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1 Introduction

The notion of rationalizability proposed by Bernheim (1984) and Pearce (1984) is

one of the most important and fundamental solution concepts in non-cooperative

game theory. The basic idea behind this notion is that rational behavior must be

justi�ed by �rational beliefs�and conversely, �rational beliefs�must be based on ra-

tional behavior. The notion of rationalizability captures the strategic implications

of the assumption of �common knowledge of rationality� (see Tan and Werlang

(1988)), which is di¤erent from the assumption of �commonality of beliefs�or �cor-

rect conjectures�in an equilibrium (see Aumann and Brandenburger (1995)).

In the literature, most of the studies of rationalizable strategic behavior have

been restricted to �nite games.1 The main purpose of this paper is to extend the

notion of rationalizability to general games that inherits the properties of conven-

tional rationalizability. Since many important models arising in economic applica-

tions are games with in�nite strategy spaces and discontinuous payo¤ functions,

e.g., models of price and spatial competition, auctions, and mechanism design,2 it is

clearly important and practically relevant to extend the notion of rationalizability

to arbitrary games.

In the de�nition of conventional rationalizability, each player is implicitly as-

sumed to be Bayesian rational � i.e., each player maximizes the expected utility

given his probabilistic belief about the opponents�strategy choices. The Ellsberg

Paradox and related experimental evidence demonstrate that a decision maker usu-

ally displays an aversion to uncertainty or ambiguity and, thereby, motivates gen-

1Berheim (1984, Proposition 3.2) and Tan and Werlang (1988) studied the properties of ratio-
nalizable strategies in compact (metric) and continuous games. There are also a few exceptional
examples on in�nite games such as Arieli�s (2010) analysis of rationalizability in continuous games
where every player�s strategy set is a Polish space and the payo¤ function of each player is bounded
and continuous and Zimper�s (2006) discussions on a variant of �strong point-rationalizability�in
games with metrizable strategy sets. See also Jara-Moroni (2012) and Yu (2010) for discussions
on rationalizability in games with a continuum of players.

2See, e.g., Bergemann and Morris (2005a, 2005b), Bergemann et al. (2011), and Kunimoto
and Serrano (2011). In particular, Bergemann et al. (2011) and Kunimoto and Serrano (2011)
considered in�nite mechanisms (game forms) for which trans�nite rounds of deletion of never-best
replies or dominated strategies are necessary.
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eralizations of the subjective expected utility model. Epstein (1997) extended the

concept of rationalizability to a variety of general preference models by characteriz-

ing rationalizability and survival of iterated deletion of never best response strategies

as the (equivalent) implications of rationality and common knowledge of rational-

ity. In his analysis Epstein o¤ered a �model of preference� to allow for di¤erent

categories of �regular�preferences such as subjective expected utility, probabilisti-

cally sophisticated preference, Choquet expected utility and the multi-priors model.

However, from a technical point of view, Epstein�s (1997) analysis relies on topo-

logical assumptions on the game structure and, in particular, his discussions on

rationalizability are restricted to �nite games.3 Apt (2007) relaxed the �nite set-up

of games and studied rationalizability by an iterative procedure, but his analysis

implicitly requires players�preferences to have a certain form of expected utility. In

this paper we study rationalizable strategic behavior in general situations: arbitrary

games with various modes of behavior.

To de�ne the notion of rationalizability, we need to consider a system of prefer-

ences/beliefs for possible subgame situations. By using Harsanyi�s (1967-68) notion

of type, we introduce the simple analytical framework �the �model of type,�which

speci�es a set of admissible and feasible types for each of players in every possi-

ble restriction of game situation. For each type of a player, the player is able to

make a choice decision over his own strategies. Our approach is topology-free and

is applicable to arbitrary games with various modes of behavior.

In a related paper, Apt and Zvesper (2010) provided a broad and general ap-

proach to various forms of customary iterative solution concepts in arbitrary strate-

gic games with a special emphasis on the role of monotonicity in �rationality.�Our

analysis of rationalizable strategic behavior is, in this respective, harmonious with

Apt and Zvesper�s (2010) approach. As we have emphasized, this paper focuses on

how to extend the notion of rationalizability to general games with various modes

of behavior that inherits the properties of conventional rationalizability, while Apt

3See also Asheim�s (2006) related discussions on rationalizability under alternative epistemo-
logical assumptions.
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and Zvesper�s (2010) paper focuses on examining and comparing, in the context of

epistemic analysis with possibility correspondences, various forms of customary iter-

ative solution concepts in arbitrary strategic games through the monotonic property

of �rationality�behind the iterated dominance notions.

We o¤er a de�nition of rationalizability in general situations (De�nition 1).

Roughly speaking, a set of strategy pro�les is regarded as �rationalizable�if every

player�s strategy in this set can be justi�ed by some of the player�s types asso-

ciated with the set. We show that the union of all the rationalizable sets is the

largest (w.r.t. set inclusion) rationalizable set in the product form (Proposition 1),

which can be derived from an iterated elimination of never-best responses (IENBR).

Moreover, IENBR is an order-independent procedure (Proposition 2). In addition,

we study the epistemic foundation of rationalizability in general situations: We

formulate and prove that rationalizability is the strategic implication of common

knowledge of rationality (Proposition 4). We show an equivalence between the no-

tion of rationalizability and the notion of a posteriori equilibrium in general settings

(Proposition 5).

