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Abstract

We build a model of competitive pooling, which incorporates adverse selection
and signalling into general equilibrium. Pools are characterized by their quantity
limits on contributions. Households signal their reliability by choosing which pool
to join. In equilibrium, pools with lower quantity limits sell for a higher price,
even though each household’s deliveries are the same at all pools.

The Rothschild-Stiglitz model of insurance is included as a special case. We
show that by recasting their hybrid oligopolistic-competitive story in our per-
fectly competitive framework, their separating equilibrium always exists (even
when they say it doesn’t) and is unique.

Keywords: competitive pooling, insurance, adverse selection, signalling, refined
equilibrium, separating equilibrium
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1 Introduction

Traditional general equilibrium theory treated insurance as a special case of securities
with contingent payoffs. A household with low endowment in some state could “in-
sure” himself by buying a security which delivered when he most needed the money.

What is missing from this traditional approach is pooling. In practice, an insur-
ance company issues a generic contract, to pay in case of “accident.” Different clients
sign the same insurance contract, but they purchase thereby different securities, be-
cause their “accident” states are different. The shareholder in the insurance company
in effect holds a pool of different liabilities. Pooling inevitably leads to adverse se-
lection because households with more probable accident states have incentive to take
out more insurance and therefore tend to be more than proportionately represented
in the pool.

In this paper we develop a simple theory of competitive pooling, starting from the
point at which traditional general equilibrium theory stopped. Pooling encompasses
many examples in addition to insurance. A primitive example is the land pool in
which households contribute part of their land to a common pool (or cooperative),
whose collective output is then distributed in proportion to the number of acres put
in. Since the output of different land differs, the shareholders of the cooperative



receive the average output and not the output of any single contributor. A more
modern example is provided by the huge mortgage pools traded on Wall Street.
Different homeowners essentially sell the same generic promise, to deliver $1 a month
for 30 years, but because of idiosyncratic prepayments and defaults, their actual
deliveries are quite different. Shareholders in these pools again receive the average of
the homeowner deliveries.

In our model, an agent h chooses to sell gp? promises into pool j, and is obliged to
deliver an exogenously prescribed d? per promise. Different sellers deliver differently,
but their promises cannot be distinguished. We suppose that buyers and sellers do
not trade bilaterally, but through the anonymous pool. The buyers (shareholders)
of pool j receive a pro rata share of all its different sellers’ deliveries. Each share of
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The shareholder of pool j does not know, or need to know, the identities of the sellers
or the quantities of their sales. All that matters to him is the price 7; of the share
and the delivery rate K.

Pooling dramatically reduces the information needed to buy a diversified portfolio
of risks: instead of forecasting individual deliveries K Jh for many different individuals
h, a buyer need only concern himself with a single average delivery K;. Figuring out
K Jh for one individual is typically no less difficult than estimating K; for a pool with a
large population. Thus pooling overcomes the costly information processing problems
inherent in multiple bilateral negotiations, and is one reason why it is becoming so
prevalent in modern economies.

The pooling also leads to adverse selection, since a buyer must worry that un-
reliable sellers with a proclivity for lower deliveries will tend to sell more promises
into the pool, worsening the anticipated rate K. Signalling, by publicly committing
oneself to a small quantity of sales, therefore has an important role to play, because
it suggests to the buyer that deliveries may be more reliable. To incorporate it in our
model, we suppose that there are many pools j, each with its own quantity limit @);
imposed on sales into the pool. No one is permitted to sell into more than one pool.
This opens up the opportunity for agents to signal their restraint by selling into a
pool with low Q.

By enabling each agent to trade anonymously as part of a large aggregate, pooling
already takes us part of the way toward perfect competition. We fully get there
by postulating that all agents view (Qj,7j,K;) at each pool j as fixed. Perfect
competition thus further reduces the information a buyer requires: there is no need
for him to forecast how the delivery rate at any pool would vary if the price were
changed, since he can’t change the price.

The terms @); of pool j are set exogenously, just as the location, date, and qual-
ity of a commodity are in traditional general equilibrium theory. The prices 7, the
anticipated delivery rates K, and the trades at each pool j are all determined en-



dogenously at equilibrium by the market forces of supply and demand.' It will turn
out that most pools have no trade in equilibrium, and thus the quantities @) of active
pools may also be thought of as endogenous.

Adverse selection and signalling have been recognized for a long time by the
burgeoning field of contract theory, in which a classic problem is how insurance com-
panies will design contracts to protect themselves from adverse selection. Rothschild
and Stiglitz [11] wrote a pioneering article in this field, in which oligopolistic, risk-
neutral insurance firms design a menu of contracts for a continuum of private agents
in face-to-face meetings. Each contract j specifies precisely how much insurance @);
to take out and at what rate 7, and clients are prohibited from choosing more than
one contract. Not only the terms @);, but also the prices 7;, are viewed as part of
the contract. The insurance companies are imagined to deduce the change in reli-
ability K of the clientele that would be forthcoming as they vary either @); or 7;.
Rothschild and Stiglitz found that when equilibrium exists, only two contracts are
actually offered, with reliable agents choosing one and unreliable agents choosing the
other. They noted, however, that there are robust regions in which no equilibrium,
as they defined it, exists.

We recast this story in our perfectly competitive setting, retaining only the con-
tinuum of agents. We do not have gargantuan, risk-neutral insurance companies —
we have pools. Diverse groups of small risk-averse households trade promises through
these anonymous pools. Since the assets bought are pools of promises, and those sold
permit idiosyncratic deliveries, the net effect is that households insure each other
through the pools. Every agent is a price taker. Yet the model is subtle enough to
unambiguously determine which insurance contracts will emerge as actively traded.
It is not the managers of oligopolistic firms, but the invisible hand of perfect compe-
tition that takes over the role of designing contracts.

By recasting the hybrid oligopolistic-competitive story of Rothschild-Stiglitz in
our perfectly competitive framework, we simplify the analysis and obtain stronger
conclusions. Equilibrium always ezists in our model (even when they say it doesn’t)
and is always unique.

In our equilibrium adverse selection plays a prominent role: two pools ¢ and j with
identical deliveries d? = d;? for all households h, sell nevertheless for different prices
K; =m; > m; = K; if ; < @;. For all but two pools there is no trade at all, even
though each pool @ is open and ready for business at its equilibrium 7 = K. The two
active pools correspond exactly to the Rothschild—Stiglitz separating equilibrium.

Perfectly competitive pooling conforms to much of the real world. A prominent
example is the securitized pass-through mortgage market, in which many homeowners
make the same promise but deliver differently. This example is of particular impor-
tance to us because it illustrates the difference between competitive and oligopolistic
lending. Every mortgage is issued through a bank in a one on one meeting between
lender and borrower. The contract theory literature emphasizes this relationship.
But modern developments have dramatically changed the situation. The banks are
allowed to immediately sell the mortgages into a pool, managed by some agency,

'In the simple model of pooling we describe, it is always the case that 7; = K in equilibrium.



which then sells shares. The lenders are really the shareholders in the pool, who
recognize that they are so small that no matter how much they buy, they will not
affect the mortgage rates that the homeowners pay or the delivery rates they receive.
The banks do not for the most part have any discretion over whether to make the
loans or not. The pooling agency prescribes the criteria for lending, and the bank
simply verifies these. The economic analysis thus properly shifts from the game theo-
retic level of lender and borrower in face to face contact, to the pool level of perfectly
competitive, anonymous shareholders and borrowers. This anonymity does not rule
out adverse selection or signalling. Indeed the heart of mortgage investing is to un-
derstand whether a pool consists mostly of reliable or unreliable agents. Mortgage
pools differ in the maximum loan () that can be taken out. As a rule, pools with
smaller loans @) fetch better prices, precisely because they signal that the borrowers
are more reliable (they default less, and are less sophisticated in prepaying). As a
result, a homeowner wishing to get a $200,000 mortgage will get a better interest
rate than a homeowner wishing to take out a $400,000 mortgage. These mortgage
pools total approximately $3 trillion, so that it appears more and more today that
a substantial part, if not yet the majority, of lending is done through pools. Credit
card pools, incidentally, constitute another very similar example.

Our treatment is firmly in the tradition of perfect competition, but with one
significant twist. When there is no trade in a pool j, potential investors are unable
to validate their anticipated K; with realized deliveries: K is not defined by our
formula when total sales ), go? = 0. If K; were allowed to be arbitrary, it could be
so low that no agent would have incentive to join pool j. Thus agents’ whimsical
pessimism could render any ad hoc set of pools inactive. To overcome this problem,
we consider a simple equilibrium refinement. The idea is to introduce a fictitious
seller (say, the government) who contributes an infinitesimal ¢ promise to each pool
and makes ultrareliable deliveries ed > emaxy d?. This fixes anticipations at the
most optimistic level that is consistent (as we shall see) with cautious rationality. In
spite of this refinement, many pools will be inactive at equilibrium in our model, but
their selection will no longer be ad hoc, and indeed will be unique in the context of
insurance that we focus on. (In particular, the refined equilibrium will not depend
on the precise deliveries d of the external agent, so long as d is ultrareliable.)

