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1 Introduction

Resource allocative effi ciency differs across countries. The difference has recently been found

important to account for the large cross-country difference in aggregate productive effi ciency

(Restuccia and Rogerson, 2008; Hsieh and Klenow, 2009).1 A cornerstone of the quantitative

analysis is to estimate unobserved market distortions. Hsieh and Klenow (2009) calibrate

the distortions by matching the dispersions of average revenue products (referred to as the

ARP approach henceforth). The validity of the calibration hinges on two conditions: (1)

average revenue products are proportional to marginal revenue products; (2) the dispersion

of marginal revenue products, a mirror image of price heterogeneity, reflects the magnitude

of market distortion. Both conditions are strict. Condition (1) only applies to those with

homogenous output and demand elasticities. Condition (2) will not necessarily hold in a

dynamic environment with adjustment costs. Violation of either of the conditions would lead

to a biased estimation.

This paper develops a new method of estimating distortions in a more general environment,

where none of the conditions has to hold. Specifically, our model incorporates unobserved firm

heterogeneities in factor goods prices, output and demand elasticities. In addition, the model

has a rich structure of capital adjustment costs and measurement errors. Our goal is to identify

the unobserved heterogeneity in capital goods price, a generic representation of capital market

distortions. To this end, we use the simulated method of moments (SMM hereafter) to estimate

the model by matching a full set of empirical moments in panel dataset.

We first illustrate the identification analytically in a simple model without capital adjust-

ment costs and measurement errors. The key finding is that the parameters governing capital

market distortions and the unobserved heterogeneities in output and demand elasticities can be

just-identified by the means and between-group dispersions of the revenue-capital and profit-

revenue ratios and the correlation between the two ratios. Numerical simulations show that

capital adjustment costs and measurement errors have merely second-order effects on these

moments. Not surprisingly, capital adjustment costs and measurement errors mainly manifest

themselves in the within-group variations. Therefore, the identification condition on the un-

observed heterogeneities, including capital market distortions, carries over to the general case.

1Hsieh and Klenow (2009), for instance, show that reducing the magnitude of market distortions in China
and India to that in the U.S. would boost total factor productivity by at least 30 and 40 percent in China and
India, respectively.
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Finally, matching moments on the investment rate and the revenue growth pin down simul-

taneously capital adjustment costs and idiosyncratic risks, while the within-group standard

deviations and the serial correlations discipline measurement errors in the data.

We apply the estimation method to a representative firm-level data in the Chinese man-

ufacturing. In particular, we focus on a balanced panel from 2004 to 2007 covering 107,579

firms. The estimated heterogeneity in capital goods price is significant and sizable. Capital

market distortions imply aggregate revenue total factor productivity losses of 40% in the Chi-

nese manufacturing. The magnitude is smaller than that in the literature but still substantial

[references to be written]. We also estimate distortions in an comparable sample of Compustat

firms. Improving capital allocation effi ciency in the Chinese manufacturing to the level among

the Compustat firms would increase China’s output by 31%.

Despite its potential biases, the ARP approach has a virtue of simplicity. This motivates us

to propose a generalized ARP approach, which, on the one hand, takes care of the important

unobserved heterogeneities as suggested by the structural estimation and, on the other hand,

maintains the tractability. To this end, we calibrate the unobserved heterogeneities by solving

a nonlinear equation system which matches a set of between-group moments of the revenue-

capital and profit-revenue ratios in a panel. The idea is to back out the heterogeneity in capital

goods price from the between-group variation in the revenue-capital ratio, where the effects

of capital adjustment costs and measurement errors have largely been washed out through

the time-series average of the revenue-capital ratio within each firm. Applying the generalized

ARP approach to the Chinese manufacturing dataset, we find the results to be a first-order ap-

proximation of the capital goods price heterogeneity estimated from the full-fledged structural

approach.

The good approximation of the generalized ARP approach highlights the importance of

using the between-group variation of the revenue-capital ratio to identify capital market dis-

tortions. Following the insight, we regress the time-series mean of the capital-revenue ratio of

each firm on its characteristics. The purpose is to show what are the policies or institutional

arrangements lying hidden behind the veil of distortions. The four-digit industry dummies and

the time-series mean of the profit-revenue ratio are added to control (imperfectly) the unob-

served heterogeneities in capital output elasticity and markups. We find that in the Chinese

manufacturing, small, young and non-state firms tend to face significantly higher capital goods

prices than their counterparts that are large, mature, state-owned.

Among the growing literature studying the role of particular distortions, Midrigan and

Xu (2009) evaluate the importance of non-convex adjustment costs, financing frictions and
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uninsurable investment risk. They find such frictions can account for the bulk of within-firm

time-series variation in log revenue-capital ratio but at most 10% cross-section dispersion. This

motives us to decompose the overall variance in log revenue-capital ratio into time-series and

cross-section dimensions, and explicitly model capital market distortions in addition to invest-

ment frictions. In terms of estimation, Cooper and Haltiwanger (2006) and Bloom (2009) first

adopt the method of simulated moments to recover structural parameters of capital adjustment

costs. They show it is possible to distinguish the capital adjustment costs from the stochastic

process using information on both investment rate and sales growth rate, which provides an

important step for our identification strategy. However, we also contribute to the empirical

investment literature by estimating unobserved heterogeneities and measurement errors using

a structural approach.

The rest of the paper is organized as follows. Section 2 outlines the model economy with

capital adjustment costs and unobserved heterogeneities in production technology and market

power. Section 3 presents the empirical specification and discuss the identification conditions.

Section 4 describes the Chinese manufacturing data and reports the main empirical results. The

generalized ARP approach is developed and applied in Section 5. Section 6 reports empirical

evidence for the sources of capital market distortions in the Chinese manufacturing and Section

7 concludes.

2 The Model

Our analysis is based on a monopolistic competition economy with two features. First, capital

output elasticity and markups are allowed to differ across firms. Second, firms face heteroge-

neous capital goods price due to capital market distortions. The model is otherwise standard

in the investment literature, such as Abel and Eberly (1994). In this section, we first obtain a

static profit function by maximizing instantaneous profit with respect to variable inputs. The

intertemporal investment decision is made to maximize the discounted sum of future profits

in the presence of capital adjustment costs. In Appendix 8.1, we show how capital market

distortions will affect aggregate TFPR in this model economy.

2.1 Production and Demand

Firm i in period t uses productive capital stock K̂i,t, labor Li,t and intermediate input Mi,t to

produce Qi,t unit of product i, according to a Cobb-Douglas technology with constant returns

to scale:

Qi,t = Ai,tK̂
αi
i,tL

βi
i,tM

1−αi−βi
i,t ,
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where Ai,t is stochastic, representing the randomness in productivity. αi and βi denote the

firm-specific output elasticity of capital and labor, respectively, with αi > 0, βi > 0 and

αi + βi < 1.

The product of firm i is demanded in a monopolistic product market according to a isoelastic

downward-sloping demand curve,

Qi,t = Xi,tP
− 1
ηi

i,t ,

where Xi,t is stochastic, representing the randomness in demand. Pi,t denotes the price of

product i in period t and 0 < ηi < 1 is the inverse of firm-specific demand elasticity with

respect to price.

Denote wi,t the wage rate and mi,t the intermediate input price for firm i in period t. For

given productive capital stock K̂i,t, firm i chooses variable inputs Li,t and Mi,t optimally to

maximize its instantaneous variable profit:

πi,t = max
Li,t, Mi,t

{Yi,t − wi,tLi,t −mi,tMi,t}, (1)

where Yi,t ≡ Pi,tQi,t denotes sales revenue and πi,t is variable profit.2 The first order conditions
imply constant intermediate input and labor cost shares:

wi,tLi,t
Yi,t

= βi(1− ηi),

mi,tMi,t

Yi,t
= (1− αi − βi) (1− ηi).

The factor shares would reduce to βi and 1 − αi − βi in the competitive environment with
infinitely large demand elasticity (ηi = 0). Substituting these first-order conditions into (1)

yields
πi,t
Yi,t

= αi(1− ηi) + ηi = ηi(1− αi) + αi. (2)

Equation (2) shows that the variable profit is a constant proportion of revenue, which is

codetermined by αi and ηi. In the limiting case perfect competition, the profit-to-revenue

ratio would reduce to αi. It is worth emphasizing that the labor, intermediate input and profit

shares are independent of factor prices as a result of optimal choice for variable inputs.

The optimization establishes the following profit function:

πi,t = Z
γi
i,tK̂

1−γi
i,t , (3)

2Following the investment literature (e.g., Abel and Eberly, 1999), we use Q to denote the quantity of output
and refer to the product of the price and quantity of output as sales revenue, Y . In the produtivity literature
(e.g., Hsieh and Klenow, 2009), Y is simply the quantity of output, which is equivalent to Q in our model.
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where

γi ≡ 1− αi(1− ηi)
ηi + αi(1− ηi)

, (4)

and

Zi,t =
ηi
γi

[
(1− ηi)1−αi

(
1− αi − βi

mi,t

)1−αi−βi ( βi
wi.t

)βi]γi( 1
ηi
−1
)
Xi,tA

1
ηi
−1

i,t .

A combination of equation (2), (3) and (4) leads to the following revenue function:

Yi,t =
γi
ηi
Z
γi
i,tK̂

1−γi
i,t .

The profit and revenue function have utilized two reparameterization. First, (1− γi) cap-
tures the firm-specific curvature of the functions, which increases with the capital output

elasticity αi and decreases with the inverse of demand elasticity ηi. Second, Zi,t encompasses

randomness from productivity, demand and factor prices of variable inputs. Although firm

i may know the realization of each of these components and their stochastic processes, it is

ultimately Zi,t that matters in its investment decision. Therefore Zi,t is a summary statistics of

the “profitability”(Cooper and Haltiwanger, 2007) or “business environment”(Bloom, 2009)

.

Without the loss of generality,3 we assume Zi,t follows a trend stationary AR(1) process:

logZi,t = µt+ zi,t, (5)

zi,t = ρzi,t−1 + ei,t,

where 0 < ρ < 1, ei,t
i.i.d.∼ N(0, σ2), and zi,0 = 0. The standard deviation of the shocks σ is the

parameter characterizing the level of uncertainty.

2.2 Capital Market Distortions

There is a long list of factors that may cause capital market distortions. In stead of studying the

role of each specific channel, this paper aims to understand the overall effect of all the potential

distortions. Therefore similar to Restuccia and Rogerson (2008) and Hsieh and Klenow (2009),

we use τ i to generically refer to the effect of various capital market distortions on the purchase

3The stochastic process of Zi,t can be endogenously obtained from its definition, if we assume Ai,t, Xi,t,
wi,t and mi,t follow a similar trend stationary AR(1) process. For equation (5) to hold, the key assumption
is that these four random variables share a common level of persistence, ρ, and the shocks to each of these
random variables are independent. In addition, µ and σ2 could be heterogeneous across firms due to firm-
specific output elasticities and markups. Since our interest is to study how shocks to logZi,t affect firm’s factor
demand decisions, we assume homogeneous µ and σ2 in the benchmark estimation for simplicity. Section 4.4
shows that a relaxation of the assumption will not cause any substantial changes to our main estimation results.
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price of capital that are heterogeneous across firms. This implies that the actual capital goods

price faced by firm i in period t is

PKi,t = (1 + τ i)P
K
t ,

where PKt is the average capital goods price in the economy. For example, a positive value of

τ i corresponds to a firm with no access to finance hence facing an actual capital goods price

higher than the average price; while an investment tax credit is represented by a negative value

of τ i.

2.3 Capital Adjustment Costs

Meanwhile, in a variety settings, capital adjustment costs have been adopted by the investment

literature to summarize frictional elements that reduce, delay or protract investment (Khan

and Thomas, 2006). Following Cooper and Haltiwanger (2006) and Bloom (2009), we consider

three forms of capital adjustment costs that are homogeneous across firms:

G(Ki,t; Ii,t) =
bq

2

(
Ii,t
Ki,t

)2

Ki,t − biPKi,tIi,t1[Ii,t<0] + bf1[Ii,t 6=0]πi,t,

where Ki,t denotes the capital stock of firm i at the beginning of period t, Ii,t is the new

investment of firm i in period t, and G(Ki,t; Ii,t) represents the function of capital adjustment

costs, with 1[It<0] and 1[It 6=0] being indicators for negative and non-zero investment. Here bq

measures the magnitude of quadratic adjustment costs. bi can be interpreted as the difference

between the purchase price and the resale price expressed as a percentage of the purchase price

of capital goods. Finally, bf stands for the fraction of variable profit loss due to any non-zero

investment.

