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Abstract

We �rst scrutinize several possible extensions of the nucleolus for
NTU games. Among them, the �-nucleolus is recommended. Shapley(1969)
proposed a procedure, referred to Shapley procedure, to extend the
Shapley value to the non-transferable utility value for NTU games. It
is known that the procedure can be applied to a variety of solutions.
In particular, the �-nucleolus is the nucleolus version derived by the
procedure. Then we try to argue that Shapley procedure might pro-
vide a good extension if one tries to extend a solution for TU games
to NTU cases.
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1 Introduction

To de�ne a solution for games without transferable utilities (NTU games),
one usually employs the ideas of solutions for games with transferable utilities
(TU games). Two criteria for such an extension are considered: (A) the
coincidence property: it coincides with its original version on TU games, and
(B) the preservation criterion: nice properties of its original version can be
preserved.
First, we scrutinize several possible extensions of the nucleolus for NTU

games. It is known that the nucleolus for TU games satis�es symmetry, con-
tinuity, and the core property, where the core property means that a solution
is contained in the core if it is non-empty, please see Schmeidler(1969) for
these facts. Here we will specify criterion (B) to be the three properties.
An impossibility Theorem is presented to illustrate that there is no solution
for NTU games satisfying criterion (B). It means that some nice things
disappear during the process of extension.
Among several extensions that we study, the �-nucleolus is recommended

because it satis�es (A) and (B) to a large extend. Moreover, the �-excess
function which is used to derive the �-nucleolus for NTU games is axioma-
tized. It is the unique function satisfying excess preservation, excess additiv-
ity, and excess invariance.
Shapley(1969) proposed a procedure, referred to Shapley procedure, to

extend the Shapley value to the non-transferable utility value(the NTU value)
for NTU games. It is known that the procedure can be applied to a variety
of solutions. In particular, the �-nucleolus is the nucleolus extension derived
by the approach.
Second, we argue that Shapley procedure might be able to provide a

good extension if one tries to extend a solution for TU games to NTU cases.
Aumann(1985) took advantage of a speci�c relationship between Shapley
value and the NTU value to axiomatize the NTU value. In fact, every
pair of solutions, a solution for TU games and its corresponding solution
for NTU games derived via the procedure, share the relationship. Therefore,
Aumann�s idea can be used to axiomatize all this type of solutions for NTU
games straightforwardly. Due to the relationship too, we show that a solution
for NTU games derived via the procedure is upper semi-continuous(u.s.c.)
if its corresponding solution for TU games is u.s.c., in particular, the �-
nucleolus is u.s.c. Both results are crucial for a solution concept. Further
studies of this type of solutions for NTU games are needed.
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The results of the paper are classi�ed to be four parts presented from
section 3 to section 6.
In section 3, we scrutinize two existing extensions of the nucleolus by

Kalai(1975) and Nakayama(1983) ; respectively: An non-continuity Theorem
is presented to show that both Kalai�s and Nakayama�s versions are not u.s.c.
In section 4, an impossibility Theorem is presented to show that there is

no solution for NTU games satisfying the three properties of (B).
In section 5, we �rst de�ne the �-excess function and axiomatize it. Then

the �-nucleolus is de�ned and properties of it are studied.
In section 6, we study upper semi-continuity and axiomatization of the

class of solutions for NTU games derived via Shapley procedure.

2 De�nitions and concepts

In this section, we introduce some basic de�nitions and concepts to be dis-
cussed in this paper, in particular, TU games, NTU games, and two well-
known solution concepts: the core and the nucleolus. Several properties for
solutions are de�ned too.
Denote N = f1; 2; � � �; ng to be the player set and eN = (1; 1; :::; 1) 2 RN :

An non-empty subset S of N is called a coalition and P is the set of coalitions
of N: Given x; y 2 RN ; we denote x � y if xi < yi 8i 2 N; x < y if xi � yi
8i 2 N and x 6= y; x � y if xi � yi 8i 2 N: Given S 2 P ; let x (S) = �i2Sxi
and xS the restriction of x on RS; where

RS =
�
x 2 RN : xi = 0 if i =2 S

	
:

A TU game is a pair (N; v) ; where v : 2N ! R with v (;) = 0: For
convenience, we denote (N; v) simply by the small letter v if no confusion
arises: Denote GN to be the set of all TU games with the player set N:
Given a game v 2 GN ; the pre-imputation set of v is

I (v) = fx 2 RN : x (N) = v(N) g;

and the imputation set of v is

I� (v) = fx 2 RN : x (N) = v(N) and xi � v(fig) for i 2 N g:

Each element in I (v) is called a payo¤ vector.
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A solution � de�ned on G0
N � GN is a mapping such that � (v) � I (v)

for all v 2 G0
N .

The core of v is de�ned by

C (v) = fx 2 I (v) j x (S) � v (S) for all S 2 Pg :

To de�ne the nucleolus of v, we need various concepts. The excess e is
a real-valued function de�ned on RN � P � GN such that, given x 2 RN ;
S 2 P, and v 2 GN ;

e (x; S; v) = v (S)� x (S) :

It is interpreted to be a measure of �dissatisfaction�of coalition S at x: We
reshu e the set fe (x; S; v) : S 2 Pg in the descending way, i.e., e (x; Sk; v) �
e (x; Sk+1; v) for all k = 1; 2; � � �; 2n � 2: The resulting vector is

� (x; v; e) = (e (x; S1; v) ; e (x; S2; v) ; � � � ; e (x; S2n�1; v)) : (1)

In a word, � (x; v; e) orders the �dissatisfactions�of coalitions at x; the high-
est �dissatisfaction��rst, the second-highest �dissatisfaction�second, and so
forth.
If x; y 2 RN ; � (x; v; e) is lexicographically less than � (y; v; e) ; denoted

by � (x; v; e) < (lex) � (y; v; e) ; if and only if there is an integer k, 1 �
k � 2n � 1, such that the �rst k-1 components of � (x; v; e) and � (y; v; e)
are equal and the kth component of � (x; v; e) is less than the kth com-
ponent of � (y; v; e). We denote � (x; v; e) � (lex) � (y; v; e) if � (x; v; e) <
(lex) � (y; v; e) or � (x; v; e) = � (y; v; e) :
Given v 2 GN ; the nucleolus of v is de�ned to be

N (v; e) = fx 2 I� (v) j � (x; v; e) � (lex) � (y; v; e) 8y 2 I� (v)g: (2)

Schmeidler(1969) proved that N (v; e) is single-valued and is non-empty:
Next, we will mention several properties that are relevant to the paper.
A solution � satis�es the core property if � (v) � C (v) ; where C (v) 6= ;:

We say that � is continuous: If fvng1n=1 is a sequence of games in GN and
vn ! v; then N (vn; e)! N (v; e) as n!1: Denote � to be a permutation
on N: We say that � is a symmetry of v 2 GN if v (�S) = v (S) for every
coalition S. � is symmetric if � (v) = �(� (v)) 8v 2 GN and all symmetries
� of v:
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An NTU game is a pair (N; V ), where V assigns each coalition S a proper
subset of RS satisfying