One crucial difference between the Rothschild-Stiglitz definition of equilibrium
and ours can be understood in terms of the assumption each makes about the relia-
bility of inactive pools. We argue in Section 8 that our cautious optimism is natural
when there are many buyers and sellers in perfect competition. By contrast, the
expectations attributed to agents by Rothschild and Stiglitz are not compatible (to
our way of thinking) with perfect competition.

In the Rothschild-Stiglitz model, equilibrium is required to be immune to entry
by new insurance companies who might offer a contract (Q;,m;) that would turn
a profit by luring households away from their old contracts. One might well ask
whether our equilibrium is immune to entry. The answer is that whatever new @
could be imagined is already present and embodied by one of the pools j, and its
associated quantity limit Q; = Q. Its price m; = K; = K(Q);) is set by the market.



This brings us to the second crucial difference between the Rothschild-Stiglitz model
and ours. For them the terms @ of a contract and the price ™ enter symmetrically.
Thus they must consider the potential trade at all pairs (Q, 7). For us, the terms @
are given exogenously, and the prices m = K are determined by the market. Hence
we need only consider one K for each Q). In effect they must consider all contracts in
a square, and we need only look at contracts along the diagonal. That is one reason
our equilibrium is simpler, and why it always exists. But the remaining contracts are
still numerous enough to capture all the relevant economics of adverse selection and
signalling.

Perfect competition not only simplifies the equilibrium, but also its refinement.
In the contract theory literature, when two parties are in face-to-face meetings, an
extensive form game is created, in which the refinements are vastly more complex.
They require agents to engage in a long chain of hypothetical reasoning about each
other. For example, in the refinement of Cho and Kreps [3], h must think about
what j thinks about what every other player k£ (including h himself) is thinking
about, in order to deduce whether j will be able to deduce who he is dealing with. It
presupposes common knowledge of private, individual characteristics; and calls upon
each agent not only to think through many iterations, but to believe that others
are doing likewise. Our refinement strains credulity less. There is no hypothetical
reasoning and no chain. Agents think only about the observable macro aggregates
K. The concrete, infinitesimal actions of the external agent are relevant only through
their impact on the Kj; indeed their purpose is to render the K; observable.

In the modern world one sees many examples of pools of promises, e.g., insurance
pools, mortgage pools, credit card pools, and so on. Often entry into a pool is signified
by a virtual promise which is identical across agents. It is understood, however, that
different households will actually deliver differently. The mechanisms by which these
different deliveries come about involve options and default (and give rise to moral
hazard). But as long as actual deliveries are foreseen, the analysis we do in this paper
will remain relevant in the study of equilibrium. In our model here we take a simpler
and more abstract approach in that the deliveries d* are exogenous, though they
depend on the individual h. By enlarging the model to include more fundamental
motivations, we could derive the d" from different individual incentives. For example,
in an earlier paper [4] we showed how idiosyncratic default penalties for failure to
deliver would lead to different deliveries d” that could be pooled. In Section 4 we
discuss several other contexts in which the d” emerge from underlying microeconomic
considerations.

In this paper we prohibit a household from taking out more than one insurance
contract (i.e., from selling into more than one pool). This is done to bring our analysis
in line with that of Rothschild—Stiglitz. But of course one is then led to ask what
would happen if households were free to take out multiple insurance contracts. This
is the topic of our sequel paper [5].



2 The Pooling of Promises

Imagine households h € H = {1,..., H}, each of whom has a risky endowment el €
R4 (of money), depending on the state of nature s € S = {1,...,5}. We assume
Yhen e > 0.

Every household h is risk-averse and his ex ante utility (for money) is given by a
continuous, strictly monotonic, strictly concave function

uh:RiHR.

We suppose that trade takes place only through contributions to a pool. Later
we shall allow households to choose between competing pools.

Each household h € H is entitled to contribute 0 < ¢" < @ promises to the pool,
which oblige him to make state-contingent deliveries d* € Ri per unit of promise.
The promises ¢ = (!, ..., ') are aggregated in the pool and yield an average delivery

Ki(p)=(1/)_¢" > odl

heH heH

in every state s € S. (We take K,(¢) =arbitrary, if Y, 4, ¢" = 0.) Household h,
who holds ¢ shares of the pool by virtue of contributing " units of his promise to
it, ends up therefore with the final bundle x(¢", K(p)) € R, with components

Xs(¢", K () = el + " (Ks(p) — dy)
for s € S. The feasible set of contributions available to h is given by
{0" € [0,Q] - X"(0", K(¢l0") € RY},

where we have denoted (¢|6") = (¢',...," 10" "1 .. o). The rules of the
cooperative pool thus define a noncooperative (generalized) game with payoffs
u(x(¢", K(9))), h € H.

The reader will notice that we have not separated sales into the pool from the
purchase of shares of the pool. Indeed, we have supposed that the sales themselves
determine the shares. This simple rule describes how cooperatives function. Of
course modern financial institutions decouple buying and selling. We could easily
accommodate this, and our entire analysis would remain intact. But there would be
a cost of added notation. Our simple pooling captures the essential idea we mean to
exposit, and is sufficient to represent the Rothschild—Stiglitz model of insurance.

3 The Perfectly Competitive Cooperative

In the game, households must anticipate that their contributions alter the pool quality
K(p). When the number of households is very large, this quality effect becomes
almost negligible. By ignoring it, any one household can concentrate on the far
simpler problem of determining how much of the “net trade” (K — d") he wishes to
acquire.



We now postulate a world in which it is perfectly rational for each household to
take K as given, independent of his action. This simplifies the analysis of equilibrium,
without compromising the economic phenomena of adverse selection and signalling.

Let us imagine a continuum of households ¢ € (0, H], where all t € (h — 1,h]
are of type h and are identical: d* = d", ¢! = e, u' = u”. Given a measurable
choice of actions ¢ : (0, H] — [0,Q] (which we also write ¢ € [0, Q] ), the pool
holds @ = _fOH @ldt units of aggregate promise and delivers Ky(p) = 1 _[OH pldldt per
unit, if @ > 0. It is clear that no single household in the continuum (0, H] can affect
Ks(¢) by changing his actions. From his point of view, the trading opportunities are
specified by the fixed vector K = K(¢). Household ¢t € (h — 1, h] consumes

7y = X' K) = e + o' (K —dy)
money in each state s € S. His budget set is given by

SHEK) ={(6,9) €[0,Q] xR :y = x'(6,K)}.

We will say that (K,¢,z) € RY x [0,Q]H] x [RY]OH] is an equilibrium for the
one-pool economy ((u, e, d")pcr, Q) iff ¢ and x are measurable and
H e
(1) K= %fo otdtdt if o >0

(2) (@' ") € argmaxg s (x) u'(y) for almost all ¢.

Notice that we are silent on how K should be formed when » = 0. By taking
K = 0 (or sufficiently small, provided the marginal utilities of u" are bounded),
we can always sustain an inactive equilibrium (K, p,z) in which ¢! = 0 almost
everywhere. With only one cooperative this is not a serious matter, since we lose
little by confining our attention to equilibria (K, ¢, x) which are active, in the sense
that @ > 0. But when we consider multiple cooperatives, we will find that many of
them must be inactive in equilibrium, and then the choice of their K becomes a crucial
issue. By its presence, K “opens” the inactive cooperative’s doors for business: every
household ¢ knows that he will receive K in exchange for 0d'. If the cooperative
pool is inactive in equilibrium, it is in spite of this trading opportunity, since all
households are choosing voluntarily not to go there. But simply having the doors
open at every pool is not enough to define a reasonable equilibrium. The levels K

must be appropriately pinned down, which is the purpose of our refinement in Section
8.

4 Some More Examples of Pooling

The easiest cooperative to describe is the land pool in which farmers contribute as
much of their land as they wish. One might imagine that land put into the cooperative
is painted blue, while the land held back is painted red. At a glance the farmers can
survey the aggregate blue land held by the cooperative. Farmers, even with especially
productive land, may be willing to contribute to the cooperative because in that way



they insure themselves against states in which their crop fails relative to the average
acre in the pool.

The modern corporation is like a pool. General Electric, for example, has many
different businesses, spread all over the world, ranging from financial services to
dishwashers. All these subsidiary businesses contribute their profits to the pool owned
by shareholders of GE stock.

Asymmetric information provides another reason agents might deliver differently
into the same pool. Suppose that agents make the same state contingent promises
R, s € S. But suppose that each agent h has a partition II* of the states of nature
reflecting his private information. When state s occurs he cannot distinguish it from
other states o € IT1"(s) and, if default is prohibited, is forced to deliver

d" = max{R, : 0 € I"(s)}

Default gives yet another very important class of examples. The promises may
be the same, but the deliveries may vary. In previous work [4] we supposed that
agents incurred penalties per dollar of default. Since these penalties were taken to
be idiosyncratic, and since agents differed in their marginal utilities of consumption
and in their endowments, it turned out that they chose to deliver differently on the
same promise.

