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Introduction

@ Bootstrap: Estimating the distribution of an estimator or test
statistic by resampling one’s data: treating the data as if they
were the population.

@ Its approximations can be at least as good as those from the
first-order asymptotic theory.

Useful when evaluating the asymptotic distribution is difficult.

@ It can often be more accurate than the first-order asymptotic
theory, i.e., asymptotic refinements.

@ Bias correction, confidence intervals, hypothesis testing, etc.



Introduction
0@00000

Bootstrap Example

o x~i.id.(u0?)

o data: x1,x2,...,Xp.

X1+Xo+:+Xp

o Statistic of interest: [i = -

@ Bootstrap:

o, O, MO
draw xl(l),x2( ) ,(, ) compute A1) = u;

@, @, . ..
draw xl(z),xz(2) cx$?), compute /i(?) = u;

(), () (s)
draw x(s) <) X , compute (%) = AL N i

n

Approximate [i's dlstrlbut|on by AW ... 0.



Asymptotic Refinements

Use some expansions, e.g., Edgeworth expansions.
o

G(x) = P(T <x)=d(x)+nY2q(x)p(x) + O(n7}),
G(x) = P(T* <x|X) = d(x) + " Y24(x)p(x) + Op(n71).

Normal approximation: G(x) — ®(x) = O(n‘l/z);
Bootstrap approximation:

G(x) = G(x) = n2[q(x) = 4(x)]$(x) + Op(n") = Op(n ™).

() = P(T<x) =0() +nq(2)6(>) + O(n ™),
G(x) = P(T* <x@) = 0(2) + n24(5)6(3) + Opln ™).

G() = 6(x) = ®() = 0(5) + Op(n™) = Op(n™72).
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Existence of Asymptotic Expansions

@ Hall (1997): Smooth function model: X;'s are i.i.d. with mean
1, ACX) = [g(X) - g(p)]/h(p) or
A(X) = [g(X) - g(m)]/h(X), where X = L 313 X;.

e Gotze and Hipp (1983, 1994): X;'s weekly dependent.
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The Bootstrap for Spatial Econometric Models

@ Many informal discussions and Monte Carlo Studies:

o Spatial autoregressive (SAR) models: Anselin (1988, 1990),
Can (1992).

e Spatial moving average models: Fingleton (2008), Fingleton
and Le Gallo (2008).

e Moran's | under heteroskedasticity and non-normality: Lin et
al. (2011).

o Size distortions: Fingleton and Burridge (2010) and Burridge
(2012) (Spatial J tests), Yang (2011) (LM tests).

e Bias and robust variance: Su and Yang (2008), Yang (2012).

@ No theoretical results on the validity.

@ Existing results cannot be applied.
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Objectives

o Consistency: Provides a consistent estimator of a statistic’s

asymptotic distribution.
Provide a general proposition showing that the bootstrap for
some statistics is consistent and provide some applications.

@ Asymptotic refinements.
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Bootstrap method

A general model—SARAR Model:
Vo = AWoyn + XofB + U, Up = pMuu, + €n, €ni's iid. ~ (0,02).
° (Xni’yni) = ((Wn}/n)iaXniayni)-
@ Residual bootstrap:
o Estimate to derive 0, = (/A\n, A{,,ﬁn)’ and residuals é,.
e Sample from the recentered residuals (I, — 1,1/ /n)é, to derive
€y, and generate pseudo data
Yp=Un=An Wn)il[Xan + (I - ﬁnMn)71€:]-
o Use y, to estimate f and compute test statistics.
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Linear-quadratic Forms in Spatial Econometric Models

e Linear-quadratic (LQ) forms of disturbances: The leading order
terms of many estimators and test statistics.
[ehAnen — o3 tr(Ap) + blen]//.

@ Estimators: the derivatives of the corresponding criterion function
evaluated at the true parameter vector are often LQ forms.

° MLE 8L, (0 11 8L,(6
V0, - 09) = (-1 E i)y LOL) o (1),
where

Lo(0) = -2 2 In(2m) - f Ino? +In|Sp(A)] + In |Ra(p)|

"y 2[5 (M) = XaB1 Ry (p) Ra(p) [Sn(N)yn = X8,

with S,(A) = I, = AW, and R,(p) = I, — pM,,.
The reduced form of y,: y, = S, (Mo)[XnBo + Ry (po)en]-
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More Estimators

o GMME.
Let gn(7) = 2(€,(7) Drn€n(7), - - - €4(7) Dmnen(7), €p(7) Fy)’, where
en(7) = (In = pMp) [(In = AW,) yn = Xp 8] and tr(Djs) = 0.

min g, (v)anangn(y) =

\/ﬁ(’?n - 'YO)

- (B 9n(10) , s > 98n(70) ) (E 9gn(10)
B

@ The generalized spatial 2SLSE (Kelejian and Prucha, 1998): only linear
instruments are used.
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LQ Forms and Test Statistics

o Classical tests:
o The likelihood framework: Wald, likelihood ratio and
Lagrangian multiplier tests.
o The GMM framework: Wald, distance and gradient tests.