Since capital goods prices are allowed to differ across firms, the model is disciplined by

restricting the capital adjustment cost function, G, to be the same for all firms. If G were

also firm-specific, as will be shown in investment decision below, a firm facing high capital

adjustment costs would manifest such costs as having a high τKi .

By paying the cost of purchasing capital and adjusting capital, the new investment Ii,t

contributes to the productive capital stock, K̂i,t, immediately in period t, which depreciates at

the end of that period.4 The law of motion for capital is therefore given by

Ki,t+1 = (1− δ)K̂i,t = (1− δ) (Ki,t + Ii,t) , (6)
4This timing assumption is adopted for three reasons. First, in the absence of capital adjustment costs,

the implications of the model would be the same as those of a static economy (Hsieh and Klenow, 2009). In
particular, the “effi cient”allocation would feature an equalization of MRPK across firms. Under the alternative
timing assumption that capital takes one period to build, idiosyncratic shocks may generate heterogeneous
MRPK even in the effi cient allocation (Collard-Wexler, Asker and De Loecker, 2011). Second, technically,
our timing assumption allows for a closed-form solution to the investment problem in the absence of capital

6



where δ is the constant depreciation rate common across firms.

2.4 Investment Decision

The presence of capital adjustment costs implies that investment is an intertemporal decision.

At the beginning of each period t, optimal investment is chosen to maximize the discounted

present value of dividends, which is the variable profit net of investment expenditure and

capital adjustment costs. Risk-neutral investors allocate capital until the required rate of

return on capital is equalized across different firms. Let the required rate of return be r, at

which investors discount future dividends. The investment problem is then defined by the

stochastic Bellman equation:

V (Zi,t,Ki,t) = max
Ii,t

{
π(Zi,t,Ki,t; Ii,t)− PKi,tIi,t −G(Ki,t; Ii,t)

+ 1
1+rEt [V (Zi,t+1,Ki,t+1)]

}
, (7)

where Zi,t+1 and Ki,t+1 follow the law of motion (5) and (6), respectively.

Two remarks are in order. First, we assume that investors are risk-neutral or there is a

complete market for risk-averse investors to diversify all the idiosyncratic risks. Section [to be

written] will discuss the robustness of our results with respect to market incompleteness and

the potential correlation between aggregate and firm-specific shocks.

Second, define Jt the Jorgensonian user cost of capital,

Jt ≡ PKt −
1− δ
1 + r

Et
[
PKt+1

]
. (8)

For simplicity, we assume the average capital goods price to be constant and then normalized

it to unity throughout the following analysis. So, according to (8), Jt = J , where J ≡ r+δ
1+r .

We will check the robustness of our results to the assumption in Section 5.2.

In the presence of capital adjustment costs, there is generally no analytical solution to the

optimal investment problem. However, the analytical solution in the case without adjustment

costs provides an important benchmark for model properties. If G(Zi,t,Ki,t; Ii,t) = 0, the

optimal investment rate is a linear function of Zi,t relative to inherited capital stock Ki,t:5

Ii,t
Ki,t

=

[
1− γi

(1 + τ i) Jt

] 1
γi

(
Zi,t
Ki,t

)
− 1, (9)

adjustment costs, which does not involve any expectation term (Bloom, 2009). This provides a convenient
benchmark for the analysis of capital adjustment costs. Finally, in the data, the revenue-to-capital ratio, a
key moment for identifying capital market distortions, has similar empirical distribution regardless whether the
denominator is K̂i,t or Ki,t.

5The first-order condition that K̂i,t =
[

1−γi
(1+τi)Jt

] 1
γi Zi,t establishes (9).
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where Equations (9) implies that the optimal investment rate is increasing in Zi,t but decreas-

ing in (1 + τ i) Jt. Intuitively, a firm facing unfavorable capital market distortions (τ i > 0)

invests less and is smaller than an otherwise identical firm but facing favorable capital market

distortions (τ i < 0).

In general when G(Ki,t; Ii,t) > 0, the investment policy can be solved out using numerical

dynamic programming method. Figures A1.1-A1.3 in the technical appendix illustrate these

policies under different forms of adjustment costs. The 45o straight line is the investment

policy in equation (9) and is plotted as the benchmark without capital adjustment costs. As

highlighted by these figures, first, irrespective to the form of adjustment costs, the optimal

investment rate is always a non-decreasing function of Zi,t/Ki,t. Second, when bq > 0, capital

accumulation is through a series of small and continuous adjustment. Finally, the optimal

investment rate follows a ‘barrier control’policy when bi > 0 and a ‘jump control’policy when

bf > 0. All the results are standard in the investment literature.

3 Structural Estimation

The goal of this paper is to quantify the effect of capital market distortions on aggregate TFPR

loss using the above framework.6 Since the capital market distortions τ i are not observable

directly, one has to infer τ i from observable variables. The section illustrates why one the

one hand the ARP approach provides important insight on the inference of capital market

distortions using revenue-to-capital ratio, but on the other hand might deliver a contaminated

inference. We then propose a structural econometric approach using the simulated method of

moments.

3.1 The ARP Approach

To illustrate the ARP approach, we consider the model without capital adjustment costs.

When G(Ki,t; Ii,t) = 0, (7) solves

αi (1− ηi)
Yi,t

K̂i,t

= (1 + τ i) J. (10)

The left- and right-hand sides of (10) represent the marginal revenue product of capital and

the firm-specific user cost of capital, respectively. Rearranging (10), we have

log

(
Yi,t

K̂i,t

)
= log J + log (1 + τ i)− log [αi (1− ηi)] . (11)

6Appendix 8.1 proves that the aggregate TFPR losses in an economy with homogenous γ is equal to 1−γ
2γ
σ2τK .
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(11) is the cornerstone of the ARP approach in the recent misallocation literature. It highlights

why investment optimality allows the inference on the unobservable variance of log (1 + τ i) from

the observable variance of log
(
Yi,t/K̂i,t

)
. However, the key challenge in this indirect inference

is that, besides capital market distortions, the unobserved heterogeneities in αi and ηi will also

cause a dispersion in the average revenue product of capital. As will be shown later, in the

full-fledged model with capital adjustment costs and measurement errors, the dispersion can

further be increased, leading to a biased estimator on capital market distortions.

3.2 A Structural Econometric Approach

In contrast to the simple ARP approach, this paper proposes a structural econometric ap-

proach. By fitting the investment model directly to the data on profit-to-revenue ratio (πi,t/Yi,t),

log revenue-to-capital ratio
(

log
(
Yi,t/K̂i,t

))
, investment rate (Ii,t/Ki,t) and revenue growth

rate (∆ log Yi,t), a structural estimation simultaneously recovers unobserved heterogeneities

in τ i, αi and ηi, capital adjustment costs, and measurement errors. The following empirical

specification imposes the structure of the unobserved heterogeneities and measurement errors

for estimation.

3.3 Empirical Specification

3.3.1 Unobserved Heterogeneities

There are three forms of unobserved heterogeneities in this model. Instead of estimating specific

values of τ i, αi and ηi for each firm, our key interest is a consistent estimate for the variance of

log (1 + τ i). Therefore we assume each firm i has a firm-specific τ i, where log (1 + τ i) is drawn

independently from an identical normal distribution with mean zero and standard deviation

στ :

log (1 + τ i)
i.i.d∼ N

(
0, σ2

τ

)
By definition both capital output elasticity αi and inverse of demand elasticity ηi are positive

numbers between 0 and 1, therefore we assume

logαi
i.i.d∼ TN

(
µlogα, σ

2
logα

)
,

log ηi
i.i.d∼ TN

(
µlog η, σ

2
log η

)
.

That is each firm i has a firm-specific αi and ηi, where logαi is drawn independently from an

identical truncated normal distribution with mean µlogα and standard deviation σlogα; and
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log ηi is drawn independently from an identical truncated normal distribution with mean µlog η

and standard deviation σlog η.

The investment policy under different (τ i, αi, ηi) is different. Hence the dynamic pro-

gramming problem described in equation (7) must be solved for each firm i at each value of

(τ i, αi, ηi), which is infeasible even for a small sample. Therefore this paper adopts a standard

approach used in the literature modelling unobserved heterogeneities in structural estimation,

for example, Eckstein and Wolpin (1999), to allow for a finite type of firms. Specifically,

in our benchmark specification, we assume there are 3 × 3 × 3 types of firms. Each com-

prising a fixed proportion 1/ (3× 3× 3) of the population, where the type set is defined as

z = {(τu, αv, ηx) : u = 1, 2, 3; v = 1, 2, 3;x = 1, 2, 3}. In section 4.5, we experiment whether
the results are robust if we increase the types of firms to 5 × 5 × 5 at the cost of "curse of

dimensionality".

3.3.2 Measurement Errors

In addition to a rich structure of heterogeneities, another novelty of our empirical specification

is to allow for potential measurement errors in key variables. Our structural estimation employs

data on four variables: profit πi,t, revenue Yi,t, capital stock Ki,t and investment expenditure

Ii,t. In our benchmark specification, we assume

Ki,t = Ktrue
i,t exp(eKi,t), eKi,t

i.i.d∼ N(0, σ2
meK),

Yi,t = Y true
i,t exp(eYi,t), eYi,t

i.i.d∼ N(0, σ2
meY ),

πi,t = πtruei,t (1 + eπi,t), eπi,t
i.i.d∼ U(0, σ2

meπ).

Here variables with the "true" superscripts denote the true underlying variables which are

not measured accurately in the data; variables without the superscripts denote the observed

variables from the data. eKi,t and e
Y
i,t are the measurement errors in capital and revenue, which

are drawn independently from an identical normal distribution with mean zero and standard

deviation σmeK and σmeY , respectively. eπi,t is the measurement error in profit, which follows

a uniform distribution with mean zero and standard deviation σmeπ.

There are two features in the specification of the measurement errors. First, the multi-

plicative structure and the log-normality assumption guarantee positive values of capital stock

and sales revenue. Second, we only consider transitory measurement errors so as to distinguish

measurement errors from unobserved heterogeneities. In section 4.5, we test whether the re-

sults are robust, if we model measurement error in investment instead of capital and allow the

measured capital to accumulate the measurement error in investment according to the law of
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motion of capital.

3.4 Simulated Method of Moments

We apply the simulated method of moments (SMM) to estimate this fully parametric in-

vestment model.7 The key idea of SMM is to estimate deep model parameters by matching

simulated moments from the model with empirical moments from the data. To be specific,

the SMM estimator Θ∗ solves the minimal quadratic distance problem (Gouriéroux and

Monfort, 1996):

Θ̂∗ = arg min
Θ

(
Φ̂D − 1

S

S∑
s=1

Φ̂M
s (Θ)

)′
Ω

(
Φ̂D − 1

S

S∑
s=1

Φ̂M
s (Θ)

)
, (12)

where Θ is the vector of parameters of interest; Φ̂D is a set of empirical moments estimated

from an empirical dataset; Φ̂M (Θ) is the same set of simulated moments estimated from a

simulated dataset based on the structural model; S is the number of simulation paths; Ω is a

positive definite weighting matrix.

Suppose the empirical dataset is a panel with N firms and T years. Given the unobserved

heterogeneities across firms, the asymptotics is for fixed T and N →∞. At the effi cient choice
for the weighting matrix Ω∗, the SMM procedure provides a global specification test of the

overidentifying restrictions of the model:

OI =
NS

1 + S

(
Φ̂D − 1

S

S∑
s=1

Φ̂M
s (Θ)

)′
Ω∗

(
Φ̂D − 1

S

S∑
s=1

Φ̂M
s (Θ)

)
∼ χ2

[
dim

(
Φ̂
)
− dim (Θ)

]
.