It is helpful to consider one more example before turning to insurance. Let us
imagine that farmers bring their heterogeneous fruit to the same bin. Buyers purchase
by the pound, getting a uniform sample of the fruit in the bin. Even if each farmer
knows the quality of his own fruit before he decides how much to sell, our analysis
shows that one fruit price will clear the market. However, if the pool was violated,
and buyers were allowed to reach in and pick out their favorite fruit, then equilibrium
would break down. This is of more than academic interest. In the mortgage market, if
the agencies, who are aware of the individual homeowner characteristics, were allowed
to cherry pick the best loans, that gigantic market would also break down.

5 Pooling and Adverse Selection
with a Single Cooperative

To make our analysis concrete, we shall return frequently to the following canonical
example and its straightforward generalization, which we shall call the microeconomic
version of the insurance problem.

Let there be H = 6 household types, and S = 3 states of nature. Suppose
households have the same utility

3
1
ut (w1, 20, 73) = Zgu(azs), for all ¢t € (0,6],
s=1

where v/ > 0, v” < 0, and limg_,o v/ (x) = co. The endowments of the households are



given by

0 1 1
et = 1 ];e=10|;=[1];
1 1 0
1 0 0
et = 0 |:e=[1];€e=1]0
0 0 1

In our example, we always assume deliveries to be identical with endowments, i.e.,
d" =e" for all h € H.

Households of type 1, 2, and 3 deliver two-thirds of the time, and are therefore
called the reliable class R; those of type 4, 5, and 6 deliver one-third of the time, and
are called the unreliable class U.

Since households of each class are symmetric across states, we confine attention
to equilibria in which ¢! = ¢!+t = !*2 for all t € (0,1] and all ¢ € (3,4]. We do not
assume that all reliable (or, unreliable) households act the same, only that the triplets
(t,t+1,t 4+ 2) do. We wish to maintain the symmetry across triplets because when
we interpret our example in the Rothschild-Stiglitz setting in Section 9, each of our
triplets will correspond to a single Rothschild—Stiglitz household. Triplet symmetry
implies that the pool has the same delivery rate in all states: K; = Ky = K3 =
k. The analysis collapses to a 2-dimensional picture. Every household begins with
an endowment of 1 in his “good” state(s) and 0 in his “bad” state(s). His final
consumption xs will only depend on whether s is good or bad for him. The reliable
households ¢ € (0, 3] have utility of consumption

ull(

TG, TR) = %u(xg) + %u(wB),
while the unreliable households t € (3, 6] have utility
uU(mg,xB) = %u(xg) + %u(xB).

If the pool quality is K = (k, K, k), then by contributing #, any household gives
up @ in his good state, and receives 8k in both states. His final consumption must
therefore lie on the “f-quantity line” starting at (1 — 6,0) and moving northeast at
45°. (See Figure 1.) On net he gives up 6(1 — k) in his good state, and receives 0k
in his bad state. Thus his consumption must also lie on the “k-price line” joining
(1,0) to (0,x/(1 — k)). The feasible consumption set, for a household contributing
0 <6 < @ to a pool with quantity limit (), is therefore the segment on the pool’s
k-price line between (1,0) and its intersection with the @-quantity line.
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Figure 1

From strict concavity of the utility functions, it is clear that each agent ¢ has
a unique optimal choice ! on his feasible consumption set. This choice can be
implemented by a unique . Thus it is evident that if two households of the same
class act exclusively on a common pool, they must act identically. Hence we can
denote equilibrium with a single pool by (k, ", %) € R x Ry x R,.

If @ > 1, and the delivery rate k € (0,1), then a household who maximizes
pu(za) + (1 — p)u(zp), with p = k, will choose to contribute exactly one unit to the
pool. In particular, if k = 1/3 (or, kK = 2/3), then an unreliable (or, reliable) house-
hold will choose to contribute one unit and achieve his optimum on the unconstrained
price line.

Reliable households are likely to curtail their contributions because they recognize
that their promise delivers more on average than the pool, which is “debased” by
the unreliable agents. When ¢t < ¢V the pool delivery rate s is worse than the
population average of %(%) + %(%) = %, and we say that the pool displays adverse
selection.

We can see pictorially why there is a tendency for adverse selection. If at some
x > 0 the reliable households voluntarily contribute 0 < ¢® < @, consuming xft =
eft + (K —ef?), then their indifference curve I'? through 2 must be tangent to the
k-price line. But the unreliable indifference curve IV through z% is flatter, and so
the unreliable must be choosing ¢V > . Even if reliable households are up against
the quantity constraint ) of the pool, it is evident from the single crossing property
(depicted in Figure 2) that the unreliable will find the constraint even more binding,
so that, in any case, oV > . We thus have

Lemma 1 Suppose oV and o are optimal contributions of unreliable and reliable
households when they act exclusively on the same pool. Then Y > . Moreover, if

ot < Q, then Y > &,

10
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In our canonical example with log utilities u(z) = log x, and one pool with quan-
tity constraint @), it can easily be shown that there is a unique active equilibrium
(K(Q), ¢V (Q),¢"(Q)). The reader can verify that when Q is increased from 1 to
6/5, every household is worse off! Although each unreliable household ¢ wants to
trade @' = 6/5 > 1, the upshot of all the unreliable households doing so is to reduce
the quality of the pool from k ~ .46 to k =~ .44 and to lower every household’s utility,
including their own.

Thus the cooperative can help everybody by imposing a quantity restriction,
@ = 1. Reducing @ further will help the reliable households and hurt the unreliable
households. Reducing @ even further will hurt both households.

How will the cooperative set its quantity limit Q7

6 Competing Cooperatives

Different quantity limits may impinge on households differently. But if a cooperative
cannot discriminate between households, it can set only one quantity limit. This
gives an opportunity for a new cooperative to form, with a different quantity limit,
to lure away dissatisfied members. How will this competition turn out?

Let us imagine a collection of cooperatives j € J = {1, ..., J}, all entailing (for
simplicity) the same promises df, but different quantity restrictions ¢} < Q;. This
defines the economy ((u”, e, d")pery, (Q;)jer)-

Now household ¢ chooses a vector 8 = (61, ...,0,7) € RY, where 6; denotes the num-
ber of promises contributed to pool j. Suppose that for each pool j, the households
anticipate deliveries Kj; in state s, per unit contributed. Denote K; = (K3j, ..., Kg;)

11



and K = (K1, ..., Kj). Household ¢ then consumes

X'(0,K)=¢e + Z 0;(K; —d").
JjeT

His budget set is
SHEK) = {(0,y) eRI xRS :0; <Q; forall j € T, y = x'(0,K)}.

This is easily seen to be convex. But if we impose an exclusivity constraint as in
Rothschild—Stiglitz, prohibiting any household from contributing to more than one
pool, we obtain the non-convex budget set

YHK) = {(0,y) e 2Y(K):0; >0= 0, =0for all k € 7\ {j}}.

As we shall see, equilibrium — indeed refined equilibrium — exists in spite of this
non-convexity.

The notion of equilibrium can be extended in a straightforward manner to the
setting of multiple, competing cooperatives. Abbreviate “almost all ¢ in (0, H]” by
“a.a.t,” and the integral ]OH f(t)dt by f. The vector (K, ¢, x) € R$*T x R{X(O’H] X
RiX(O’H] is said to be an equilibrium if ¢ and x are measurable, and

(1) Ky =3 Joltdbdt if @; >0,V € J

(2) (¢ 2") € arg MaX (g ) st (K) ut(y) for a.a.t.

For simplicity we have taken each agent’s shares in the deliveries of a pool to be
equal to his promises to the pool. We could have decoupled buying and selling by
introducing a price m; for shares of pool j, allowing an agent ¢ to purchase shares
(¥t ..., %) across all pools, provided that ijl Wj@bé- = ijl ngoz-. Since we will be
focusing on the canonical insurance version of the model in which deliveries are uni-
form across states, i.e., K; = (kj, ..., k;), this added flexibility actually adds nothing.
In equilibrium we would have 7; = k;, and all agents would be content to choose
P! = ¢! anyway (since at those prices, the shares of all pools are perfect substitutes).
Thus there is no loss of generality in dropping the 7, 1/13- and supposing that sales
determine purchases.

7 Cooperatives without Managers, Contracts
without Designers

In our framework the cooperative j makes no decisions. It simply stands open for
business. Its quantity limit (); is its defining characteristic, rather than a strate-
gic choice made by a manager. And its K; is determined by the forces of perfect
competition in equilibrium.

The current orthodox view is that insurance is impossible without strategic in-
termediaries, actively designing contracts. This view was most elegantly expressed

12



by Rothschild and Stiglitz [11], who described an economy with perfectly competi-
tive consumers and oligopolistic, risk-neutral insurance companies. These companies
designed and marketed insurance contracts (@, 7) specifying the quantity @ of insur-
ance available and its price 7. In their equilibrium, precisely two contracts, (Q,)
and (Q, %), are offered. To check its viability, every other potential contract (Q', )
is put on the market, one at a time, to see whether it can lure away a clientele with
delivery rate k' > n’. Thus customers never contemplate more than two or three
contracts at the same time.