(A1) V (S) is closed, comprehensive, and non-empty 8S 2 P ;
(A2) IR (V ) = fx 2 V (N) jxi � y 8 y 2 V (fig) and 8 i 2 N g 6= ;:

Conditions (A2) is called essentiality: For convenience, we denote (N; V )
simply by the capital letter V: Denote GN to be the set of NTU games with
the player set N: Each element in IR (V ) is called a payo¤ vector as well.
Given v 2 GN and V 2 GN ; if

V (S) =
�
x 2 RS : x (S) � v(S)

	
8 S 2 P ; (3)

we call v and V corresponding to each other. Hence, a TU game v can be
viewed as a game in GN and V 2 GN can be viewed as a TU game if it
satis�es (3).
A solution � de�ned on GN is a mapping such that � (V ) � V (N) for all

V 2 GN . � is non-empty if � (V ) 6= ; for all V 2 GN :
The core of a game V 2 GN is de�ned by

C (V ) = f z 2 V (N) j /9 y 2 V (S) with yS � zS 8S 2 Pg:

A solution � satis�es the core property if � (V ) � C (V ) if C (V ) 6= ;:
Given S 2 P, let F be the collection of non-empty closed subsets of RS:

We denote hS : F � F �! R [ f�1;+1g to be the extended Hausdor¤
metric, please see Aliprantis and Border(2006). Given two games V;W 2 GN ,
we de�ne

� (V;W ) = max
S2P

hS (V (S) ;W (S)) .

Let fVng1n=1 be a sequence of games in GN and Vn ! V in the topology
induced by the extended Hausdor¤ metric. The solution � is u:s:c: if xn 2
� (Vn) 8 n and xn ! x 2 V (N) as n!1, then x 2 � (V ).
The idea to de�ne a symmetric solution for NTU games is the same as

what we did on TU games. Given a permutation � on N and x 2 RS;
we denote � (x) 2 R�(S) to be (� (x))�(i) = xi for every i 2 S: We say
that the permutation � is a symmetry of V 2 GN if V (�S) = �V (S) =
f� (x) : x 2 V (S)g 8S 2 P. A solution � is symmetric if � (V ) = �(� (V ))
8V 2 GN and all symmetries � of V:
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3 Two extensions

Kalai(1975) and Nakayama(1983) each provided an extension of the nucleolus
for NTU games. The purpose of the section is to scrutinize whether these
two extensions satisfy (A) and (B). An non-continuity Theorem is presented
to study continuity of the nucleolus for NTU games. We see that the one
by Kalai satis�es the core property only and the other one by Nakayama
violates u.s.c.
The idea of the nucleolus is to minimize �total dissatisfaction�among all

feasible payo¤ vectors in the sense of lexicographic order and the excess is
de�ned to measure �dissatisfaction�for TU games. To de�ne the nucleolus
for NTU games, it is natural to extend the excess to NTU games �rst. We
call a real-valued function de�ned on RN � P � GN an excess function for
NTU games.
Let E be an excess function for NTU games. Following (1) and (2) ;

� (x; V; E) is de�ned except that v and e are replaced by V and E; respec-
tively. Then N (V;E) ; the nucleolus for V 2 GN derived by E; is de�ned to
be

N (V;E) = fx 2 IR (V ) j � (x; V; E) � (lex) �(y; V; E) 8 y 2 IR (V )g: (4)

Given a set D � RN ; let int (D) be the interior of a set D; @D be the
boundary of D; and @+D = @D \ RN+ : Given x 2 RN ; S 2 P, and A � RS;
we denote

GS (x) =
�
z 2 RS j zi � xi for every i 2 S

	
and GS (A) = [a2AGS (a).
Let

IR+ (V ) =
�
x 2 RN jxi � yi 8 y 2 V (fig) and 8 i 2 N

	
6= ;:

Theorem 1 (Non-continuity) There is no excess function for NTU games
E satisfying the following 3 conditions simultaneously:
(i) E is continuous (or u.s.c.) in x 2 RN and V 2 GN ,

(ii) E (x; S; V )

8<:
= 0; if xS 2 @V (S) ;
> 0; if xS 2 int(V (S));
< 0; if xS =2 V (S) ;

(iii) N (V;E) is u.s.c.

The idea to prove the result is to propose a class of 3-person games in
which the required properties do not hold simultaneously.
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Example 2 Let N = f1; 2; 3g and k be a large enough positive integer. Set

A = (1; 1; 0), An =
�
1 + 1

k+n�2 ; 1 +
1

k+n�2 ; 0
�
,

B = (1; 0; 1), Bn =
�
1 + 1

k+n�2 ; 0; 1 +
1

k+n�2
�
,

C = Cn = (0; 1; 1) ;
D = (0; 0; 1), Dn =

�
0; 0; 1 + 1

k+n�2
�
,

E =
�
0; 1� 1

k
; 1� 1

k

�
, En =

�
0; 1� 1

k

�
1� 1

n

�
; 1� 1

k

�
1� 1

n

��
,

F = (0; 1; 0) ; and Fn =
�
0; 1 + 1

k+n�2 ; 0
�
.

Consider V 2 GN given by

V (fig) = Gfig (f(0; 0; 0)g) for i = 1; 2; 3,
V (f1; 2g) = Gf1;2g (A), V (f1; 3g) = Gf1;3g (B),
V (f2; 3g) = Gf2;3g(DE [ EF ), and
V (N) = GN

��
x 2 RN j x1 + x2 + x3 � 2

	
\ Rf1;2;3g+

�
.

For arbitrary positive integer n, let Vn be de�ned as

Vn (fig) = Gfig (f(0; 0; 0)g) for i = 1; 2; 3,
Vn (f1; 2g) = Gf1;2g (An), Vn (f1; 3g) = Gf1;3g (Bn),
Vn (f2; 3g) = Gf2;3g(DnEn [ EnFn), and
Vn (N) = G

N
�
(the hyperplane determined by An; Bn; and C) \ Rf1;2;3g+

�
= GN

��
x 2 RN j k+n�3

k+n�1x1 + x2 + x3 � 2
	
\ Rf1;2;3g+

�
Since An ! A, Bn ! B, Dn ! D, En ! E, and Fn ! F as n ! 1; we
have Vn ! V in the topology induced by extended Hausdor¤ metric. Please
see Figure 1.
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Figure 1.