[Insert Table 1 here]

The upper panel of Table 1 lists Θ, the set of parameters to estimate. There are a total

of 13 parameters, including the key parameter characterizing the magnitude of capital market

distortions, στ ; mean and standard deviation of the log capital output elasticity, µlogα and

σlogα; mean and standard deviation of the log inverse of the demand elasticity, µlog η and σlog η;

three parameters measuring the magnitude of different capital adjustment costs
(
bq, bi, bf

)
;

the trend growth rate, µ; the standard deviation of shocks or the level of uncertainty, σ; and

7The SMM has been widely employed in the recent empirical investment literature. For example, in addition
to Cooper and Haltiwanger (2006) and Bloom (2009), Cooper and Ejarque (2003) and Eberly, Rebelo and
Vincent (2008) evaluate the Q -model; Bond, Söderbom and Wu (2008) study the effects of uncertainty on
capital accumulation; Schündeln (2006), Henessy and Whited (2007) and Bond, Söderbom and Wu (2007)
estimate the cost of financing investment, all through this structural econometric approach.
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standard deviations of the measurement errors in capital, revenue and profit, σmeK , σmeY , and

σmeπ.

The lower panel of Table 1 lists Φ̂D, the set of moments to match. The choice of the

moments is guided by two principles. First, Φ̂D is a comprehensive set of moments which

characterize the distribution and dynamics of key variables that one would expect to match

from a well-specified investment model. Second and more importantly, these moments are a

priori informative about the parameters that we seek to estimate. Specifically, Φ̂D includes

the means (mean), between-group standard deviations (bsd), within-group standard deviations

(wsd), coeffi cients of skewness (skew) and serial correlation (scorr) for πi,t/Yi,t, log
(
Yi,t/K̂i,t

)
,

Ii,t/Ki,t and ∆ log Yi,t, together with the cross correlation (bcorr) between the between-group

πi,t/Yi,t and log
(
Yi,t/K̂i,t

)
. This gives a total of 21 moments.

3.5 Identification

This section lay out the identification conditions for estimating the parameters governing the

unobserved heterogeneities, capital adjustment costs and measurement errors, respectively.

For illustrative purposes, we start with a model without any of these features and label it

as Model A in Table 2.1.8 In this baseline model there is virtually no variation in πi,t/Yi,t

and log
(
Yi,t/K̂i,t

)
, either across firms or over time. Furthermore, Ii,t/Ki,t and ∆ log Yi,t are

highly volatile and negatively serially correlated. Through Table 2.1 to Table 2.3, unobserved

heterogeneities, capital adjustment costs and measurement errors are added into the model

step-by-step. The simple model with the unobserved heterogeneities only allows closed-form

solution, which helps to establish analytically the conditions for identifying στ , the parameter

of key interest. We then show that the identification conditions in the simple model remain

to be the core of recovering στ in the full-blown model with capital adjustment costs and

measurement errors restored.

3.5.1 Identification of Unobserved Heterogeneities

A simple model without capital adjustment costs and measurement errors delivers two key

equations for identifying unobserved heterogeneities

πi,t
Yi,t

= αi(1− ηi) + ηi = ηi(1− αi) + αi,

log
Yi,t

K̂i,t

= log J + log
(
1 + τKi

)
− log [αi (1− ηi)] .

8 In all the simulations reported in Table 2, we impose r = 0.15, δ = 0.05, µlogα = µlog η = −2.30, ρ = 0.90,
µ = 0.05 and σ = 0.30, simulate a panel of 100000 firms and 24 years, and calculate moments using data in the
last 4 years.

12



These equations imply that, first, none of the unobserved heterogeneities would have any

effect on wsd (π/Y ) and wsd
(

log
(
Y/K̂

))
. Only bsd (π/Y ) and bsd

(
log
(
Y/K̂

))
will vary

with these heterogeneities. Second, στ can easily be recovered from bsd
(

log
(
Y/K̂

))
if σlogα

and σlog η are known, while bsd (π/Y ) is solely determined by σlogα and σlog η. Finally, the

additional moment bcorr
(
π/Y, log

(
Y/K̂

))
provides identification to further separate σlogα

and σlog η:

bcorr
(
π/Y, log

(
Y/K̂

))
≡ corr

[
1

T

T∑
t=1

πi,t/Yi,t,
1

T

T∑
t=1

log
(
Yi,t/K̂i,t

)]


< 0, if σlogα > 0 and σlog η = 0

> 0, if σlogα = 0 and σlog η > 0
.

Intuitively, higher markups increase both the profit-to-revenue and log revenue-to-capital ra-

tios, while a larger capital output elasticity increases the profit-to-revenue ratio but decreases

the log revenue-to-capital ratio. In the extreme cases, if there is no heterogeneity in η (α),

the profit-to-revenue ratio would be negatively (positively) correlated with the log revenue-to-

capital ratio.

Table 2.1 illustrates these properties by imposing στ = 0.5, σlogα = 0.5 and σlog η = 0.5

from column (1) to (3), respectively. In column (1), only bsd
(

log
(
Y/K̂

))
increases with

στ > 0. In column (2), σlogα > 0 increases both bsd (π/Y ) and bsd
(

log
(
Y/K̂

))
and causes

a negative bcorr
(
π/Y, log

(
Y/K̂

))
. In column (3), σlog η > 0 also increases both bsd (π/Y )

and bsd
(

log
(
Y/K̂

))
but causes a positive bcorr

(
π/Y, log

(
Y/K̂

))
. Finally, under the log

normality assumption for α and η, for a given value of Jorgensonian user cost of capital J , the

two mean parameters µlogα and µlog η together with the heterogeneity parameters σlogα and

σlog η also joint determines mean (π/Y ) and mean
(

log
(
Y/K̂

))
. Model B lists the moments

where στ = σlogα = σlog η = 0.5.

In summary, in the simple model without capital adjustment costs and measurement errors,

the five parameters, µlogα, µlog η, σlogα, σlog η and στ are exactly identified by five moments:

(1) the mean of πi,t/Yi,t; (2) the mean of log
(
Yi,t/K̂i,t

)
; (3) the between-group standard

deviation of πi,t/Yi,t; (4) the between-group standard deviation of log
(
Yi,t/K̂i,t

)
; and (5) the

cross correlation between the between-group πi,t/Yi,t and log
(
Yi,t/K̂i,t

)
.

[Insert Table 2.1 here]
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3.5.2 Identification of Capital Adjustment Costs

The key challenge in identifying capital adjustment costs is to distinguish them from the

stochastic process. Following Bloom (2009), our key identification strategy is to use information

on both investment rate and revenue growth rate:

Ii,t
Ki,t

' ∆ log K̂i,t + δ = f
(

∆ logZi,t; b
q, bi, bf

)
∆ log Yi,t ≡ γi∆ logZi,t + (1− γi) ∆ log K̂i,t

The economic rational comes from the fact that ∆ log Yi,t is a linear combination of ∆ logZi,t

and ∆ log K̂i,t where ∆ logZi,t depends on the growth rate µ and the standard deviation of

idiosyncratic shocks σ. Instead, the investment rate Ii,t/Ki,t, which is the sum of ∆ log K̂i,t

and depreciation rate δ, depends on both ∆ logZi,t and the capital adjustment costs
(
bq, bi, bf

)
.

This implies capital adjustment costs have a first-order effect on Ii,t/Ki,t but a second-order

effect on ∆ log Yi,t. Finally, different investment policies illustrated in Figure A1.1-A1.3 implies

the possibility to distinguish the three forms of adjustment costs themselves.

Table 2.2 starts with the Model B and illustrates the moments by imposing bq = 0.25,

bi = 0.25 and bf = 0.025 from column (1) to (3), respectively. Across these columns, over-

all the moments for Ii,t/Ki,t are much more sensitive than those for ∆ log Yi,t to changes in

capital adjustment costs. This distinguishes the capital adjustment costs from the stochastic

process. Comparing different columns, bq > 0 and bi > 0 both decrease wsd (I/K) and in-

crease scorr (I/K); bi > 0 and bf > 0 both increase skew (I/K); while bf > 0 has little effect

on wsd (I/K) and scorr (I/K). This distinguishes different forms of capital adjustment costs

from each other.

Finally, to investigate whether the conditions for identifying στ in the simple model are still

valid in the presence of capital adjustment costs, we check how capital adjustment costs will af-

fect the five moments listed in section 3.5.1. According to Table 2.2, althoughmean
(

log
(
Y/K̂

))
,

bsd
(

log
(
Y/K̂

))
and bcorr

(
π/Y, log

(
Y/K̂

))
do vary with capital adjustment costs, the mag-

nitude of the change is very small compared with those initial values in Model B. In contrast,

the effect of capital adjustment costs is largely to increase wsd
(

log
(
Y/K̂

))
. This implies that

capital adjustment costs have a first-order effect on wsd
(

log
(
Y/K̂

))
, but only a second-order

effect on bsd
(

log
(
Y/K̂

))
, while unobserved heterogeneities, στ , σlogα and σlog η, remain to

have a first-order effect on bsd
(

log
(
Y/K̂

))
. We then simulate a model with all three forms

of capital adjustment costs and label it Model C.

[Insert Table 2.2 here]
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3.5.3 Identification of Measurement Errors

Using Model C as benchmark, Table 2.3 illustrates which moments are informative about

measurement errors by simulating σmeK = 0.25, σmeY = 0.25 and σmeπ = 0.25 from column

(1) to (3), respectively. Among the three measurement errors, σmeK > 0 will only affect

moments on log
(
Yi,t/K̂i,t

)
, Ii,t/Ki,t; σmeY > 0 will only affect moments on log

(
Yi,t/K̂i,t

)
,

πi,t/Yi,t and ∆ log Yi,t; while σmeπ > 0 will only affect moments on πi,t/Yi,t. This implies the

possibility to distinguish three measurement errors from each other using moments on these

four variables.

To investigate whether the conditions for identifying στ in the simple model are still valid

in the presence of measurement errors, we check how measurement errors will affect the five

moments listed in section 3.5.1. The finding is that measurement errors make the profit-to-

revenue and log revenue-to-capital ratios more dispersed. However, the effects are mainly on

the within-group standard deviation instead of the between-group standard deviation. In other

words, σmeK and σmeY have a first-order effect on wsd
(

log
(
Y/K̂

))
but only a second-order

effect on bsd
(

log
(
Y/K̂

))
; similarly, σmeY and σmeπ have a first-order effect on wsd (π/Y )

but only a second-order effect on bsd (π/Y ). In contrast, unobserved heterogeneities, στ , σlogα

and σlog η, remain to have a first-order effect on bsd
(

log
(
Y/K̂

))
and bsd (π/Y ).

Furthermore, although both capital adjustment costs and measurement errors have a first-

order effect on wsd
(

log
(
Y/K̂

))
, they have different effect on investment rate and revenue

growth rate. In particular, σmeK > 0 and σmeY > 0 increase wsd (I/K) and wsd (∆ log Y ) and

reduce scorr (I/K) and scorr (∆ log Y ) , respectively, while capital adjustment costs have the

opposite or no effect on these moments, as illustrated in section 3.5.2. This fact distinguishes

the measurement errors from the capital adjustment costs.

[Insert Table 2.3 here]

4 Empirical Results

4.1 Data

The empirical exercises of this paper are based on the annual firm-level data from the Chinese

Industry Survey (1998-2007). It includes all industrial firms that are identified as being either

state-owned, or are non-state firms with sales revenue above 5 million RMB, contributing

nearly 90% of the gross output in manufacturing. The survey was implemented by the National

Bureau of Statistics on a yearly base since 1998 and a census was conducted in year 2004. We

refer it as the NBS dataset hereafter. Appendix 8.2 provides detailed information on how we
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clean the data and define the variables and why we refine to a panel from year 2004 to 2007

in our main empirical exercises.

4.2 Predetermined Parameters

In addition to those 13 structural parameters listed in Table 1, the depreciation rate δ and

the discount rate r also affect the investment decision through the Jorgensonian user cost of

capital J . The calibration of δ is based on the law of motion of capital (6)

log

(
1 +

Ii,t
Ki,t

)
= 4 log K̂i,t − log (1− δ)

' 4 log K̂i,t + δ.

Bloom (2000) shows that when a firm is on its balanced growth path, the gap between cap-

ital stock with and without adjustment costs is bounded. In particular, both 4 log K̂i,t and

∆ log Yi,t will grow at the same rate in the long run. This allows us to calibrate δ by match-

ing the difference between the average log investment rate, log (1 + Ii,t/Ki,t), and the average

revenue growth rate, ∆ log Yi,t, which is 0.05 in the data.