In our model, a household is presented with a full menu {(Q;, k; = 7;)jc7} where
the set J can be arbitrarily large. The prices ; are highly nonlinear in ;. This
sophistication is owing entirely to “the market,” not to any manager—designer. We
will also see that only a few (Qj;, x;) have ®; > 0 among all potential j € J. The set
of active contracts, that are played out at equilibrium, is thus sharply determinate.
And it is designed entirely by the “invisible hand” of perfect competition.

8 Equilibrium Refinement

8.1 The Definition

With only one cooperative, we were content to confine our attention to equilibria in
which the pool was active. With many cooperatives, the analogue would be to assume
that all pools are active. But, as we have said, in the typical case every equilibrium
effectively renders most pools inactive. Thus we have no choice but to confront how
anticipations K; will be formed when pool j is inactive, since it is those anticipations
themselves that are responsible for the inactivity.

Our definition permits any pool j to be inactive, i.e., to have ¢; = 0. Many
potential pools in the real world are also inactive. One possible explanation is that
people anticipate unduly pessimistic deliveries from them and are thus discouraged
from joining them. There is nothing so far in our definition to prevent this from
happening. When pool j is active, there is a “reality check” on Kj, since (by (1))
K; must conform to actual deliveries. But for inactive pools j, there are no real
deliveries to compare K to. If K; were set suitably low, then no household ¢ would
be willing to contribute to pool j, for he would get very little per unit but incur a
relatively large obligation to deliver d'. Indeed, given an arbitrary subset of pools,
we can always obtain equilibria which render them inactive by choosing their K; to
be low enough.

We believe that unreasonable pessimism does prevent many real world markets
from opening, and provides an important role for government intervention. But
it is interesting to study equilibrium in which anticipations are always reasonably
optimistic. It is of central importance for us to understand which markets are open
and which are not, and we do not want our answer to depend on the agents’ whimsical
pessimism.

Anticipated deliveries from inactive pools are analogous to beliefs in game theory
“off the equilibrium path.” Selten [12] dealt with the game theory problem by forcing
every agent to tremble and play all his strategies with probability at least ¢ > 0, and
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then letting ¢ — 0. We shall also invoke a tremble, but in quite a different spirit. Our
tremble will be “on the market” and not on households’ (players’) strategies. Indeed,
no household could tremble the way we want: we introduce an external player who
delivers more per unit than any of the real households.? This extraordinary delivery
is what banishes whimsical pessimism.

Consider an external d-agent who contributes e(n) = (¢;(n))jcy > 0 to every
pool, and delivers an exogenously fixed vector d = (d, ..., d) per unit contributed. We
require that d > maxucy d? for all s € S. Any d satisfying this requirement will
be called optimistic. The vector d indicates the boosting of household anticipations
brought about by the external d-agent. We assume that e(n) — 0 as n — o0, so
one might interpret this agent as a government which guarantees delivery on the first
infinitesimal promises.

The external d-agent may boost the delivery rate K;(n) above the level achieved
by the real households in the perturbed equilibrium FEy4(n). As n — oo this boost
disappears for pools that are active in the limit. But for inactive pools, his presence
prevents the limiting anticipations from sinking too low, and steers them away from
undue pessimism. In fact, at first glance, one might think that given his extraordinary
deliveries, no pool will be inactive in equilibrium. We shall see, however, that quite
the opposite is true: many pools will be inactive.

In the appendix we explicitly add a d-external agent to the market (who con-
tributes €;(n) > 0 on every pool j and delivers €;(n)d), and show that an e(n) — d-
equilibrium exists, and finally let £(n) — 0 and take limits. This limit meets the
criteria of the refined equilibrium we give below.

Computing a different equilibrium for each n, however, may be very time-consuming.
Therefore our definition of refinement captures the spirit of this limiting process, but
makes the computation much easier by dropping €;(n) > 0 unless ;(n) = 0 (where
the external boost €j(n) > 0 is really needed) and also dropping the condition that
K;(n) = actual deliveries for active j, since we know where these K;(n) must con-
verge anyway. Our refinement is more permissive than that obtained by literally
adding an external agent, but it is much easier to compute. Since we shall prove
uniqueness of our refined equilibrium, its expansive definition may also be taken to
be an advantage.

Formally, we say that an equilibrium E = (K, ¢,z) € RS/ x Rix oA} REX(O’H]
is a refined equilibrium if there is a sequence E4(n) = (K(n),p(n),xz(n),e(n)) €
RS/ xRiX(O’H] xRiX(O’H] xR such that d is optimistic, ¢(n) and z(n) are measurable
foralln=1,2,... and

(1) e(n) — 0, K(n) — K and ¢'(n) — ¢!, 2t(n) — 2! for a.a.t
(2) (¢H(n),2"(n)) € argmaxg yyexr(x(n)) u'(y) for a.a.t and all n
(3) gj(n) > 0if @;(n) =0, for all j € J and all n,

?Were we to invoke a tremble on strategies, e.g., forcing each household t to contribute € > 0 to
every pool, this would not meet our needs.
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(4) For all n and for all j € J* = {j € J : ¢; = 0},

1

Kl = v a,m

[sj(n)d + /OH gpz-(n)dgdt} .

Theorem 1 Consider the finite type continuum model with competing cooperatives
and the exclusivity constraint. Then a refined equilibrium always exists.

Proof See the Appendix.

Theorem 1 shows that adverse selection and signalling do not compromise the
universal existence of perfectly competitive equilibrium, putting to rest whatever
doubts might still linger on the subject. In Section 9 we recast the Rothschild—
Stiglitz insurance model as a special case, thus showing that it too must always
have an equilibrium. In Sections 10 and 11 we explicitly compute the insurance
equilibrium and show that it is unique. We find that it retains the economic flavor
of the Rothschild—Stiglitz separating equilibrium.

8.2 Expectations at Inactive Pools in Refined Equilibrium

Consider again our canonical example, with reliable households who always deliver
2/3 and unreliable households who always deliver 1/3, but with J pools (Q);ec..
Suppose we have an equilibrium (k, pft, o), where k = (k;)je7 and K; = (Kj, ..., K5),
in which pool J is inactive. We inquire what values k; could take to “sustain” pool
J, i.e., keep it inactive while satisfying the refinement condition.

Holding (/-cj)‘j]:_f fixed, suppose that the supply curve of contributions to pool J
is given by Figure 3, where 0 < 1/3 < k < £ < 2/3. Suppose unreliable households
start contributing when «; = k, while reliable households only start at Ky = &.
Suppose furthermore that at k; = k, unreliable households are indifferent between
contributing any quantity from 0 to ¢ > 0.
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q Q
Figure 3

Without the equilibrium refinement, any k; < k is sustaining. But our equilib-
rium refinement requires that if kK; < k, then k7 > 1, since no perturbation would in-
duce contributions apart from the external agent, who delivers d > maxpcpy scs dh =
1. This contradiction shows that if x; is sustaining, then k; = k. (Clearly k; > k is
not sustaining, since the unreliable would be selling.)

Indeed kj = k is sustaining. At that level, everybody is willing not to contribute.
Moreover, at any small perturbation, only the unreliable can be induced to contribute
to J, and their delivery rate is 1/3 < ks, so £ is not unduly pessimistic.

To formally check that k; = & satisfies the perturbation requirement, shift a small
population o of U households to pool J, together with a small contribution e(x) from
the external agent, satisfying

pg +e(pd
ptep)
and let the rest of the population act as in the equilibrium. Keep the delivery rates
(kj(1)jes = (Kj)jes for all p. Since 1/3 < Kk < d, there exists a unique solution
e(p) > 0; and, as p — 0, e() — 0. Note that every household is still optimizing
in the perturbation and all but the small measure p are acting exactly as in the
equilibrium, so all the conditions of refinement are met.

The fact that it is possible to sustain no trade on pool J in refined equilibrium is
the reason why existence always prevails in our model.

Note that such a simple perturbation worked because the supply curve for unreli-
able agents is flat at x. This allowed us to keep all the expectations (k;(u)), e fixed
at (kj)jcy and still produce contributions on pool J. Had the supply curve of the
unreliable agents not been flat, we would have needed a more delicate perturbation,
with k;(p) # k. Furthermore, had we defined refined equilibrium in terms of an ex-
ternal agent who trembles positively on every market, we would again need another
perturbation with (1) # kj, when £ = 1/3, since in that case our perturbation

16



defined e(p) = 0, which would no longer be admissible. Thus the simplicity of our
perturbation also stems from the fact that the external agent is not required to act
on a pool if real households are already acting there.