@ The Moran |/ test:
n  €,Mpé,
U Mpl, € én
For the SE model y, = X,,5 + up, un = pMpu, + €5,
or the SMA model y, = X,8 + upn, up = pMpen + €p,
the LM test statistic is

n énMnén n ¢ HyMpHnen
V(M2 + MIM,)  €én \Jtr(M2+ MiM,)  €pHnen
_ n ei,HnM,,H,,e,,—agt;"(Man) + op(1),
Vir(M2 + MiM,) (n—ky)o?

where Hp, = I, = X, (X X,) 71X
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LQ Forms and Test Statistics

o Generalized Moran's | (Kelejian and Prucha, 2001).
Model gi,n(Znﬁo) = Ujn-
Test statistic: (8, W,0,)/6q, -
Assume that n Y23 W,ii, = n" Y2 (! Anen + blen) + op(1).
@ Spatial J tests (Kelejian 2008, Kelejian and Piras 2011).
Ho:  yn=AWinyn + X1nf1 + U1n, U1n = prMipuin + €1n,
Hi:  yn=XaWanyn + XonB2 + top, Uop = poMaytin, + €2,
Rln(ﬁln))/n =\ Rln(ﬁln) Winyn+ Rln(ﬁln)Xln,BI + (YRln(ﬁln))/}n +€n.
o Cox-type tests (Jin and Lee 2013): A
L2n(02n) - Lln(gln) - E[LZn(QZn) - Lln(gln)]-
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Features of a LQ Form

@ w.l.o.g., assume that A, is symmetric.
[e Anén — 0§ tr(A,,) + b/ e,,]/\/_—
[2 Yo ZJ 1 an,ij€ni€nj + Xis an ”(em - UO) + Y71 bni€ni]-
° U statistic: for n, gn(x1,...,xn) = avg f (Xu(1), - - s Xpo(r) ),
where ©(1),0(r) € {1,2,...,n}.
@ Smooth function model: X;'s are i.i.d. with mean p,

A(X) = [g(X) g(u)]/h(u) or A(X) = [g(X) - g(1)1/h(X),
where X = % Z, 1 X
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Consistency: Setup

tn: asymptotically standard normal.

th = tn(éna90>ﬁn>€n)-

Bootstrapped t,: t* = t,(0%,8,, 0%, ¢*).

th = CnfOc, + dn = c,,/o'cn +op(1), where

Cp = n’1/2[e’ Anen — 0§ 2tr(A,) + bhey] and 02 = Ec?

n_1[2a(‘)1 tr(A2) +00b’ b+ Y0 1((u4 - 300)an it 2,u33,, ,,b,,,)]
o ¢ =n Pt Apet — 022 tr(A,) + blet] with 032 = X Lyn ez
o d, =t;-¢c,/o,
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Assumptions

Kelejian and Prucha (2001): Central limit therem for a LQ form.
@ The eyi'sin€n=(€nt,.-. €nn)" arei.id. (0,08) and
E|eni|*+%) < 0o for some & > 0.

@ The sequence of symmetric matrices {A,} are bounded in
both row and column sum norms, and elements of the vectors
{b,} satisfy sup, n"* S0 |bni|?19) < oo.

© The 02 is bounded away from zero.
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Consistency: A General Result

Under Assumptions 1-3,

sup| P(cn/0c, < x) = ®(x)| < ra,
xeR
where r, = Kagn2(1+5)/(3+25) n_a/(3+25)((Ka " 1)1+25(K3E|e%, _
O.(2)|2+26 + 22+26K3(E|€ni|2+25)2 + KbE|€ni|2+26) + 41+6(08K§(H4 _
o) +4U§K§+J/§(K3(§L§Ka +03Kp) (Ka + 1) + 2| us|og K3 (sl Ka +
(1+68)/2 1/(3+25
JgKb)) ) .

sup|P*(c, /o <x)=®(x)|<r;.
xeR



Consistency
00000

Consistency: A General Result

sup|P*(c,/0Z, + dy < x) = P(cof0c, + dp < )|
xeR

<+ P(|dn| > 10) + 1+ PH(|d}] > ) + 2Y 27727,

where 7, is any positive term depending only on n, and e, is a
nonstochastic term depending on n.

