, it follows that max BR(σ|(α, i)) ≤ 1.

(e) Suppose that σ(α, i) ≤ 1. Then by construction,

π(σ|(β, i))(0) + π(σ|(β, i))(1) ≥ P ((α, i)|(β, i)) =
q + r

2q
,

which implies π(σ|(β, i)) - πe = (0, (q + r)/(2q), (q − r)/(2q)). By
the assumption (4.3) and the supermodularity of u, it follows that
max BR(σ|(β, i)) = 0.

Continuing the proof of Lemma 1(2), let Y = {(α, i) | i = −1, 0, 1} ∪
{(β, i) | i = −1, 0, 1}, and consider any best response sequence (σt)∞t=0 such
that σ0(x) = 0 for all x ∈ Y . We want to show that

lim
t→∞

σt(α, i) = 0 and lim
t→∞

σt(β, i) = 0 (♥i)

holds for all i ∈ Z. We only consider i ≥ 0; the analogous argument applies
to i < 0.

We first show (♥1), or more strongly, that

σt(α, i) = σt(β, i) = 0 for i = −1, 0, 1

for all t ≥ 0. Indeed, this holds for t = 0 by construction, and if it holds
for t− 1, then we have σt(α, i) = σt(β, i) = 0, i = −1, 0, 1, by properties (c)
and (e) in Observation 2, respectively.

Assume (♥i−1). Then, there exists T0 such that σt(α, i− 1) = σt(β, i−
1) = 0 for all t ≥ T0, By Observation 2(d), this implies that there exists T1

such that σt(α, i) ≤ 1 for all t ≥ T1. By Observation 2(e), this implies that
there exists T2 such that σt(β, i) = 0 for all t ≥ T2. By Observation 2(c)
this implies that there exists T3 such that σt(α, i) = 0 for all t ≥ T3. We
thus obtain (♥i).

Denote

e] =
(d− b){2(a− c)− (d− b)}

2(a− c)
.

Verify that e∗∗ Q e] if c− b Q a− c. The following result characterizes when
the hypotheses in Lemma 1 are satisfied in the bilingual game.

Lemma 2. Let u be the bilingual game given by (3.1).
(1) (i) Condition (4.1) holds for some p ∈ (0, 1/2) if e < e∗. (ii) Condi-

tion (4.2) holds for some p ∈ (0, 1/2) if e > e∗.
(2) Condition (4.3) holds for some 0 < r ≤ q < 1 if e < min{e∗∗, e]}.

Proof. See Appendix A.2.
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Proof of Proposition 1. (i) Suppose that e < max{e∗, e∗∗}. If
max{e∗, e∗∗} = e∗, then condition (4.1) holds for some p ∈ (0, 1/2) by
Lemma 2(1-i), and hence 0 is contagious by Lemma 1(1-i). If max{e∗, e∗∗} =
e∗∗, in which case c − b < a − c and thus min{e∗∗, e]} = e∗∗, then condi-
tion (4.3) holds for some 0 < r ≤ q < 1 by Lemma 2(2-i), and hence 0 is
contagious by Lemma 1(2-i). In both cases, 0 is contagious.

(ii) Suppose that e > e∗. Then condition (4.2) holds for some p ∈ (0, 1/2)
by Lemma 2(1-ii), and hence 2 is contagious by Lemma 1(1-ii).

Case (1) is consistent with the one-dimensional setup of Goyal and
Janssen (1997). They show that under local interaction on a circle, 0 is
contagious if e < e∗ while 2 is contagious if e > e∗.

4.2 Uninvadability

We restate the uninvadability part of Theorem 1:

Proposition 2. Let u be the bilingual game given by (3.1).
(i) 0 is uninvadable if e < e∗. (ii) 2 is uninvadable if e > max{e∗, e∗∗}.

The condition for uninvadability is stated by using the concept of mono-
tone potential maximizer (MP-maximizer) due to Morris and Ui (2005). We
employ its refinement, strict MP-maximizer, due to Oyama et al. (2008). For
our purpose, we define it only for the smallest and the largest actions, which
we denote by s and s, respectively.7 For a function f : S×S → R and a prob-
ability distribution π ∈ ∆(S), write brf (π) = arg maxh∈S f(h, π). (Thus the
best response correspondence br for the game u as defined in (2.1) is now
denoted bru.) Function f is symmetric if f(h, k) = f(k, h) for all h, k ∈ S
(i.e., it is a symmetric |S| × |S| matrix).

Definition 4. (i) s is a strict MP-maximizer of u if there exists a symmetric
function v : S × S → R with v(s, s) > v(h, k) for all (h, k) 6= (s, s) such that
for all π ∈ ∆(S),

max bru(π) ≤ max brv(π). (4.5)

Such a function v is called a strict MP-function for s.
(ii) s is a strict MP-maximizer of u if there exists a symmetric function

v : S × S → R with v(s, s) > v(h, k) for all (h, k) 6= (s, s) such that for all
π ∈ ∆(S),

min bru(π) ≥ min brv(π). (4.6)

Such a function v is called a strict MP-function for s.

A strict MP-maximizer is a strict Nash equilibrium and, in supermodular
games, is unique if it exists (Oyama et al. (2008)).

7Here, we define for actions, rather than action profiles, since we only consider sym-
metric action profiles of symmetric games.
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Lemma 3. Let u be any game. If s∗ = s, s is a strict MP-maximizer of u
with MP-function v and if u or v is supermodular, then s∗ is uninvadable.

Proof. See Appendix A.3.

In the bilingual game, Proposition 1 and Lemma 3 imply that action
0 (2, resp.) is never a strict MP-maximizer if e > e∗ (e < max{e∗, e∗∗},
resp.), and hence, no strict MP-maximizer exists if e∗ < e < max{e∗, e∗∗}.
The following lemma establishes existence of a strict MP-maximizer for the
remaining cases (except for knife-edge values of e).

Lemma 4. Let u be the bilingual game given by (3.1).
(i) 0 is a strict MP-maximizer if e < e∗. (ii) 2 is a strict MP-maximizer

if e > max{e∗, e∗∗}.

Proof. See Appendix A.4.

In 2×2 coordination games, a risk-dominant equilibrium is a strict MP-
maximizer. Beyond 2×2 games, no general method to find an MP-maximizer
has been known (except for some special cases). A strict MP-maximizer
is shown, by ad hoc construction, to generically exist in symmetric 3 × 3
supermodular games such that the three symmetric action profiles are all
Nash equilibria (Morris (1999), Oyama and Takahashi (2009)), whereas it
fails to exist in some 3 × 3 games with two strict Nash equilibria, e.g., in
our bilingual game with e∗ < e < e∗∗ (see also Honda (2011)). The proof of
Lemma 4 is here again by ad hoc construction of an MP-function involving
tedious computations.

5 (Non-)Critical Classes of Networks

Thus far, we have allowed for the universal domain of all networks, and in
particular, for our contagion result (Lemma 1) we had a maximal freedom to
choose a network to obtain contagion. There, the constructed networks have
different contagious actions for the same set of payoff parameters. This, in
turn, suggests that one can differentiate (subclasses of) networks by analyz-
ing strategic behavior on each network for various payoff parameters of our
bilingual game. In this section, we study several subclasses of networks and
derive conditions for contagion and uninvadability in these subclasses. This
exercise enables us to classify networks in terms of those conditions in the
bilingual game, which will provide a finer analysis than the one based on
2× 2 coordination games.

In particular, we examine whether a given class of networks is critical
for contagion. Formally, for a given game u and for a class C of unbounded
networks, action s∗ is contagious in C (uninvadable in C, resp.) if it is con-
tagious in some network in C (uninvadable in every network in C, resp.). We
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say that a class C is critical for contagion if any action s∗ that is contagious
in the universal domain is also contagious in C. In that case, one can restrict
attention to that class to characterize contagious actions. Conversely, if C
is non-critical for contagion, some action is contagious in no network in C
but in some network outside C. For example, if the game u is a 2 × 2 co-
ordination game, a risk-dominant equilibrium is contagious in the network
in Figure 1, and hence that network forms a (singleton) critical class for
contagion. On the other hand, if u is the bilingual game, it follows from our
analysis in the previous section that the network in Figure 1 is not critical
for some parameter values, while the union of two classes of networks given
by Figures 2 and 3 is critical.

In what follows, we consider two classes of “simple” networks, which
we call linear and multidimensional lattice networks, and show that these
classes of networks are not critical for contagion in the bilingual game.

5.1 Linear Networks

We first introduce linear networks and analyze contagion and uninvadability
in those networks. A network (X , P ) is linear if X = Z and interaction
weights P are invariant up to translation: P (x, y) = P (x+ z, y + z) for any
x, y, z ∈ Z. (Note that any linear network is unbounded.) Clearly, both of
the networks in Figure 1 and in Figure 2 are linear. On the other hand, the
network in Figure 3 is not linear.8

Due to the translation invariance and symmetry of P , for each y ∈ Z
we have P (0, y) = P (−y, 0) = P (0,−y), hence P (y|0) = P (−y|0). Con-
versely, conditional weights P (y|0) of player 0 determine translation in-
variant weights P (x, y) uniquely (up to positive constant multiplication) if
P (0|0) = 0, and P (y|0) satisfies reflection symmetry, i.e., P (y|0) = P (−y|0)
for all y > 0.

It follows from the proof of Lemma 1 that in the class of linear networks
given in Figure 2, action 0 (2, resp.) is contagious if e < e∗ (e > e∗, resp.).
The following theorem shows that these conditions are also sufficient for
uninvadability in the class of all linear networks.

Theorem 2. Let u be the bilingual game given by (3.1).
(i) 0 is contagious and uninvadable in the class of linear networks if

e < e∗. (ii) 2 is contagious and uninvadable in the class of linear networks
if e > e∗.

Proof. See Appendix A.5.