There are circumstances in which the refinement rules out inactivity on pool J.
That is the reason we are able to prove uniqueness of equilibrium, in the insurance
examples to come. For instance, consider the situation where the unreliable and
reliable supply curves are reversed, so that it is the reliable households who begin
contributing at the lower price £, and unreliable households who begin to contribute
at the higher rate & < 2/3. As before, the only expectation that could sustain
inactivity is Ky = k. But any perturbation around s only induces trade of reliable
households, plus perhaps the external agent. Hence deliveries must be at least 2/3.
But k < 2/3, a contradiction.

8.3 Rothschild—Stiglitz Expectations

Consider again the situation depicted in Figure 3, for which we found x; = k sustain-
ing. Rothschild and Stiglitz would disagree. If expectations on pool J are dramati-
cally raised to k* > K > K, then reliable agents will want to contribute to pool J as
well. Adding their deliveries to the unreliable deliveries could give average deliveries
which might indeed be as high as k*, and if so, Rothschild-Stiglitz argue that pool
J cannot be inactive. Or else, if pool J is inactive, they suggest another pool J + 1
would be created with Q711 = Q5 and K541 = £* that would break the equilibrium.
In short, their view is that every contract (@, k) must be reckoned with, and (Q s, k*)
destroys the existence of equilibrium.

Our model works differently. The contract or pool terms @); are set exogenously,
and might be all inclusive (take J to include every quantity level). However, one
expectation k;(Q;) is then formed for each pool so that all the markets clear. No
household need ever consider an expectation m; # kj(Q;). Our perfectly competitive
model therefore has far fewer contracts then the Rothschild-Stiglitz model. But
it still has enough contracts to incorporate the economics of adverse selection and
signalling. Indeed, we shall prove that in the Rothschild—Stiglitz insurance setting,
refined equilibrium is unique.

Rothschild and Stiglitz might have argued that instead of thinking of the pools as
strategic dummies, we could imagine that they were each run by some entrepreneur.
He might personally guarantee deliveries of k*, thereby forcing households to consider
this expectation, and disrupting the old equilibrium.

This seems implausible to us in a large economy. We suppose that households
are aware of the composition of deliveries at the prevailing equilibrium, and perhaps
of how the composition would actually change if delivery expectations were slightly
perturbed. But households lack the knowledge or computing power to infer the com-
position when expectations are far from the equilibrium. So we are led to wonder,
how confident can the entrepreneur really be that the composition of willing contrib-
utors would be so radically better on account of his guarantee? We have in mind
a competitive world with many small agents. If the little entrepreneur’s gambit is
to be successful, he must lure new reliable households at «*, who were unwilling to

17



contribute at k. But it is the unreliable, already willing to contribute at xj;, who
will be even more eager to contribute at x* and likely to get to him first. If so,
his meagre wealth will certainly not be enough to stand guarantee for his exorbitant
offer of k*, and he will suffer a disaster. A cautious entrepreneur would forecast that
the mix of deliveries elicited by him at £* is not going to be much better than what
prevails in equilibrium at k;, and so would not undertake the disastrous x* gambit.
But even if he abandons caution, whether he is right or not is not in his hands. Why
should a reliable household, prudently cautious unlike the entrepreneur, not forecast
the disaster for herself and abstain from going to his pool (Q,~*)? The pool offers
the same terms @ as the equilibrium pool (Qj,ky), plus a meaningless guarantee
of k* without the wealth to back it. After all, if the guarantee breaks down and de-
liveries turn out to be not much better than kz, reliable people like herself stand to
lose since they were not willing to contribute to (Q, k) in the first place. Thus the
contributors most at risk from entering the pool (Q s, k*), and therefore most unlikely
to come to it, are precisely the ones the entrepreneur must count on to improve the
deliveries and to help sustain his offer of kK*. The entrepreneur should think again. If
he has concern that there may be caution among his clientele, this should cause him
to become cautious himself.

If the entrepreneur had enormous wealth, then his guarantee would be meaningful,
and he might well induce all the reliable households to contribute, relieving himself
of the need to use his wealth, and disrupting the x; equilibrium. But such large
wealth is a feature of an oligopolistic model. We rigorously maintain the hypothesis
of perfect competition.

8.4 The Optimistic External Delivery

We have chosen d > maxjcy maxses d? = M because it keeps active as many pools
as possible, and thus eliminates as many equilibria as possible. We show in the
appendix that, in the context of our insurance model, the set of refined equilibria
&(d) is inversely monotonic: d > d' implies £(d) C £(d’). But £(d) is essentially the
same as E(d') if d > d > M (only the equilibrium delivery rates for inactive pools
might be affected). Thus we have chosen our perturbation to make existence as hard
as possible, and uniqueness as easy as possible.

9 Insurance

The classical insurance problem can be embedded in our model of cooperatives, and
turns out to be a straightforward generalization of our canonical example.

9.1 The Rothschild—Stiglitz Insurance Problem

As in Rothschild—Stiglitz, we consider a continuum of two types of households: “re-
liable” (R) and “unreliable” (U), with population measures Az and Ay respectively.
Fach household knows his own type, but not that of the others. Each household
has wealth (for simplicity, 1 dollar) in his “good” (no-accident) state, but nothing
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in his “bad” (accident) state for which he seeks insurance. Accidents occur indepen-
dently across households. The unreliable households are more accident-prone than
the reliable. Thus if p* denotes the probability of a good state for type h, we have
pft>pY.

The assumption of a continuum of households with independent accidents is ac-
tually quite strong. It implies that the same proportion of any non-null subset of
households of a given class has an accident in almost every state.

The utility for x units of money is u(x), invariant of the state as well as household-
type. As is standard, we assume that u is strictly concave (v” < 0) and strictly
monotonic, and u/(x) — oo as  — 0. The consumption of (zg,zp) across the two
states yields expected utility

Puze) + (1= p"u(rp)

to a household of type h = R,U. We take p” to be a rational number m/n.

9.2 The Canonical Insurance Model

We recast the Rothschild—Stiglitz story into our framework, building a microfounda-
tion for the insurance problem in the process. The key step is to represent probability
distributions of accidents by states of the world which make explicit who has an acci-
dent there. This makes it clear that “identical” insurance policies for two households
of the same class do not pay off identically, since the households will have accidents
in different states, even if their probabilities are the same.

Within our framework of finite states and household types, we cannot maintain
both the hypotheses that accidents occur independently, and that the same proportion
of each type has an accident in every state. We drop the independence hypothesis,
which actually plays no role in the theory anyway.

Since probabilities are rational, let 1 — p®® = r/n and let 1 — pY = u/n. To
embed the insurance problem in our framework, take S = n. Let the intervals (0, Ag]
and (Ag, Ar + Au| represent the reliable and unreliable households. Partition the
reliable households into (') = n!/[r!(n — 7)!] consecutive intervals, each of length
ar = Ar/(), and similarly divide the unreliable households into (;) intervals, each
of length ayy = Ay/(). These intervals correspond to types in our canonical model.
Each type 7 can be identified with a distinct subset S; C S of bad states (r in number
if reliable, u in number if unreliable). All households ¢ of type 7 have endowments
equal to 1 if s € S\S;, and equal to 0 if s € S;.

The reader can verify that each household has the right probability of accident
(r/n if reliable, u/n if unreliable), and that in every state ~Ag of reliable and Ay
of unreliable households have accidents.

Rothschild and Stiglitz have implicitly assumed much more, namely that for any
non-null set of reliable agents, precisely r/n of them will have an accident in al-
most every state (and similarly u/n for unreliable). We reproduce this feature of
their model by identifying each of their reliable households s € (0, Ag] with a (7)-
tuplet (t,t 4+ ag,t+ 2ag, ...t +[(IV) — lag) for t = s/(7') € (0,ag). Similarly each
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Rothschild—Stiglitz unreliable household s + Agr € (Ar, Ar + Ay corresponds to a
(0)-tuplet (¢,t+ay,t+2ay, ...t +[(7) —1ay) for t = (s/(7)) +Ar € (Ar, Ar +au].
The reader can verify that for any non-null subset of reliable Rothschild—Stiglitz
households, precisely the fraction r/n of the corresponding reliable households in our
model have an accident in every state s € S (and similarly for the unreliable).

To keep the identity of the Rothschild—Stiglitz household inviolate, we confine
attention to the scenario where all the members of any given tuplet behave identically,
ie., o' = o't if t and t + ap are reliable (and similarly ¢! = ¢!+ if t and t + ay
are unreliable). This generalizes the triplet-symmetry of our example. We shall call
it “tuplet-symmetry,” and assume that it holds not just in equilibrium but also in
deviation from equilibrium. (Since any tuplet has zero measure, a deviation by it has
no effect on the continuum.) Consider now our equilibrium refinement. From tuplet-
symmetry and the fact that the external agent delivers identically across states, it
follows that K(e) has identical components across states in any e-perturbation of
equilibrium. Therefore K; = lim._,9 K;(¢) also inherits this property in any refined
equilibrium (obtained as a limit of the perturbations). This fact will be assumed
from now on in our analysis of the canonical insurance model: for any pool j, we
shall always take K; = (kj,...,k;) to have the same component k; in every state
s€S.