Bai, Hsieh and Qian (2005) infer the aggregate real rate of return to capital in China is

around 20-25% from 1978 to 2004. This rate of return is even higher for the secondary sector,

which includes mining, construction and manufacturing, and tends to increase over time since

1990. Therefore we impose a conservative value r = 0.20 for the manufacturing firms in our

sample period.

The calibration of ρ follows exactly Cooper and Haltiwanger (2006). Specifically, we es-

timate a dynamic panel data model of log πi,t by system GMM (Blundell and Bond, 1998).

The regressors include log πi,t−1, log K̂i,t, log K̂i,t−1 and year dummies. The estimated au-

toregressive coeffi cient is 0.41, in contrast to 0.89 in Cooper and Haltiwanger (2006). The

substantially lower estimate for China may reflect the attenuation bias due to the presence of

measurement errors in the profit data which will be discovered by our structural estimation.

We therefore impose ρ = 0.90 in the benchmark case. A later section considers the sensitivity

of the estimates to imposing different values for δ, r and ρ.

4.3 Structurally Estimated Parameters

Table 3 presents our structural estimation results. The first and second columns of the left panel

report the optimal estimates of the structural parameters and the corresponding numerical

standard errors. Simulated moments at these optimal estimates are listed in the right panel to
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compare with their empirical counterparts, for which we also calculate the standard errors by

bootstrapping.

The estimated στ is significantly different from zero, suggesting the prevalence of the capital

goods price heterogeneity. The significant and quantitatively large estimates of σlogα and σlog η

provide evidence for the presence of the firm-specific capital output elasticity and markups in

the data. Under the log-normality assumption, the estimated µlogα and σlogα imply that the

capital output elasticity in the three-factor production function αi has a mean of 0.086 and

standard deviation of 0.0529. The estimated µlog η and σlog η imply the inverse of demand

elasticity, ηi, has a mean of 0.078 and standard deviation of 0.065. Overall, the simulated

moments provide a close fit to the five core moments for identifying unobserved heterogeneities

as discussed in section 3.5.1.

The structural estimation finds two out of the three forms of capital adjustment costs to

be quantitatively important. In particular, a combination of quadratic and fixed adjustment

costs fit the data best.10 According to the identification conditions in section 3.5.2, a positive

bq is consistent with the fact that both the investment rate and revenue growth rate are

positively serial correlated, while a positive bf is driven by the larger skewness of investment

rate compared with that of revenue growth rate. Quantitatively, the estimate of bq implies that

quadratic adjustment costs increase the user cost of capital by 4.5%; the estimated bf suggests

any investment or disinvestment will cause a loss of 3.4% of the variable profit in that period.

The estimated µ is 0.08, which implies the model is able to capture the high economic

growth rate in China. At this growth rate, the model simulates higher investment growth rate

but lower revenue growth rate compared with those in the data. σ is estimated to be 0.42, which

implies firms in our sample do face idiosyncratic shocks. At this level of uncertainty, the model

generates slightly higher within-group standard deviations of investment rate and revenue

growth rate, but slightly lower between-group standard deviations of these two variables.

Two out of three measurement errors we consider turn out to be significantly different

9Both the average and dispersion values of α are close to those in the literature that estimates capital
output elasticity in a three-factor model. For example, Jorgenson, Gollop and Fraumeni (1987) estimate capital
output elasticities in 28 U.S. manufacturing industries by production function regression over intermediate input,
labor input and capital input. They found that the capital share estimate varies from 0.0486 (apparel and other
fabricated textile products) to 0.333 (tobacco) with a mean at 0.098 (electric machinery and equipment supplies).
Such estimates of α should be distinguished from those in an aggregate value-added production function with
capital and labor inputs only. Using such an aggregate model, they found a capital share of 0.385 for the U.S.
economy.
10Similar to Cooper and Haltiwanger (2006) and Bloom (2009), we also find only one form of the non-convex

adjustment costs is necessary to fit the data. To be specific, Cooper and Haltiwanger (2006) find bq > 0 and
bf > 0 for plants in the Longitudinal Research Database; Bloom (2009) finds bq > 0 and bi > 0 for large
firms in the Compustat. Consistent with the fact that 90% firms in our sample are reported to be single-plant
enterprises, we find a combination of bq > 0 and bf > 0 fits the data best as Cooper and Haltiwanger (2006)̇ do.
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from zero. Consistent with the usual concern that capital stock is poorly measured in firm-

level data, σmeK turns out to be at the similar magnitude of σ, which implies a noise-to-signal

ratio around 1. In contrast, the model estimates a virtually zero σmeY , which means sales

revenue is much better measured in the data. Since variable profit is defined as the difference

between sales revenue and costs of goods sold, while costs of goods sold include many sub-

items, it is not surprising that the model finds a large value for σmeπ as well. Consistent with

the identification conditions in section 3.5.3, with the presence of these measurement errors,

the model is able to closely match the within-group standard deviations of the four variables.

[Insert Table 3 here]

4.4 Specification Tests

There are three new features in this paper compared with the existing distortion literature:

unobserved heterogeneities in capital output elasticity and inverse of demand elasticity, cap-

ital adjustment costs and measurement errors. Table 4 reports specification tests for three

restricted models, in order to understand the effect of missing each feature on the estimates of

the capital market distortion. The preferred full model is listed in column (1) as benchmark.

Column (2) shows the results of imposing no unobserved heterogeneities in capital output

elasticity and inverse of demand elasticity, that is σlogα = σlog η = 0. As a sharp contrast to

the benchmark, the estimated στ increases significantly from 0.706 to 0.924 in this restricted

model. The model also severely overestimates capital adjustment costs, measurement errors

in revenue and profit, and underestimates the growth rate and level of uncertainty. Although

the model can still fit the general features of log revenue-to-capital ratio, it fails to match the

pattern in the dispersion and persistence of profit-to-revenue ratio. Neither can it match the

negative correlation between these two variables. As a result, the overall fit of this restricted

model degenerates enormously.

Column (3) reports the results of imposing no capital adjustment costs, that is bq = bi =

bf = 0. This model substantially underestimates the level of uncertainty and overestimates

the measurement errors in revenue. However, the estimate for στ is just 7% lower than that

of the benchmark result. This is because we have used information on variables both in levels,

namely profit-to-revenue ratio and log revenue-to-profit ratio and in growth rates, namely

investment rate and revenue growth rate. A model missing capital adjustment costs fails to

match moments on variables in growth rates, but is still able to fit moments on variables in

levels, which are mainly determined by the five parameters governing production, demand and

user cost of capital.
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Column (4) reports the results of imposing no measurement errors, that is σmeK = σmeY =

σmeπ = 0. This model generates too little within-group standard deviations but too much serial

correlations for profit-to-revenue ratio and log revenue-to-capital ratio. Although it tends to

generate different patterns for capital adjustment costs and the stochastic process, the estimate

for στ only slightly deviates from the benchmark result. This is because we have separated

the within-group standard deviations from the between-group standard deviations. A model

without measurement errors fails to match within-group standard deviations, but is still able

to fit the between-group standard deviations, which are mainly determined by unobserved

heterogeneities.

[Insert Table 4 here]

4.5 Robustness Tests

Table 5 presents results for a set of robustness checks. Recall the benchmark model in column

(1) has imposed depreciation rate δ = 0.05, discount rate r = 0.20, and serial correlation

ρ = 0.90. Columns (2) and (3) show the results for the same model but imposing δ = 0.03 and

0.07, respectively. In order to match the average investment rate and revenue growth rate, the

estimates for the growth rate µ decreases when the depreciation rate increases, as one may

expect. Nevertheless, the key parameter of interest στ is robust to the choice of depreciation

rate. Columns (4) and (5) test the sensitivity of imposing r = 0.15 and 0.25, respectively. The

estimated στ tends to increase with the discount rate. However a 50% change in r only causes

a less than 10% change in στ . Columns (6) and (7) report the results by imposing ρ = 0.85 and

0.95, respectively. Although there is a modest variation in the estimates for capital adjustment

costs and measurement errors across different values of ρ, the estimated στ is not sensitive to

the choice of serial correlation.

[Insert Table 5 here]

Column (8) and (9) investigate whether the empirical results would change if the number

of type in each heterogeneity is increased from 3 to 5, and if. the number of path for simulation

is increased from 5 to 10. These two changes will increase the time for estimation by around

2 and 1.5 times, respectively. But they cause virtually no change in any of the estimates.

Column (10) and (11) ask how the introduction of unobserved heterogeneities in the growth

rate and level of uncertainty will affect our empirical findings. We therefore assume the growth

rate follows a uniform distribution with mean µ and standard deviation σµ; and the level of
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uncertainty follows a uniform distribution with mean σ and standard deviation σσ. Introduc-

ing an additional dimension of heterogeneity implies the numerical dynamic programming has

an additional state variable, therefore the time for estimation increases by around 2.5 times.

As reported in Table 5, although a model with heterogeneous growth rate and level of un-

certainty fits the data better, our key parameter of interest στ is robust to these additional

heterogeneities. Finally, column (12) studies what would happen to the estimates if we model

measurement error in investment, and if such measurement error contaminates the measured

capital stock over time. The estimated capital adjustment costs are much higher under this

specification; however the variation in στ is less than 5%. Overall, a model with measurement

error in investment fits the data much worse compared with a model with measurement error

in capital stock, which has been adopted in our benchmark specification.

[Insert Table 5-continue here]

4.6 Counterfactual Simulations

The estimated structural model provides a useful framework to quantify the effects of distor-

tions on aggregate TFPR. Table 6.1 simulates such effects according to equation (14). Since

there are heterogeneities in both capital output elasticity and inverse of demand elasticity,

these effects are simulated for different type of firms and the average effects are reported in

the last row.

Evaluating at the optimal estimates listed in Table 3, our investment model predicts that

the actual aggregate TFPR in China is 39.7% lower than the effi cient benchmark, due to

presence of capital market distortions and capital adjustment costs. A model with capital

market distortions only simulates a 38.2% loss in aggregate TFPR, while a model with capital

adjustment costs only generates a 2.1% loss. This suggests that although both distortions and

frictions will cause aggregate TFPR loss, quantitatively, the vast majority of the loss is due to

the capital market distortions. Had we not controlled for potential unobserved heterogeneities

in capital output elasticity and inverse of demand elasticity, the estimated στ would have

implied a magnitude two-thirds larger. All else being equal, the losses in aggregate TFPR

increase monotonically with 1 − γ, the capital elasticity in the profit or revenue function.

Intuitively, an economy made of firms with larger capital share in production function and less

market power in product market demands more capital stock hence suffer more from capital

market distortions.

[Insert Table 6.1 here]
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Our finding that capital adjustment costs cause an aggregate TFPR loss around 1-3% is

very similar to that estimated in Midrigan and Xu (2009). In contrast, our estimation on the

effect of capital market distortions is much smaller than what is calibrated in Hsieh and Klenow

(2009). Of course, one importance difference lies in that, Hsieh and Klenow (2009) claim to

estimate the aggregate TFPR loss due to distortions in both product market and capital

market, while this paper only claims to estimate the effect of capital market distortions. Had

we interpreted any difference in firm’s market power as the result of product market distortions,

the heterogeneity in ηi in our specification would be isomorphic to the heterogeneity in τ
Y
i —

the measure of product market distortions — in Hsieh and Klenow (2009). Then, our model

would predict a 53.2% aggregate TFPR loss due to distortions in both capital and product

market distortions.

5 The Generalized ARP Approach

Our structural estimation finds a statistically significant heterogeneity in the capital goods

price. Eliminating the estimated heterogeneity, which we interpret as capital market distor-

tions, would increase the aggregate TFPR by 38.2%. The sizable effi ciency gain from capital

reallocation naturally raise the following question: What have caused the capital market dis-

tortions? This section develops a generalized ARP approach, which allows us to address a set

of important issues regarding question.

Section 3.5 has illustrated that in principle, among the three novel features considered in

this paper, capital adjustment costs are crucial for matching moments on variables in growth

rate; measurement errors are critical in matching moments on the time-series dimension; while

unobserved heterogeneities are essential in matching moments on the cross-section dimension.