The characterization given in this theorem differs from the one for the
universal domain given in Theorem 1 when c− b < a− c and e∗ < e < e∗∗,

8Even if we map X = {α, β}×Z to Z by relabeling (α, i) with 2i and (β, i) with 2i+1,
interaction weights do not satisfy translation invariance.
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which implies that in this range of parameter values, the class of linear
networks is not critical for contagion.

This characterization generalizes to a slightly larger class of networks
where each node on a line is replicated into finitely many nodes. Formally,
(X , P ) is a replicated linear network if X = {1, . . . ,m} × Z and P is invari-
ant up to translation, i.e., P (x, y) = P (x + z, y + z) for x = (x1, x2), y =
(y1, y2), z = (z1, z2) ∈ {1, . . . ,m} × Z, where sums in the first coordinate,
x1 + z1 and y1 + z1, are defined modulo m. For example, the network de-
picted in Figure 4 is a replicated linear network with m = 3,9 whereas the
network in Figure 3 is not.

Figure 4: Replicated linear network

Theorem 3. Let u be the bilingual game given by (3.1).
(i) 0 is contagious and uninvadable in the class of replicated linear net-

works if e < e∗. (ii) 2 is contagious and uninvadable in the class of replicated
linear networks if e > e∗.

The proof is analogous to that of Theorem 2 and thus omitted. This
theorem implies that the class of all replicated linear networks is not critical
for contagion.

5.2 Multidimensional Lattice Networks

We next show that the characterization in the previous subsection gener-
alizes to multidimensional lattice networks with translation invariant in-
teraction weights. For the sake of concreteness, we here focus on the m-
dimensional lattice with n-max distance interactions, where each player in-
teracts with all players within n steps away in each of the m coordinates, i.e.,
X = Zm, and P (x, y) = 1 if 1 ≤ maxi=1,...,m |xi − yi| ≤ n and P (x, y) = 0
otherwise. A more general treatment is relegated to Appendix A.6, where
we consider a broader class of networks on Zm such that interaction weights
P (x, y) are translation invariant and conditional weights P (x|0) are approx-
imated (with an appropriate normalization) by a density function on Rm.

9The “thick line graph” in Immorlica et al. (2007, Figure 2) is another example.
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For 2×2 coordination games, Morris (2000) demonstrates that the char-
acterization for contagion and uninvadability in the linear lattice still holds
with higher dimensions as long as the interaction radius n is sufficiently
large. We obtain an analogous characterization for our bilingual game.10

Theorem 4. Let u be the bilingual game given by (3.1). Fix the dimension
m.

(i) If e < e∗, then there exists n̄ such that for any n ≥ n̄, 0 is contagious
and uninvadable in the n-max distance interaction network on Zm. (ii) If
e > e∗, then there exists n̄ such that for any n ≥ n̄, 2 is contagious and
uninvadable in the n-max distance interaction network on Zm.

Proof. See Appendix A.6.

The proof is analogous to that of Lemma 1. In the case of e < e∗,
for example, we show the contagion of action 0 by an induction argument
along a sequence of regions of 0-players surrounded by “bilingual” regions.
Here, each 0-player region is the set of lattice (i.e., integer-coordinate) points
contained in a large m-dimensional ball with an outer m-dimensional ring
of 1-players.

To conclude, the class of n-max distance interaction networks (with large
n) as well as the class of (replicated) linear networks are not critical for con-
tagion, and hence the network in Figure 3 exhibits fundamentally different
properties in strategic behavior from those simple networks.

6 Comparison of Networks

Extending the analysis in Section 5, one could ask whether a given action
is contagious or not in each network for each payoff-parameter value of the
bilingual game. This question, however, seems to be intractable or have no
insightful answer unless we restrict attention to well-structured networks as
in Section 5. Instead, this section asks a comparative question. For a pair
of networks, which network is more likely to induce contagion? Or more
precisely, in which network is the set of payoff-parameter values for which a
given action is contagious larger (with respect to the set-inclusion order)? It
turns out that such comparison induces a non-trivial preorder (a transitive
and reflexive binary relation) that reflects underlying network structures.

For concreteness, we use the class of bilingual games as “test functions”
to measure the relative power of inducing contagion, but Theorem 5 below
actually extends to all symmetric supermodular games.

Definition 5. A network (X , P ) is more contagion-inducing than another
network (X̂ , P̂ ) if for any payoff-parameter value of the bilingual game, an
action s∗ is contagious in (X , P ) whenever s∗ is contagious in (X̂ , P̂ ).

10Even if we allow for small n, the class of max distance interaction networks is not
critical for contagion. See Example 7 in Section 6.
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This notion induces a preorder over the class of networks. As the follow-
ing example shows, this preorder is not complete.

Example 2 (Figure 2 versus Figure 3). Fix a bilingual game that satisfies
e ∈ (e∗, e∗∗). Recall the two networks in the proof of Lemma 1, where we
choose p, q, and r that satisfy (4.2) and (4.3). Then B is contagious in the
network of Figure 2, whereas A is contagious in the network of Figure 3.
Thus neither network is more contagion-inducing than the other.

Incompleteness is in contrast to the analysis of contagion for 2× 2 coor-
dination games. For 2 × 2 coordination games, all networks are ranked
in a complete preorder (i.e., a “preference” order) according to the “q-
cohesiveness” of these networks, and in particular, the network in Figure 1
is the most contagion-inducing (Morris (2000)).

The next example shows that a network may be strictly more contagion-
inducing than another network.

Example 3 (Tree versus ladder). Consider the “tree” depicted in Figure 5,
where each player is indexed by a finite sequence of 0 or 1, X =

⋃
n≥0{0, 1}n,

and player x ∈ X interacts with x0, x1, and x− with equal weights, where
x− is the immediate predecessor of x, i.e., the truncation of x that removes
the last digit of x. Also consider the “ladder” depicted in Figure 6, where
each player is indexed by a pair of α or β and an integer, X = {α, β} × Z,
and with equal weights, player (α, i) interacts with (α, i± 1) and (β, i), and
player (β, i) interacts with (α, i) and (β, i± 1). Then we can show that the
ladder is more contagion-inducing than the tree. We postpone the proof of
this statement until Example 4 below. Here we verify it in the following two
scenarios. A first scenario is that B spreads contagiously from the root of
the tree by inducing players 0 and 1 to switch from A to B, then players
00, 01, 10, and 11 to switch from A to B, and so on. Then B is the unique
best response against the mixture of actions A and B with probabilities 2/3
and 1/3, so B spreads contagiously from any node in the ladder. In another
scenario, B also spreads from the root of the tree, but in the following way:
players 0 and 1 first switch from A to AB , then players 00, 01, 10, and 11
switch from A to AB , and then players 0 and 1 switch from AB to B. In
this scenario, B spreads contagiously in the ladder as follows: B at (α, 0)
induces AB at (α,±1) and (β, 0), which further induces AB or B at (α,±2)
and (β,±1), and then B at (α,±1) and (β, 0).

Moreover, the ladder is strictly more contagion-inducing than the tree.
To see this, consider a bilingual game that satisfies

br(2/3, 1/3, 0) = {A},
br(2/3, 0, 1/3) = {AB},

br(1/3, 1/3, 1/3) = {B},
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Figure 5: Tree

Figure 6: Ladder

that is,

2a− c < 2d− b, 2a− c− d
3

< e <
2(a− c)

3
,

which is satisfied, for example, by (a, b, c, d, e) = (6, 0, 3, 5, 2). For this game,
action B is contagious in the ladder, but not in the tree. To see this, for any
finite set Y of initial B-players in the tree, pick a maximal (longest) element
x of Y and assume that all successors of x play A. Then players x0 and
x1 may switch from A to AB , but all the other successors of x continue to
play A in any best response sequence. On the other hand, in the ladder, if
players (α, 0), (α, 1), (β, 0), and (β, 1) play B, then players (α, 2) and (β, 2)
switch from A to AB , and induce each other to switch further from AB to
B. By a similar argument, all players subsequently switch from A to AB ,
and to B.

Note that if we restrict attention to 2× 2 coordination games, action B
is contagious in the tree or in the ladder if and only if B is a 1/3-dominant
equilibrium, i.e., 2a+ b < 2c+ d, so the tree is as contagion-inducing as the
ladder. Thus, we cannot distinguish the tree from the ladder in terms of
contagion for 2× 2 coordination games, but we can rank them with a strict
order if we use the bilingual game. This is reminiscent of the discussion in

20



Section 5, which suggested that the bilingual game reveals finer structures
of networks than those that 2× 2 coordination games can reveal.

In Example 3, notice that the tree looks more and more similar to the
ladder as we “bundle” together 01 and 10; 001, 010, and 100; 0 and 101; 1 and
011, etc. This similarity is why any contagion in the tree can be replicated
in the ladder. The following notion formalizes the idea of “bundling”.

Definition 6. For two networks (X , P ) and (X̂ , P̂ ), a mapping ϕ : X → X̂
is a weight-preserving node identification if ϕ is onto and there exists a finite
subset E of X such that for any x ∈ X \ E and any ŷ ∈ X̂ ,

P̂ (ϕ(x), ŷ) =
∑

y∈ϕ−1(ŷ)

P (x, y).

The weight-preserving property implies an analogous property on con-
ditional weights as follows:

P̂ (ŷ|ϕ(x)) =
P̂ (ϕ(x), ŷ)∑
ẑ∈X̂ P̂ (ϕ(x), ẑ)

=
∑

y∈ϕ−1(ŷ)

P (x, y)∑
ẑ∈X̂

∑
z∈ϕ−1(ẑ) P (x, z)

=
∑

y∈ϕ−1(ŷ)

P (x, y)∑
z∈X P (x, z)

=
∑

y∈ϕ−1(ŷ)

P (y|x)

for any x ∈ X \ E and any ŷ ∈ X̂ . A node in E is called an exceptional
node.11

Theorem 5. If there exists a weight-preserving node identification from
(X , P ) to (X̂ , P̂ ), then (X̂ , P̂ ) is more contagion-inducing than (X , P ).

Proof. See Appendix A.7.