If dn = Op(n~1/?), we may let 7, = kn™® with a < 1/2. It remains
to show that P*(|d;| > ) = op(1).

SU£|P*((C;/U; +dy)en <x) = P((cafoc, + dn)en < x)|
X€
<+ P(|da| >710) +r) + P (|dy| > 7h)

+ 22520 4 sup|od(x/en) — d(x/e})
xeR
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Write ¢, as ¢, = 2.7 1 Cpi with

i-1
-1/2 2 2
Chi=n / (a,,},-,-(en,- - O'O) + 26,,,' Z an,ij€nj T bn,'En,').
j=1
Consider the o-fields Zpo = {@,Q}, Fpi=0(ent,. .., €ni),
1<i<n, where Q is the sample space. Then
{cniy Fni,1 <i<n n>1} forms a martingale difference array.
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Theorem (Heyde and Brown, 1970): If there is a constant ¢ with
0 <4 <1 such that E|c,,,-|2+25 < 00, then there exists a finite constant K
depending only on §, such that

sup|P(cy < o, x) — P(x)| <
" " Les\ ) 1/(3+28)
K{Jcnzza(ZE |Cm_|2+25 + E|(Z E(C,%,-|§n,i—1)) - agn‘ )} (%)
i=1 i=1
= K( Ty + Tpp)Y/G*20),
Thus if
lim T,y =0and lim T,5 =0,
n—oo n—oo

P(cp < 0¢,x) converges uniformly to ®(x) and a bound on the rate of
convergence is given by (3¥).
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Consistency: Moran'’s /

o When €, ~ N(0,031,),

n

n & Mpén n ¢ HpMpHpep

I

N

CJa(MZEMIM,) Ehén \Jte(M2+ MLM,)  €hHnen

supye | P (I < x) ~ P(I, < )| = 0p(1).
@ When €,;’s are not normal,

A~ ~
. €nMnén

" /née,’

where
52 = n"Y(fian - 36%) Z}’zl(H,,M,,H,,),?,- +n et e [H,MHy (M, + M2)].

cy

supyep | P* (I, < x) = P(I, < x)| = 0p(1).
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Consistency: Spatial J Tests

Ho:  Yn=AMWinyn+ X1nB1+ u1n, U1n = ptMipuin + €1,
Hi: yn=2oWopyn + XonBo + u2n,  Uzn = p2oMopun, + €2p.

Estimate the model

Rln(ﬁln)}’n =1 Rln(ﬁln) Wln)’n + Rln(ﬁln)xlnﬁl + aRln(ﬁln)}A/n +€p, and
test whether v = 0.

o Kelejian and Piras (2011): Spatial 2SLS.
@ GMM estimation:
gn(7) = %(GZ(V)DlnGn(V)a R EZ(V)Dmnfn(’Y)a 611(7)'::2),-
o Lemma 1: n*2(8,-6p) = Op(1) and
nP(n S e - Eep) = Op(1).
o Lemma 2: P*(n?||0% - 0,|| > ) = op(1) and
P*(n?ln i yn & —E* €| >n) =op(1l) for n>0and 0<a<1/2.
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Asymptotic Refinements and Asymptotic Expansions

o Edgeworth expansions: P(t, <) = X2, n"%g,(n).

@ Existing results: a smooth function of sample averages of
independent random vectors and/or stationary dependent
random vectors.

@ A LQ form: Cannot be written as simple sample averages of
disturbances or their cross-products.

@ No result on the Edgeworth expansions of a LQ form.

@ Two cases:
o When ¢, ~ N(0,031,), directly establish Edgeworh expansions.
e When ¢,;'s are not normal, establish an asymptotic expansion
based on martingales.
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Edgeworth Expansion: Normal Disturbances

When €, ~ N(0,031,),

sup |P(cafoe, <x) = [(x) + rn(1 - x*)0D ()] = O(n7h),
sup [P (cnfog, <x) = [®(x) + rp(1=x*) 0 (x)]| = Op(n7h),

where K, = n‘3/2a;"3[408 tr(A3)/3 + odbl,Asby] = O(n7Y/2) with
o2 =n"'[208 tr(A%) + o3 b),by] and