In this paper, we also investigate the relationship between rationalizability and

Nash equilibrium. We demonstrate through an example that the IENBR procedure

may generate spurious Nash equilibrium and, then, present a necessary and su¢ cient

condition for no spurious Nash equilibria (Proposition 3). In dominance-solvable

games, the unique Nash equilibrium can be obtained by IENBR and, moreover, ra-

tionalizable strategic behavior in a wide range of preference models is observationally

indistinguishable from Nash equilibrium behavior (Proposition 6). We show that,

through examples, rationalizability neither implies nor is implied by iterated strict

dominance de�ned by Chen et al. (2007) in general game situations. It is worthwhile

to emphasize that one important feature of this paper is that, throughout this paper,

we do not require any kind of technical assumptions on the structure of the game

or particular strong behavioral assumptions on players�preferences; in particular,

we do not require the compactness, convexity, and continuity conditions on strategy

sets and payo¤ functions, and we do not even assume that players�preferences have
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utility function representations.

The rest of this paper is organized as follows. Section 2 is the set-up. Sections 3

and 4 present the main results concerning rationalizability with IENBR and Nash

equilibrium respectively. Section 5 provides the epistemic foundation for rational-

izability. Section 6 discusses the relationship between rationalizability and iterated

strict dominance. Section 7 o¤ers concluding remarks.

2 Set-up

Consider a normal-form game:

G � (N; fSigi2N ; fuigi2N);

where N is an (in)�nite set of players, Si is an (in)�nite set of player i�s strategies,

and ui : S ! R is player i�s arbitrary payo¤ function where S � �i2NSi.4 For s 2 S
let s � (si; s�i). A strategy pro�le s� in S is a (pure) Nash equilibrium in G if for

every player i,

ui (s
�) � ui

�
si; s

�
�i
�
8si 2 Si.

The notion of �type�due to Harsanyi (1967-68) is a simple and parsimonious

description of the exhaustive uncertainty facing a player, including the player�s

knowledge, preferences/beliefs, etc.5 Given player i�s type, the player has one corre-

sponding preference relation over his own strategies, according to which the player

can make his choice decision. We consider a model of type for game G:

>G � f>Gi (�)gi2N ;
4Throughout this paper, we consider only the sets which satisfy the ZFC axioms; see, e.g.,

Aliprantis and Border (2006).
5As Harsanyi (1967-68, p.171) pointed out, �we can regard the [type] as representing certain

physical, social, and psychological attributes of player i himself in that it summarizes some crucial
parameters of player i�s own payo¤ function Ui as well as the main parameters of his beliefs
about his social and physical environment.�Harsanyi demonstrated that games with incomplete
information can be solved by using the notion of type. This notion is also useful to analyze
strategic uncertainty about the actual play of the games with complete information. In Section
5, we will introduce a more precise and formal notion of �type� in the epistemic analysis of
rationalizable strategic behavior.
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where >Gi (�) is de�ned for every (nonempty) subset S 0 � S and every player i 2 N .
The set >Gi (S 0) is interpreted as player i�s type space in the reduced game GjS0 �
(N; fS 0igi2N ; fuijS0gi2N), where uijS0 is the payo¤ function ui restricted on S 0. In
other words, >Gi (S 0) is the set of all plausible types of player i when the player faces
strategic uncertainty about the other players�actions in S 0�i � fs�ij (si; s�i) 2 S 0g.
Each type ti 2 >Gi (S 0) has a corresponding preference relation (or binary rela-

tion) %ti over player i�s strategies in Si. The indi¤erence relation, �ti, is de�ned as
usual, i.e., si �ti s0i i¤ si %ti s0i and s0i %ti si. For instance, we may consider >Gi (S 0)
as a probability space or a regular preference space de�ned on S 0. The following

example demonstrates that this analytical framework can be applied to �nite games

where the players have the standard subjective expected utility (SEU) preferences.

Example 1. Consider a �nite game G. Player i�s belief about the strategies that
the opponents play in the reduced game GjS0 is de�ned as a probability distribution
�i over S

0
�i, i.e., �i 2 �

�
S 0�i
�
where �

�
S 0�i
�
is the set of probability distributions

over S 0�i. For any �i, the expected payo¤ of si can be calculated by

Ui (si; �i) =
X

s�i2S0�i

�i (s�i) � ui (si; s�i)

where �i (s�i) is the probability assigned by �i to s�i. That is, �i generates an SEU

preference over Si. For our purpose we may de�ne a model of type (on G) as follows:

>G = f>Gi (�)gi2N ;

where, for every player i 2 N , >Gi (S 0) = �
�
S 0�i
�
for every (nonempty) subset

S 0 � S. Note that the beliefs are �correlated�in the sense that a belief is represented
by a joint probability distribution over the opponents�strategies. The model of type

allows to represent player�s beliefs as product (independent) or degenerated (point)

probability distributions over opponents�strategies.6

6In the game-theory literature, players are typically assumed to be Bayesian rational; that is,
each player forms a prior over the space of states of the world and maximizes the expected value
of some �xed vNM index on outcomes. The model of type also allows to represent player�s beliefs
as other forms of subjective expected utility preferences such as Borgers�s (1993) ordinal expected
utility and the state-dependent utility preferences discussed in Morris and Takahashi (2011).
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For ti 2 >Gi (S 0), a strategy si 2 Si is one of most preferred actions for ti if
si %ti s0i for all s0i 2 Si. (Notice that even if a reduced game GjS0 is concerned, any
strategy of player i in the original game G can be a candidate for the most preferred

choices.) Let

� (ti) � fsi 2 Sij si %ti s0i for all s0i 2 Sig .

We �rst present a de�nition of rationalizability in a game G with the type model

>G. The spirit of this de�nition is that for every strategy in a rationalizable set, the
player can always �nd some type in the type space de�ned over this set to support

his choice of strategy.

De�nition 1. A subset R � S is rationalizable in >G if 8i and 8s 2 R, there exists
some ti 2 >Gi (R) such that si 2 �(ti).

For our discussions, we need the following two conditions on the model of type

>G.