The main idea of the proof is as follows. Suppose that s∗ is contagious
in (X , P ), and ϕ is a weight-preserving node identification from (X , P ) to
(X̂ , P̂ ). Take any best response sequence (σ̂t) on (X̂ , P̂ ). We construct
another sequence (σt) on (X , P ) by σt(x) = σ̂t(ϕ(x)) for any x ∈ X and
t ≥ 0, which, by the definition of weight-preserving node identification, is
“almost” a best response sequence. Since s∗ is contagious in (X , P ), (σt(x))
converges to s∗ for any x ∈ X , and hence (σ̂t(x̂)) also converges to s∗ for
any x̂ ∈ X̂ . This argument, however, has two issues: along the sequence
(σt), players in each ϕ−1(x̂) change actions simultaneously, which violates

11Allowing for exceptional nodes is essential for constructing a weight-preserving node
identification from the tree to the ladder (see Example 4), but the reader may want to
assume E = ∅ on the first reading.
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property (i) in Definition 1, and players at exceptional nodes may not play
best responses. We use Lemma A.1 in Appendix A.1 to resolve those issues.

In the next four examples, we construct weight-preserving node identifi-
cations and illustrate the implications of Theorem 5.

Example 4 (Tree versus ladder, continued). There exists a weight-
preserving node identification from the tree to the ladder. In fact, one can
construct infinitely many such mappings recursively as follows: given that
each node x ∈

⋃n
m≥0{0, 1}m of the tree with depth at most n is assigned with

a node ϕ(x) of the ladder, for each x ∈ {0, 1}n, we assign x0 and x1 with
two of the neighbors of ϕ(x) in the ladder other than ϕ(x−). We can always
do so since each node on the ladder has three neighbors. For example,

ϕ(∅) = (α, 0),

ϕ(0) = (α, 1), ϕ(1) = (β, 0),

ϕ(00) = (α, 2), ϕ(01) = ϕ(10) = (β, 1), ϕ(11) = (β,−1), . . .

Then ϕ preserves interaction weights except at the root ∅. (ϕ does not
preserve interaction weights at the root ∅ because player ∅ has two neighbors
in the tree while player ϕ(∅) has three neighbors in the ladder.) Thus, by
Theorem 5, the tree is more contagion-inducing than the ladder.

Example 5 (Line versus lattice). Consider the line depicted in Figure 1
and the two-dimensional lattice depicted in Figure 7, where each player
x = (x1, x2) ∈ Z2 interacts with (x1 ± 1, x2) and (x1, x2 ± 1) with equal
weights. Then the mapping ϕ(x1, x2) = x1 + x2 is a weight-preserving node
identification from the two-dimensional lattice to the line with no exceptional
node. Thus, by Theorem 5, the line is more contagion-inducing (in fact,
strictly more contagion-inducing) than the two-dimensional lattice.

Morris (2000) showed that the line is more contagion-inducing than the
two-dimensional lattice for the class of 2×2 coordination games by comput-
ing “contagion thresholds” explicitly. Our Theorem 5 gives an alternative
proof to this result, which generalizes to other pairs of networks and to the
bilingual game (in fact, to all symmetric supermodular games).

Example 6 (Replicated lines versus lattice). Consider the replicated linear
network in Figure 4 (with equal weights) and the two-dimensional lattice
in Figure 7. Then ϕ(x1, x2) = (x1 − 3dx1/3e+ 1, x2) is a weight-preserving
node identification from the two-dimensional lattice to the replicated linear
network with no exceptional node. Thus, by Theorem 5, the replicated line
is more contagion-inducing (in fact, strictly more contagion-inducing) than
the two-dimensional lattice.

Example 7 (Line versus max distance). Consider the n-max distance in-
teraction network on the m-dimensional lattice Zm. Define the mapping
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Figure 7: Two-dimensional lattice

ϕ : Zm → Z by

ϕ(x1, . . . , xm) = x1 + (n+ 1)x2 + · · ·+ (n+ 1)m−1xm

for any (x1, . . . , xm) ∈ Zm. Since ϕ is linear and maps any pair of neigh-
boring points in Zm to different points in Z, ϕ is a weight-preserving node
identification (with no exceptional node) from the n-max distance inter-
action network on Zm to a linear network on Z with weights Pm,n(x, y) =
#(ϕ−1(y−x)∩[−n, n]m) for any x, y ∈ Z with x 6= y.12 Thus, by Theorem 5,
the linear network (Z, Pm,n) is more contagion-inducing than the n-max dis-
tance interaction network on Zm. Combined with the non-criticality of the
class of all linear networks (Theorem 2), this implies that the class of all
max distance interaction networks is not critical for contagion.

As the next two examples illustrate, there may not exist any weight-
preserving node identification.

Example 8 (Line versus Figure 3). The mapping ϕ(α, i) = ϕ(β, i) = i from
the network in Figure 3 to Z does not preserve interaction weights since (α, i)
and (β, i) have different neighborhood structures. In fact, Theorems 2 and 5
imply that no node identification from the network in Figure 3 to any linear
network preserves interaction weights.

Example 9 (Line versus line). Consider two linear networks, one depicted in
Figure 1 and the other in Figure 2 with p ∈ (0, 1/2). Then it is not difficult to
see that Figure 2 is strictly more contagion-inducing than Figure 1. However,
no node identification from Figure 1 to Figure 2 preserves interaction weights

12#X denotes the cardinality of X.
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because any weight-preserving node identification can increase the number
of neighbors only for exceptional nodes. Thus the converse of Theorem 5 is
false, that is, the existence of weight-preserving node identifications is not
necessary for comparing two networks.

7 Interpretations in Incomplete Information
Games

Local interaction games and incomplete information games, though cap-
turing different economic or social situations, share the same formal struc-
tures and thus belong to a more general class of “interaction games” (Morris
(1997, 1999), Morris and Shin (2003)): in local interaction games, each node
interacts with a set of neighbors and payoffs are given by the weighted sum
of those from the interactions; in incomplete information games, each type
interacts with a subset of types and payoffs are given by the expectation
of those from the interactions. Indeed, Morris (1997, 1999) demonstrates,
in spite of some technical differences, that several tools and results in the
context of incomplete information games can be utilized also in the context
of local interaction games, and vice versa.13 In this section, we interpret
our results, in particular the discussions in the previous section, in the lan-
guage of incomplete information games, thereby shedding new lights on two
existing lines of literature, robustness to incomplete information (Kajii and
Morris (1997), Morris and Ui (2005)) and global games (Carlsson and van
Damme (1993), Frankel et al. (2003)).

7.1 Robustness to Incomplete Information

A Nash equilibrium (s∗1, s
∗
2) of a two-player game u is said to be robust to

incomplete information if every incomplete information game in which the
payoffs are given by u with high probability has a Bayesian Nash equilib-
rium that plays (s∗1, s

∗
2) with high probability (Kajii and Morris (1997)).

Robustness to incomplete information corresponds to uninvadability in lo-
cal interaction systems in that both notions require that a small amount of
“crazy types” should not affect the aggregate behavior.

Indeed, they have the same characterizations in many classes of games,
including games with an MP-maximizer. In parallel with Lemma 3, an
MP-maximizer of a game u with MP-function v is robust to incomplete
information if u or v is supermodular (Morris and Ui (2005)). Combining

13A class of dynamic games with Poisson action revisions due to Matsui and Matsuyama
(1995) (perfect foresight dynamics) also belong to interaction games, where each revising
player interacts with a set of past and future players and payoffs are given the discounted
sum of flow payoffs from the interactions (Takahashi (2008)).
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this result with Lemma 4, we obtain a sufficient condition for robustness in
the bilingual game.

Conversely, a necessary condition for robustness is obtained by construct-
ing incomplete information games in which a given action profile is never
played in equilibrium. Specifically, in any 3 × 3 supermodular game u, ad-
justing the proof of Lemma 1, one can construct incomplete information
games in which the payoffs are given by u with probability arbitrarily close
to 1 and playing 0 (2, resp.) everywhere is a unique rationalizable strategy
if (4.1) ((4.2), resp.) holds for some p ∈ (0, 1/2), or (4.3) ((4.4), resp.) holds
for some q, r ∈ (0, 1) with r ≤ q (Oyama and Takahashi (2011)). The nec-
essary condition thus follows by applying this result to the bilingual game
combined with Lemma 2.

These arguments characterize exactly as in Theorem 1 when an equilib-
rium in the bilingual game is robust to incomplete information.

Proposition 3. Let u be the bilingual game given by (3.1).
(i) (0, 0) is a unique robust equilibrium if e < e∗. (ii) (2, 2) is a unique

robust equilibrium if e > max{e∗, e∗∗}. (iii) No action profile is robust if
e∗ < e < max{e∗, e∗∗}.

7.2 Global Games

Global games constitute a subclass of incomplete information games, where
the underlying state θ is drawn from the real line, and each player i re-
ceives a noisy signal xi = θ + νεi with εi being a noise error independent
across players and from θ. Under supermodularity and state-monotonicity
in payoffs, it is shown by a contagion argument that an essentially unique
equilibrium survives iterative deletion of dominated strategies as ν → 0,
while the limit equilibrium may depend on the distribution of noise terms
εi (Frankel et al. (2003)).

Global game perturbations in the class of all incomplete information
perturbations can be viewed as linear networks in the class of all networks.
In global games, the distribution of the opponent’s signal xj conditional on
xi is (approximately) invariant up to translation (for small ν > 0) due to the
assumption of state-independent noise errors, which parallels the translation
invariance in linear networks. In fact, one can mimic the argument by
Frankel et al. (2003) and show that in a generic supermodular game, there
exists at least one contagious action, and hence if an action is uninvadable,
then it is also contagious and no other action is uninvadable.14 Also, Basteck
and Daniëls (2011) prove that, in any global game of 3 × 3 supermodular
games independently of the noise distribution, action profile (0, 0) ((2, 2),
resp.) is played at θ as ν → 0 if (4.1) ((4.2), resp.) holds for some p ∈ (0, 1/2)
at that state θ. Together with Lemma 2(1), this leads to the following

14In the special case of the bilingual game, these results follow from Theorem 1.
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characterization of global-game noise-independent selection in the bilingual
game, the same one as in Theorem 2.