Recalling our numerical example of Section 5, note that it corresponds to the
insurance problem with p* = 2/3, pV = 1/3, Ag = Ay = 3. Hence, in the micro-
economic representation provided by our example, S = 3. There are (‘I’) = 3 reliable
types, each of measure 3/ (:15) = 1, and (g) = 3 unreliable types, each of measure

3/(3)=1.

10 Existence of the Separating Equilibrium
in the Canonical Insurance Model

Rothschild and Stiglitz [11] made the important observation that adverse selection in
insurance markets might lead to the same kind of inefficient signalling that Spence
had earlier postulated would arise in labor markets. In labor markets, Spence [13]
argued that agents with high ability would purchase expensive and unproductive
education simply to signal that they were indeed of high ability. In insurance markets,
Rothschild and Stiglitz argued, some agents would commit themselves exclusively to
contracts with low insurance in order to signal that they were reliable. Rothschild and
Stiglitz went on to suggest that with signalling there might not be any equilibrium
in insurance markets.

The only equilibrium Rothschild and Stiglitz found is the “separating” equilibrium
in which each household class takes out a different insurance. Rothschild and Stiglitz
observed that in such an equilibrium the unreliable class should feel unconstrained
by the quantity restriction while the reliable class should feel quantity constrained.
Moreover, the unreliable types should be indifferent to either of the two contracts,
while the reliable class should strictly prefer their quantity constrained contract.

We get the same sort of equilibrium, though not quite exactly because our menu
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of quantity constraints is finite. (They examined the simpler case where all quantity
constraints are available.) The important difference is that our separating equilibrium
always exists, whereas Rothschild—Stiglitz found robust regions of nonexistence.

Theorem 1 already guarantees that some equilibrium always exists in our general
pooling model. Specializing to the canonical insurance model, we are able to go a
step further, and precisely describe what equilibrium must look like. To this end
we give a constructive proof of existence (and uniqueness) which does not rely on
Theorem 1.

We focus on the example described in Section 5. This is for concreteness. The
arguments can easily be modified to give the same results for the canonical insurance
model.

We shall make heavy use of Figure 1 in what follows. For any consumption
x = (zqg,rp) with g < 1, define ¢(z) to be the quantity line passing through x (so
p(x) = 1—xg+xp); let k() be the price line passing through z (so k(z) = xp/¢(x)).
Let If{(z) and IV (x) be the reliable and unreliable indifference curves through .

Let ZU be the optimal consumption of U-households on the (unconstrained) 1/3-
price line, and IV = IY(ZY) be their indifference curve through ZV. (See Figure 4.)
Since p¥ = 1/3, p(ZY) = 1. Let Z denote the intersection of IV with the 2/3-price
line, and ¢(Z) the quantity line through Z. Let If = I'{(Z) be the R-indifference
curve through Z.

Xg -
A " \ oY) =1
\
\
\
| R 2/3-priceline
Z
1/3-priceline ?2)
zv Z
| U
| R
>
1 Xe
Figure 4

Let Q = {Q1,..,Q } with 0 < @1 < --- < Qy and Q; > 1, denote the grid of
quantity signals.

Theorem 2.1 (Existence of Fully Separating Equilibrium) If ¢(Z) =Q;+ €
Q, then the canonical insurance model has a refined equilibrium in which all reliable
households contribute pf* = ¢(Z) to pool j* < J, and all unreliable households
contribute oY =1 to pool J.
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Observe that the existence of a fully separating equilibrium requires only that Q
contain at least two signals, ¢(Z) and @y > 1. So, had we (like Rothschild-Stiglitz)
simply taken Q to be the comprehensive set of all signals, i.e., Q = [0,00), then
Theorem 2.1 would always apply. We have opted for a finite grid QQ because it makes
for a notationally simpler analysis. It also raises the interesting question of what
would happen if ¢(Z) ¢ Q.

When ¢(Z) ¢ Q, we need to be sure that there are signals Q < ¢(Z) < Qg1
very close to ¢(Z). This will necessarily be true if the grid size 6(Q) of the quantity
signals Q,

0(Q) = max{Q1, max (Qj+1—Q;)}

1<5<J-1

is small, i.e., the grid is dense.
The following theorem holds even if p(Z) ¢ Q.

Theorem 2.2 (Existence of Nearly Separating Equilibrium) There exists
6 >0 and ¢ > 0 such that if 6(Q) < 6, then there is a refined equilibrium in which
all reliable households contribute Q;« to a pool j* < J with |p(Z) — Q| < 6(Q),
and at least the fraction 1 —c6(Q) of all unreliable households contribute 1 to pool J.
The remaining unreliable households, if any, contribute Qj« on j*, creating at most
a small degree of heterogeneous pooling on j*.

Even in the missing quantity case where ¢(Z) ¢ Q, a purely separating equi-
librium often exists. But sometimes it becomes necessary to split the unreliable
households between two pools. In the proof of Theorem 2.2 we pinpoint conditions
under which splitting must occur. Theorem 2.2 shows, however, that the splitting
goes to zero linearly with the grid size §(Q). The splitting has nothing to do with the
proportion of reliable and unreliable households in the whole population, and so noth-
ing to do with the nonexistence of Rothschild—Stiglitz equilibrium (which depended
on there being a high proportion of reliable households).

10.1 Proof of Theorem 2.1 (The Case ¢(Z) € Q)

We shall first prove existence of a separating equilibrium under the assumption that
there is a pool j* such that ¢(Z) = Q;~. And, in our discussion of refinement, we
shall suppose that the d-external agent is chosen with d = 1.

Let the unreliable households contribute 509 = 1 to pool J, with k; = 1/3, to
obtain their optimal consumption ZY on the 1/3-price line. (This is feasible since
@y > 1.) Let the reliable households contribute gpﬁ = (@j units to pool j*, with
K+ = 2/3, to obtain the consumption ZE = Z. Note that @+ < 1 and that reliable
households would contribute one unit on the unconstrained 2/3-price line. So @+ is
indeed the optimal contribution for them on pool j*. Furthermore it follows that the
It curve cuts the IV curve transversally from “above-left” at Z%, as shown in Figure
5 (staying above IV on the left of Z#, and below it on the right).

We still must price all the inactive pools in a manner that satisfies our equilibrium
refinement.
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If 1 <Qj,set kj =1/3.

If Q;+ < Qj < 1, then the Q;-quantity line intersects IV at ZY, before it intersects
I, Set Kj = /@(Z U) in accordance with the dotted line in Flgure 5, which connects
(1,0) to ZV.

If Q; < Qj+, then the @j-quantity line intersects [ R at Z® before it intersects
V. If ZE 7 <1, set k; = /{(ZR) in accordance with the other dotted line in Figure 5,
which connects (1,0) to Z%.

If Q; < Qj andZG >1,set k; =1.

Xz A
2/3-priceline
U PYy=1 Qj
IR Q Q
ZU
1/3-priceline
ZR ZR
™ |u
Su N\ IR
1 X6
Figure 5

For every j ¢ {J,7*} we show that no household can improve by using pool j.

When 1 < @; (and so k; = 1/3), the unreliable households are indifferent to
contributing (1 unit to) pool j and (1 unit to) pool J, while the reliable households
are strictly worse off using j.

When @+ < Q; < 1, the unreliable households are indifferent to contributing (Q;
units to) pool j and (1 unit to) pool J, while reliable households are strictly worse
off using j.

When Q; < @;+ and k; < 1, the reliable households are indifferent to contributing
(Q; units to) pool j and (Q;+ units to) pool j*, while the unreliable households are
strictly worse off using pool j.

Finally, when @; < Q4 and Z 2 > 1, denote by Z the intersection of the 1-price
line with the @;-quantity line. (See Figure 6.) Since I is downward sloping, Z is on
or below I*%. As for the unreliable households, they are strictly better off at ZY.

This verifies that we have defined an equilibrium.
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We shall now construct the perturbation E(n) = (k(n),¢(n),z(n),e(n)) which
shows that our equilibrium is, in fact, refined.

Let kj(n) =k; forall j € J andn=1,2,....

We next define ¢(n) by switching disjoint sets of households from their equilibrium
actions onto inactive pools. Then we check that the deliveries in the perturbation
are equal to k;(n), for pools j that were inactive in the equilibrium. (Recall that the
refinement does not require that x;j(n) conform to actual deliveries for pools j that
were already active in equilibrium. But in the perturbation we are going to describe,
they will in fact conform.)

Take j with @; > 1. Let a (needless to say, tuple-symmetric) set of U-households
of measure 1/n switch out of pool J and contribute one unit on pool j instead; and
put ;(n) = 0. Note that these households still consume their optimal ZY, and their
deliveries on pool j justify x;(n) =1/3.