C1 (Monotonicity) 8i, >Gi (S 0) � >Gi (S 00) if S 0 � S 00.

The monotonicity condition requires that when one player faces a greater de-

gree of strategic uncertainty, the player possesses more types available for resolving

uncertainty. In the literature on information economics, a type of a player is in-

terpreted as the initial private information, about all the uncertainty regarding the

state of nature in a game situation, that player has. From this point of view, it

is natural to assume that there are more types available if there is more strategic

uncertainty about the choices of the players. Under C1, >�i � >Gi (S) can be viewed
as the �universal�type space of player i in game G.

For s 2 S, player i�s Dirac type �i (s) is a type with the property:

8s0i; s00i 2 Si; ui(s0i; s�i) � ui(s00i ; s�i) i¤ s0i %�i(s) s00i :

A Dirac type �i (s) is a degenerated type with which player i behaves as if he faces

a certain play s�i of the opponents; in probabilistic models, a Dirac type is a point
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mass that represents a point belief about the opponents�choices. Observe that s�

is a Nash equilibrium i¤, for every player i, s�i is a best response to �i (s
�). The

following condition requires that the only possible type for a deterministic case �

i.e. a singleton of a certain play of the opponents �is a Dirac type. This condition

is a rather natural requirement when strategic uncertainty is reduced to a special

deterministic case of certainty.

C2 (Diracability) 8i, >Gi (fsg) = f�i (s)g for all s 2 S.

In Example 1, it is easy to see that C1 and C2 are satis�ed for the standard

SEU preference model. C1 and C2 imply that �i (s) 2 >Gi (S 0) if s 2 S 0, i.e., the type
space on S 0 contains all the possible Dirac types on S 0.

We call a strategy pro�le rationalizable in>G if this pro�le lies in a rationalizable
set in >G. The following Proposition 1 asserts that, under C1, there is the largest
(w.r.t. set inclusion) rationalizable set in product form that, under C2, contains all

the Nash equilibria in G.

Proposition 1. Under C1, R� � [R is rationalizable in >GR is the largest (product-

form) rationalizable set in >G. Under C2, R� contains all the Nash equilibria in
G.

Proof: It su¢ ces to show that R� is a rationalizable set in >G. Let s 2 R�. Then,
there exists a rationalizable set R in >G such that s 2 R. Thus, for every player i,
there exists some ti 2 >Gi (R) such that si 2 �(ti). Since R � R�, by C1, ti 2 >Gi (R�)
and si 2 �(ti). Thus, R� is a rationalizable set in >G.
Let s 2 �i2NR�i where R�i � fsij s 2 R�g. Then, for every player i, there

exists ti 2 >Gi (R�) such that si 2 �(ti). Since R� � �i2NR�i , again by C1, ti 2
>Gi (�i2NR�i ) and si 2 �(ti). That is, �i2NR�i is a rationalizable set in >G. Since
R� � [R is rationalizable in >GR, it must be the case that R� = �i2NR�i . Finally, by C2,
the singleton set of a Nash equilibrium in G is a rationalizable set in >G and, hence,
R� contains all the Nash equilibria in G. �
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Remark. For Z � S let '(Z) = �i2N
�
sij si 2 �(ti) for some ti 2 >Gi (Z)

	
. Then

R� is the largest �xed point of ' : 2S 7! 2S. See Apt and Zvesper (2010) and Luo

(2001, Sec. 4.1) for a general approach to rationalizable-like solution concepts by

using Tarski�s �xed point theorem on complete lattices; cf. also Brandenburger et al.

(2011) for related discussions. Note that the set of rationalizable strategy pro�les

may be empty in general game situations. Proposition 1 implies that, under C2, R�

is nonempty if G admits a Nash equilibrium.

3 IENBR and rationalizability

In the literature, rationalizability can also be de�ned as the outcome of an iterated

elimination of never-best responses. We employ a trans�nite elimination process

that can be used for any arbitrary game.7 Let �0 denote the �rst element in an

ordinal �, and let �+ 1 denote the successor to � in �. For S 00 � S 0 � S, S 0 is said
to be reduced to S 00 (denoted by S 0 ! S 00) if, 8s 2 S 0nS 00, there exists some player i
such that si =2 � (ti) for any ti 2 >Gi (S 0).

De�nition 2. An iterated elimination of never-best responses (IENBR) is a �nite,
countably in�nite, or uncountably in�nite family fR�g�2� such that R�

0
= S, R� !

R�+1 (and R� = \�0<�R�
0
for a limit ordinal �), and R1 � \�2�R� ! R0 only for

R0 = R1.

The following Proposition 2 states that De�nitions 1 and 2 are equivalent in >G.

Proposition 2. R1 exists and, under C1, R1 = R� for any IENBR procedure

fR�g�2�.

Proof. We �rst show that R1 exists. For any S 0 � S, we de�ne the �next

7Lipman (1994) demonstrated that, in in�nite games, we may need the trans�nite induction
to analyze the strategic implication of �common knowledge of rationality.�See also Chen et al.�s
(2007) Example 1 for the reason why we need a trans�nite process for iterated deletion of strictly
dominated strategies in general games.
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elimination�operation r by

r [S 0] �
�
s 2 S 0j 9i s.t. si =2 � (ti) for any ti 2 >Gi (S 0)

	
.

By the well-ordering principle, the power set of S can be well ordered by a linear

order; cf., e.g., Aliprantis and Border (2006, Chapter 1). The existence of a maximal

reduction using IENBR is assured by the following prominent �fast�IENBR: R1 �
\�2�R� satisfying R�+1 = R�nr

�
R�
�
(and R� = \�0<�R�

0
for a limit ordinal �),

where � is an ordinal that is order-isomorphic to the power set of S. Note that

r
�
R�
�
= ? implies r

�
R�

0�
= ? for all �0 > �. By using the fact that a set is

never isomorphic to its power set (cf., e.g., Suppes 1972, Chapter 4, Theorem 23),

it is easily veri�ed that R1 ! R0 only for R1 = R0.