Proposition 4. Let u be the bilingual game given by (3.1).
(i) (0, 0) is a noise-independent global game selection if e < e∗. (ii) (2, 2)

is a noise-independent global game selection if e > e∗.

Since this characterization is different from that in Proposition 3, global
games are not a critical class of incomplete information games that deter-
mines whether or not an action profile is robust to incomplete information.
See Oyama and Takahashi (2011) for further discussions.

8 Conclusion

We investigated contagion and uninvadability of actions for the bilingual
game, and revealed finer structures of networks than what the analysis
of 2 × 2 coordination games can distinguish. Of course, there are many
questions that we did not address. For example, how can we character-
ize contagion and uninvadability for general (supermodular) games? How
can we characterize the preorder between two networks if there is no weight-
preserving node identification? Can we apply the notion of weight-preserving
node identifications to other contexts? These questions remain for future
research.

Appendix

A.1 Equivalent Definitions of Contagion in Supermodular
Games

In this appendix, we discuss three other definitions of contagion, and show
that all of them are equivalent to the original one for any (generic) symmetric
supermodular game (S, u), where S = {0, 1, . . . , n} and u(h′, k)− u(h, k) ≤
u(h′, k′) − u(h, k′) if h < h′ and k < k′. (None of the results here relies on
the particular payoff structure of the bilingual game.) We use the partial
order σ ≤ σ′ whenever σ(x) ≤ σ′(x) for any x ∈ X .

First, recall that in the main text, we consider the sequential best re-
sponse dynamics, where at most one player revises his action in each period
(property (i) in Definition 1). Instead, we can define the simultaneous (resp.
generalized) best response dynamics, where all (resp. some) players revise
their actions at a time.

Definition A.1. A sequence of action configurations (σt)∞t=0 is a simulta-
neous best response sequence if σt(x) ∈ BR(σt−1|x) for all x ∈ X and t ≥ 1.
A sequence (σt)∞t=0 is a generalized best response sequence if it satisfies the
following properties: (ii) if σt(x) 6= σt−1(x), then σt(x) ∈ BR(σt−1|x); and
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(iii) if there exists T ≥ 0 such that s /∈ BR(σt|x) for all t ≥ T , then
limt→∞ σ

t(x) 6= s.

For clarity, we add adjective “sequential” to the original notion of best
response sequences. Generalized best response sequences subsume both se-
quential and simultaneous best response sequences as special cases.

Using simultaneous or generalized best response sequences, we obtain
two new definitions of contagion.15

Definition A.2. Action s∗ is contagious by simultaneous (resp. generalized)
best responses in network (X , P ) if there exists a finite subset Y of X such
that every simultaneous (resp. generalized) best response sequence (σt)∞t=0

with σ0(x) = s∗ for all x ∈ Y satisfies limt→∞ σ
t(x) = s∗ for each x ∈ X .

We refer to the notion of contagion in Definition 2 as “contagion by
sequential best responses”. By definition, contagion by generalized best
responses implies both contagion by sequential best responses and by simul-
taneous best responses. Here we show the converse.

In the next lemma, we show that if s∗ is contagious by sequential best
responses, then there exist two sequential best response sequences that con-
verge to s∗ monotonically (one increasingly and the other decreasingly), and
that any generalized best response sequence that starts between the two
sequences also converges to s∗. This lemma is used to prove both Proposi-
tion A.1 below and Theorem 5 in the main text.

Lemma A.1. Fix a network (X , P ) and a supermodular game u. Suppose
that s∗ is contagious by sequential best responses in (X , P ). Then there exist
two sequential best response sequences (σt−)∞t=0 and (σt+)∞t=0 such that

(1) σt−(x) ≤ s∗ ≤ σt+(x) for all x ∈ X and t ≥ 0;

(2) σ0
−(x) = 0 and σ0

+(x) = n for all but finitely many x ∈ X ;

(3) σt−(x) ∈ {σt−1
− (x),min BR(σt−1

− |x)} for all x ∈ X and t ≥ 1;

(4) limt→∞ σ
t
−(x) = limt→∞ σ

t
+(x) = s∗ for all x ∈ X ; and

(5) min BR(σ0
−|x) ≥ σ0

−(x) and max BR(σ0
+|x) ≤ σ0

+(x) for all x ∈ X .

Moreover,

(6) for any generalized best response sequence (σ̃t)∞t=0 with σ0
− ≤ σ̃0 ≤ σ0

+,
we have limt→∞ σ̃

t(x) = s∗ for all x ∈ X .

15The notion of contagion used in Morris (2000) is similar to contagion by simultaneous
best responses, but requires only that for each x ∈ X , σt(x) = s∗ for some t ≥ 0.
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Proof. Suppose that s∗ is contagious by sequential best responses in (X , P )
(and hence a strict Nash equilibrium). Let Y ⊂ X be a finite set as
in Definition 2, and let (φt−)∞t=0 be the sequential best response sequence
such that φ0

−(x) = s∗ for all x ∈ Y , φ0
−(x) = 0 for all x ∈ X \ Y , and

φt−(x) ∈ {φt−1
− (x),min BR(φt−1

− |x)} for all x ∈ X and t ≥ 1. By definition,
limt→∞ φ

t
−(x) = s∗ for all x ∈ X .

The sequence (φt−)∞t=0 satisfies properties (1)–(4), but not necessarily
property (5). From (φt−)∞t=0, we construct another sequence that satisfies
property (5) as well. Let ψ0

− = φ0
− and

ψt−(x) =

{
ψt−1
− (x) if φt−(x) ≤ ψt−1

− (x),

min BR(ψt−1
− |x) if φt−(x) > ψt−1

− (x).
(A.1)

Clearly, (ψt−)∞t=0 is a sequential best response sequence. By the construction
of (φt−)∞t=0 and (ψt−)∞t=0 along with the supermodularity and s∗ being a Nash
equilibrium, one can show by induction on t that φt−(x) ≤ ψt−(x) ≤ s∗ for
all x ∈ X and t ≥ 0. Thus for each x ∈ X , (ψt−(x))∞t=0 is weakly increasing
and converges to s∗.

Since s∗ is a strict Nash equilibrium, we can take a finite but sufficiently
large subset Z of

⋃
x∈Y Γ(x) such that for any x ∈ Y , the best response of

player x is s∗ if all players in Z play s∗ (recall that Γ(x) is the set of the
neighbors of player x). Let T be sufficiently large so that ψT−(x) = s∗ for all
x ∈ Z.

We claim that min BR(ψT−|x) ≥ ψT−(x) for all x ∈ X . For x ∈ Y , since
all players in Z play s∗ in period T , we have min BR(ψT−|x) = s∗ ≥ ψT−(x).
For x ∈ X \Y , we first have min BR(ψ0

−|x) ≥ 0 = ψ0
−(x). Next, assume that

min BR(ψt−1
− |x) ≥ ψt−1

− (x). By the construction of (ψt−(x))∞t=0 in (A.1),
ψt−(x) is equal to either ψt−1

− (x) or min BR(ψt−1
− |x). In both cases, we

have min BR(ψt−1
− |x) ≥ ψt−(x). Since (ψt−)∞t=0 is weakly increasing, we

have min BR(ψt−|x) ≥ min BR(ψt−1
− |x) by the supermodularity. Hence,

min BR(ψt−|x) ≥ ψt−(x).

Now let σt− = ψt+T− for t ≥ 0. Then (σt−)∞t=0 satisfies properties (1)–(5).
In particular, along the sequential best response sequence (ψt−)∞t=0, at most
T players change actions by period T , so that σ0

−(x) = ψT−(x) = 0 execpt
for finitely many x. The construction of (σt+)∞t=0 is analogous.

For property (6), pick any generalized best response sequence (σ̃t)∞t=0

with σ0
− ≤ σ̃0 ≤ σ0

+. For each x ∈ X , let σ̃t(x) = infτ≥t σ̃
τ (x), and σ̃−(x) =

lim inft→∞ σ̃
t(x) (= limt→∞ σ̃

t(x)).

Claim 1. lim inft→∞min BR(σ̃t|x) ≥ min BR(σ̃−|x) for all x ∈ X .

Proof. Fix any x ∈ X . By the supermodularity, we have min BR(σ̃t|x) ≥
min BR(σ̃t|x) for all t ≥ 0. Therefore, we have

lim inf
t→∞

min BR(σ̃t|x) ≥ lim inf
t→∞

min BR(σ̃t|x)
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≥ min BR
(

lim
t→∞

σ̃t
∣∣ x) = min BR(σ̃−|x),

where the second inequality follows from the lower semicontinuity of
min BR(·|x) in the product topology on SX .

Claim 2. σ̃−(x) ≥ min BR(σ̃−|x) for all x ∈ X .

Proof. Fix any x ∈ X . By Claim 1, there exists T1 ≥ 0 such that
min BR(σ̃t|x) ≥ min BR(σ̃−|x) for all t ≥ T1. By (ii) and (iii) in Defini-
tion A.1, there exists T2 ≥ T1 such that σ̃T2(x) ≥ min BR(σ̃−). By (ii) in
Definition A.1, we also have σ̃t(x) ≥ σ̃T2(x) ∧ minT2≤τ<t min BR(σ̃τ |x) for
all t ≥ T2. Therefore, by Claim 1 it follows that σ̃t(x) ≥ min BR(σ̃−) for all
t ≥ T2, and hence σ̃−(x) ≥ min BR(σ̃−|x), as desired.

Claim 3. σt− ≤ σ̃− for all t ≥ 0.