The specification tests in section 4.4 further establish that in our empirical exercise, a model

without the unobserved heterogeneities in capital output elasticity and inverse of demand

elasticity will seriously overestimate the unobserved heterogeneity in capital goods prices. In

contrast, a model without capital adjustment costs or measurement errors does not necessarily

lead to such bias, if we separate variables in levels from those in growth rate, and if we separate

between-group standard deviations from within-group standard deviations.

This implies the exact identification conditions for the five parameters established in section

3.5.1 using the five moments are the core of recovering στ , even if there are capital adjustment

costs and measurement errors. In other words, one would pin down the five parameters by
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solving the following five simultaneous equations

mean (π/Y ) = F1

(
µlogα, µlog η, σlogα, σlog η, στ

)
,

mean
(

log
(
Y/K̂

))
= F2

(
µlogα, µlog η, σlogα, σlog η, στ

)
,

bsd (π/Y ) = F3

(
µlogα, µlog η, σlogα, σlog η, στ

)
,

bsd
(

log
(
Y/K̂

))
= F4

(
µlogα, µlog η, σlogα, σlog η, στ

)
,

bcorr
(
π/Y , log

(
Y/K̂

))
= F5

(
µlogα, µlog η, σlogα, σlog η, στ

)
.

We name this set of identification conditions as the generalized ARP approach, recognizing

its important inheritance from the conventional ARP approach. To check the validity of the

generalized ARP approach, Table 7.1 compares the estimates of these five parameters from

full structural estimation and the generalized ARP approach. These two approaches generate

very similar estimates for µlogαand µlog η. Using the full structural estimates as benchmark, the

generalized ARP approach slightly underestimates στ , σlogα and overestimates σlog η. However,

the bias for all these three parameters is only around 5%. In this sense, we claim the generalized

ARP approach provides the first-order approximation to the five parameters of our key interest.

[Insert Table 7.1 here]

There are several advantages of this approach, which make it a useful tool to study capital

market distortions. First, it takes into account the heterogeneities in production technology and

market power, which have been demonstrated to cause large bias in στ in the conventional ARP

approach. Second, by using the between-group standard deviation of profit-to-revenue ratio

and log revenue-to-capital ratio, it filters the effect of capital adjustment costs and measurement

errors. Therefore one could still get a first-order approximation for στ without doing the full

structure estimation. Third, it only requires panel information on profit, revenue and capital

stock, which are widely available in most firm-level dataset.

5.1 Capital Market Distortions in Different Sectors

The generalized ARP approach allows us to explore the capital market distortions in different

sectors, without going to the full structural estimation. Table 7.2. reports the estimates of

the five parameters for six sectors at the 4-digit level. The first important finding is that the

generalized ARP approach generates large and positive values for σlogα and σlog η for each

sector. This implies even within the 4-digit level, there are still substantial heterogeneities in

capital output elasticity and inverse of demand elasticity. It therefore highlights the importance

of modelling such heterogeneities as firm-specific instead of sector-specific.
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Second, the variation in the values of µlogα and µlog η across sectors are consistent with our

conventional observation. For example, compared with the average values for all the sectors,

both µlogα and µlog η are higher in automobile parts, wine and tobacco, which means firms in

these sectors are more capital intensive and have more market power. The paper sector has

higher µlogα but lower µlog η, which implies this is a relatively capital intensive sector but faces

a more competitive product market. The garment sector has lower µlogα, consistent with the

fact that it is usually a labor and material intensive sector.

Finally, the key parameter of interest στ varies from 0.61 to 0.69 across five out of six

sectors, which is about the same magnitude for the full sample. However, the generalized

ARP finds a virtually zero στ in the tobacco sector, a indication of almost no capital market

distortion. As discussed in section 6, we think this is probably driven by the fact that 98%

firms in tobacco sector are state-owned enterprises.

[Insert Table 7.2 here]

5.2 The Evolution of Capital Market Distortions

The firm-specific τ i implies the capital goods price heterogeneity to be time-invariant. Capital

market effi ciency may change over time. For instance, Hsieh and Klenow (2009) have found

the 2005 revenue-to-capital ratio in Chinese manufacturing firms to be less dispersed than the

1998 ratio, an indication of improving capital market effi ciency. We now apply the generalized

ARP approach to study how the capital market distortions have been evolving from 1998 to

2007.

Since this approach is only applicable to panel data, we split the NBS dataset into three

periods, each of which is made of four years:1998-2001, 2001-2004, and 2004-2007. To maintain

compatibility across different periods, we clean the data in 1998-2001 and 2001-2004 with the

same criteria as we do with 2004-2007, the benchmark sample of our empirical exercise.

The lower panel of Table 7.3 lists the five moments in each period. Although the between-

group dispersion of log revenue-to-capital ratio indeed decreases over time, so does the between-

group dispersion of the profit-to-revenue ratio. Another salient feature of the moments is

that the average log revenue-to-capital ratio has increased substantially over time. If the

production technology and market condition are broadly constant over time, this is a sign of

higher required rate of return to capital. Indeed according to Bai, Hsieh and Qian (2005),

the aggregate required rate of return to capital has increased by 10% from 1998 to 2004 for

the secondary sector. Therefore we impose r = 0.10 and 0.15 for 1998-2001 and 2001-2004,

respectively. The generalized ARP approach predicts στ = 0.954 and 0.7608 for these two
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earlier periods. Taking στ = 0.684 in the most recent period as benchmark, we conclude an

improvement in the capital market effi ciency in China since later 1990.11

[Insert Table 7.3 here]

5.3 Heterogeneities in J and the Compustat Benchmark

One caveat in our empirical strategy is to attribute all the unobserved heterogeneity in the user

cost of capital to firm-specific capital goods prices (1 + τ i), and assume a common Jorgensonian

user cost of capital J in the key identification condition equation (11). Since J = r+δ
1+r , if there

was any intrinsic heterogeneity in either δ or r even in the absence of any policy and institution

distortion, our estimated στ would overestimate the magnitude of capital market distortions

of our true interest.

Such concern could be relevant for δ. For example, different firms may have different capital

stock combinations of plant and equipment, which naturally depreciate at different rates. Such

concern could also be relevant for r. If we relax the assumption of risk-neutrality and if there

are aggregate shocks, different firms may have heterogeneous r induced by firm-specific beta.

Theories that take into account asymmetric information in the capital market would also

endogenously predict different r across firms with different characteristics, for example, age

and size.

Instead of netting out these possibilities from our estimated στ directly, our fundamental

interest is to understand those non-intrinsic policies and institutions that have caused the

capital market distortions. Since publicly-traded firms in the Compustat are usually taken as

a benchmark with least distortions, Table 7.4. therefore applies the generalized ARP approach

to a panel of Compustat firms from 2002 to 2005.12 We consider three different samples. First,

a full sample without trimming any firms. Second, a sample of firms with sales revenue more

than 1 million US dollars in 2004 price. It is therefore broadly comparable with the NBS

sample, which only includes firms with sales revenue more than 5 million RMB in 1998 price.

Finally, following Bloom (2009), a sample with sales revenue more than 10 million US dollars

11Had we not allowed r to increase over time, the GMRPK approach would predict even higher στ for earlier
periods, which indicates even more capital market effi ciency gain over time.
12We construct capital stock and deflate the data strictly following Bloom (2009). To be specific, capi-

tal stocks for firm i in industry m in year t are constructed by the perpetual inventory method: Ki,t =
(1− δ)Ki,t (Pm,t/Pm,t−1) +I i,t, initialized using the net book value of capital, where Ii,t is net capital expen-
diture on plant, property, and equipment, and Pm,t is the industry-level capital goods deflator from Bartelsman,
Becker and Grey (2000). Sales revenue and cost of goods sold figures come from accounts after deflation using
the CPI. We consider a sample from 2002 to 2005 instead of from 2004 to 2007 as in China, because the Pm,t
is not available after 2005.
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in 2000 price and number of employees more than 500. It is therefore a homogeneous sample

only made of large firms.

[Insert Table 7.4 here]

All the three samples of Compustat have higher profit-to-revenue ratio and lower log

revenue-to-capital ratio, compared with the NBS dataset. Not surprisingly, this implies on

average firms in Compustat are more profitable and investors have a lower required rate of

return on capital. Across different samples, when more small firms are trimmed out, the para-

meters characterizing unobserved heterogeneities get smaller. In particular, στ decreases from

0.461 in the full sample, to 0.311 in the NBS comparable sample and to almost zero in a sample

with homogeneous firms.

Given that the second Compustat sample is most comparable with the NBS dataset, we

take it as our benchmark to do a back-of-the envelope calculation. Recall that the generalized

ARP approach has predicted στ = 0.684 in China. Under the assumptions that, first, the

intrinsic heterogeneities in δ and r are similar for firms in comparable samples; second, firms in

Compustat face no policy or institution distortion; and finally, the the intrinsic heterogeneities

in δ and r are uncorrelated with policy and institution distortions, the proportion of the

heterogeneity in the user cost of capital driven by China-specific distortions is
√

0.6842 − 0.3112

0.684
× 100% = 89%.

With the Compustat benchmark, we can also investigate hypothetical questions by con-

trolled experiment. For example, what would happen if these Chinese firms had been operating

in an environment such as those in the Compustat. Table 6.2. simulates the aggregate TFPR

loss in China by reducing στ to 0.311. We find that all else being equal, averaging across dif-

ferent type of firms, the aggregate TFPR losses in China would decline to 7.7%. This implies

that without any additional investment, the GDP of China would increase by 30.5% if the

existing aggregate capital stock in China could be reallocated across existing Chinese firms to

equalize their user cost of capital similar to the level in the U.S..

6 Regressions on Firm Characteristics

The above exercises indicate that, first, the majority of the estimated capital goods price het-

erogeneity in China are associated with its policy and institution distortions in the capital

market. Second, the effi ciency gain would be substantial if such distortions could be elimi-
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nated. Since the distortions we model are generic and unobservable, it motives us to link such

distortions with some observable firm characteristics for policy implications.

Consider the following reduced-form regression transformed from the generalized ARP ap-

proach,

1

T

∑T

t=1
log
(
Yi,t/K̂i,t

)
= b0 + b1 ·Xi + b2 ·

1

T

∑T

t=1
log (πi,t/Yi,t) + b3 ·Di + ξi, (13)

where Xi is a vector of firm characteristics and Di represents a vector of industry and province

dummies; 1
T

∑T
t=1 log

(
Yi,t/K̂i,t

)
and

∑T
t=1 log (πi,t/Yi,t) /T are firm i’s times-series means of

the log revenue-to-capital and profit-to-revenue ratios. We have known from equation (11)

that 1
T

∑T
t=1 log

(
Yi,t/K̂i,t

)
entails not only log (1 + τ i), but also αi, ηi and the effect of cap-

ital adjustment costs, and measurement errors. Regression (13) adds 1
T

∑T
t=1 log (πi,t/Yi,t)

and the industry and province dummies to control the heterogeneities in αi and ηi. In addi-

tion, (13) ignores capital adjustment costs and measurement errors, which have been found to

have second-order effects on the between-group variation of the log revenue-to-capital ratio.

The above two procedures therefore can be considered an approximation of log (1 + τ i) by
1
T

∑T
t=1 log

(
Yi,t/K̂i,t

)
. Following the logic, b1 ·Xi can then proxy the effect of Xi on firm i’s

the user cost of capital.

[Insert Table 8 here]

Table 8 presents the regression results. In the baseline model which only controls for

industry and province dummies, 1
T

∑T
t=1 log (πi,t/Yi,t) has the correct negative sign. The second

regression considers the effect of firm age and size. All else being equal, it predicts the capital

good price of a firm is 3% lower if a firm is one year older, and 4% lower if a firm has 1000

more employees. This is consistent with the typical findings in the large literature on capital

market imperfections, for example, Fazzari, Hubbard and Peterson (1988), that younger and

smaller firms tend to face higher user cost of capital due to financial constraints.

The third regression tests whether a firm with a higher beta tends to have a higher user

cost of capital. Without information on firm value, it is not possible to get an exact beta for

firms in our dataset. However, we construct a quasi-beta using sales revenue as illustrated in

the Appendix 8.3. The empirical results indicate that all else being equal, a firm with a larger

beta does have a higher user cost of capital.