Now, we consider an IENBR procedure fR�g�2�. By De�nition 2, 8s 2 R1,
every player i has some ti 2 >Gi (R1) such that si 2 �(ti). So R1 is a rationalizable
set and, hence, R1 � R�. Under C1, by Proposition 1, R� is a rationalizable set in
>G and, hence, survives every round of elimination in De�nition 2. So R� � R1.

That is, R1 = R� for any IENBR procedure fR�g�2�. �

The de�nition of IENBR procedure does not require the elimination of all never-

best response strategies in each round of elimination. This �exibility raises a ques-

tion whether any IENBR procedure results in a unique set of outcomes. Under C1,

Proposition 2 implies that IENBR is indeed a well-de�ned order-independent pro-

cedure in general game situations. If, moreover, C2 is satis�ed, Propositions 1 and

2 imply that the IENBR procedure yields a nonempty set of outcomes whenever G

has a Nash equilibrium.8

4 Nash equilibrium and rationalizability

Propositions 1 and 2 show that every Nash equilibrium is a rationalizable strategy

pro�le and, moreover, every Nash equilibrium survives IENBR. However, the follow-
8We note that, in the class of games where strategy sets are compact and payo¤ functions are

continuous, the (countable-round) IENBR procedure results in a nonempty set of outcomes; cf.
Dufwenberg and Stegeman (2002, Theorem 1) for the IESDS procedure.
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ing example taken from Chen et al. (2007) demonstrates that a Nash equilibrium in

the reduced game after an IENBR procedure may be a spurious Nash equilibrium,

i.e., it is not a Nash equilibrium in the original game.

Example 2. Consider a two-person symmetric game: G �
�
N; fSigi2N ; fuigi2N

�
,

where N = f1; 2g, S1 = S2 = [0; 1], and for all si; sj 2 [0; 1], i; j = 1; 2, and i 6= j

ui(si; sj) =

8<:
1, if si 2 [1=2; 1] and sj 2 [1=2; 1],
1 + si, if si 2 [0; 1=2) and sj 2 (2=3; 5=6),
si, otherwise.

We consider the standard SEU model for G. It is easily veri�ed that R1 =

[1=2; 1] � [1=2; 1] since every strategy si 2 [0; 1=2) is strictly dominated and hence
never a best response. That is, IENBR leaves the reduced gameGjR1 �

�
N; fR1i gi2N ; fuijR1gi2N

�
that cannot be further reduced. Clearly, R1 is the set of Nash equilibria in the re-

duced gameGjR1, but the set of Nash equilibria in gameG is fs 2 R1j s1; s2 =2 (2=3; 5=6)g.
Thus, IENBR generates spurious Nash equilibria s 2 R1 where some si 2 (2=3; 5=6).
The game of this example is in the class of Reny�s (1999) better-reply secure games.

Observe that in this game, ui (:; sj) has a maximizer for sj =2 (2=3; 5=6), but ui (:; sj)
has no maximizer for sj 2 (2=3; 5=6). That is, some player has no best response in
such a spurious Nash equilibrium, while each player should have a best response in

a (normal) Nash equilibrium.

For subset S 0 � S, we say that G � (N; fSigi2N ; fuigi2N) has well-de�ned best
responses on S 0 if 8i and 8s 2 S 0, � (�i (s)) 6= ?. Let NE denote the set of Nash

equilibria in G, and NEjR1 the set of Nash equilibria in the reduced game GjR1 �
(N; fR1i gi2N ; fuijR1gi2N). A su¢ cient and necessary condition under which IENBR
generates no spurious Nash equilibria is provided as follows.

Proposition 3. Under C1 and C2, NE = NEjR1 i¤ G has well-de�ned best

responses on NEjR1.

Proof. (�Only if�part.) Let s� 2 NEjR1. Since NEjR1 = NE, s�i 2 � (�i (s�)) 8i.
Thus, � (�i (s�)) 6= ? for all i.
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(�If� part.) (i) Let s� 2 NE. Under C1 and C2, by Propositions 1 and 2,

s� 2 R1 and, hence, s� 2 NEjR1. So NE � NEjR1 : (ii) Let s� 2 NEjR1 . Since
G has well-de�ned best responses on NEjR1, for every player i there exists some
ŝi 2 Si such that ŝi 2 � (�i(s�)), which implies that ŝi %�i(s�) s�i and (ŝi; s��i) 2 R1

under C1 and C2. Since s� 2 NEjR1, s�i %�i(s�) ŝi. Therefore, s�i ��i(s�) ŝi and,
hence, s�i 2 � (�i(s�)). That is, s� 2 NE. So NEjR1 � NE. �

This su¢ cient and necessary condition in Proposition 3 does not involve any

topological assumption on the original or the reduced games. In Chen et al.�s (2007)

Corollary 4, some classes of games with special topological structures were proved to

�preserve Nash equilibria�for the iterated elimination of strictly dominated strate-

gies. These results are also applicable to the IENBR procedure de�ned in this paper.

If a game is solvable by an IENBR procedure, the following corollary asserts that

the unique strategy pro�le surviving the procedure is the only Nash equilibrium.

Corollary 1. Under C1 and C2, R1 = NE if jR1j = 1.

Proof. Let R1 = fs�g. By C2, s�i is a best response to �i (s�) for every player i.
So s� 2 NE and hence R1 � NE. By Proposition 1, NE � R1. �

5 Epistemic conditions of rationalizability

In this section we provide epistemic conditions for rationalizability in general games.