Claim: If V is a game, N (V;E) satis�es the core property.
If x 2 V (N) � C (V ) ; there exist a S 2 P and a y 2 V (S) such that

yS � xS; that is, x 2 int(V (S)) and E(x; S; V ) > 0 by (ii) : If x 2 C (V ) ;
then xS =2 int (V (S)) 8S 2 P : It implies that E(x; S; V ) � 0 8S 2 P by (ii)
again. We obtain that N (V;E) must be in C (V ) : The Claim is obtained.
We see that C (V ) = fA;B;Cg and C (Vn) = fAn; Bng 6= ; for all

n. By Claim, N (Vn; E) � C (Vn) ! fA;Bg as n ! 1. To show that
N (Vn; E)9 N (V;E) ; it is enough to prove that N (V;E) = fCg :
E (A; S; V ) = 0 if S 2 ff3g ; f1; 2g ; f1; 3g ; f2; 3g ; f1; 2; 3gg and E (A; S; V ) <

0 if S 2 ff1g ; f2gg by (ii) : Hence,

� (A; V;E) = (0; 0; 0; 0; 0;�a1;�a2) ; where a2 � a1 > 0:

Similarly, we derive that

� (B; V;E) = (0; 0; 0; 0; 0;�a3;�a4) ; where a4 � a3 > 0;

and

� (C; V;E) = (0; 0; 0; 0;�a5;�a6;�a7) ; where a7 � a6 � a5 > 0:

� (C; V;E) is strictly less than both � (A; V;E) and � (B; V;E) in lexico-
graphical order: We obtain that N (V;E) = fCg :
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We can view the games in the previous Example a speci�c class of n-
person games. Indeed, players other than N = f1; 2; 3g are dummy in the
additive sense.

3.1 Kalai�s extension

Kalai(1975) reformulated the properties of the excess into four conditions
and de�ned the excess function for NTU games EK as follows: Given S 2 P
and V 2 GN ;
(a) If x; y 2 RN and xS = yS, then EK (x; S; V ) = EK (y; S; V ) :
(b) If x; y 2 RN and xS � yS, then EK (x; S; V ) > EK (y; S; V ) :
(c) If x 2 RN and xS 2 @V (S), then EK (x; S; V ) = 0.
(d) EK is continuous in V and x 2 RN .
He showed the following facts: (i) N (V;EK) ; the nucleolus for V 2 GN

derived by EK ; is non-empty and satis�es the core property. (ii) A speci�c
EK is proposed to demonstrate that N (V;EK) is not u.s.c.
We would like to ask further. Is there an EK such that the nucleolus

derived by it is u.s.c.? The fact that there is no EK such that N (V;EK) is
u.s.c. can be obtained by Non-continuity Theorem straightforwardly. Indeed,
conditions (i) and (ii) of the theorem can be obtained by (d) ; (b) ; and (c) :

Remark 3 Hausdor¤ metric �h; please see Dugundji(1966) ; was employed to
measure distance of two games in Kalai(1975) : Hence, he required an NTU
game satisfying not only (A1) and (A2) but also upper boundedness; that is,
9a 2 RS such that V (S) � GS (a) 8S 2 P :
In fact, the result of Example 2 still holds if we use Hausdor¤ metric

instead. Indeed, all games considered in the example are upper bounded.
Note that if Vn ! V as n ! 1 in the topology induced by Hausdor¤

metric, then Vn converges to V in the topology induced by extended Hausdor¤
metric as well.

The following example shows that N (V;EK) does not satisfy the coinci-
dence property.

Example 4 Let v 2 Gf1;2g such that v(f1g) = v(f2g) = 0 and v(f1; 2g) = 1:
Then N (v; e) = f(1=2; 1=2)g: Let V correspond to v: Then

IR (V ) = f(x1; x2) : x(f1; 2g) � 1; xi � 0; i = 1; 2g:
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De�ne the excess function EK to be

EK(x; f1g; V ) = v(f1g)� x1; EK(x; f2g; V ) = 2[v(f2g)� x2]; and
EK(x; f1; 2g; V ) = v(f1; 2g)� x(f1; 2g):

EK satis�es conditions (a) - (d) andN (V;EK) = f(2=3; 1=3)g 6= N (v; e) :

The following example shows that N (V;EK) is not symmetric.

Example 5 Let V 2 Gf1;2g such that

V (fig) = fx 2 R : x � 0g for i = 1; 2; and
V (f1; 2g) = Gf1;2gfx 2 Rf1;2g+ : x(f1; 2g) � 1g:

De�ne the excess function EK as follows.

EK (x; f1g ; V ) = �2x1; EK (x; f2g ; V ) = �x2; and
EK (x; f1; 2g ; V ) = 1� (x1 + x2):

We see that EK satis�es (a) - (d) and N (V;EK) = f(13 ;
2
3
)g:

De�ne � : f1; 2g ! f1; 2g by � (1) = 2 and � (2) = 1. Then � is a
symmetry of V and N (V;EK) 6= �N (V;EK):

3.2 Nakayama�s extension

Nakayama(1983) proposed an extension of the nucleolus by allowing the inter-
personal utility comparison. The payo¤ vector is determined proportionally
to a given vector of weights. He proved that the extension is non-empty
and satis�es the core property. We are going to show that it satis�es the
coincidence property and symmetry, but is not u.s.c.
Denote the set of vectors of weights to be

�N =
�
w 2 RN : �i2Nwi = 1 and wi � 0 for all i 2 N

	
:

Given w 2 �N ; S 2 P, and V 2 GN ; let

h (w; S) = max fh : h � wS 2 V (S)g ;

and let eY be a real-valued function de�ned on �N � P � GN

eY (w; S; V ) = �i2S (h (w; S)� h (w;N)) � wi:
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h (w; S) � wS 2 @V (S) is the payo¤ vector for S determined by w and
eY (w; S; V ) means the di¤erence between the sum of the payo¤s of play-
ers in S determined by S and w and the sum of the payo¤s of players in S
determined by N and w.
Since Nakayama(1983) required a game V satisfying supV (fig) > 0 8

i 2 N and considered only individually rational payo¤ vectors, we de�ne

�+ (V ) =
�
w 2 �N : h (w;N) � wi � supVfig for all i 2 N

	
:

Following (1) ; for each w 2 �+ (V ) ; let

� (w; V; eY ) = (eY (w; S1; V ) ; eY (w; S2; V ) ; � � � ; eY (w; S2n�1; V ));

where Sk 2 P for all k = 1; 2; � � �; 2n � 1 and eY (w; Sk; V ) � eY (w; Sk+1; V )
for all k = 1; 2; � � �; 2n � 2:
Then an extension of the nucleolus for NTU games is de�ned to be, given

a game V ,

N (V; eY ) = fh (w;N)�w 2 IR (V ) j � (w; V; eY ) � (lex) �(w0; V; eY ) 8 w0 2 �+ (V )g

N (V; eY ) is non-empty and satis�es the core property.