Dummy variables for state-owned firms (SOE), collective-owned firms (COE), domestic

private-owned firms (DPE), Hong Kong, Macau and Tai Wan-owned firms (HMT), and foreign-

owned firms (FIE) are included in the fourth regression to study the effect of ownership.
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Compared with the default category, which includes all other type of firms, such as share

holding firms, the user cost of capital for SOE, HMT and FIE are 25%, 17% and 15% lower,

while COE and DPE are paying a user cost of capital 23% and 18% higher. A large body

of literature, such as Dollar and Wei, 2006, Song et al., 2011, has pointed out that in the

developing economy of China, SOE have a much better access to external financing than DPE

due to capital market distortions. Our empirical findings provide further information on COE,

HMT and FIE and the relative user cost of capital facing each type of firms.

The fifth regression entertains the hypothesis that a firm with a political connection with

the communist party faces a favorable distortions therefore has a lower user cost of capital. We

use whether there is a labor union in the firm as a proxy for such political connection. Instead

of being a worker association that bargains with employers over wages, benefits and working

conditions, the labor union in the context of China has a different function.13 It serves an

important channel through which the communist party influences the firm. Therefore having

a labor union in the firm can be an indication of its political connection. Our regression result

indicates that all else being equal, a firm with a labor union has a 16% lower user cost of

capital than otherwise. Using party membership as an alternative measure, Li, Meng, Wang

and Zhou (2008) also find political connection to be relevant in China.

The last regression includes additional interaction terms of ownership and labor union,

which investigates to what extent the different user cost of capital across ownership is driven

by their political connection. The default category is therefore other type of firms without a

labor union. By normalizing the user cost of capital for this category as one, Figure 1 plots the

predicted user cost of capital across different type of firms, with and without a labor union,

using the estimated coeffi cients from this regression. Interestingly, although on average firms

with a labor union do have a lower user cost of capital, the effect of having a labor union is

very heterogenous across different ownerships. To be specific, conditional on ownership, having

a labor union reduces the user cost of capital by only 4% for HMT, 11% for FIE, but 16% for

COE and DPE, and as large as 43% for SOE. Our preferred interpretation is that at least for

domestic firms (SOE, COE and DPE), an important channel of capital market distortions is

the political connection with the communist party.

[Insert Figure 1 here]

13According to the Labor Union Law of China modified in 2001, a labor union is an association made of
workers at a voluntary base and led by the communist party of China; it is an important bridge that connects
the party and the workers; it represents and protects the right of the workers; and it stablizes and harmonizes
the relationship between the employees and employers.
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7 Conclusion

[to be written]
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8 Appendix

8.1 Aggregate TFPR Losses

Both distortions and frictions may cause aggregate productive effi ciency loss. To quantify

these effects, consider N firms in the economy with same α, η thus γ. Define the “effi cient”

benchmark as the capital allocation in an economy without capital adjustment costs nor capital

market distortions. Denote K̂∗i,t firm i’s productive capital stock in the effi cient allocation. K̂∗i,t
must be linear proportional to Zi,t,

K̂∗i,t =

(
1− γ
J

) 1
γ

Zi,t.

This implies that in the effi cient allocation, each firm gets a share of capital proportional to

the share of its Zi,t,

K̂∗i,t =
Zi,t
Z∗t

K̂t

where K̂t =
∑N

i=1 K̂i,t is the existing aggregate productive capital stock; and Z∗t =
∑N

i=1 Zi,t

is an aggregation of Zi,t.

The effi cient allocation has the following aggregate sales revenue:

Y ∗t ≡
γ

η

∑N

i=1
(Zi,t)

γ
(
K̂∗i,t

)1−γ
=
γ

η
Z∗γt K̂1−γ

t .

In contrast, the actual aggregate sales revenue with capital allocation of
{
K̂i,t

}N
i=1

is

Yt ≡
γ

η

∑N

i=1

(
Zγi,tK̂

1−γ
i,t

)
=
γ

η
Zγt K̂

1−γ
t ,

where

Zt ≡
[∑N

i=1

(
θi,t
Z∗t

)1−γ
Zi,t

] 1
γ

,

and

θi,t ≡
K̂i,t

K̂∗i,t
=
Z∗t K̂i,t

Zi,tK̂t

.

Here, θi,t denotes the wedge between the actual and effi cient capital. Zγt is referred to as

the aggregate revenue total factor productivity (TFPR). Note that in the effi cient allocation,

θi,t = 1 and the aggregate TFPR, Zγt , is identical to (Z∗t )γ . The aggregate TFPR losses due

to the misallocated
{
K̂i,t

}N
i=1

can thus be represented by the difference between Y ∗t and Yt:

log Y ∗t − log Yt = logZγt − log (Z∗t )γ

= log

(
N∑
i=1

(
Zγi,tK̂

1−γ
i,t

))
− (1− γ) log

(
N∑
i=1

K̂i,t

)
− γ log

(
N∑
i=1

Zi,t

)
(14)
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To highlight how capital market distortions will lower the aggregate TFPR, consider the

special case without adjustment cost and with common Zi,t across firms. With a large number

of firms (N →∞), there is a closed-form solution to the aggregate TFPR losses:

∆ log TFPRt = −1

2

1− γ
γ

V ar [log (1 + τ i)] (15)

In other words, the negative effect of capital market distortions on aggregate TFPR can be

summarized by the variance of log (1 + τ i), and the magnitude of the effect increases with 1−γ,
the capital share in the profit or revenue function.

8.2 Data

Brandt, Van Biesebroeck and Zhang (2012) provide an excellent description on the dataset and

implement a series of consistency checks. We therefore strictly follow them in constructing a

panel and cleaning the data.

In our application, Yi,t is defined as sales revenue of products plus changes in the inventory of

finished products. Variable profit πi,t is constructed by subtracting the cost of goods sold from

the sales revenue. Ideally, variable profit should be the difference between sales revenue and

cost of labor and intermediate inputs. However, cost of intermediate inputs is not available in

the dataset; and cost of labor is known to be poorly measured in the Chinese context. Instead,

costs of goods sold is reported by all the firms in the dataset. By accounting definition,

cost of goods sold (COGS) refer to the inventory costs of those goods a firm has sold during

a particular period. The key components of cost generally include: parts, raw materials and

supplies used; labor, including associated costs such as payroll taxes and benefits, and overhead

of the business allocable to production. Therefore we think the difference between sales revenue

and cost of goods sold provides a good proxy to the variable profit in our investment model.

We deflate the revenue and profit using the GDP deflator for the secondary industry from

the China Statistic Yearbook. The survey does not contain information on investment expen-

diture. However, firms report the book value of their fixed capital stock at original purchase

prices. Since these book values are the sum of nominal values for different years, they should

not be used directly. We therefore construct our capital stock series using the following formula

Ki,t = (1− δ)Ki,t−1 + (BKi,t −BKi,t−1) /Pt,

where BKi,t is the book value of capital stock for firm i in year t; Pt is the price index of

investment in fixed assets in year t constructed by Perkins and Rawski (2008). The initial

book value of capital stock is taken directly from the dataset for firms founded later than 1998.
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For firms founded before 1998, we predict it to be

BKi,t0 = BKi,t1/ (1 + gi)
t1−t0

where BKi,t0 is the projected initial book value of capital stock when firm i was born in year

t0; BKi,t1 is the book value of capital stock when firm i first appears in our dataset in year

t1; and gi is the average capital stock growth rate of firm i for the period we observe from the

data since year t1.

Investment expenditure Ii,t is then recovered according to equation (6). We experimented

with a depreciation rate δ from 3% to 10% and pin it down to be 5%, which is the average

difference between the constructed investment rate and revenue growth rate.

Four key variables for estimation, namely profit-to-revenue ratio (πi,t/Yi,t), log revenue-to-

capital ratio
(

log
(
Yi,t/K̂i,t

))
, investment rate (Ii,t/Ki,t) and revenue growth rate (∆ log Yi,t),

are then constructed by definition. We exclude outliers by trimming the top and bottom 5%

observations for each variable in each year. Table A.1. reports the sample average for these

variables from 1998 to 2007.

[Insert Table A here]

The implications for effi cient capital allocation are for firms on the balanced-growth-path.

In the presence of capital adjustment costs, it may cost several years for firms to reach their

balanced-growth-path. Therefore we exclude firms that are less than 5 years old when they first

enter our dataset. The corresponding data description is provided in Table A.2. Furthermore,

our investment model does not consider entry and exit, which means the model implications are

only valid for existing and ongoing firms. Table A.3 and A.4 therefore report the four variables

for firms that are at least 5 years old upon enter our dataset and survive 10 years and at least

4 years, correspondingly. A striking fact is that even for firms surviving the entire 10 years,

their average log revenue-to-capital ratio—the key variable for our identification—is increasing

over time. However, this ratio begins to stabilize since year 2004. We think it is probably

driven by two facts. First, there has been massive privatization in China since the economic

reform and many firms began to export after China’s entry to the WTO in 2001. This implies

substantial structural changes have been going on until early 2000. Second, many existing

non-state-owned firms with sales revenue beyond 5 millions were missing from the survey in

early years but were included in our dataset since 2004 thanks to the industrial census conduct

in that year.
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For these reasons, in our main empirical exercises, we only utilize a sample for firms sur-

viving 2004 to 2007 and at least 5 years old in 2004. This gives us a balanced panel made of

107579 firms and spanning 4 years.

8.3 Construction of a Quasi-beta

Consider the following specification for Zi,t:

logZi,t = µt+ zi,t

zi,t = ρzi,t−1 + λiet + ei,t

where et is an aggregate shock common to all the firms and is independent of idiosyncratic

shocks ei,t; and λi is a firm-specific loading draw from a distribution with first moment µλ and

second moment σ2
λ.

When ρ→ 1, the revenue growth rate can be approximated as

∆ log Yi,t = ∆ logZi,t = µ+ λiet + ei,t.

And the average revenue growth rate is therefore

∆ log Yt =
1

N

∑N

i=1
∆ log Yi,t = µ+ et

1

N

∑N

i=1
λi = µ+ µλet

This implies that one potential feasible strategy is to proxy betai as

betai =
cov [∆ log Yi,t,∆ log Yt]

var [∆ log Yt]

=
cov [λiet, µλet]

var [µλet]

=
λiµλvar [et]

µ2
λvar [et]

=
λi
µλ

The rationale is that a firm that has a pro-cyclical revenue (λi > 0) is a risky firm, and tends to

have a positive beta. Thus investors should demand a higher rate of return from investments

whose performance is strongly tied to the performance of the economy.
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Parameters
σ τ
μ log α

σ log α

μ logη
σ logη
b q

b i

b f

μ
σ

σ meK

σ meY

σ meπ
Moments

mean(π/Y)
mean(log(Y/Khat))
mean(I/K)
mean(∆logY)
bsd(π/Y)
wsd(π/Y)
bsd(log(Y/Khat))
wsd(log(Y/Khat))
bsd(I/K)
wsd(I/K)
bsd(∆logY)
wsd(∆logY)
skew(π/Y)
skew(log(Y/Khat))
skew(I/K)
skew(dlogY)
scorr(π/Y)
scorr(log(Y/Khat))
scorr(I/K)
scorr(∆logY)

and log revenue-to-capital ratio

standard deviation of measurement errors in capital stock
standard deviation of measurement errors in sales revenue
standard deviation of measurement errors in variable profit

standard deviation of  shocks to Z i,t

Table 1. Parameters and Moments
Definition

standard deviation of heterogeneities in capital goods price
mean of log capital output elasticity in production function
standard deviation of log capital output elasticity
mean of log inverse of demand elasticity
standard deviation of log inverse of demand elasticity
quadratic adjustment costs
partial irreversibility
fixed adjustment costs
mean of growth rate in Z i,t

Definition
mean of profit-to-revenue ratio
mean of log revenue-to-capital ratio
mean of investment rate
mean of revenue growth rate
between-group standard deviation of profit-to-revenue ratio
within-group standard deviation of profit-to-revenue ratio
between-group standard deviation of log revenue-to-capital ratio
within-group standard deviation of log revenue-to-capital ratio
between-group standard deviation of investment rate
within-group standard deviation of investment rate
between-group standard deviation of revenue growth rate
within-group standard deviation of revenue growth rate
skewness of profit-to-revenue ratio
skewness of log revenue-to-capital ratio

serial correlation of revenue growth rate
cross correlation between between-group profit-to-revenue ratio bcorr(π/Y, log(Y/Khat))

skewness of investment rate
skewness of revenue growth rate
serial correlation of profit-to-revenue ratio
serial correlation of log revenue-to-capital ratio
serial correlation of investment rate