Ky = n_3/20;_3[4026 tr(A3)/3+ o*b! Apb,] = Op(n~1/?) with
02 =nt[20;% tr(A2) + 032b,by), and for r > 3, there exist real
polynomials P,3(x), ..., Py (x) with bounded coefficients such

that

suﬂg‘P(c,,/ocn < X)—(D(X)—(D(l)(x) Z n_(i_2)/2Pni(X)‘ _ O(n—(r—l)/Z).
X€ 3
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Proof

@ The characteristic function of ¢,/o, can be derived, as

en~ N(0,031,). Let Eexp(itca/oc,) = exp(ga(t) — t2/2).
@ The orders of g,(t)'s derivatives can also be derived:

£n(0) = 8 (0) = 87(0) = 0, | (1) < LU for k>3,
@ A smoothing inequality in Feller (1970), for all T "> 0,

sup | P60/, <) = (®(x) ~ 5 ®? (x))

L7 () (0 2400000 a2 O0]

S —
T J-T t xT
V2 V2
o let T=no? . |t|<¥"%n and 2% < |t| < T.
Cn 8unog 8unog
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Asymptotic refinements: Moran's /

@ Under regularity conditions,
P*(I* < x) - P(I, < x) = Op(n?).

o P (e'nAnen < 77) _ P(eg(An —1Bp)en < o), where B, is psd.

!
€/ Bnen

! 7 ! ! !
. €nAnen _ _ €nAnen enAnenlenBnen—E(el,Bnen)]
° AIternatlver, €/ Bnen — E(e,,Bnen) €/ Bnen E(e!,Bnen)

o The delta method: If S, = T, + Op(n~//?), then
P(S,<x)=P(T,<x)+0(n1?) in general.

@ When ¢,;'s are not normal,

A ~
. €EnMnén

n— \/ﬁa'c,, )

where
52 = n7Y(fian—367) Z}’zl(H,,/\/l,,Hn),?,Jrn’l&ﬁ te[HoMoHy (M, + M),

Cn

Other statistics....
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Asymptotic Expansion: Non-normal Disturbances

@ Non-normal disturbances: a closed form characteristic
function is no longer available.

e Mykland (1993): One-term asymptotic expansions for
martingales.

@ "The Edgeworth expansion for martingales”.
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Asymptotic Expansion: Non-normal Disturbances

Under regularity conditions,

[ :° h(x) dFa(x)

+oo (*)

- foo h(x) d(x) + %n‘l/ZE[(wo(Y) + 20,(V))hP(Y)] + o(n2),
where F,(x) =P(cn/oc, < x), Y is the normal random variable that
cn/oc, converges to, and ¢,(Y') and ¢,(Y') are linear function of Y,
uniformly on a set £ of functions h which are twice differentiable, with h,
A and A uniformly bounded, and with {h(®) h e ¢} being
equicontinuous a.e. Lebesgue. Denote the convergence in (*) by
02(n~1/?) (Mykland, 1993), then

Fa(x) = ®(x) + é”_1/2(¢§1)(x) +2¢8D (x) — [0 (x) + 205 (x)]x) @D (x)

+02(n_1/2).
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Asymptotic Expansion: Non-normal Disturbances

@ The expansion generally does not hold when h is an indicator
function of an interval, so it is a "smoothed” expansion.

@ When ¢,;'s are normal, it can be verified that

L2210 () + 201 () = [ (x) + 2055 () 1x] =

(1-x2)limpse0 K-
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@ Integrability conditions.
O TLEX!,=0(n).
Q n'?[xr, E(X,-27n|§,-,17,,) - E(X,?n)] is uniformly integrable.

e Central limit theorem. (Z}’zlx,-,,,,\/ﬁ(zle(an -
E(Xi2,n|£i—1,n)))7 \/E(Z;Ll[E(Xiz,n'gi—l,n) - E(Xlz,n)])) is

asymptotically trivariate normal.
e Martingale CLT: If Z,’-’:lE|X,-,,,|2+5 — 0 for some ¢ >0, and
d
211 B Gim10) & 1, then X7y Xi0 = N(0,1).
@ The Cramér-Wold device.

@ No application yet.
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Summary and Concluding Remarks

@ Many estimators and test statistics in spatial econometric
models can be studied based on LQ forms.

@ The bootstrap is in general consistent for statistics that can
be approximated by LQ forms.

e For asymptotic refinements, we establish the Edgeworth
expansion for LQ forms with normal disturbances, and an
asymptotic expansion based on martingales for LQ forms with
non-normal disturbances.

@ Some tests are based on the asymptotic normality of a vector
of LQ forms, say, chi-square tests. Results on a vector of LQ
forms are needed.
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