Lemma 6 Let V 2 GN : If x 2 @V (N)\IR (V ) ; there is a w 2 �+ (V ) such
that x (N) = h (w;N) and x = w � x (N) = w � h (w;N) :

Proof. Set w = x
x(N)

: Then w 2 �+ (V ) and x = x (N) � w 2 IR (V ) \
@V (N) : Since h (w;N)�w 2 @V (N)\IR (V ) ; we obtain that x = w�x (N) =
w � h (w;N) and x (N) = h (w;N).
Given a game V and a w 2 �+ (V ) ; we denote

xw = h (w;N) � w 2 IR (V ) \ @V (N) : (5)

Together the observation with the Lemma 6, there is a one to one and onto
mapping from �+ (V ) to IR (V ) \ @V (N) :
Next, we are going to extend eY to be an excess function.
Given xw 2 IR (V ) \ @V (N) ; S 2 P ; and V 2 GN ; we de�ne

eY (xw; S; V ) = �i2Sh (w; S) � wi � (xw)i:
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Then eY (w; S; V ) = eY (xw; S; v) 8w 2 �+ (V ) by (5) : Hence, instead of
�N�P�GN ; the domain of eY can be viewed as (IR (V ) \ @V (N))�P � GN :
If V corresponds to v, then

eY (xw; S; V ) = �i2S (h (w; S)� h (w;N)) � wi
= v (S)� �i2Sh (w;N) � wi
= v (S)� xw (S) = e (xw; S; v) :

We obtain thatN (V; eY ) satis�es the coincidence property, that is,N (V; eY ) =
N (v; e).
Let EY be a real-valued function de�ned on IR+ (V ) � P � GN . Given

x 2 IR+ (V ) and S 2 P,

EY (x; S; V ) = �i2S

�
h

�
x

x (N)
; S

�
� x (N)

�
� ( x

x (N)
)i:

We see that EY is continuous in x and V:

Lemma 7 Given V 2 GN ; S 2 P ; and x 2 IR+ (V ) ;
(1) if x 2 @V (N) \ IR+ (V ) ; then EY (x; S; V ) = eY (x; S; V ) :
(2)

EY (x; S; V )

8<:
= 0; if xS 2 @V (S) \ IR+ (V ) ;
> 0; if xS 2 int(V (S)) \ IR+ (V ) ;
< 0; if xS =2 V (S) \ IR+ (V ) ;

(3) N (V;EY ) = N (V; eY ): That is, N (V;EY ) is non-empty.

Proof. Let x 2 IR (V ) \ @V (N) and w = x
x(N)

: Then, by Lemma 6,

EY (x; S; V ) = �i2S (h (w; S)� x (N)) � wi
= �i2S (h(w; S)� h (w;N)) � wi = eY (x; S; V ) :

(1) is obtained: (2) can be derived by using the same idea.
Suppose that there is a y 2 N (V;EY ) \ int(V (N)): Then there is a

y0 2 IR (V ) \ @V (N) such that y � y0 and y0

y0(N) =
y

y(N)
: It follows that

EY (y; S; V ) > EY (y
0; S; V ) for every S 2 P ; and hence, � (y0; V; EY ) <

(lex) �(y; V; EY ): This is a contradiction. The nucleolus derived by EY must
be contained in IR (V )\@V (N) : Then using (1) and the fact that N (V; eY )
exists, (3) is obtained.
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It is easy to observe that N (V;EY ) satis�es symmetry. From (1) and (3) ;
we see that N (V;EY ) satis�es the core property. Indeed, N (V; eY ) satis�es
the core property.
Combining (2) and the fact that EY is continuous in x and V; we derive

that N (V;EY ) or N (V; eY ) is not u.s.c. by Non-continuity Theorem.

4 An impossibility result for a solution

In this section, we will show that there is no solution for NTU games satis-
fying symmetry, continuity, and the core property.

Theorem 8 There is no solution for NTU games with jN j � 3 satisfying
non-emptiness, symmetry, continuity, and the core property.

A class of 3-person games is constructed such that the required properties
do not hold simultaneously.

Example 9 Let � be a solution satisfying non-emptiness, symmetry, conti-
nuity, and the core property.
Consider the game V 2 Gf1;2;3g given by

V (S) = GS (f(0; 0; 0)g) for S = f1g ; f2g ; f3g, f1; 2g ; and f1; 3g ;
V (S) = GS

��
x 2 RS+ j x (S) � 1

	�
for S = f2; 3g ; N:

The core of the game V is

C (V ) = fx 2 V (N) j x (f2; 3g) = 1 and xi � 0 for all i 2 Ng :

Let � be a permutation such that � (1) = 3; � (2) = 2; and � (3) = 1:
Then � is a symmetry of V and � (V ) =

��
0; 1

2
; 1
2

�	
: Indeed, � is non-empty,

symmetric and satis�es the core property.
We are going to construct a sequence of games fVkg1k=1 such that Vk ! V

as k !1:
Let E =

�
0; 3

4
; 1
4

�
; Ak =

�
1� 1

k+3
; 0; 0

�
; Bk =

�
0; 1� 1

k+3
; 0
�
; and Ck =�

0; 0; 1� 1
k+3

�
; where k is any positive integer: De�ne the set Tk = H (Ak; Bk; E)\

H (Ak; Ck; E) \ RN+ ; where H (Ak; Bk; E) is the half space determined by the
points Ak; Bk; and E and contains the origin 0. Similarly, the setH (Ak; Ck; E)
is de�ned. Hence, Tk is the convex hull determined by 0; Ak; Bk; Ck; and E:
Please see Figure 2.

13
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Then we de�ne Vk 2 Gf1;2;3g as follows:

Vk (S) = V (S) for S 2 P � fNg and Vk (N) = Gf1;2;3g (Tk) .

For every k; � (Vk) = C (Vk) =
��
0; 3

4
; 1
4

�	
by non-emptiness and the core

property
We see that Vk ! V as k !1 in the topology induced by extended Haus-

dor¤ metric and � (Vk)9 � (V ) as k !1: It violates that � is continuous.

5 The �- excess function and the �-nucleolus

The section consists of two subsections. In subsection 5.1, we de�ne the �-
excess function ~e; and then, provide an axiomatization of it. In subsection
5.2, we �rst show that N (V; ~e) ; the nucleolus of the NTU game V derived
by ~e; is not u.s.c. Then the �-nucleolus N� (V; ~e) is de�ned by modifying the
idea of the nucleolus slightly. In fact, N� (V; ~e) satis�es criteria (A) and (B)
to a large extend. More speci�c, N� (V; ~e) satis�es the coincidence property,
symmetry, u.s.c. It does not satisfy the core property but satis�es the inner
core property given by Shapley and Shubik(1975) instead.
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Besides (A1) and (A2) ; we require a game V 2 GN also satisfying:

(A3) V (N) is convex,
(A4) there is a x 2 RN such that V (S)� fONnSg � V (N) + x 8 S 2 P,
(A5) @V (N) is smooth and the normal vector �x at x 2 @V (N)

satis�es (�x)i > 0 8i 2 N:

(A4) can be viewed as a weak monotonicity. We assume that �x is normalized;
that is, (�x)1 = 1 in the rest of the paper: It is interpreted to be �the com-
parison weights�for the utilities of players. Then �x = eN for x 2 @V (N) if
V corresponds to a TU game.
We denote the class of games satisfying (A1) - (A5) to be G 0N and G 0N �

GN :
Let y = (y1; y2; :::; yn) ; ! = (!1; !2; :::; !n) 2 RN ; and V 2 G 0N : Denote

! � y = !1y1 + !2y2 + � � � + !nyn and ! � y = (!1y1; !2y2; :::; !nyn) : If

! 2 RN++; then !�1 � y =
�
y1
!1
; y2
!2
; :::; yn

!n

�
: Given S 2 P ; let (! � V ) (S) =

f! � y : y 2 V (S)g : Then ! � V 2 G 0N :
Given V 2 G 0N and x 2 @+V (N) ; we de�ne v�x 2 GN by

v�x (S) = maxf(�x)S � z : z 2 V (S)g 8S 2 P : (6)

v�x (S) is well-de�ned by the fact that V (S) is a proper subset of RS; (A1) ;
(A3) and (A4) : It is interpreted to be the worth of the coalition S with
respect to �x.

Remark 10 Let ! 2 RN++: If x 2 @V (N) ; then ! � x 2 @(! � V ) (N) : We
see that �x �!�1 is an normal vector of ! �V at ! �x 2 @(! �V ) (N) : Hence,
the normalized normal vector �!�x at ! � x is !1 � (�x � !�1):
If we take ! = �x; the normalized normal vector ��x�x of �x � V at �x � x

is ��x�x = (�x)1 � (�x � �
�1
x ) = e

N : We obtain that (�x � V ) + V0 corresponds
to a TU game by (A4).

V 2 G 0N is called a hyperplane game if there are h 2 RN++ and a real
constant c such that

V (N) = fx 2 RN : h � x � cg.

We call v0 2 GN the zero game if v0 (S) = 0 8S 2 P. Let V0 correspond
to v0: Then V0 2 G 0N and V0 is called the zero game as well.

15



5.1 The �- excess function

The �-excess function for NTU games is proposed and it is the unique real-
valued function satisfying the following three appealing properties: excess
preservation, excess additivity, and excess invariance.
The �-excess function ~e maps from @+V (N)� RN � P � G 0N to R and

~e(x;y; S; V ) = v�x(S)� (�x � y)(S).

If V 2 G 0N and it corresponds to v 2 GN ; then, for every x 2 @+V (N) ;

~e(x;y; S; V ) = v�x(S)� (�x � y)(S) = v (S)� y(S) = e (y; S; v) :

That is, ~e and e are the same on TU games and ~e(0;0; S; V0) = e(0; S; v0) = 0:

Remark 11 Recall that both the excess for TU games e and an excess func-
tion for NTU games E are de�ned on the set of payo¤ vectors, coalitions,
and games. Here one more factor @+V (N) is added in the domain of the
�-excess function ~e: We will explain this at the end of the subsection.

Let ~E be a real-valued function de�ned on @+V (N)� RN � P � G 0N .
Excess Preservation(EP): If V 2 G 0N and it corresponds to v 2 GN ;

then

~E(x;y; S; V ) = e(y; S; v) 8x 2 @+V (N) 8y 2 RN and 8S 2 P :

Excess Additivity(EA): Given V 2 G 0N and x 2 @+V (N) ; if V +V0 2
G 0N and x 2 @+(V + V0)(N), then
~E(x;y + 0; S; V + V0) = ~E(x;y; S; V ) + ~E(0;0; S; V0) 8y 2 RN and 8S 2 P.

Excess Invariance(EI): Let V 2 G 0N and x 2 @+V (N) : If ! =
(!1; !2; :::; !n) 2 RN++, then

~E(! � x; ! � y; S; ! � V ) = !1 � ~E(x;y; S; V ) 8y 2 RN and 8S 2 P : (7)

The interpretation of EP is that the value of the excess e for TU games
is preserved, that is, the values of ~E and e are the same on TU games. EA
is that additivity of ~E obtains if one is restricted to be zero game V0 and the
payo¤ vector 0. EI says that: If the payo¤s in V are in utilities, the value
of ~E will not be a¤ected if we employ di¤erent utility functions to represent
the same real outcome. We will call !1 the normalized factor which will be
explained later.
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Lemma 12 The �- excess function ~e satis�es EP, EA, and EI.

Proof. We �rst show ~e satisfying EP. Let V and v correspond to each other:
If x 2 @+V (N) ; y 2 RN and S 2 P, then �x = eN and

~e(x;y; S; V ) = v�x(S)� (�x � y)(S)
= maxf(�x)S � z : z 2 V (S)g � (�x � y) (S)
= maxf(eN)S � z : z 2 V (S)g � y (S)
= maxfz(S) : z 2 V (S)g � y(S)
= e(y; S; v).

Next, we show ~e satisfying EA. Assume that V + V0 2 G 0N and x 2
@+(V + V0)(N). Then V + V0 is a TU game and �x = eN . Given y 2 RN
and S 2 P, by EP and �x = eN ; we have

~e(x;y; S; V + V0) = e(y; S; V + V0)

= maxfz(S) : z 2 (V + V0)(S)g � y(S)
= maxfz(S) : z 2 V (S)g � y(S)
= maxf(�x)S � z : z 2 V (S)g � (�x � y)(S)
= ~e(x;y; V; S).

It remains to show that ~e satis�es EI. Let ! = (!1; !2; :::; !n) 2 RN++ and
x 2 @+V (N) : Recall that ���x = �1 � (�x � ��1) by Remark 10. Then

~e(! � x; ! � y; S; ! � V )
= maxf(�!�x)S � z : z 2 (! � V )(S)g � (�!�x � (! � y)) (S)
= maxf(!1 � (�x � !�1))S � (! � u) : u 2 V (S)g � (!1 � (�x � !�1)) � (! � y)) (S)
= !1 � [maxf(�x)S � u) : u 2 V (S)g � (�x � y) (S)]
= !1 � ~e(x;y; V; S). (8)

Remark 13 Given V 2 G 0N ; x 2 IR(V ) \ @V (N); and ! 2 RN++; ! � x 2
IR(! � V ) \ @(! � V ) (N) : From Remark 10, we see that (�x � !�1) is an
normal vector of ! �V at ! �x: So c � (�x � !�1) is an normal vector for every
c > 0:
We take the normalized normal vector to be the normal vector with the

�rst component to be 1 and use it to calculate ~e(! � x; ! � y; S; ! � V ): This
is the reason why we have !1 in (8) and call it the normalized factor:
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Lemma 14 If ~E satis�es EP, EA, and EI, then ~E = ~e:

Proof. Let x 2 @+V (N) : Then (�x � V ) + V0 2 G 0N by Remark 10 and
(�x � x) + 0 2 @((�x � V ) + V0)(N):
Given S 2 P and y 2 RN ; by EA, EP, e(0; S; v0) = 0; EI, and the

assumption that (�x)1 = 1,

~E(�x � x; �x � y; S; (�x � V ) + V0)
= ~E(�x � x; �x � y; S; �x � V ) + ~E(0;0; S; V0)

= ~E(�x � x; �x � y; S; �x � V ) + e(0; S; v0)
= ~E(�x � x; �x � y; S; �x � V )
= (�x)1 � ~E(x;y; S; V )
= ~E(x;y; S; V ): (9)

Given S 2 P and y 2 RN ; by the fact that (�x � V ) + V0 is a TU game
and EP, we have

~E(�x � x; �x � y; S; (�x � V ) + V0)
= e(�x � y; S; (�x � V ) + V0)
= maxfz(S) : z 2 ((�x � V ) + V0)(S)g � (�x � y) (S)
= maxfz(S) : z 2 (�x � V )(S)g � (�x � y) (S)
= maxf(�x � u) (S) : u 2 V (S)g � (�x � y) (S)
= maxf(�x)S � u : u 2 V (S)g � (�x � y) (S)
= ~e(x;y; V; S). (10)

From (9) and (10) ; we derive the desired result.
Combining previous two lemmas, we have the following:

Theorem 15 ~e is the unique real-valued function de�ned on @+V (N)�RN�
P � G 0N satisfying EP, EA, and EI.

The last part of the subsection is to explain the reason why one more
factor @+V (N) is added in the domain of the �-excess function ~e: If we
rewrite excess preservation, excess additivity, and excess invariance in terms
of the excess function E; there is no excess function satisfying these three
properties.
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Let E be an excess function for NTU games. That is, it is de�ned on
RN � P � G 0N . We reformulate excess preservation, excess additivity, and
excess invariance in terms of E in the following.
(�) If V 2 G 0N and it corresponds to v 2 GN ; then

E(y; S; V ) = e(y; S; v) 8y 2 RN and 8S 2 P :

(�) If V + V0 2 G 0N , then

E(y + 0; S; V + V0) = E(y; S; V ) + E(0; S; V0) 8y 2 RN and 8S 2 P :

() Let V 2 G 0N : If ! = (!1; !2; :::; !n) 2 RN++, then

E(y; S; V ) = !1 � E(! � y; S; ! � V ) 8y 2 RN and 8S 2 P :

Remark 16 Let ! = 2eN : Then e(2eN � y; S; (2eN � V ) = 2 � e(y; S; V ) 6=
e(y; S; V ): Hence, it is obvious not to write () to be

E(y; S; V ) = E(! � y; S; ! � V ) 8y 2 RN and 8S 2 P :

Theorem 17 Let �GN � G 0N : If E is a function de�ned on RN �P � �GN and
satis�es (�) ; (�) ; and (), then �GN consists of hyperplane games.

Proof. Let V 2 �GN and x 2 @+V (N) : We see that �x � x 2 @+((�x � V ) +
V0) (N) and (�x � V ) + V0 is a TU game by Remark 10.
For S 2 P and an arbitrary y 2 RN ; we have, by () ; the facts that

(�x)1 = 1 and E(0; S; V0) = e(0; S; v0) = 0; (�) ; and () ;

E(y; S; V ) = (�x)1 � E(�x � y; S; �x � V )
= E(�x � y; S; �x � V ) + E(0; S; V0)
= E(�x � y; S; (�x � V ) + V0)
= e(�x � y; S; (�x � V ) + V0)
= maxf(�x)S � z : z 2 ((�x � V ) + V0)(S)g � (�x � y) (S)
= v�x(S)� (�x � y)(S):

Since equality holds for every x 2 @+V (N) and arbitrary y; �x must be
a constant. We derive that V is a hyperplane game.
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5.2 The �-nucleolus

In this subsection, we will �rst show that N (V; ~e) is not u.s.c. Then the �-
nucleolusN� (V; ~e) is proposed by modifying the idea of the nucleolus slightly.
Using the same idea to de�ne (4) ; N (V; ~e) is de�ned as follows. Given

V 2 G 0N ; x 2 @+V (N), and y 2 RN ; let

� (x; y; V; ~e)) = (~e(x; y; S1; V ); � � � ; ~e(x; y;S2n�1; V )) ;

where Sk 2 P, k = 1; 2; � � �; 2n � 1; and ~e(x; y; Sk; V ) � ~e(x; y; Sk+1; V ) for
k = 1; 2; � � �; 2n � 2: Then

N (V; ~e) = fx 2 @+V (N) : � (x; x; V; ~e) � (lex) � (x; y; V; ~e) 8y 2 IR (V )g:

The following example shows that N (V; ~e) is not u.s.c.

Example 18 Consider the game V 2 G 0f1;2;3g given by

V (fig) = Gfig(f(0; 0; 0)g) for i 2 N;
V (S) = fx 2 RS : x(S) � 0g for S = f1; 2g; f1; 3g;
V (S) = fx 2 RS : x(S) � 1g for S = f2; 3g ; N .

For every x 2 @+V (N) ;

v�x (S) = 0 if S 2 P � ff2; 3g ; Ng ; and v�x (S) = 1 if S = f2; 3g ; N:

Then N (V; ~e) = f(0; 1
2
; 1
2
)g:

Denote

A = (1; 0; 0); B = (0; 1; 0); C = (0; 0; 1); Ak = (1�
1

k + 3
; 0; 0); and

Bk = (0; 1� 1

k + 3
; 0); where k is any positive integer.

Denote H(Ak; Bk; C) to be a convex smooth surface containing Ak, Bk, and
C such that @V (N) = fx 2 RN : x(N) = 1g is the supporting hyperplane
of H(Ak; Bk; C) at C and H(Ak; Bk; C)! V (N) as k !1 in the topology
induced by the extended Hausdor¤ metric.
For every integer k > 0; we de�ne the game Vk 2 G 0f1;2;3g to be

Vk(S) = V (S) for S 2 P � fNg and Vk(N) = H(Ak; Bk; C).
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Then Vk ! V as k ! 1 in the topology induced by the extended Hausdor¤
metric.
For every positive integer k; ~e(C;C; Vk; S) � 0 8S 2 P and ~e(C; x; Vk; f2; 3g) >

0 8x 2 IR(Vk) � fCg: Therefore, C = N (Vk; ~e) for every k. Then C =
N (Vk; ~e)! C as k !1: But C =2 N (V; ~e) : So N (V; ~e) is not u:s:c.