In doing epistemic analysis, we need to extend the model of type in Section 2 to the

space of states. Consider a space 
 of states, with typical element ! 2 
. A subset
E � 
 is referred to as an event. A model of type on 
 is given by

> � f>i(�)gi2N ;

where >i(�) is de�ned over (nonempty) subsets E � 
. The set >i(E) is player
i�s type space for given event E, which can be interpreted as player i�s type space

conditional on event E; each type ti 2 >i(E) has a preference relation %ti de�ned on
player i�s strategies in Si under which the complement of E is regarded as impossible.

12



For example, if >i(E) is applied to the case of the probability measure space, >i(E)
can be considered as the space of probability measures conditional on subset E

of 
. The model of type on 
 can also be viewed as a type structure used in

epistemic game theory to model interactive beliefs in which a type of a player is a

joint belief about the states of nature and the types of the other players (see, e.g.,

Brandenburger (2007)).

An epistemic model for >G is de�ned by

M
�
>G
�
� (
; >; fsigi2N ; ftigi2N) ;

where 
 is the space of states, > is a model of type on 
, si (!) 2 Si is player
i�s strategy at state !, and ti (!) 2 >i(
) is player i�s type at state !; cf., e.g.,
Aumann (1999) and Osborne and Rubinstein (1994, Chapter 5).9 Denote by s (!)

the strategy pro�le at ! and let

SE � fs (!) j ! 2 Eg.

Apparently, from an analyst�s point of view, the model of type, >, de�ned on 

should be consistent with the model of type, >G, de�ned on G. For this purpose,
in this paper we require the epistemic modelM

�
>G
�
to satisfy the following con-

sistency property:

[Consistency] For any event E � 
, >i(E) = >Gi (SE) 8i.

That is, the consistency property requires that the type space on an event be

consistent with the type space on the strategies projected from the event and, thus,
9We take a point of view that an epistemic model is a pragmatic and convenient framework

to be used for doing epistemic analysis; cf. Aumann and Brandenburger (1995, Sec. 7a) for
related discussions. Mertens and Zamir (1985) constructed a well-de�ned compact Hausdor¤ space
of types in a probabilistic setting, Heifetz and Samet (1998) provided an alternative �topology-
free�construction of type space, and Epstein and Wang (1996) constructed a well-de�ned compact
Hausdor¤ space of types in a more general setting of regular preferences; see Epstein (1997) for
various �models of preference.� Di Tillio (2008) constructed a well-de�ned space of types under
some mild assumptions on preferences (re�exivity, transitivity, and monotone continuity) in �nite
strategic games. In this paper, we are mainly concerned with the analysis of the game-theoretic
solution concept of rationalizability in general situations. In particular, we do not assume that
preferences have utility function representations.
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each player behaves in a natural way with respect to the marginalization in the

epistemic model. This requirement is much in the same spirit of the notion of

�coherence�imposed in the analysis of hierarchy of beliefs and preferences (see, e.g.,

Mertens and Zamir (1985), Brandenburger and Dekel (1993) and Epstein and Wang

(1996)). We would like to point out that the consistency property is not a behavioral

condition for the players in games, but it is made only for the (comprehensive)

epistemic model adopted by an analyst to be harmonious with the (simple) analytical

framework used in Section 2.

We say �player i knows/believes an event E at !�if ti (!) 2 >i (E) since the
complement of E is regarded as impossible under ti (!) 2 >i (E).10 Let

KiE � f! 2 
j i knows E at !g.

An event E � E is called a common-knowledge/self-evident event (in E), if

E � Ki E for all i 2 N .

Say player i is �rational at !�if si (!) is one of most preferred actions for ti (!).

Let

Ri � f! 2 
j i is rational at !g

and

R � \i2NRi.

That is, R is the event �everyone is rational.�The following Proposition 4 provides

an epistemic characterization for rationalizability: the notion of rationalizability is

the strategic implication of common knowledge of rationality.

Proposition 4. (1) In any epistemic model M
�
>G
�
, S R is a rationalizable set

in >G. (2) Suppose that R is a rationalizable set in >G. Then, there is an epistemic
model M

�
>G
�
in which S R = R for some common-knowledge event R .

10This formalism can be easily applied to Aumann�s de�nition of knowledge by the possibil-
ity correspondence in a semantic framework and the notion of �belief with probability one� in a
probabilistic model, for instance.
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Proof. (1) Since R � R is a common-knowledge event, for any ! 2 R , si (!) 2

� (ti (!)) and ti (!) 2 >i
�
R
�
for all i. By Consistency, ti (!) 2 >Gi

 
S
R
!
.

Therefore, 8i and 8s 2 S
R
, there exists some ti 2 >Gi (S

R
) such that si 2 �(ti).

That is, S
R

is a rationalizable set in >G.
(2) Let R be a rationalizable set in >G. De�ne an epistemic model for >G :

M
�
>G
�
� (
; >; fsigi2N ; ftigi2N) ;

such that

(i) 
 =
�
(si; ti)i2N j ti 2 >Gi (R) and si 2 �(ti) \Ri

	
;

(ii) 8i, >i(E) = >Gi (SE) if E � 
;
(iii) 8i, si (!) = si and ti (!) = ti if ! = (si; ti)i2N .

Clearly, every player i is rational across states in 
. By Consistency, 
 � K
.