Parameters Model A col (1) col (2) col (3) Model B
σ τ =  0.0 σ τ =  0.5 σ τ =  0.0 σ τ =  0.0 σ τ =  0.5

σ log α =  0.0 σ log α =  0.0 σ log α =  0.5 σ log α =  0.0 σ log α =  0.5
σ log η  =  0.0 σ log η  =  0.0 σ log η  =  0.0 σ logη =  0.5 σ logη =  0.5

Set of Moments
mean(π/Y) 0.157 0.157 0.167 0.167 0.170
mean(log(Y/Khat)) 0.834 0.834 0.834 0.847 0.840
mean(I/K) 0.159 0.159 0.159 0.159 0.159
mean(∆logY) 0.050 0.050 0.050 0.050 0.050
bsd(π/Y) 0.000 0.000 0.044 0.044 0.061
wsd(π/Y) 0.000 0.000 0.000 0.000 0.000
bsd(log(Y/Khat)) 0.000 0.496 0.495 0.054 0.682
wsd(log(Y/Khat)) 0.000 0.000 0.000 0.000 0.000
bsd(I/K) 0.164 0.165 0.165 0.165 0.164
wsd(I/K) 0.321 0.321 0.321 0.321 0.321
bsd(∆logY) 0.162 0.162 0.162 0.162 0.162
wsd(∆logY) 0.252 0.252 0.252 0.252 0.253
skew(π/Y) 0.000 0.000 1.190 1.190 0.176
skew(log(Y/Khat)) 0.000 0.000 0.000 1.336 0.000
skew(I/K) 1.015 1.015 1.015 1.015 1.015
skew(dlogY) 0.005 0.005 0.005 0.005 0.005
scorr(π/Y) N.A. N.A. 1.000 1.000 1.000
scorr(log(Y/Khat)) N.A. 1.000 1.000 0.985 1.000
scorr(I/K) -0.062 -0.062 -0.062 -0.062 -0.062
scorr(∆logY) -0.067 -0.067 -0.067 -0.067 -0.067
bcorr(π/Y, log(Y/Khat)) N.A. N.A. -0.954 0.991 -0.378

Table 2.1. Illustration for Identification of Unobserved Heterogeneities



Parameters Model B col (1) col (2) col (3) Model C
b q = 0.0 b q = 0.25 b q = 0.0 b q = 0.0 b q = 0.25
b i = 0.0 b i = 0.0 b i = 0.25 b i = 0.0 b i = 0.25
b f = 0.0 b f = 0.0 b f = 0.0 b f = 0.025 b f = 0.025

Set of Moments
mean(π/Y) 0.170 0.170 0.170 0.170 0.170
mean(log(Y/Khat)) 0.840 0.846 0.808 0.850 0.875
mean(I/K) 0.159 0.116 0.122 0.153 0.116
mean(∆logY) 0.050 0.050 0.050 0.050 0.050
bsd(π/Y) 0.061 0.061 0.061 0.061 0.061
wsd(π/Y) 0.000 0.000 0.000 0.000 0.000
bsd(log(Y/Khat)) 0.682 0.679 0.684 0.684 0.678
wsd(log(Y/Khat)) 0.000 0.075 0.083 0.069 0.087
bsd(I/K) 0.164 0.094 0.116 0.171 0.095
wsd(I/K) 0.321 0.101 0.167 0.328 0.123
bsd(∆logY) 0.162 0.120 0.124 0.152 0.117
wsd(∆logY) 0.253 0.161 0.172 0.223 0.161
skew(π/Y) 0.176 0.176 0.176 0.176 0.176
skew(log(Y/Khat)) 0.000 0.004 0.020 0.018 0.025
skew(I/K) 1.015 0.465 2.519 2.105 1.310
skew(dlogY) 0.005 0.001 0.636 0.475 0.304
scorr(π/Y) 1.000 1.000 1.000 1.000 1.000
scorr(log(Y/Khat)) 1.000 0.988 0.986 0.988 0.985
scorr(I/K) -0.062 0.449 0.168 -0.056 0.255
scorr(∆logY) -0.067 0.059 0.028 -0.015 0.034
bcorr(π/Y, log(Y/Khat)) -0.378 -0.382 -0.381 -0.375 -0.382

Table 2.2. Illustration for Identification of Capital Adjustment Costs



Parameters Model C col (1) col (2) col (3) Model D
σ meK =  0.0 σ meK =  0.25 σ meK =  0.0 σ meK =  0.0 σ meK =  0.25
σ meY =  0.0 σ meY =  0.0 σ meY =  0.25 σ meY =  0.0 σ meY =  0.25
σ me π  =  0.0 σ me π  =  0.0 σ me π  =  0.0 σ me π  =  0.25 σ me π  =  0.25

Set of Moments
mean(π/Y) 0.170 0.170 0.175 0.170 0.175
mean(log(Y/Khat)) 0.875 0.872 0.875 0.875 0.873
mean(I/K) 0.116 0.120 0.116 0.116 0.120
mean(∆logY) 0.050 0.050 0.050 0.050 0.050
bsd(π/Y) 0.061 0.061 0.067 0.062 0.069
wsd(π/Y) 0.000 0.000 0.041 0.023 0.047
bsd(log(Y/Khat)) 0.678 0.687 0.690 0.678 0.699
wsd(log(Y/Khat)) 0.087 0.216 0.233 0.087 0.306
bsd(I/K) 0.095 0.101 0.095 0.095 0.101
wsd(I/K) 0.123 0.134 0.123 0.123 0.134
bsd(∆logY) 0.117 0.117 0.167 0.117 0.167
wsd(∆logY) 0.161 0.161 0.370 0.161 0.370
skew(π/Y) 0.176 0.176 0.851 0.415 0.996
skew(log(Y/Khat)) 0.025 0.013 0.018 0.025 0.008
skew(I/K) 1.310 1.651 1.310 1.310 1.651
skew(dlogY) 0.304 0.304 0.035 0.304 0.035
scorr(π/Y) 1.000 1.000 0.639 0.844 0.568
scorr(log(Y/Khat)) 0.985 0.885 0.869 0.985 0.790
scorr(I/K) 0.255 0.231 0.255 0.255 0.231
scorr(∆logY) 0.034 0.034 -0.370 0.034 -0.370
bcorr(π/Y, log(Y/Khat)) -0.382 -0.376 -0.413 -0.374 -0.399

Table 2.3. Illustration for Identification of Measurement Errors
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col (1) col (2) col (3) col (4)
benchmark σ logα =σ logη = 0 b q =b i =b f = 0 σ meK =σ meY=σ meπ = 0

Parameters
σ τ 0.714 0.924 0.665 0.734
μ log α -2.606 -2.351 -2.645 -2.742
σ log α 0.557 0.000 0.587 0.500
μ logη -2.808 -2.494 -2.716 -2.998
σ logη 0.725 0.000 0.660 0.885
b q 0.278 0.443 0.000 0.163

b i 0.000 0.000 0.000 0.476

b f 0.034 0.082 0.000 0.041
μ 0.080 0.078 0.100 0.054
σ 0.425 0.354 0.205 0.443

σ meK 0.401 0.380 0.420 0.000
σ meY 0.001 0.123 0.110 0.000
σ me π 0.578 0.816 0.541 0.000

Moments
mean(π/Y) 0.154 0.171 0.155 0.141
mean(log(Y/Khat)) 1.146 1.011 1.151 1.218
mean(I/K) 0.173 0.168 0.206 0.127
mean(∆logY) 0.080 0.078 0.100 0.053
bsd(π/Y) 0.075 0.042 0.073 0.071
wsd(π/Y) 0.049 0.073 0.047 0.000
bsd(log(Y/Khat)) 0.878 0.848 0.872 0.851
wsd(log(Y/Khat)) 0.332 0.328 0.343 0.137
bsd(I/K) 0.164 0.146 0.145 0.136
wsd(I/K) 0.215 0.218 0.274 0.177
bsd(∆logY) 0.163 0.153 0.123 0.160
wsd(∆logY) 0.219 0.254 0.227 0.221
skew(π/Y) 0.854 0.184 0.887 0.391
skew(log(Y/Khat)) 0.004 0.008 0.011 0.013
skew(I/K) 2.251 2.220 1.586 2.450
skew(dlogY) 0.176 0.213 0.002 0.370
scorr(π/Y) 0.599 -0.001 0.604 1.000
scorr(log(Y/Khat)) 0.838 0.830 0.822 0.977
scorr(I/K) 0.243 0.126 -0.047 0.242
scorr(∆logY) 0.053 -0.149 -0.223 0.027
bcorr(π/Y, log(Y/Khat)) -0.271 -0.019 -0.304 -0.208

OI/100 183 1510 653 3127

Table 4. Specification Tests



col (1) col (2) col (3) col (4) col (5) col (6) col (7)
Parameters benchmark δ =0.03 δ =0.07 r =0.15 r =0.25  ρ =0.85 ρ =0.95

σ τ 0.714 0.705 0.730 0.670 0.746 0.712 0.729
μ log α -2.606 -2.675 -2.539 -2.727 -2.496 -2.595 -2.602
σ log α 0.557 0.566 0.543 0.606 0.524 0.559 0.549
μ logη -2.808 -2.752 -2.909 -2.672 -2.973 -2.826 -2.812
σ logη 0.725 0.708 0.770 0.666 0.794 0.729 0.730
b q 0.278 0.308 0.256 0.387 0.273 0.258 0.346

b i 0.000 0.000 0.001 0.000 0.005 0.000 0.014

b f 0.034 0.040 0.025 0.060 0.025 0.024 0.029
μ 0.080 0.094 0.066 0.080 0.083 0.081 0.085
σ 0.425 0.426 0.430 0.412 0.447 0.427 0.416

σ meK 0.401 0.387 0.409 0.379 0.410 0.405 0.411
σ meY 0.001 0.001 0.000 0.000 0.001 0.000 0.004
σ meπ 0.578 0.581 0.572 0.575 0.579 0.581 0.574

Moments
mean(π/Y) 0.154 0.152 0.155 0.153 0.155 0.154 0.154
mean(log(Y/Khat)) 1.146 1.132 1.146 1.127 1.165 1.143 1.159
mean(I/K) 0.173 0.162 0.184 0.170 0.177 0.174 0.179
mean(∆logY) 0.080 0.094 0.066 0.080 0.083 0.081 0.084
bsd(π/Y) 0.075 0.075 0.074 0.075 0.074 0.074 0.075
wsd(π/Y) 0.049 0.049 0.049 0.049 0.049 0.049 0.049
bsd(log(Y/Khat)) 0.878 0.877 0.880 0.874 0.882 0.879 0.884
wsd(log(Y/Khat)) 0.332 0.326 0.333 0.319 0.337 0.333 0.337
bsd(I/K) 0.164 0.157 0.170 0.153 0.170 0.155 0.178
wsd(I/K) 0.215 0.204 0.221 0.209 0.215 0.217 0.214
bsd(∆logY) 0.163 0.164 0.163 0.160 0.165 0.158 0.168
wsd(∆logY) 0.219 0.222 0.215 0.222 0.215 0.224 0.211
skew(π/Y) 0.854 0.873 0.846 0.856 0.846 0.855 0.857
skew(log(Y/Khat)) 0.004 0.005 0.004 0.007 0.006 0.002 -0.002
skew(I/K) 2.251 2.303 2.158 2.320 2.206 2.168 2.181
skew(dlogY) 0.176 0.180 0.151 0.208 0.146 0.165 0.169
scorr(π/Y) 0.599 0.598 0.598 0.608 0.590 0.596 0.600
scorr(log(Y/Khat)) 0.838 0.844 0.837 0.849 0.834 0.837 0.835
scorr(I/K) 0.243 0.246 0.254 0.200 0.274 0.202 0.297
scorr(∆logY) 0.053 0.040 0.068 0.026 0.073 0.015 0.099
bcorr(π/Y, log(Y/Khat)) -0.271 -0.257 -0.278 -0.280 -0.275 -0.270 -0.259