Proof. We proceed by induction. First, we want to show σ0
− ≤ σ̃−. By

assumption, σ0
− ≤ σ̃0. Assume that σ0

− ≤ σ̃t−1, and consider any x ∈ X such
that σ̃t(x) 6= σ̃t−1(x). Then by the property (5) and the supermodularity,
σ0
−(x) ≤ min BR(σ0

−|x) ≤ min BR(σ̃t−1|x) ≤ σ̃t(x). Therefore, we have
σ0
− ≤ σ̃t for all t ≥ 0, and hence σ0

− ≤ σ̃−.
Next, assume that σt−1

− ≤ σ̃−, and let x ∈ X be such that σt−(x) 6=
σt−1
− (x). Then by the property (3), the induction hypothesis, the supermod-

ularity, and Claim 2, we have σt−(x) = min BR(σt−1
− |x) ≤ min BR(σ̃−|x) ≤

σ̃−(x). Thus we have σt− ≤ σ̃−.

Symmetrically, defining σ̃+(x) = lim supt→∞ σ̃
t(x), we can show that

σ̃+ ≤ σt+ for all t ≥ 0. For each x ∈ X , since limt→∞ σ
t
−(x) =

limt→∞ σ
t
+(x) = s∗, we have σ̃−(x) = σ̃+(x) = s∗, and hence limt→∞ σ̃

t(x) =
s∗.

This completes the proof of Lemma A.1.

Proposition A.1. Fix a network (X , P ) and a supermodular game u. Then
s∗ is contagious by sequential best responses in (X , P ) if and only if it is
contagious by generalized best responses in (X , P ).

Proof. The “if” part holds by definition. To show the “only if” part, suppose
that s∗ is contagious by sequential best responses in (X , P ). Let (σt−)∞t=0

and (σt+)∞t=0 be sequential best response sequences as in Lemma A.1. Let
Y be a finite subset of X such that σ0

−(x) = 0 and σ0
+(x) = n for all

x ∈ X \ Y . Then for any generalized best response sequence (σ̃t)∞t=0 with
σ̃0(x) = s∗ for all x ∈ Y , we have σ0

− ≤ σ̃0 ≤ σ0
+, and hence by Lemma A.1,

limt→∞ σ̃
t(x) = s∗ for all x ∈ X . Thus s∗ is contagious by generalized best

responses in (X , P ).
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Similarly, we can prove the equivalence between contagion by simulta-
neous best responses and contagion by generalized best responses. Here we
assume that the set of neighbors Γ(x) is finite for each player x ∈ X , which
is satisfied in all of our examples.

Proposition A.2. Fix a network (X , P ) such that Γ(x) is finite for each
x ∈ X and a supermodular game u. Then s∗ is contagious by simultaneous
best responses in (X , P ) if and only if it is contagious by generalized best
responses in (X , P ).

Proof. The “if” part holds by definition. The proof of the “only if” part is to
mimic the proofs of Lemma A.1 and the “only if” part of Proposition A.1.
Indeed, as in the proof of Lemma A.1, we take a simultaneous best re-
sponse sequence (φt−)∞t=0, modify it to obtain a generalized (not necessarily
simultaneous) best response sequence (ψt−)∞t=0, and then define (σt−)∞t=0 by

σt− = ψt+T− for sufficiently large T . The only difference lies here, where it is
not the case in general that “at most T players change actions by period T”.
Instead, we first assume without loss of generality that action 0 (as well as
action n) is a Nash equilibrium of u, and resort to the finiteness of Γ(x) to
show that in each step of (ψt−)Tt=0, only finitely many players have minimum
best responses other than action 0.

Another definition is to only require some sequential best response se-
quence to converge.

Definition A.3. Action s∗ is weakly contagious in network (X , P ) if there
exists a finite subset Y of X such that for any initial action configuration σ0

such that σ0(x) = s∗ for any x ∈ Y , there exists a sequential best response
sequence (σt) such that limt→∞ σ

t(x) = s∗ for any x ∈ X .

By definition, contagion implies weak contagion. The converse does not
always hold. A counterexample is given by the trivial payoff function u ≡ 0,
where all actions are weakly contagious but none of them is contagious.
Nevertheless, we can show that weak contagion is equivalent to contagion
for generic supermodular games.

We say that a game u is generic for (X , P ) if no player has multiple
best responses to any action configuration on (X , P ). If each player has
finitely many neighbors, then genericity excludes at most countably many
hyperplanes in the payoff parameter space.

Proposition A.3. Fix a network (X , P ) and a generic supermodular game
u for (X , P ). Then s∗ is weakly contagious in (X , P ) if and only if it is
contagious by generalized best responses in (X , P ).

Proof. Once again, the proof is almost the same as the proofs of Lemma A.1
and Proposition A.1. We only need to make the following two changes.
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First, in the first paragraph of the proof of Lemma A.1, given a finite
set Y ⊂ X as in Definition A.3, let (φt−)∞t=0 be a sequential best response
sequence such that φ0

−(x) = s∗ for all x ∈ Y , φ0
−(x) = 0 for all x ∈ X \ Y ,

and limt→∞ φ
t
−(x) = s∗ for all x ∈ X . Here it follows from the genericity of u

that we have φt−(x) ∈ {φt−1
− (x),BR(φt−1

− |x)} for any x ∈ X and t ≥ 1, where
with an abuse of notation, BR(φt−1

− |x) denotes the unique best response.
Second, a weakly contagious action is always a Nash equilibrium, but

may not be a strict Nash equilibrium in all games. Here again, the genericty
assumption guarantees that the weakly contagious action s∗ is a strict Nash
equilibrium.

A.2 Proof of Lemma 2

Recall

e∗ =
(a− d)(d− b)

2(c− b)
,

e∗∗ =
(a− d)(d− b)(a− c)

(c− b)(d− b) + (a− c)(a− d)
,

e] =
(d− b){2(a− c)− (d− b)}

2(a− c)
,

where e∗ Q e∗∗ Q e] if c− b Q a− c.

Proof of Lemma 2. (1) We first note that for all p ∈ (0, 1/2), u(2, πb) >
u(0, πb) and hence 0 /∈ br(πb).

We divide the argument into two cases: (α) e > (a − c)/2 and (β)
e ≤ (a− c)/2.

(α) e > (a − c)/2: In this case, if we let p = 0 (hence πa = πb),
br(πa) = br(πb) = {2}, and thus condition (4.2) holds for some p ∈ (0, 1/2)
close to 0 due to the upper semi-continuity of br .

(β) e ≤ (a − c)/2: In this case, for all p ∈ (0, 1/2), u(1, πa) > u(2, πa)
and hence 2 /∈ br(πa). Therefore, max br(πa) = 0⇔ u(0, πa) > u(1, πa) and
max br(πb) ≤ 1 ⇔ u(1, πb) > u(2, πb), while min br(πa) ≥ 1 ⇔ u(1, πa) >
u(0, πa) and min br(πb) = 2⇔ u(2, πb) > u(1, πb).

Verify that e∗ ≤ (a− c)/2 with the equality holding if and only if c = d.
Consider first the case where e∗ < (a− c)/2 (or c < d). Then, since

u(0, πa)− u(1, πa) = (d− b)
{
p− (d− b)− 2e

2(d− b)

}
,

u(1, πb)− u(2, πb) = (d− c)
{

(a− c)− 2e

2(d− c)
− p
}
,

it follows that condition (4.1) holds for some p ∈ (0, 1/2) if and only if

(d− b)− 2e

2(d− b)
<

(a− c)− 2e

2(d− c)
⇐⇒ e < e∗,
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while condition (4.2) holds for some p ∈ (0, 1/2) if and only if

(a− c)− 2e

2(d− c)
<

(d− b)− 2e

2(d− b)
⇐⇒ e > e∗.

If e∗ = (a − c)/2 (or c = d), then u(0, πa) > u(1, πa) and u(1, πb) >
u(2, πb) for some p ∈ (0, 1/2) close to 1/2 whenever e < e∗. (The condition
e > e∗ never holds in the current case of e ≤ (a− c)/2 (= e∗).)

(2) We first note that u(2, πd) > u(0, πd) and hence 0 /∈ br(πd) for all
r ∈ (0, 1). Therefore,

max br(πd) ≤ 1 ⇐⇒ u(1, πd) > u(2, πd)

⇐⇒ r <
(a− c)− 2e

a− c
. (A.2)

For the last inequality to hold, it is necessary that e < (a− c)/2.
Under the condition that e < (a−c)/2, note that u(1, πc) > u(2, πc) and

hence 2 /∈ br(πc) for all q ∈ (0, 1). Therefore,

max br(πc) = 0 ⇐⇒ u(0, πc) > u(1, πc)

⇐⇒ q >
(d− b)− 2e

d− b
. (A.3)

Finally,

max br(πe) = 0

⇐⇒ u(0, πe) > u(1, πe) and u(0, πe) > u(2, πe)

⇐⇒ r >
(d− b)− 2e

d− b
q and r >

(d− b)− (a− d)

a− b
q. (A.4)

From (A.2)–(A.4), it follows that condition (4.3) holds for some 0 < r ≤
q < 1 if and only if

(a− c)− 2e

a− c
>

{
(d− b)− 2e

d− b

}2

(a− c)− 2e

a− c
>

(d− b)− (a− d)

a− b
· (d− b)− 2e

d− b
,

which reduces to e < min{e], e∗∗}.

A.3 Proof of Lemma 3

We show a stronger result, that a strict MP-maximizer is uninvadable with
respect to a wider class of best response sequences. We write BRf for the
best correspondence in the local interaction game (X , P, f):

BRf (σ|x) =
{
s ∈ S

∣∣∑
y∈Γ(x) P (y|x)f(s, σ(y))
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≥
∑

y∈Γ(x) P (y|x)f(s′, σ(y)) for all s′ ∈ S
}
.

(Thus the best response correspondence for u as defined in (2.2) is now
denoted BRu.) Recall that BRf (σ|x) = brf (π(σ|x)). We consider sequences
that satisfy the following property.

Definition A.4. Given a local interaction system (X , P ) and for a payoff
function f : S × S → R, a sequence (σt)∞t=0 satisfies property B∗ in f if
for each t ≥ 1, there exists xt ∈ X such that σt(xt) ∈ BRf (σt−1|xt) and
σt(y) = σt−1(y) for all y 6= xt.