Therefore, R = 
 is common-knowledge event satisfying S
 = R. �

Remark. In the standard semantic model of knowledge, it is well known that the

above ��xed-point� de�nition of �common knowledge� is equivalent to the tradi-

tional �iterative�formalism of �common knowledge;�see, e.g., Aumann (1976, 1999)

and Monderer and Samet (1989). In general cases, the ��xed-point�de�nition of

�common knowledge�is a more fundamental notion. Under the �monotonic�infor-

mation and knowledge structures, it can be shown that the ��xed-point�de�nition

of �common knowledge�is equivalent to an �iterative�notion of �common knowl-

edge� possibly by using trans�nite levels of mutual knowledge; see Heifetz (1996,

1999) for more discussions. If, moreover, the information and knowledge structures

satisfy a �limit closure� property: what happens at �nite levels determines what

happens at the limit, it can be shown that the ��xed-point�de�nition of �common

knowledge�is equivalent to the traditional �iterative�de�nition by using a countably

in�nite number of levels of mutual knowledge; cf. Fagin et al. (1999).

Within the standard expected utility framework in �nite games, Brandenburger

and Dekel (1987) o¤ered the notion of �a posteriori equilibrium,� a strengthen-
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ing of Aumann�s (1974) notion of subjective correlated equilibrium, and showed an

equivalence between rationalizability and a posteriori equilibrium. The equivalence

implies that the assumption of common knowledge of rationality also provides a

formal epistemic justi�cation for this equilibrium notion. In �nite models, Epstein

(1997) extended this equivalence result to more general �regular� preferences in-

cluding the subjective expected utility model. We end this section by presenting

such an equivalence result for arbitrary games with various modes of behavior in

the analytical framework used in this paper.

A strategy-pro�le speci�cation function s :
! S in an epistemic modelM
�
>G
�

for game G is said to be an a posteriori equilibrium in M
�
>G
�
if for every player

i 2 N ,11

8! 2 
, si (!) %ti(!) si 8si 2 Si,

i.e., si (!) 2 � (ti (!)).

Proposition 5. The strategy pro�le s� is rationalizable in >G if and only if there
exist an epistemic model M

�
>G
�
and an a posteriori equilibrium s in M

�
>G
�

such that s� = s (!) for some ! 2 
.

Proof. �if� part: Let s be an a posteriori equilibrium in an epistemic model

M
�
>G
�
. Then, for every player i and every s 2 S
, si 2 �(ti) for some ti 2 >i(
).

By Consistency, for every player i and every s 2 S
, si 2 �(ti) for some ti 2 >Gi (S
).
That is, the set S
 is a rationalizable set in >G. Thus, the pro�le s� is rationalizable
in >G if s� = s (!) for some ! 2 
.
�Only if�part: Let s� be a rationalizable strategy pro�le in >G. Then, there is

a rationalizable set R in >G which contains s�. Thus, for every player i and every
11This de�nition of �a posteriori equilibrium�does not involve an exogenous informational par-

tition for each player as in Bandenburger and Dekel (1987) and Epstein (1997). However, an
endogenous (possibly non-partitional) informational structure for each player can be elicited from
the player�s preference relation at states; cf. Morris (1996) and Chen and Luo (2011b) for more
discussions.
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s 2 R, there is ti 2 >Gi (R) such that si 2 �(ti). De�ne an epistemic model for G :

M
�
>G
�
� (
; >; fsigi2N ; ftigi2N) ;

such that
(i) 
 =

�
(si; ti)i2N j ti 2 >Gi (R) and si 2 �(ti)

	
;

(ii) 8i, >i(E) = >Gi (SE) if E � 
;
(iii) 8i, si (!) = si and ti (!) = ti if ! = (si; ti)i2N .

Therefore, for every player i and every ! = (si; ti)i2N in 
, si (!) 2 � (ti (!)).

That is, s is an a posteriori equilibrium inM
�
>G
�
. Thus, for each rationalizable

pro�le s� in >G, we can �nd an a posteriori equilibrium s inM
�
>G
�
and a state

!� = (s�i ; t
�
i )i2N in 
 such that s

� = s (!�). �

6 Rationalizability and iterated strict dominance

In this section, we show that, through examples, rationalizability in general game

situations neither implies nor is implied by iterated strict dominance de�ned by

Chen et al. (2007). This is because, in the general environments, an undominated

strategy need not be a best response in a model of type, and conversely, a best

response in a model of type is not necessarily undominated, even in the case of

(correlated) probabilistic models.12

Since the model of type can be applied to some particular class of probabilistic

models such as the product (independent) probability model and the degenerated

(point) probability model, it is easy to see that an undominated strategy may fail

to be a best response in �nite games with such restrictive types of probabilistic

beliefs; cf., e.g., Brandenburger and Dekel (1987, Sec. 3). Alternatively, the fol-

lowing Example 3 (due to Andrew Postlewaite), which appears in Bergemann and

Morris (2005a, Footnote 8), shows that an undominated strategy need not be a best

response in an in�nite game with (correlated) probabilistic beliefs.13

12Chen and Luo (2011a) showed that if the sets of strategies are compact Hausdor¤ spaces and
the payo¤ functions are continuous and satisfy a condition called �concave-like,� then a strategy
is undominated if and only if it is a best response in the standard SEU model.
13For simplicity, we here consider strategies dominated by pure strategies. Examples 3 and 4

are still valid if we allow for using mixed strategies.
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Example 3. Consider a two-person symmetric game G =
�
N; fSigi2N ; fuigi2N

�
,

where N = f1; 2g, and for i = 1; 2, Si = f0; 1; 2; :::g and

ui (si; s�i) =

8<:
1, if si = 0;
2, if si � 1 and si > s�i;
0, if si � 1 and si � s�i.

Let >G be the model of type generated by expected utility preferences with (count-
ably additive) probability measures, i.e., >Gi (S 0) = �

�
S 0�i
�
for all S 0 � S. Clearly,

si = 0 is not strictly dominated, because for any si � 1, ui (0; s�i) = 1 > 0 =

ui (si; s�i) for s�i � si. But, si = 0 cannot be a best response in >G. To see this,
note that for any �i 2 �(S�i) and any si > 0,Z

ui (si; s�i) d�i (s�i) = 2�i (fs�ij s�i < sig)! 2 as si !1.