Since Vk is not a hyperplane game for every 1 � k < 1 in the previous
example, this inspires us to get hyperplane games involved if we would like
to have an extension of the nucleolus satisfying u.s.c.
Given V 2 G 0N and x 2 @+V (N) ; we de�ne Vx 2 G 0N to be

Vx (S) =

�
V (S) ; if S ( N;
fy 2 RN j �x � y � v�x (S)g; if S = N:

Note that Vx is a hyperplane game and IR (V ) � IR(Vx): The �-nucleolus
N� (V; ~e) of V is

N� (V; ~e) = fx 2 @+V (N) : � (x; x; V; ~e) � (lex) � (x; y; V; ~e) 8y 2 IR(Vx)g:

In other words, instead of choosing the element to minimize the �total dis-
satisfaction�among IR (V ), N� (V; ~e) is the set of feasible payo¤ vectors of
V that minimize �total dissatisfaction�among IR(Vx).

Lemma 19 If x 2 N� (V; ~e) ; �x �x is the nucleolus of the game v�x ; that is,
f�x � xg = N (v�x ; e) :

Proof. Given V 2 G 0N and x 2 @+V (N) ;

�x � Vx (N) = f�x � y 2 RN : �x � y � v�x(N)g
=

�
�x � y 2 RN : (�x � y) (N) � v�x(N)

	
=

�
z 2 RN : z (N) � v�x(N)

	
:

We see that @+(�x � Vx) (N) = I� (v�x) :
Given y 2 Vx (N) and S 2 P ; we have

~e(x; y; S; V ) = v�x(S)� (�x � y)(S) = v�x (S)� z (S) = e (z; S; v�x) ;

and hence,

� (x; y; V; ~e)) = (~e(x; y; S1; V ); � � � ; ~e(x; y;S2n�1; V ))
= (e(z; S1; v�x); � � � ; e(z; S2n�1; v�x)) = � (�x � y; v�x ; e) ;
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where z = �x � y 2 �x � Vx (N) :
If x 2 N� (V; ~e) ; then x 2 @+V (N) and � (x; x; V; ~e) � (lex) � (x; y; V; ~e)

8y 2 IR (V ) :We have that � (�x � x; v�x ; e) � (lex) � (�x � y; v�x ; e) 8�x�y 2
I� (v�x) : We derive that f�x � xg = N (v�x ; e) :
Since �x = eN if V corresponds to a TU game v, we see that N� (V; ~e) =

N (v; e) : That is, N� (V; ~e) satis�es the coincidence property.

Theorem 20 The �-nucleolus is u.s.c. on G 0N .

Proof. Let fVkg1k=1 be a sequence of games in G 0N and Vk ! V as k ! 1
in the topology induced by the extended Hausdor¤ metric and xk ! x 2
@+V (N) as k ! 1 in the topology induced by the Euclidean distance;
where xk 2 N� (Vk; ~e) 8 k:
We know that @+Vk(N) is smooth for every k by (A5): Hence, �xk ! �x:

We have �xk �xk ! �x�x as k !1 in the topology induced by the Euclidean
distance.
Due to (3) and (6) ; we see (vk)�xk ! v�x as k ! 1 in the topology

induced by the extended Hausdor¤ metric. Since f�x � xkg = N
�
(vk)�xk ; e

�
8k; �xk � xk ! �x � x = N (v�x ; e) as k ! 1: Indeed, the nucleolus is
continuous on TU games. We derive that x 2 N� (V; ~e).
The following example demonstrates that N� (V; ~e) does not satisfy the

core property.

Example 21 Consider the game V 2 G 0f1;2;3g given by

V (fig) = Gfig (f(0; 0; 0)g), where i = 1; 2; 3,
V (S) = fx 2 RS : x(S) � 2g for S = f1; 2g ; f2; 3g ;
V (f1; 3g) = Gf1;3g((1; 0; 2)),
V (N) =

�
x 2 RN j x1 + x2 + x3 � 3

	
:

We see that C (V ) = [(1; 1; 1) ; (1; 2; 0)].
� = (1; 1; 1) is the normalized normal vector at every x 2 @+V (N). The

game v� is

v� (fig) = 0, for i = 1; 2; 3,
v� (f1; 2g) = v� (f2; 3g) = 2, and v� (f1; 3g) = v� (N) = 3.

Then N (v�; e) =
��

4
3
; 1
3
; 4
3

�	
62 C (V ).
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The inner core given by Shapley and Shubik(1975) is de�ned as follows.
Given V 2 G 0N , the inner core of V is

IC (V ) =
S

x2@+V (N)
fy 2 IR (V ) : (�x � y)(S) � v�x (S) 8S 2 Pg (11)

=
S

x2@+V (N)
fy 2 IR (V ) : ~e(x;y; V; S) � 0 8S 2 Pg .

Let � be a solution for NTU games. We say that � satis�es the inner core
property if IC (V ) 6= ; and � (V ) � IC (V ).

Theorem 22 The �-nucleolus for NTU games satis�es the inner core prop-
erty and symmetry.

These results can be derived straightforwardly. We omit the proofs.

Remark 23 For TU games, property I and property II are interesting be-
cause they are able to characterize the nucleolus and are helpful to prove
continuity of the nucleolus. For details, please see Kohlberg(1971) : From
Lemma 19, we see that the �-nucleolus also shares these two properties in the
following sense.
Given V 2 G 0N ; x 2 N� (V; ~e) if and only if the coalition array b1; � � � ; bp

that belongs to (�x � x; v�x) satis�es property I and property II.

6 Shapley procedure

Shapley(1969) proposed a procedure to extend the Shapley value to the NTU
value for NTU games. The section is to illustrate that the procedure might
be a nice way to take if one tries to extend a solution for TU games to NTU
cases.
Given a solution for TU games '; we say that the solution �' for NTU

games is derived from ' via Shapley procedure if, given a game V; �' (V )
consist of payo¤ vectors x such that x 2 @+V (N) and

�x � x 2 ' (v�x) : (12)

More speci�c, �' is the NTU value if ' is the Shapley value and �' is the inner
core if ' is the core. Although the �-nucleolus is derived by a di¤erent way,
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it turns out to be the nucleolus version derived by the procedure by Lemma
19:
This relationship (12) is crucial to prove that the �-nucleolus is u.s.c.