Best response sequences as defined in Definition 1 clearly satisfy this
property (with f = u).

Let s∗ be a strict MP-maximizer of u with a strict MP-function v. Recall
that v is a symmetric function (i.e., v(h, k) = v(k, h)). The game defined by
a symmetric function v is called a potential game, and given that {(s∗, s∗)} =
arg max(h,k)∈S×S v(h, k), s∗ ∈ S is called a potential maximizer of v. The
following result is due to Morris (1999, Proposition 6.1). We provide its
proof for completeness.

Lemma A.2. Suppose that s∗ is a potential maximizer of a potential game
v. For any unbounded local interaction system (X , P ) and for any sequence
(σt)∞t=0 with σ0

P (S \ {s∗}) < ∞ that satisfies property B∗ in v, there exists
M <∞ such that σtP (S \ {s∗}) ≤M for all t ≥ 0.

Proof. Let s∗ be a potential maximizer of a potential game v. Let
γ̄ = maxh,k

(
v(s∗, s∗) − v(h, k)

)
< ∞ and γ = min(h,k)6=(s∗,s∗)

(
v(s∗, s∗) −

v(h, k)
)
> 0. Fix any local interaction system (X , P ). Let (σt)∞t=0 be any

sequence such that σ0
P (S \ {s∗}) <∞, and assume that it satisfies property

B∗ in v. Let (xt)∞t=1 be such that σt(xt) ∈ BRv(σ
t−1|xt) and σt(y) = σt−1(y)

for all y 6= xt.
Let

V (t) =
1

2

∑
(x,y)∈X×X

P (x, y)
(
v(σt(x), σt(y))− v(s∗, s∗)

)
.

Note that
−γ̄σtP (S \ {s∗}) ≤ V (t) ≤ −γσtP (S \ {s∗}).

Since σ0
P (S \ {s∗}) <∞, we have V (0) > −∞. Also we have

V (t)− V (t− 1)

=
∑

y∈Γ(xt)

P (xt, y)
(
v(σt(xt), σt−1(y))− v(σt−1(xt), σt−1(y))

)
≥ 0

by property B∗. It follows from the induction on t that V is nondecreasing,
so that V (t) ≥ V (0) for all t.

Then we have σtP (S \ {s∗}) ≤ −V (t)/γ ≤ −V (0)/γ for all t.
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Lemma 3 is a direct corollary of the following.

Lemma A.3. Suppose that s∗ is a strict MP-maximizer of u with a strict
MP-function v. If u or v is supermodular, then for any unbounded local
interaction system (X , P ) and for any sequence (σt)∞t=0 with σ0

P (S \ {s∗}) <
∞ that satisfies property B∗ in u, there exists M < ∞ such that σtP (S \
{s∗}) ≤M for all t ≥ 0.

Proof. Let s∗ = s, s be a strict MP-maximizer of u with a strict MP-function
v. We only consider the case where s∗ = s. Fix any local interaction
system (X , P ). Let (σt)∞t=0 be any sequence such that σ0

P (S \ {s}) < ∞,
and assume that it satisfies property B∗ in u. Let (xt)∞t=1 be such that
σt(xt) ∈ BRu(σt−1|xt) and σt(y) = σt−1(y) for all y 6= xt.

Now let (σ̂t)∞t=0 be defined by σ̂0 = σ0 and for t ≥ 1,

σ̂t(x) =

{
max BRv(σ̂

t−1|xt) if x = xt,

σ̂t−1(x) otherwise.

Then, (σ̂t)∞t=0 satisfies B∗ in v. Therefore, by Lemma A.2, there exists M
such that σ̂tP (S \ {s}) ≤M for all t.

We show that if u or v is supermodular, then

σt(x) ≤ σ̂t(x) for all x ∈ X . (?t)

for all t ≥ 0. Then, σtP (S\{s}) ≤ σ̂tP (S\{s}) for all t, and since σ̂tP (S\{s}) ≤
M for all t, it follows that σtP (S \ {s}) ≤M for all t.

We show by induction that (?t) holds for all t ≥ 0. First, (?0) trivially
holds by the definition of σ̂0. Then, assume (?t−1). It implies that for
all x ∈ X , π(σt−1|x) - π(σ̂t−1|x). By construction, σt(x) = σ̂t(x) for all
x 6= xt. For x = xt, if u is supermodular, then

σt(xt) ≤ max bru(π(σt−1|xt))
≤ max bru(π(σ̂t−1|xt))
≤ max brv(π(σ̂t−1|xt)) = σ̂t(xt),

where the second inequality follows from the supermodularity of u, and the
third inequality follows from the MP condition (4.5). If v is supermodular,
then

σt(xt) ≤ max bru(π(σt−1|xt))
≤ max brv(π(σt−1|xt))
≤ max brv(π(σ̂t−1|xt)) = σ̂t(xt),

where the second inequality follows from the MP condition (4.5), and the
third inequality follows from the supermodularity of v. Therefore, in each
case, (?t) holds.
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A.4 Proof of Lemma 4

For f : S × S → R and h ∈ S, let

Πh(f) = {π ∈ ∆(S) | h ∈ brf (π)}.

Note that 0 is a strict MP-maximizer of u with MP-function v if and only
if {(0, 0)} = arg max(h,k)∈S×S v(h, k), and

Π2(u) ⊂ Π2(v) and Π1(u) ⊂ Π1(v) ∪Π2(v),

while 2 is a strict MP-maximizer of u with MP-function v if and only if
{(2, 2)} = arg max(h,k)∈S×S v(h, k), and

Π0(u) ⊂ Π0(v) and Π1(u) ⊂ Π0(v) ∪Π1(v).

Recall

e∗ =
(a− d)(d− b)

2(c− b)
,

e∗∗ =
(a− d)(d− b)(a− c)

(c− b)(d− b) + (a− c)(a− d)
,

and denote

e[ =
(a− d)(d− b)

a− b
.

Verify that e[ Q e∗ Q e∗∗ if c− b Q a− c.
Lemma 4 is proved by Lemmas A.4–A.7 which follow. Lemma A.4 con-

siders the case in which c = d and e < e∗ (= (a−c)/2); Lemma A.5 considers
the cases of e < e∗ and e∗ < e ≤ e[ under the assumption that c 6= d; and
Lemmas A.6 and A.7 cover the cases of max{e∗∗, e[} < e ≤ (a − c)/2 and
e > (a− c)/2, respectively; see Figure A.1.

Lemma A.4. Suppose that c = d. If e < e∗ (= (a− c)/2 = (a− d)/2), then
0 is a strict MP-maximizer.

Proof. Observe first that, since e < e∗ = (a− c)/2 = (a− d)/2 < (d− b)/2,

u(0, k)− u(1, k) < u(1, k)− u(2, k) (A.5)

for all k = 0, 1, 2. Let v be defined by


0 1 2

0 e 0 −λe− (d− b) + e
1 0 −e −λe
2 −λe− (d− b) + e −λe 0

, (A.6)
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- e
e[ e∗ e∗∗

0 is MP-maximizer 2 is MP-maximizer

(1) c− b < a− c

- e
e∗∗ e∗ e[

0 is MP-maximizer 2 is MP-maximizer

(2) c− b ≥ a− c

Figure A.1: MP-maximizer

where

λ =
(d− b)− e

(a− d)− 2e
> 0.

This function is maximized at (0, 0). Verify that

v(0, k)− v(1, k) = u(0, k)− u(1, k) (A.7)

v(1, k)− v(2, k) ≤ λ
(
u(1, k)− u(2, k)

)
(A.8)

for all k = 0, 1, 2. Then, we have Π1(u) ⊂ Π1(v) ∪ Π2(v) by (A.7), and
Π2(u) ⊂ Π2(v) by (A.5), (A.7), and (A.8).

Lemma A.5. Suppose that c 6= d. (i) If e < e∗, then 0 is a strict MP-
maximizer. (ii) If e∗ < e ≤ e[, then 2 is a strict MP-maximizer.

Proof. Let v be defined by


0 1 2

0 2λe λe λe− (a− c) + e
1 λe 0 −(a− d) + e
2 λe− (a− c) + e −(a− d) + e −(a− d) + 2e

, (A.9)

where

λ =
d− c
d− b

> 0.

We show that this function v works as a strict MP-function if e ≤ max{e∗, e[}
and e 6= e∗.

We first have the following.

Claim 1. (i) {(0, 0)} = arg max(h,k)∈S×S v(h, k) if e < e∗. (ii) {(2, 2)} =
arg max(h,k)∈S×S v(h, k) if e > e∗.
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Verify that

v(0, k)− v(1, k) = λ
(
u(0, k)− u(1, k)

)
(A.10)

v(1, k)− v(2, k) = u(1, k)− u(2, k) (A.11)

for all k = 0, 1, 2. These immediately imply the following.

Claim 2. Π1(u) = Π1(v).

For π = (π0, π1, π2) ∈ ∆(S), we have

u(0, π)− u(1, π) = (d− b)
(

e

d− b
− π2

)
, (A.12)

u(1, π)− u(2, π) = (d− c)
{
π0 −

(a− b)e− (a− d)(d− b)
(d− b)(d− c)

}
+ (a− d)

(
e

d− b
− π2

)
, (A.13)

and

v(2, π)− v(0, π) =
(
u(2, π)− u(0, π)

)
+ (c− b)

(
e

d− b
− π2

)
. (A.14)

These imply the following.

Claim 3. Π2(u) ⊂ Π2(v).

Proof. Assume that π = (π0, π1, π2) ∈ Π2(u) (⇔ u(2, π) ≥ u(0, π) and
u(2, π) ≥ u(1, π)). First, by (A.11), u(2, π) ≥ u(1, π) implies v(2, π) ≥
v(1, π). Second, if π2 ≥ e/(d − b), then by (A.10) and (A.12), we have
v(1, π) ≥ v(0, π) and therefore v(2, π) ≥ v(0, π), while if π2 < e/(d − b),
then by (A.14), u(2, π) ≥ u(0, π) implies v(2, π) > v(0, π). We thus have
π ∈ Π2(v).