Hence, there is some si > 0 such that
R
ui (si; s�i) d�i (s�i) > 1 =

R
ui (0; s�i) d�i (s�i).

The following Example 4, which is modi�ed from Stinchcombe (1997), shows

that a strictly dominated strategy can be a best response in a game with ��nitely

additive�probabilistic beliefs.14

Example 4. Consider a two-person game G =
�
N; fSigi2N ; fuigi2N

�
, where N =

f1; 2g, S1 = f0; 1g, S2 = f1; 2; :::g, and u1 (0; s2) = 0, u1 (1; s2) = 1=s2, u2 (s2; 0) =
0, and u2 (s2; 1) = s2 for all s2 2 S2. Let the algebra on S2 be the power set of S2.
Let >G be the model of type generated by expected utility preferences generated by
�nitely additive probability charges, i.e., >Gi (S 0) = ba

�
S 0�i
�
for all S 0 � S, where

ba
�
S 0�i
�
is the space of �nitely additive probability charges on S 0�i.

Clearly, s1 = 0 is strictly dominated by s1 = 1. However, s1 = 0 can be a

best response in >G. To see this, it su¢ ces to show that
R
u1 (1; s2) d� (s2) =R

u1 (0; s2) d� (s2) = 0 for some � 2 ba (S2). To �nd such a �, let �m 2 ba (S2) be
14A similar example can also be found in Adams (1962), Seidenfeld and Schervish (1983), and

Wakker (1993).
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the uniform distribution on f1; 2; :::;mg. By Alaoglu�s Theorem (see Royden (1968,
Theorem 10.17)), there are � 2 ba (S2) and a sequence of f�mg such that

lim
m!1

�m (E) = � (E) for each E � N: (1)

Since u1 (0; s2) = 0 for all s2, it follows that
R
u1 (0; s2) d� (s2) = 0. To seeR

u1 (1; s2) d� (s2) = 0, observe that for every K � 1,

0 �
Z
u1 (1; s2) d� (s2) �

KX
s2=1

� (fs2g) +
1

K
� (fs2 : s2 > Kg) . (2)

Since �m (fs2g)! 0 and �m (fs2 : s2 > Kg)! 1, it follows from (1) that � (fs2g) =
0 and � (fs2 : s2 > Kg) = 1. Since (2) holds for all K � 1,

R
u1 (1; s2) d� (s2) = 0.

A strategy si 2 Si is said to be dominated given S 0 � S if for some strategybsi 2 Si, ui(bsi; s0�i) > ui(si; s0�i) for all s0�i 2 S 0�i. For any subsets S 0; S 00 � S where
S 00 � S 0, we use the notation S 0 7! S 00 to signify that for any s 2 S 0nS 00, some si is
dominated given S 0. Let �0 denote the �rst element in an ordinal �, and let �+ 1

denote the successor to � in �. In general games, Chen et al. (2007) o¤ered the

well-de�ned order-independent iterated elimination of strictly dominated strategies:

De�nition 3. An iterated elimination of strictly dominated strategies (IESDS �)
is de�ned as a �nite, countably in�nite, or uncountably in�nite family

n
D�
o
�2�

such that D�0 = S (and D�
= \�0<�D

�0
for a limit ordinal �), D� 7! D�+1, and

D � \�2�D
� 7! D0 only for D0 = D.

Next, we present an equivalence result between rationalizability and IESDS�

in the class of dominance-solvable games. We say that a game G is �dominance-

solvable� if the procedure of IESDS� leads to a unique strategy pro�le � i.e., by

performing the procedure of iterated elimination of strictly dominated strategies,

there is only one strategy left for each player; for example, the standard Cournot

game (Moulin, 1984), Bertrand oligopoly with di¤erentiated products, and the arms-

race games (Milgrom and Roberts, 1990). We need the following condition on a type

model >G.
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C3 (Strong Monotonicity) If a strategy bsi 2 Si strictly dominates another strat-
egy si 2 Si given S 0 �i.e. ui

�bsi; s0�i� > ui �si; s0�i� 8s0�i 2 S 0�i, then bsi �ti si for all
ti 2 >Gi (S 0).

The Strong Monotonicity requires that a strategy be strictly preferred to another

strategy if the former strategy strictly payo¤-dominates the latter one. This con-

dition on >G seems to be rather natural, and is satis�ed by most of preference
models discussed in the literature, e.g., the SEU model (Savage 1954), the OEU

model (Borgers 1993), the probabilistic sophistication model (Machina and Schmei-

dler 1992), the multi-priors model (Gilboa and Schmeidler 1989), the Choquet ex-

pected utility model (Schmeidler 1989), the lexicographic preference model (Blume

et al. 1991), the Knightian uncertainty model (Bewley 1986), and so on.15 From

a decision-theoretic point of view, the �transitivity�or �strong monotonicity�con-

dition is considered to be more basic tenets of rationality than the Sure-Thing-

Principle and other components of the standard Savage model; see Luce and Rai¤a

(1957, Chapter 13) and Epstein (1997) for more discussions. The following Propo-

sition 6 asserts that in dominance-solvable games, the notion of rationalizability

de�ned in any type model >G satisfying Diracability and Strong Monotonicity (but
not satisfying Monotonicity) is equivalent to the Nash equilibrium, which can be

solved by IESDS�.

Proposition 6. Suppose that G is a dominance-solvable game with a type model

>G satisfying C2 and C3. Then, D = R� = NE.