Next take j with Q;+ < Q; < 1. Let a set of U-households of measure 1/n switch
out of pool J and contribute @; on pool j. Since 1/3 < k; < 2/3 we can choose
gj(n) > 0 to satisfy

2 Qi3 +ej(n)
2Qj +ei(n)
Again household optimality holds and the x;(n) stands justified.

Then take j with Q; < @;~. First suppose that Zg < 1. Let a set of R-households
of measure 1/n switch out of pool j* and contribute @; on pool j. Since 2/3 < k; < 1
we can choose ;(n) > 0 to satisfy

= Kj = Kj(n).

Qi3 +e5(n)

1Qj+ei(n) ws = i)
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Once again household optimality holds and x;(n) is justified.

Finally if @; < Q;+ and Zg > 1, let €j(n) = 1/n. Only the external agent acts
on pool j in this case, and since he delivers d = 1, k;(n) = 1 is justified.

The definition of x(n) follows from ¢(n) and x(n).

It is evident that our perturbation validates E as a refined equilibrium. |

10.2 Proof of Theorem 2.2 (The Case p(Z) € Q)

We turn to the general situation in which there is no pool j such that the @; quantity
line contains Z. (See Figure 7.)
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Figure 7

Let Qg, Qr+1 be consecutive quantities in the grid Q which trap the missing
quantity ¢(Z) in between. Denote

W = intersection of IV with the Q44 1-quantity line

Y = intersection of the 2/3-price line with the Qg-quantity line.

We have already seen in Figure 4 that the I(Z) curve cuts the x(Z) = 2/3-price
line transversally at Z from bottom right to top left. By continuity, this must remain
true of the I®(W) curve and the x(W)-price line for all W sufficiently close to Z,
and hence for sufficiently small grid size, §(Q) < §, for some ¢ > 0.

Case 1: (Figure 8) The reliable households (weakly) prefer Y to W.

Then define Z% = Y and j* = k, and proceed exactly as before to price the
inactive pools and to construct the perturbation. (Note that I = I'*(Y) is above
TE(W), which in turn stays strictly above the x(W)-line from (1,0) to W, since
6(Q) < 6, and our arguments from before are not impeded.)
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Case 2 (Nearly Separating Equilibrium): (Figure 9) The reliable prefer W to
Y.
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Figure 9

In this case we do not get a pure separating equilibrium, but an equilibrium with a
little splitting. Let j* = k+ 1. Let all the reliable households contribute Q1 = @
units to pool k +1 = j* and consume W = ZE. Set k;+ = (W), in accordance with
the dotted line joining (1,0) to W in Figure 9. Recall that the dotted line stays below
IR(W) when the grid §(Q) < 6.
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The new feature of this equilibrium is that some unreliable households also con-
tribute to pool j*. In fact, just enough of them contribute to j* so that the delivery
rate falls from 2/3 to k;=. The rest of the U population acts as before, contributing
gpg = 1 units to pool J. The pricing of inactive pools and the perturbation work
exactly as before.

The reader can check that the (W) converges to 2/3 linearly with §(Q) — 0.
Hence the splitting (i.e., measure of unreliable households contributing to j*) also

converges to zero linearly with 6(Q). [ |

11 Uniqueness of Equilibrium

We prove that the separating equilibrium (or nearly separating equilibrium when
©(Z) ¢ Q) is unique. Rothschild and Stiglitz did not need to worry about the pos-
sibility that different households in the same class might split up and contribute to
different pools. We allow for such possibilities, yet we will manage to prove unique-
ness.

Theorem 3.1 (Uniqueness of Fully Separating Equilibrium) If ¢(Z) € Q,
then there is a 6 > 0 such that when 6(Q) < 6, any two refined equilibria (k,p,x)
and (R, p,T) are essentially the same, satisfying

a

=

( j:l?;jif/{j<1
(

=3t for a.a.t

Hﬁh

b

(c) ¢! = @' for a.a.(reliable)t € (0, 3]

)
)
)
(d) ¢5>0=¢%=1and k;j =1/3 for a.a.(unreliable)t € (3,6].

The only touch of non-uniqueness is irrelevant. In (d) unreliable households may
choose pools j which effectively differ in name only. In (a), inactive pools with very
low quantity limits may have different delivery rates x; > 1, stemming from the
fact that different external d-agents have been involved in the perturbation used for
refinement. (Were we to fix d, all these different delivery rates would be d and (a)
would hold for all j € J.) It is clear that the ambiguities “at the edges” (large Q;
and small @);) have no real effect on the equilibrium.

When ¢(Z) ¢ Q, the nearly separating equilibrium computed in Section 10 is also
essentially unique. Recall Figure 7, in which W is defined as the intersection of IV
and the smallest quantity line above ¢(Z), and Y is defined as the intersection of the
2/3-price line with the largest quantity line below ¢(Z). We have:

Theorem 3.2 (Uniqueness of Nearly Separating Equilibrium) There exists
6 > 0 such that when §(Q) < 6, any two refined equilibria (k,p,r) and (R,p,%) are
essentially the same. If uf(Y) > u®(W), then the conclusion of Theorem 3.1 is
valid. If u®(W) > uf}(Y), then
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(a) Rj = l~€j if K; < 1.
(b) 2t =7 and ¢! = @' for a.a.(reliable)t € (0, 3].

(€) AM{t € (3,6] : (¢%,2") = (0,)}) = A({t € (3,6] : (§",3") = (0,9)}) for all
(0,y) € R, x R2, where X\ denotes Lebesgue (population) measure. (In other
words, the distribution of action-consumption pairs is the same.)

(d) ul(xt) = ul(3) for a.a.t (obvious from (b) and (c)).
If uf{(W) = uf(Y), then (a) and (d) still hold.

11.1 Proof of Theorem 3.1 (The Case ¢(Z) € Q)

Reconsider Figure 4 with the 1/2-price line superimposed. Let €2 be the shaded region
between It and the 1/2-price line. See Figure 10. (€2 may be empty.)

Xs A

2/3-priceline

1/2-priceline

theregion Q

1/3-priceline

0y

Figure 10

Note that the region € is at a positive distance from the 2/3-price line. So there
is a 6 > 0 such that whenever 6(Q) < ¢, we have

(x) For any x € €2, there exists a pool j with Q; < ¢(x) such that the Q;-quantity
line intersects I{(z) before it intersects the 2/3-price line. (See Figure 11.)
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We present the proof of Theorem 3.1 through a sequence of lemmas. Throughout,
an arbitrary equilibrium (k,p, x) is assumed fized and the lemmas describe its various
features (using the definitions of I%, IV, ZV| Z, and ¢(Z) = Q;~ from Figure 4).

Lemma 2 All U-households obtain at least the utility given by IY.

Proof By our refinement x; > 1/3. But IV is the utility they could guarantee
via pool J (with its generous quantity constraint (); > 1) if its delivery rate were
just 1/3. [

Lemma 3 k; >2/3if j < j*

Proof If k; < 2/3, then the U-households obtain strictly less utility than I Y via
pool j. Hence (by Lemma 2) they abstain from pool j in any (small enough) per-
turbation used in the equilibrium refinement. But then, by the definition of our
refinement, x; > 2/3. [

Lemma 4 All reliable households obtain at least the utility given by I,

Proof They can obtain consumption at least as good as Z via pool j*, in view of
Lemma 3. |

Let )\JU, )\f be the measure of the sets of U, R households who are active on (i.e.,
contribute positively to) pool j € J.
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Lemma 5 (Restriction on Heterogeneous Pooling) There does not exist any pool j
such that )\jU > )\f > 0.

Proof Suppose there is such a pool j. Then, by Lemma 1, gog»] > cpf. So Kkj =
N5 - M)/ AT <55 +5-5 =3

Let Z%, ZY be the consumption of reliable, unreliable, households contributing to
pool j. By Lemma 4 and x; < 1/2, Z% € Q. Let Q; be the quantity just below p(Z%).
From (%), we know that the Q;-quantity line cuts I'*(Z*) at a point Y before it cuts
the 2/3-price line. From the single crossing property, and the fact p(ZY) > ¢(Z1),

we know that Y lies below IV (ZY). (See Figure 12.)
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Figure 12

Let &; = k(Y') correspond to the slope of the line (shown dotted in Figure 12) that
joins (1,0) to Y. By (%), & < 2/3. We shall show that it is impossible to assign
an equilibrium delivery rate x; to pool i. If k; < K;, then the k;-price line and the
Q;-quantity line intersect on or below the I*(Z%) curve, hence strictly below the
IY(ZY) curve. So all U-households abstain from pool i. But then our refinement
gives k; > 2/3, which contradicts xk; < k; < 2/3.

If k; > R;, then by contributing @; to pool ¢, any R-household can achieve utility
higher than I*(Z1), a contradiction. [ |

Lemma 6 There exists a pool j such that )\g»] >0 and /\ji =0.

PV |

Proof This is immediate from Lemma 5 and the fact that } .. 7 2W=3 jeT N

J

Lemma 7 (Almost) all U-households achieve the utility IY.
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Proof Consider the non-null set of U-households who act by themselves on pool
J (of Lemma 6). Then x; = 1/3. Let X be the consumption of these households.