Claim 4. If e ≤ e[, then bru = brv.

Proof. Suppose that e ≤ e[. In light of Claim 2, we want to show that
Π0(u) = Π0(v) and Π2(u) = Π2(v).

Note in (A.13) that e ≤ e[ implies {(a − b)e − (a − d)(d − b)}/{(d −
b)(d− c)} ≤ 0. By (A.12) and (A.13), we therefore have u(0, π) ≥ u(1, π)⇒
u(1, π) ≥ u(2, π) and u(2, π) ≥ u(1, π) ⇒ u(1, π) ≥ u(0, π). By (A.10) and
(A.11), it thus follows that π ∈ Π0(u) ⇔ u(0, π) ≥ u(1, π) ⇔ v(0, π) ≥
v(1, π) ⇔ π ∈ Π0(v) and π ∈ Π2(u) ⇔ u(2, π) ≥ u(1, π) ⇔ v(2, π) ≥
v(1, π)⇔ π ∈ Π2(v).

We now complete the proof of Lemma A.5. (i) If e < e∗, Claims 1, 2,
and 3 imply that 0 is a strict MP-maximizer. (ii) If e∗ < e ≤ e[, Claims 1
and 4 imply that 2 is a strict MP-maximizer.
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Lemma A.6. If max{e∗∗, e[} < e ≤ (a − c)/2, then 2 is a strict MP-
maximizer.

Proof. Suppose that max{e∗∗, e[} < e ≤ (a− c)/2. Let v be defined by



0 1 2

0 0 −λe −λe
− {(a− c)− e}

1 −λe −2λe
λ{(d− b)− 2e}
− {(a− c)− e}

2
−λe
− {(a− c)− e}

λ{(d− b)− 2e}
− {(a− c)− e}

λ{(d− b)− 2e}
− {(a− c)− 2e}

, (A.15)

where

λ =
(a− c)(d− b)− (a− b)e

(a− b){(d− b)− e}
> 0

(λ > 0 follows from e ≤ (a − c)/2). We show that this function v works as
a strict MP-function.

First, the function (A.15) is maximized at (2, 2) (by e > e∗∗). Second,
one can verify, for all k = 0, 1, 2,

v(0, k)− v(1, k) = λ
(
u(0, k)− u(1, k)

)
(A.16)

v(0, k)− v(2, k) ≥ a− c
a− b

(
u(0, k)− u(2, k)

)
(A.17)

(by e ≤ (a− c)/2), and

v(1, k)− v(2, k) ≥ u(1, k)− u(2, k) (A.18)

(since λ < (d− c)/(d− b) by e > e[). Therefore, π ∈ Π0(u)⇒ π ∈ Π0(v) by
(A.16)–(A.17) and π ∈ Π1(u)⇒ π ∈ Π0(v) ∪Π1(v) by (A.18).

Lemma A.7. If e > (a− c)/2, then 2 is a strict MP-maximizer.

Proof. Action 2 is strictly p-dominant with

p = max

{
a− c− e
a− c

,
a− c

(a− c) + (d− b)

}
,

i.e., {2} = bru(π) for any π = (π0, π1, π2) ∈ ∆(S) such that π2 > p (Morris
et al. (1995), Kajii and Morris (1997)). If e > (a − c)/2, we have p < 1/2.
Therefore, the function


0 1 2

0 0 0 −p
1 0 0 −p
2 −p −p 1− 2p

 (A.19)

is a strict MP-function for 2 (see Morris and Ui (2005) or Oyama et al. (2008,
Lemma 4.1)).
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A.5 Proof of Theorem 2

Since the network used in the proof of Lemma 1(1) is linear, combined with
Lemma 2(1) it follows that if e < e∗ (resp. e > e∗), then action 0 (resp. 2)
is contagious in linear networks. Also, by Proposition 2(i), if e < e∗, then
0 is uninvadable, hence uninvadable in linear networks. Thus, we only need
to show that 2 is uninvadable in linear networks if e > e∗.

By Lemma 2, there exists p ∈ (0, 1/2) that satisfies (4.2). By the upper
semi-continuity of br , there exists ε ∈ (0, 1/2− p) such that min br(π̃a) ≥ 1
and min br(π̃b) = 2, where

π̃a =
(

1
2 + ε, p, 1

2 − p− ε
)
, π̃b =

(
1
2 − p+ ε, p, 1

2 − ε
)
.

Fix any linear network (Z, P ). Since P (0|0) = 0 and P (y|0) = P (−y|0)
for all y > 0, we have

∑∞
y=1 P (y|0) = 1/2. Let n1 be the smallest integer

such that
∑n1

y=1 P (y|0) ≥ p, and n2 be a sufficiently large integer such that∑
y>n2

P (y|0) ≤ ε.
Consider any best response sequence (σt)∞t=0 such that σ0

P ({0, 1}) <∞.
Let K be the set of all k ∈ Z such that σ0(x) = 2 if |x− k| ≤ n1 +n2. Then
K is co-finite (i.e., Z\K is finite), and so is L =

⋃
k∈K{x ∈ Z | |x−k| ≤ n2}.

(Otherwise, σ0(x) 6= 2 for infinitely many x, which contradicts the finiteness
of σ0

P ({0, 1}).)
For each k ∈ K, we want to show that

σt(x) = 2 if |x− k| ≤ n2,

σt(x) ≥ 1 if n2 + 1 ≤ |x− k| ≤ n1 + n2

for all t ≥ 0. First, this holds for t = 0 by construction. Next, assume that
it holds for t− 1. Then,

• for players x such that |x− k| ≤ n2,

π(σt−1|x)(2) ≥
n2∑
y=1

P (y|0) ≥ 1

2
− ε,

π(σt−1|x)(1) + π(σt−1|x)(2) ≥
n1∑
y=1

P (y|0) +

n2∑
y=1

P (y|0) ≥ 1

2
+ p− ε,

which implies that π(σt−1|x) % π̃b and hence σt(x) = 2;

• for players x such that n2 + 1 ≤ |x− k| ≤ n1 + n2,

π(σt−1|x)(2) ≥
n2∑
y=1

P (y|0)−
n1−1∑
y=1

P (y|0) >
1

2
− p− ε,
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π(σt−1|x)(1) + π(σt−1|x)(2) ≥
n1∑
y=1

P (y|0) ≥ 1

2
− ε,

which implies that π(σt−1|x) % π̃a and hence σt(x) ≥ 1.

Therefore, {x ∈ Z | σt(x) = 2} ⊃ L, and hence σtP ({0, 1}) is bounded from
above.

A.6 Proof of Theorem 4

We fix the dimension m. A sequence (Pn)∞n=0 of interaction weights on
the m-dimensional lattice Zm is well-behaved if the following conditions are
satisfied.

• For each n, Pn is invariant up to translation, i.e., Pn(x, y) = Pn(x +
z, y + z) for x, y, z ∈ Zm.

• There exist a pair of nonnegative integrable functions f, g : Rm → R+

such that for almost every ν = (ν1, . . . , νm) ∈ Rm,

nmPn(([nν1], . . . , [nνm])|0)→ f(ν)

as n→∞ (pointwise convergence), and

nmPn(([nν1], . . . , [nνm])|0) ≤ g(ν)

for every n.16

• f has connected support.

For example, the sequence of n-max distance interactions is well-behaved
since nmPn(([nν1], . . . , [nνm])|0) converges to 2−m times the indicator func-
tion of {ν ∈ Rm | maxi νi ≤ 1}.

The next result characterizes contagious and uninvadable actions in any
well-behaved sequence of multidimensional lattice networks. Theorem 4
follows as an immediate corollary.

Theorem A.1. Let u be the bilingual game given by (3.1). Fix the di-
mension m and a well-behaved sequence (Pn)∞n=0 of interaction weights on
Zm.

(i) If e < e∗, then there exists n̄ such that for any n ≥ n̄, 0 is contagious
and uninvadable in (Zm, Pn). (ii) If e > e∗, then there exists n̄ such that for
any n ≥ n̄, 2 is contagious and uninvadable in (Zm, Pn).

16For η ∈ R, [η] denotes the largest integer that does not exceed η.
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Proof. We will show (i) only. The proof for (ii) is analogous.
By Lemma 2, there exists p ∈ (0, 1/2) that satisfies (4.1). By the upper

semi-continuity of br , there exists ε ∈ (0, 1/2− p) such that max br(π̂a) = 0
and max br(π̂b) ≤ 1, where

π̂a =
(

1
2 − ε, p,

1
2 − p+ ε

)
, π̂b =

(
1
2 − p− ε, p,

1
2 + ε

)
.

Let f(ν) be the pointwise limit of nmPn(([nν1], . . . , [nνm])|0) as n→∞.
Since Pn is symmetric and translation invariant, f is symmetric, i.e., f(ν) =
f(−ν) for almost all ν. We also have

∫
Rm f(ν)dν = 1.

By the symmetry of f and the connectedness of the support of f , for
each λ ∈ Rm whose Euclidean norm ‖λ‖ is 1, there exists a unique δ(λ) > 0
such that ∫

0≤λ·x≤δ(λ)
f(x)dx = p.