OI/100 183 182 213 208 179 215 157

Table 5. Robustness Tests



col (1) col (8) col (9) col (10) col (11) col (12)
Parameters benchmark type-5 S  =10 σ υ  > 0 σ σ > 0 σ meI  >0

σ τ 0.714 0.690 0.716 0.721 0.712 0.745
μ log α -2.606 -2.620 -2.606 -2.604 -2.592 -2.654
σ log α 0.557 0.557 0.557 0.551 0.556 0.577
μ logη -2.808 -2.851 -2.808 -2.805 -2.805 -2.776
σ logη 0.725 0.692 0.727 0.728 0.719 0.716
b q 0.278 0.284 0.266 0.325 0.308 0.405

b i 0.000 0.001 0.000 0.000 0.000 0.479

b f 0.034 0.034 0.028 0.039 0.031 0.059
μ 0.080 0.082 0.083 0.083 0.080 0.061
σ 0.425 0.424 0.422 0.411 0.403 0.465

σ meK 0.401 0.402 0.405 0.404 0.390 ..
σ meY 0.001 0.000 0.002 0.002 0.001 0.001
σ meπ 0.578 0.597 0.577 0.576 0.575 0.561
σ υ .. .. .. 0.080 .. ..
σ σ .. .. .. .. 0.151 ..
σ meI .. .. .. .. .. 0.114

Moments
mean(π/Y) 0.154 0.148 0.154 0.154 0.155 0.153
mean(log(Y/Khat)) 1.146 1.155 1.142 1.154 1.147 1.104
mean(I/K) 0.173 0.175 0.176 0.177 0.171 0.135
mean(∆logY) 0.080 0.082 0.083 0.083 0.080 0.060
bsd(π/Y) 0.075 0.071 0.074 0.074 0.074 0.075
wsd(π/Y) 0.049 0.048 0.049 0.048 0.049 0.047
bsd(log(Y/Khat)) 0.878 0.880 0.878 0.883 0.875 0.870
wsd(log(Y/Khat)) 0.332 0.331 0.334 0.334 0.324 0.144
bsd(I/K) 0.164 0.165 0.165 0.180 0.161 0.135
wsd(I/K) 0.215 0.214 0.215 0.213 0.213 0.169
bsd(∆logY) 0.163 0.163 0.163 0.168 0.162 0.165
wsd(∆logY) 0.219 0.217 0.218 0.210 0.218 0.230
skew(π/Y) 0.854 1.010 0.853 0.852 0.846 0.846
skew(log(Y/Khat)) 0.004 0.013 0.007 0.004 0.006 0.029
skew(I/K) 2.251 2.193 2.192 2.225 2.295 2.412
skew(dlogY) 0.176 0.176 0.155 0.195 0.157 0.268
scorr(π/Y) 0.599 0.581 0.601 0.604 0.598 0.620
scorr(log(Y/Khat)) 0.838 0.839 0.836 0.838 0.844 0.976
scorr(I/K) 0.243 0.250 0.249 0.292 0.237 0.268
scorr(∆logY) 0.053 0.058 0.055 0.103 0.051 0.021
bcorr(π/Y, log(Y/Khat)) -0.271 -0.319 -0.266 -0.263 -0.274 -0.299

OI/100 183 229 199 148 179 741

Table 5. Robustness Tests--continued



type α η 1-γ ΔlogTFPR ΔlogTFPR ΔlogTFPR
overall distortions frictions

1 0.040 0.027 0.589 -0.383 -0.363 -0.020
2 0.040 0.060 0.385 -0.169 -0.160 -0.009
3 0.040 0.133 0.208 -0.071 -0.067 -0.004
4 0.074 0.027 0.724 -0.681 -0.649 -0.035
5 0.074 0.060 0.535 -0.309 -0.292 -0.017
6 0.074 0.133 0.325 -0.130 -0.123 -0.007
7 0.136 0.027 0.828 -1.034 -1.030 -0.056
8 0.136 0.060 0.679 -0.558 -0.530 -0.029
9 0.136 0.133 0.469 -0.238 -0.225 -0.013

average 0.083 0.074 0.527 -0.397 -0.382 -0.021

type α η 1-γ ΔlogTFPR
distortions

1 0.040 0.027 0.589 -0.069
2 0.040 0.060 0.385 -0.030
3 0.040 0.133 0.208 -0.013
4 0.074 0.027 0.724 -0.127
5 0.074 0.060 0.535 -0.056
6 0.074 0.133 0.325 -0.023
7 0.136 0.027 0.828 -0.231
8 0.136 0.060 0.679 -0.102
9 0.136 0.133 0.469 -0.043

average 0.083 0.074 0.527 -0.077

Efficient Benchmark

Compustat Benchmark

Table 6.1. Aggregate TFPR Loss in China

Table 6.2. Aggregate TFPR Loss in China



Full Generalized
Structural ARP

Parameters
σ τ 0.7143 0.6845
μ log α -2.6058 -2.6199
σ log α 0.5568 0.5254
μ logη -2.8084 -2.8085
σ logη 0.7253 0.7644

Moments
mean(π/Y)
mean(log(Y/Khat))
bsd(π/Y)
bsd(log(Y/Khat))
bcorr(π/Y, log(Y/Khat))

Note:  r  = 0.20 and δ  = 0.05 in both columns. 

-0.2422

Table 7.1. Generalized ARP v.s. Full Structural
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0.8666
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able 7.2. Sub-Sector R

esults



period 2004-2007 2001-2004 1998-2001
r 0.2 0.15 0.1

Parameters
σ τ 0.6845 0.7608 0.9537

μ log α -2.6199 -2.4153 -2.1661
σ log α 0.5254 0.5771 0.5260
μ logη -2.8085 -3.1199 -3.6370
σ logη 0.7644 1.0056 1.3390

Moments
mean(π/Y) 0.1578 0.1705 0.1877
mean(log(Y/Khat)) 1.1377 0.7470 0.2462
bsd(π/Y) 0.0763 0.0859 0.0913
bsd(log(Y/Khat)) 0.8666 0.9399 1.0712
bcorr(π/Y, log(Y/Khat)) -0.2422 -0.2809 -0.2481

Note: δ = 0.05 for all columns. 

Table 7.3. Evolution of Capital Market Distortions



Compustat Compustat Compustat
full sample NBS comparable Bloom (2009)

Parameters
σ τ 0.6843 0.4612 0.3112 0.0019

μ log α -2.6189 -2.0793 -2.1435 -2.2327
σ log α 0.5539 0.6569 0.6530 0.5784
μ logη -2.8086 -1.4040 -1.3814 -1.4873
σ logη 0.7887 1.0038 0.9556 0.6751

Moments
mean(π/Y) 0.1578 0.3863 0.3826 0.3514
mean(log(Y/Khat)) 1.1377 0.4401 0.5066 0.5542
bsd(π/Y) 0.0763 0.1600 0.1572 0.1448
bsd(log(Y/Khat)) 0.8666 0.8291 0.7531 0.6064
bcorr(π/Y, log(Y/Khat)) -0.2422 -0.0779 -0.0705 -0.0879

Note: r  = 0.20 for NBS and 0.10 for Compustat; δ = 0.05 for all columns. 

Table 7.4. NBS v.s. Compustat

sample NBS
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N
ote: 1. Industry and province dum

m
ies are included in all regressions.

         2. R
obust standard errors are reported in the second colum

n of each regression. 
         3. A

ge is the difference betw
een 2004 and the year of firm

 foundation.
         4. Em

p is the num
ber of total em

ployees norm
alized by 1000.

         5. B
eta is estim

ated as corr(∆logY
i,t , ∆logY

t )/var(∆logY
t ), w

here ∆logY
t  is the average of ∆logY

i,t .
         6. SO

E--dum
m

y = 1 if state-ow
ned; defined as registration type = 110, 141 and 151.

             C
O

E--dum
m

y = 1 if collective ow
ned firm

s; defined as registration type = 120 and 142.
             D

PE--dum
m

y = 1 if dom
estic private-ow

ned firm
s; defined as registration type from

 170 to 174.
             H

M
T--dum

m
y = 1 if H

ong K
ong, M

acau and Tai W
an ow

nerd firm
s; defined as registration type from

 200 to 240.
             FIE--dum

m
y = 1 if foreign-ow

ned firm
s; defined as registration type from

 3000 to 340.
         7. LU

--dum
m

y = 1 if a firm
 has a labor union.

         8. SO
E_LU

--dum
m

y = 1 if a firm
 is SO

E and has a labor union; sim
ilar definition applies to other interaction term

s.

(6) full m
odel

T
able 8. R

egressions on Firm
 C

haracteristics
(1) baseline m

odel
(2) age and size

(3) cyclicity
(4) ow

nership
(5) political connection



COE, no labor union
DPE, no labor union
other, no labor union
COE, labor union
DPE, labor union
SOE, no labor union
FIE, no labor union
other, labor union
HMT, no labor union
HMT, labor union
FIE, labor union
SOE, labor union

0.657
0.512

0.708
0.668

0.764
0.759

0.975
0.945
0.943

Figure 1. The Predicted User Cost of Capital in Different Chinese Firms
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Figure A.1. Investment Policy under Quadratic Adjustment Costs 

 
Figure A.2. Investment Policy under Irreversibility 

 
Figure A.3. Investment Policy under Fixed Adjustment Costs 
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Year 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007
No. of  firms 149689 147112 148272 156812 166864 181179 259405 251498 276165 313041
mean(π/Y) 0.171 0.187 0.177 0.168 0.165 0.157 0.145 0.154 0.152 0.154
mean(log(Y/Khat)) 0.430 0.522 0.658 0.827 0.973 1.121 1.323 1.311 1.334 1.413
mean(I/K) 0.082 0.085 0.097 0.128 0.161 0.191 0.248 0.216 0.213
mean(∆logY) 0.041 0.037 0.017 0.088 0.111 0.084 0.140 0.126 0.171

Year 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007
No. of  firms 106485 110233 112856 114056 118411 124708 151961 154849 174245 198882
mean(π/Y) 0.175 0.191 0.181 0.174 0.171 0.164 0.155 0.158 0.156 0.156
mean(log(Y/Khat)) 0.184 0.325 0.475 0.623 0.770 0.939 1.105 1.163 1.224 1.319
mean(I/K) 0.057 0.061 0.072 0.091 0.117 0.142 0.169 0.166 0.169
mean(∆logY) 0.008 0.009 -0.005 0.058 0.078 0.044 0.078 0.075 0.114

Year 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007
No. of  firms 28232 28232 28232 28232 28232 28232 28232 28232 28232 28232
mean(π/Y) 0.185 0.197 0.189 0.184 0.181 0.174 0.169 0.167 0.165 0.168
mean(log(Y/Khat)) 0.346 0.418 0.477 0.493 0.561 0.621 0.613 0.644 0.650 0.681
mean(I/K) 0.089 0.088 0.085 0.085 0.096 0.093 0.103 0.096 0.093
mean(∆logY) 0.111 0.098 0.056 0.102 0.106 0.047 0.077 0.055 0.078

Year 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007
No. of  firms 62422 72682 84511 99188 103486 110033 126924 120547 114876 107641
mean(π/Y) 0.180 0.195 0.184 0.177 0.173 0.165 0.156 0.160 0.158 0.160
mean(log(Y/Khat)) 0.192 0.343 0.476 0.572 0.729 0.903 1.062 1.084 1.088 1.134
mean(I/K) 0.068 0.068 0.073 0.091 0.116 0.143 0.172 0.153 0.144
mean(∆logY) 0.060 0.045 0.004 0.068 0.088 0.050 0.089 0.069 0.097

Year 2004 2005 2006 2007
No. of  firms 107579 107579 107579 107579
mean(π/Y) 0.155 0.159 0.157 0.160
mean(log(Y/Khat)) 1.143 1.145 1.129 1.134
mean(I/K) 0.187 0.161 0.144
mean(∆logY) 0.109 0.083 0.097

Note: Top and Buttom 5% observations are trimmed year-by-year for each variable in all the tables. 

Table A.5. A Balanced-Panel for 2004-2007 

Table A.1. Full Industrial Survey

Table A.2. Firms at least age 5 upon Entry Dataset

Table A.3. Firms at least age 5 upon Entry Dataset and Survive 10 Years

Table A.4. Firms at least age 5 upon Entry Dataset and Survive at least 4 Consecutive Years
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