Aumann(1985) also took advantage of it to axiomatize the NTU value. Since
(12) provides a nice connection between ' and �'; we can easily extend these
two results to other solutions for NTU games derived via the procedure.
Besides the basic axioms given by Aumann(1985) ; we add the coincidence

property to axiomatize �'. The coincidence property plays a bridge between
a solution for TU games and its corresponding solution for NTU games.
Given a solution for TU games '; we denote G' � GN to be the set of

games with ' (v) 6= ; 8v 2 G' and denote G' � G 0N to be the set of games
with �' (V ) 6= ; 8V 2 G':

Theorem 24 Let ' be a solution de�ned on G': ' is continuous if it is
single-valued or is u.s.c. if it is set-valued. Then �' is u.s.c. on G':

The result can be obtained by using the same idea as what we have done
on Theorem 20. We omit the proof.
Let ' be a solution de�ned on G' satisfying the following properties:
(�) ' (v0) = 0; where v0 2 G' is the zero game;
(�) Given u; v 2 G'; if u and v are S-equivalent, that is, there exists

a r > 0 and �1; �2; :::; �n are in R such that v(S) = ru(S) + � (S) for all
S � N; then ' (v) = r' (u) + (�1; �2; :::; �n) ; and
() ' (v) � I (v) :

There are many well-known solutions for TU games satisfying (�) - (), for
instance, the Shapley value, the nucleolus, etc.
Let � be a solution satisfying the following axioms for all games U; V;

W 2 G':
Axiom 1 Non-emptiness(NE) : � (V ) 6= ;:
Axiom 2 E¢ ciency(EFF ): � (V ) � @V (N) :
Axiom 3 Restricted Additivity(RA) : If U = V + V0; then

� (U) � (� (V ) + � (V0)) \ @U (N) :

Axiom 4 Scale Covariance(SC) : � (� � V ) = � � � (V ) :
Axiom 5 Independence of Irrelevant Alternatives : If V (N) � W (N) and

V (S) =W (S) for all S 2 P � fNg ; then � (V ) � � (W ) \ V (N) :
Axiom 6 Coincidence Property(CP ) : If V 2 G' and v 2 GN correspond

to each other, then � (V ) = ' (v) :
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For interpretations of Axioms 1, 2, 4, and 5, please see Aumann(1985) :
Restricted additivity means that if x is in the solution � (V ) and it does
happen to be e¢ cient in V + V0; then it is also in the solution � (V + V0) =
� (U) : That is, additivity obtains if one is restricted to be the zero game. If
one claims to extend a solution for TU games to NTU cases, it is reasonable
to require that it coincides with its original version on TU games. This is
what Axiom 6 interprets.

Remark 25 The axiomatic system given here is slightly di¤erent from the
one by Aumann: The di¤erences are:
(1) Unanimity which is essential for the NTU value is replaced by Coin-

cidence Property. Otten and Peters(2002) used it too.
(2) Conditional Additivity is replaced by Restricted Additivity.
(3) Closure Invariance is deleted because all games considered in the paper

are closed.

Lemma 26 �' satis�es NE; EFF; RA; SC; IIA;and CP on G':

To prove the Lemma, we follow the idea of the proof of Lemma 7.3 of
Aumann(1985).
Proof. �' satis�es NE because it is de�ned on G': �' satis�es EFF and CP
because of (12) : IIA and SC can be obtained straightforwardly. Note that
we need (�) to have SC:
To show RA; let y 2 �' (V ) ; 0 2 �' (V0) ; and y + 0 = y 2 @U ; we wish

to show y 2 �' (U) : Let �y be the normalized normal vector of U at y: Then
�y = (1; 1; :::; 1) because U corresponds to a TU game. Since v + v0 =
v and ' (v0) = 0 by (�) ; we have '(v + v0) = '(v) + '(v0): Then RA
can be derived by following what Aumann showed the NTU value satis�es
Conditional Additivity.

Lemma 27 �' (V ) = � (V ) 8V 2 G'

The Lemma can be derived by following the proof of Lemmas 8.6 and 8.7
of Aumann(1985) step by step. We omit the proof. Note what Lemma 8.1 of
Aumann states is Coincidence Property. Then we obtain the following result
from previous two lemmas.

Theorem 28 �' is the unique solution satisfying NE; EFF; RA; SC; IIA;and
CP .
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7 Final words

(I) Four properties of three extensions of the nucleolus are scrutinized. We
summarize the results in the following:

N (V;EK) N (V; eY ) N� (V; ~e)
the coincidence property � + +
symmetry � + +
the core property + + ��
usc � � +

�The �-nucleolus satis�es the inner core property.

(II) As for existence issue of �'; please see Shapley(1953) and Otten and
Peters(2002) : Qin(1994) studied existence of the inner core.
(III) For V 2 G 0N ; we require that @V (N) is smooth and show that the

�- nucleolus is u.s.c. Otten and Peters(2002) considered the class of games
in which @V (N) is not necessarily smooth. The following example illustrates
that the �- nucleolus is not u.s.c in their setting.

Example 29 Let O = (0; 0), A = (1; 0), B = (0; 1), and the curve � =
f(x; y) 2 RN+ : y = 1� x2g).
Denote M = (1

2
; 1
2
) and C = (

p
5�1
2
;
p
5�1
2
) to be the midpoint of AB and

the intersection point of the ray
��!
OM and �, respectively.

Let N = f1; 2g: Consider (N; V ) and V is given by

V (fig) = f0g for i = 1; 2; and
V (N) = GN(�) \ RN+ = f(x; y) 2 RN+ : x2 + y � 1g).

The line y �
p
5�1
2

= �2(
p
5�1
2
)(x �

p
5�1
2
) tangents to � = @+V (N) at C.

The normalized normal vector �C of � at C is (1;
p
5� 1). Then

v�C (fig) = 0 for i = 1; 2; and v�C (N) =
5�

p
5

2
:

Clearly, N (v�C ; e) = f(5�
p
5

4
; 5�

p
5

4
)g. C =2 N� (V; ~e). Indeed,

�C � C = (1;
p
5� 1) � (

p
5� 1
2

;

p
5� 1
2

) = (

p
5� 1
2

; (
p
5� 1)(

p
5� 1
2

))

6= (
5�

p
5

4
;
5�

p
5

4
):
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Let �1 = f(x; y) 2 RN+ : x2+y = 1 and 0 � x �
p
5�1
2
g and �2 = f(x; y) 2

RN+ : x2 + y = 1 and
p
5�1
2
� x � 1g. Hence � = �1 [ �2 and �1 \ �2 = fCg.

For each k � 0, we denote
(i) Mk =M + (2

k�1
2k
)(C �M) = ( 1

2k
)M + (2

k�1
2k
)C,

(ii) Lk is the line parallel to AB passes through Mk,
(iii) Bk is the intersection point of the line Lk and the curve �1, and
(iv) Ak is the intersection point of the line Lk and curve �2. Please see Figure
3.

2Γ

1Γ

1
M

1B

1A

1L

C
M

B

O A

Figure 3.

De�ne (N; Vk) as follows. For each k � 1,

Vk(fig) = V (fig) for i = 1; 2; and
Vk(N) = the region enclosed by x-axis, y-axis, Lk, and �.

We see that @ (Vk (N)) is not smooth for every k. But Vk ! V in the topology
induced by the Hausdor¤ metric.
Let � = (1; 1). For each k � 1, we de�ne (N; (vk)�) to be:

(vk)�(fig) = f0g for i = 1; 2, and
(vk)�(N) =Mk (N) = (

1
2k
M + 2k�1

2k
C) (N) .

One can easily check that � �Mk = Mk 2 N (v�Mk
; e) for each k � 1, and

hence, Mk 2 N� (Vk; ~e) for each k � 1. It implies that Mk ! C =2 N� (V; ~e)
as k !1. So N� (V; ~e) is not u:s:c.
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