Proof. Since G is dominance-solvable, D = NE. Let R be a rationalizable set

in >G. Then, by C3, R is an undominated set � i.e., for every i, si 2 Ri is not
dominated given R. Therefore, R � D�

for all � and, hence, R� � D = NE. By

C2, the singleton of a Nash equilibrium is a rationalizable set in >G. Consequently,
R� = D = NE. �
15Nevertheless, as demonstrated in Example 4, the expected utility preference model with a

�nitely additive probability charge may violate C3.
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Remark. Proposition 6 says that in dominance-solvable games, rationalizability

de�ned in any type model >G satisfying C2 and C3 yields the unique set of out-
comes of iterated strict dominance, which is consistent with the Nash equilibrium

outcome. The result implies that the Nash equilibrium behavior is observationally

indistinguishable from the rationalizable strategic behavior in such type models.

In the classical Cournot duopoly game, for example, the Cournot-Nash outcome

is robust to the rationalizable strategic behavior in a wide range of type models

including the SEU model, the OEU model, the probabilistic sophistication model,

the multi-priors model, the Choquet expected utility model, the lexicographic pref-

erence model, the Knightian uncertainty model, etc. Proposition 6 also implies that

IENBR and IESDS� generate no spurious Nash equilibria in dominance-solvable

games. We would like to emphasize that Proposition 6 can be used for a type

model, without imposing C1, where the notion of rationalizability may fail to have

properties in Propositions 1-2.

7 Concluding remarks

In this paper, we have presented a simple and uni�ed framework for analyzing

rationalizable strategic behavior in general environments �i.e., arbitrary strategic

games with various modes of behavior; in particular, we have introduced the �model

of type� to de�ne the notion of rationalizability in games with (in)�nite players,

arbitrary strategy spaces, and arbitrary payo¤ functions. We have investigated

properties about rationalizability in general situations and shown that the notion

of rationalizability possesses nice properties similar to those in �nite games. More

speci�cally, under the mild condition C1, we have shown the following results on

rationalizability in general situations:

� The union of all the rationalizable sets is the largest rationalizable set
in product form (Proposition 1).

� The largest rationalizable set can be derived by the (possibly trans�-
nite) iterated elimination process of IENBR; IENBR is a well-de�ned
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order-independent procedure (Proposition 2).

Within a standard epistemic model, we have formulated and established the follow-

ing characterizations for rationalizability in general situations:

� The notion of rationalizability can be characterized by common knowl-
edge of rationality (Proposition 4).

� The notion of rationalizability is equivalent to the notion of a posteriori
equilibrium (Proposition 5).

Our approach in this paper is completely topology-free, and is applicable to any

arbitrary strategic game. We have demonstrated that, through examples, rational-

izability is in general not equivalent to iterated strict dominance in general game

situations. However, in dominance-solvable games, the rationalizable strategic be-

havior in a wide range of preference models yields the set of outcomes of iterated

strict dominance, which coincides with the Nash equilibrium outcome (Proposition

6).16

In this paper, we have also investigated, under C2, the relationship between

rationalizability and Nash equilibrium in general games. While every Nash equi-

librium survives the IENBR procedure, a Nash equilibrium in the �nal reduced

game after IENBR may fail to be a Nash equilibrium in the original game. That

is, the IENBR procedure may generate spurious Nash equilibria in in�nite games,

e.g. Reny�s (1999) better-reply secure games. We have provided a su¢ cient and

necessary condition to guarantee no spurious Nash equilibria (Proposition 3); in

particular, the unique Nash equilibrium can be obtained by IENBR if the procedure

of IENBR yields a singleton outcome (Corollary 1).

We would like to emphasize that one important feature of this paper is that

the framework allows the players to have various preferences which include the

subjective expected utility as a special case. In the light of the analysis of this

16Chen and Luo (2011a) showed that rationalizability under general preferences can be indistin-
guishable from the outcome of the IESDS procedure for a class of (in)�nite games.
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paper, we seek fairly natural and few behavioral assumptions on players�preference

relations as weak as possible to make our analysis applicable to a wide range of

strategic problems; in particular, we do not assume that preferences have utility

function representations. The general analysis of this paper is applicable to any

arbitrary strategic game with various modes of behavior.17

To close this paper, we would like to point out some possible extensions of

this paper for future research. In the (�nite) Bayesian game model, Dekel et al.

(2007) o¤ered the notion of interim correlated rationalizability, and Morris and

Takahashi (2011) examined a variant of preference-correlated rationalizability. We

note that the framework presented in this paper can be used for a general analysis

of rationalizability in incomplete-information environments. For example, we can

recast Dekel et al.�s (2007) notion of interim correlated rationalizability by using

a framework in which each type of a player is viewed as an independent agent-

player and the model of type for each agent-player speci�es a subjective probability

measure space for each product set of the payo¤-relevant states, the other players�

types, and possible restriction of action pro�les, where each probability distribution

over states, the other players� types and actions is consistent with the type�s a

prior belief about the payo¤-relevant states and the other players� types. This

framework can also be used for analyzing interim independent rationalizability and

preference-correlated rationalizability. The extension of this paper to general games

with incomplete information is an important subject for further research. In �nite

strategic games, Ambrus (2006) and Luo and Yang (2009) o¤ered the notion of

(Bayesian) coalitional rationalizability in complex social interactions. The extension

of this paper to permit social and coalitional interactions in general situations is

an intriguing topic worth further investigation. The exploration of the notion of

extensive-form rationalizability in general dynamic games also remains to be an

important research topic for further study.

17In this paper, C1 is perhaps the only essential behavioral assumption under which the ratio-
nalizability de�ned in general situations possesses nice properties as in the case of �nite games. C2
can be removed if one does not care about its relationship with the Nash equilibrium. Morris and
Takahashi (2011) did not impose this condition in their analysis. C3 is rather mild and innocuous,
and the condition is satis�ed by almost all preference models discussed in the literature.
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