Note that δ(λ) is continuous in λ.
For each positive real number r, let Br = {ν ∈ Rm | ‖ν‖ ≤ r} and

Cr = {ν ∈ Rm | r < ‖ν‖ ≤ r + δ(ν/‖ν‖)}. Note that for large r and any
boundary point ν of Br, the boundary of Br near ν is approximately “flat”
and orthogonal to ν. By the continuity of δ(·), the same is true for the
boundary of Cr. Thus, there exists r1 such that for any r ≥ r1,∫

Br

f(ξ − ν)dξ ≥ 1

2
− ε

3
,

∫
Br∪Cr

f(ξ − ν)dξ ≥ 1

2
+ p− ε

3

if ν ∈ Br, and∫
Br

f(ξ − ν)dξ ≥ 1

2
− p− ε

3
,

∫
Br∪Cr

f(ξ − ν)dξ ≥ 1

2
− ε

3

if ν ∈ Cr.
For each integer k, let B̂k = {x ∈ Zm | ‖x‖ ≤ k} and Ĉk,n = {x ∈ Zm |

k < ‖x‖ ≤ k + nδ(x/‖x‖)}. Since (Pn)∞n=0 is well-behaved, one can apply
the dominated convergence theorem to show that there exists n1 such that
for any n ≥ n1,∣∣∣∣∣∣

∑
y∈B̂k

Pn(y − x|0)−
∫
Bk/n

f(ξ − x/n)dξ

∣∣∣∣∣∣ ≤ ε

3
,

∣∣∣∣∣∣
∑

y∈B̂k∪Ĉk,n

Pn(y − x|0)−
∫
Bk/n∪Ck/n

f(ξ − x/n)dξ

∣∣∣∣∣∣ ≤ ε

3

for any x ∈ Zm and k. Therefore, there exists n2 ≥ n1 such that for any
n ≥ n2 and any k ≥ r1n,∑

y∈B̂k

Pn(y|x) ≥ 1

2
− ε,

∑
y∈B̂k∪Ĉk,n

Pn(y|x) ≥ 1

2
+ p− ε
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for any x ∈ B̂k+1, and∑
y∈B̂k

Pn(y|x) ≥ 1

2
− p− ε,

∑
y∈B̂k∪Ĉk,n

Pn(y|x) ≥ 1

2
− ε

for any x ∈ Ĉk+1,n.
Now let n ≥ n2. We show that 0 is contagious in (Zm, Pn). The proof is

similar to that of Lemma 1(1). Pick an integer K ≥ r1n, and consider any
best response sequence (σt)∞t=0 such that σ0(x) = 0 for all x ∈ B̂K ∪ ĈK,n.
Then one can show by induction on k that for any k ≥ K, there exists Tk
such that for any T ≥ Tk, we have σt(x) = 0 for all x ∈ B̂k and σ0(x) ≤ 1
for all x ∈ Ĉk,n.

This argument also shows that 0 is uninvadable in (Zm, Pn) because
for any initial configuration that satisfies σ0

Pn
({1, 2}) < ∞, there exists a

translation Y of B̂K ∪ ĈK,n such that σ0(x) = 0 for all x ∈ Y .

A.7 Proof of Theorem 5

We prove Theorem 5 for general supermodular games with action set S =
{0, . . . , n}.

Let ϕ be a weight-preserving node identification from (X , P ) to (X̂ , P̂ )
with a finite set E of exceptional nodes. Fix a supermodular game u, and
assume that s∗ is contagious in (X , P ) (and hence a strict Nash equilibrium).
We show that s∗ is contagious in (X̂ , P̂ ).

Let F ⊃ E be a sufficiently large finite subset of X such that for any
x̂ ∈ ϕ(E), the unique best response for player x̂ is s∗ if all players in ϕ(F )
play action s∗. (Since s∗ is a strict Nash equilibrium, we can find such a
finite set even if some player x̂ ∈ ϕ(E) has infinitely many neighbors.)

Let (σt−)∞t=0 and (σt+)∞t=0 be sequential best response sequence in (X , P )
that satisfy properties (1)–(5) in Lemma A.1. Pick a T ≥ 0 such that
σT−(x) = σT+(x) = s∗ for all x ∈ F , and let Y = {x ∈ X | σT−(x) 6=
0 or σT+(x) 6= n}. Note that Y is finite.

Define action configurations σ̂− and σ̂+ in (X̂ , P̂ ) by

σ̂−(x̂) = max
x∈ϕ−1(x̂)

σT−(x) and σ̂+(x̂) = min
x∈ϕ−1(x̂)

σT+(x)

for all x̂ ∈ X̂ . Note that σ̂−(x̂) = σ̂+(x̂) = s∗ for all x̂ ∈ ϕ(F ), and σ̂−(x̂) = 0

and σ̂+(x̂) = n for all x̂ ∈ X̂ \ϕ(Y ). Denote by B̂R the set of best responses
defined in (X̂ , P̂ ).

Claim 1. min B̂R(σ̂−|x̂) ≥ σ̂−(x̂) and σ̂+(x̂) ≤ max B̂R(σ̂+|x̂) for all x̂ ∈
X̂ .

Proof. We only show the first inequality; the proof of the second is anol-
ogous. For any x̂ ∈ ϕ(E), since σ̂−(ŷ) = s∗ for all ŷ ∈ ϕ(F ), we
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have BR(σ̂−|x̂) = {s∗} by the construction of F . Consider next any
x̂ ∈ X \ ϕ(E). Write σ̄T− for the action configuration in (X , P ) given by
σ̄T−(y) = σ̂−(ŷ) if y ∈ ϕ−1(ŷ), and let x̄ ∈ arg maxx∈ϕ−1(x̂) σ

T
−(x). Then we

have min B̂R(σ̂−|x̂) = min BR(σ̄T−|x̄) ≥ BR(σT−|x̄) ≥ σT−(x̄) = σ̂−(x̂), where
the first equality follows from the weight preserving property of ϕ, the first
inequality from the supermodularity, and the second inequality from prop-
erty (5) in Lemma A.1.

Let Ŷ = ϕ(Y ), which is finite. Pick any sequential best response se-
quence (σ̂t) in (X̂ , P̂ ) such that σ̂0(x̂) = s∗ for all x̂ ∈ Ŷ . We want to show
that limt→∞ σ̂

t(x̂) = s∗ for all x̂ ∈ X̂ .

Claim 2. σ̂− ≤ σ̂t ≤ σ̂+ for all t ≥ 0.

Proof. We only show the first inequality; the proof of the second is anolo-
gous. First we have σ̂0 ≥ σ̂− by construction. Next assume σ̂t−1 ≥ σ̂−. If
σ̂t(x̂) 6= σ̂t−1(x̂), then we have σ̂t(x̂) ≥ min B̂R(σ̂t−1|x̂) ≥ min B̂R(σ̂−|x̂) ≥
σ̂−(x̂), where the first inequality follows from the supermodularity and the
second from Claim 1.

Claim 2 implies in particular that σ̂t(x̂) = s∗ for all x̂ ∈ ϕ(F ) and all
t ≥ 0.

Given the sequence (σ̂t)∞t=0 in (X̂ , P̂ ), let (σ̃t)∞t=0 be the corresponding
sequence in (X , P ) defined by

σ̃t(x) = σ̂t(ϕ(x))

for all x ∈ X and t ≥ 0. First, we have σ0
− ≤ σ̃0 ≤ σ0

+ since by Claim 2,
σ0
−(x) ≤ σT−(x) ≤ σ̂−(ϕ(x)) ≤ σ̂0(ϕ(x)) ≤ σ̂+(ϕ(x)) ≤ σT+(x) ≤ σ0

+(x) for
all x ∈ X . Second, (σ̃t)∞t=0 is a generalized best response sequence in (X , P )
as defined in Definition A.1. (Notice that players in ϕ−1(x̂) change actions

simultaneously.) Indeed, for x ∈ X \E, we have BR(σ̃t|x) = B̂R(σ̂t−1|ϕ(x))
for all t ≥ 0 by the weight preserving property of ϕ, while for x ∈ E, by
construction we have σ̃t(x) = σt+T− (x) = σt+T+ (x) = s∗ and BR(σt+T− |x) =

BR(σ̃t|x) = BR(σt+T+ |x) = {s∗} for all t ≥ 0. Thus, by Lemma A.1(6),
(σt(x))∞t=0 converges to s∗ for all x ∈ X , and hence (σ̂t(x̂))∞t=0 also converges
to s∗ for all x̂ ∈ X̂ .

A.8 The Case Where Pareto-Dominance and Risk-
Dominance Coincide

For completeness, we report the contagion and uninvadability result also for
the case where action 0 is both Pareto-dominant and pairwise risk-dominant.
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The game u,


0 1 2

0 a a b

1 a− e a− e d− e
2 c d d

, (A.20a)

now satisfies

c ≤ d < a, d− b < a− c, e > 0. (A.20b)

Theorem A.2. Let u be the bilingual game given by (A.20). 0 is always
contagious and uninvadable.

Proof. In light of Lemma 1(1-i) and Lemma 3, it suffices to show that
condition (4.1) holds for some p and that 0 is a strict MP-maximizer. If
e ≤ (d − b)/2, we have (c − b)e < (a − d)(d − b)/2. Therefore, these follow
from the argument in case (α) in the proof of Lemma 2(1) and Claims 1–3
in the proof of Lemma A.5. If e > (d− b)/2, they follow from the symmetric
arguments for 0 in place of 2 as in case (β) in the proof of Lemma 2(1) and
Lemma A.7.

The contagion part of this theorem has been shown by Goyal and
Janssen (1997, Theorem 3) in their circular network setting with a con-
tinuum of players.

Immorlica et al. (2007) consider the current case with a payoff parameter
restriction a = 1− q, b = c = 0, and d = q, so the game is given by


0 1 2

0 1− q 1− q 0
1 1− q − e 1− q − e q − e
2 0 q q

, 0 < q <
1

2
. (A.21)

(Note that by reversing the order of the actions, we know from Theorem A.2
that action 2 is uninvadable if q > 1/2.) They focus on the class G∆ of ∆-
regular networks; for a natural number ∆, a ∆-regular network is a constant-
weight local interaction system where each player has ∆ neighbors. They
consider the “epidemic region” Ω(G) ⊂ (0, 1/2) × R++, the set of points
(q, e) for which action 0 spreads contagiously in a network G, and show that
for any ∆, there exists a point (q, e) /∈ Ω∆ =

⋃
G∈G∆

Ω(G), and in particular,
Ω∆ is not convex. On the other hand, since the linear network constructed
in Lemma 1(1-i) (with a choice of a rational number p) can be replicated by
a ∆-regular network, our Theorem A.2 implies that Ω∗ =

⋃
∆ Ω∆ covers the

whole space (0, 1/2)× R++ and is convex.
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