We claim that X = ZY. This follows because IV (by definition) gives the maximum
utility they could achieve on the 1/3-price line. So X is on or below IV. On the
other hand, by Lemma 2, X is on or above IV. It follows that X is on IV. But, since
utilities are strictly concave, X = ZV. Since (almost) all U-households are on the
same indifference curve at equilibrium, the lemma follows. |

Completion of the Proof of Theorem 3.1 Consider j with Q; > 1. We shall
show that x; = 1/3 and )\f = 0. By our refinement, x; > 1/3. If k; > 1/3, then U-
households can achieve utility strictly above IV (by contributing one unit on pool j),
contradicting Lemma 7. This shows x; = 1/3. From the single crossing property, I R
lies strictly above the 1/3-price line. Hence by acting on pool j, reliable households
can only obtain utility strictly below their lower bound I'? (see Lemma 4), so /\f =0.

Next consider j with 1 > @Q; > Qj+ = ¢(Z). Let ZY be the intersection of IV with
the Q;-quantity line and let 1/3 < k(ZY) < 2/3 be the delivery rate corresponding
to the dotted line from (1,0) to ZY. (See Figure 5.) We claim that #; = k(ZV). If
Kj > /{(Z U), then U-households can achieve utility strictly above IV by contributing
Q; on j, contradicting Lemma 7. If x; < /@(ZU), then all households obtain at
best strictly less than their respective IV or It via pool j, and so (by Lemmas 2
and 4) they will all abstain from acting on j in any perturbation; and then by our
refinement x; > 1 > k(ZY), again a contradiction. This proves that x; = r(ZY).
Then R-households can at best obtain utility strictly below I via pool j, which (by
Lemma 4) implies )\f = 0. Now if /\g-J > 0, we must have x; = 1/3 < k(ZV), again a
contradiction. So /\g-J = 0 also.

Now consider j with Q; < Qj+. If Ay > 0, then k; = (MY +2AF) /(A +AF) < 2,
contradicting Lemma 3. So only R-households can act on these pools. We claim that
)\f = 0if j < j*. For if )\f > 0 and j < j*, then k; = 2/3 and the households
active on pool j get utility strictly below I with the small quantity limit Q; (recall
that they get to I on the 2/3-price line by means of Q;+ > @;). This contradicts
Lemma 4. Thus all R-households act on pool j* alone, and consume Z® = Z on the
I indifference curve.

It only remains to verify that the prices x; conform to Figures 5 and 6 for all
the pools j < j*. This follows from a now-familiar and routine argument. Assume
that the refinement is made using a d-external agent, for some fixed d > 1. Let
k(ZM) correspond to the dotted line joining (1,0) to Z* in Figure 5 (with x(Z%) <
d). If k; < Kk(Z™), all households abstain from j, so refinement gives k; > d, a
contradiction. If k; > IQ(ZR), then R-households can achieve utility above I via
pool j, again a contradiction. Finally if the slope of the line from (1,0) to ZE exceeds
d, pool j must have k; = d since all households abstain from j, and the external
agent delivers d. [ ]
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11.2 Proof of Theorem 3.2 (The Case of the Missing Quantity ¢(Z) ¢ Q)

The analysis is very similar to the case p(Z) € Q, so we shall only give a brief informal
summary. First, redefine the region € by replacing I with the indifference curve
through Y (see Figure 8.) This adapts (*) to the missing quantity case. Let us suppose
that the grid size is sufficiently small to ensure that the curve I{(WW) is above the
line joining (1,0) to W, where W = the intersection of Qg 1-quantity line and IV (see
Figure 8). Lemmas 1 to 7 hold without change. When the reliable strictly prefer Y to
W (Case 1, Figure 8) we get the uniqueness of our separating equilibrium. When they
strictly prefer W to Y, the splitting equilibrium of Case 2 (Figure 9) is also unique (in
delivery rates and the distribution of actions and consumptions). It is only when they
are indifferent between W and Y (the “degenerate”scenario) that uniqueness breaks
down a little bit (but it still holds at many levels, in particular in terms of the k;
and the utility levels of equilibrium consumption). For in this scenario, we can take
an arbitrary (suitably small) positive measure p of R-households and mix them with
fi measure of U-households so that (13 + fi3)/(jt + i) = kg1, where k1 conforms
to the slope from (1,0) to W. The p and i populations of R and U households join
pool k+ 1 and consume W. The rest of the U and R households join pools J and k,
and consume ZY and Y, respectively. Since u was arbitrary, this gives a continuum
of equilibria in terms of consumption. But notice that prices (i.e., the x;) as well as
utility levels (i.e., IV and I'?) are still invariant across these equilibria. |
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12 Appendix

12.1 Proof of Theorem 1

Fix d such that d > max{d" : h € H,s € S} for all s € S. Let us consider the finite-
type continuum (generalized) game I'; with a d-external agent who contributes € > 0

on every pool j € J. Then type-symmetric household choices ¢ = (¢!, ...,0") €
Sox o x>, where Y = {# € RY : 0; < Q;}, give rise to the delivery rates

ed + Z go?d?

K3j(p) = —— &

sj - T~ 5
s+ ¢
heH

for j € J and s € S. For any ¢, the feasible set of strategies available to t € (h—1, h]
is () € 32, where

YHe) = {0eS:ixMO.K(p) =" =) 0;d + > 0;K5(p) €R]
Jjeg Jjeg
His best reply in T'; is
—h
>, () =arg max u" (X" (8, K*(¢)).
032 (y)

By the maximum principle, > _ is upper semi-continuous and nonempty valued. Let

£

h —~h
Co(>_.(¢)) denote the convex hull of > _(¢). Consider the point-to-set map on
d.x -+ X Y given by

1 H Sh o .. H
(7 97) = Co(2o (@) X - x Co(3, (#)-

It can be easily checked that the conditions of Kakutani’s theorem are met, so there

h
exists (¢1(e), ..., p' (¢)) such that p"(e) € Co(>__(p)) for all h € H. By Caratheodor-

y’s theorem, there exist J + 1 points ¢"1(¢),..., "I+ (e) in Z:(go) and weights
NtL(e), ., AT () such that 775 M (e) = 1 and @h(e) = Y74 M (e)@h(e).
Select a subsequence of e(n) — 0 such that A" (e(n)) — M and pM(e) — oM
for all h € M and j = 1,..,J + 1; and (consequently) K./ — K for all j € J
and s € S. Partition (h — 1, h], starting from left to right, into J + 1 intervals of
length A1, .. M4 and let the households in the jth-interval choose contributions
" and consume 2" = \"(p" K) € R. It is easy to check that (K,p,z) is a
refined equilibrium with (K™ ¢(e(n)), x(s(n)),e(n))°, serving as its perturbation
sequence, where ¢(e(n)) and x(e(n)) are defined as follows. Partition each (h — 1, A]
from left to right into .J 4 1 intervals of length A" (e(n)), ..., A*/*(e(n)) and for ¢
in the jth interval, put:

P (e(n) = ¢ (e(n)
2(e(m)) = X (e(n), K°) .
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12.2 The Optimistic External Delivery

Consider our canonical example of insurance, with three states, described in Section
5.

Let E4 = (K, ¢, x) be an equilibrium with external deliveries d, supported by the
perturbation E4(n) = (k(n), p(n),x(n),e(n)). Let d < d. We claim that there exists
& such that Eg = (k, , ) is a refined equilibrium, where k; = r; for all active j € 7,
and r; < Ky for all j € J. To see why, define

k; if j is active
k; = ¢ d if jis inactive and k; > d
kj if j is inactive and k; < d
Kj if j is active
Ei(n) =< d if j is inactive and k; > d
kj(n) if j is inactive and k; < d

Clearly (k, ¢, z) is an equilibrium, since opportunities are no better for households
than at (k,p,x), and the old equilibrium choices are still available.

To construct the perturbation, start with agents acting as in Fy and make the
following changes. Put 1/n-external promises delivering d (per promise) on each
inactive pool with x; > d. Clearly the real agents optimize by avoiding pool j, which
promises and delivers k;(n) = d < ;. For inactive pools j with k; < d < d we know
that there is a positive measure )\g(n) + )\f(n) > 0 of real households contributing to
pool j in the perturbation Eg4(n) (otherwise k;j(n) = d, so k; = limkj(n) = d > d).
Note that, for large enough n,

Clearly /\gj(n) — 0 and )\f(n) — 0 as n — oo, since )\gj(n) and /\f(n) occur in the
perturbation Eg4(n). Therefore /\?(n) — 0 as n — oo otherwise, from the above
display, kj(n) — d, contradicting that x;(n) — k; < d. So, in the perturbation
Eq4(n), let /\gj(n) and )\f(n) measures of U and R households contribute on j, and
let the external agent contribute /\gj(n)

In the original perturbation Eg(n), all households are indifferent between the
pools on which their class acts. It follows that households of class h € {U, R} are
optimizing in our perturbations.

Next we must show that if d > M, then moving to d > d does not eliminate any
equilibria. We proved this in Section 11. |
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