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Abstract

Schumpeter (1939) proposes that recessions have virtue in promoting growth activ-

ities. However, this view is at odds with pro-cyclical R&D. We revisit the "virtue of

bad times" theoretically and empirically. Our theory suggests that recessions have such

virtue only when the cyclicality of innovation�s marginal opportunity cost dominates

that of its marginal expected return; but binding �nancial constraints can hinder such

virtue, preventing innovation from rising during recessions. Our theory is carried to

an industry panel of R&D and output. Our evidence suggests that recessions indeed

have potential virtue, but such virtue is hindered by �nancial-market frictions.
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1 Introduction

Bad times are said to have virtue in promoting long-run growth. This idea traces back

to Schumpeter (1939), and has been revived theoretically in the past 20 years by many

researchers such as Hall (1991), Aghion and Saint-Paul (1998), and Davis et al. (1999).

They argue that activities such as innovation, reallocation, or reorganization are concentrated

during recessions when their opportunity cost as forgone output is low. Therefore, bad times

promote long-run growth by encouraging growth-enhancing activities. Unfortunately, such

view is constantly at odds with the R&D data: R&D appears pro-cyclical both at the

aggregate level and at the industry level (Fatas, 2000; Ouyang, 2009). This has motivated

some researchers to question whether bad times indeed have virtue in boosting innovation,

and some others to argue that such virtue is hindered by �nancial-market frictions (Barlevy,

2007; Aghion et al. 2005).

This paper revisits the virtue of bad times theoretically and empirically, examining the

innovation channel through which cycles may impact growth. Our theory incorporates the

Schumpeterian idea with a simple over-lapping generation model, in which innovation and

production compete for resource as in the conventional theory. Following Aghion et al.

(2005), we model an additional cost required to adopt innovation outcome into production.

This adoption cost serves two roles. First, it breaks up the linearity of innovation�s marginal

expected return in expected cyclical shocks, so that the cyclicality of innovation�s marginal

expected return may dominate that of its marginal opportunity cost. We thus show that the

conventional Shumpeterian view relies on the cyclicality of which side dominates. In other

words, bad times have virtue in boosting innovation if and only if the cyclical response of

innovation�s marginal opportunity cost dominates that of its marginal expected return.

Second, this additional adoption cost of innovation outcome re�ects the in�uence of

�nancial-market frictions by being subject to �nancial constraint. We show that recessions

cause or tighten binding constraints, so that innovation declines regardless of the cyclical

responses of its marginal opportunity cost. Therefore, even if bad times have potential virtue,
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such virtue can be hindered by �nancial-market frictions. On this matter, our theory makes

several testable predictions. Entrepreneurs��nancial strength is captured by �, the ratio of

�nancial resource over output, similar in spirit to the standard indicator in the �nance and

growth literature as aggregate credit over GDP (Levin et al., 2000, King and Levine, 1993).

We predict � to a¤ect the level and the cyclicality of innovation. With binding �nancial

constraints, the level of innovation should rise in � cross-section. With the potential virtue

of bad times hindered by �nancial-market frictions, innovation should appear counter-cyclical

with su¢ ciently high �, but pro-cyclical with su¢ ciently low �, and display mixed cyclicality

for � whose value lies in the middle.

We carry our theory to an industry panel. The idea is to take advantage of the fact

that industry cycles are not fully synchronized with each others or with the aggregate cycle.

Data availability limits our analysis to 16 U.S. manufacturing industries with observations

on production, R&D, and �nance from 1958 to 1998. We examine the cyclicality of industry

R&D, and investigate whether industry �nancial strength contributes to its di¤erences cross-

industry. We approximate � using values of liquid assets, which mitigate an industry�s need

to borrow externally, and of net worth, which can be used as collateral for borrowing. Our

empirical �ndings are as follows.

Cross-section, stronger industry �nancial strength is associated with higher R&D level

as well as a smaller probability of having pro-cyclical R&D; most interestingly, Petroleum

Re�ning, who displays superior �nancial strength with its net-worth ratio and liquid-asset

ratio well surpassing the rest of the sample, is also the only industry with counter-cyclical

R&D, which, according to the conventional theory, implies the virtue of bad times. Our panel

regression con�rms such �ndings, and further suggests that stronger �nancial strength makes

R&D to appear pro-cyclical less often for industries whose R&D displays mixed cyclicality.

These results are consistent with our theory, pointing to the existence of potential virtue of

bad times hindered by �nancial-market frictions.

This paper belongs to a broad literature on the link between cycles and growth. Ramey
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and Ramey (1995) document a negative relationship between volatility and growth across

92 countries, suggesting that studying the two separately may be missing an important

linkage. While such relationship can arise from various channels, many papers focus on the

innovation channel, exploring why R&D appears pro-cyclical and the consequences of such

pro-cyclicality. Aghion and Saint-Paul (1998) propose theoretically that innovation can be

procyclical if innovative inputs are produced goods rather than factor inputs; however, many

oppose this possibility as Griliches (1990) argues that the major input into R&D is labor,

not produced goods (Barlevy, 2007; Ouyang, 2009).

More recent literature on the cyclicality of innovation has moved in two directions. Aghion

et al. (2005) model liquidity constraints to generate pro-cyclical R&D, and support their

theory with evidence at the aggregate level based on a panel of 14 OECD countries. Aghion

et al. (2010) further document the impact of liquidity constraint on R&D at the �rm level

with a panel of French �rms. Barlevy (2007) pushes for other explanations, showing that

R&D is pro-cyclical even for �rms whose liquidity constraints are less likely to bind in the

U.S.; he proposes a theory to stress the dynamic externalities inherent to the innovation

process that makes its return short-run rather than long-run. Following Barlevy (2007),

Francois and Lloyd-Ellis (2009) devise a model that separates innovation into three stages,

in which R&D rises during the implementation boom. While all these explanation can be

important in driving pro-cyclical R&D in reality, Ouyang (2009) �nds that industry R&D

responds asymmetrically to demand shocks in the U.S., and proposes liquidity constraint as a

potential explanation. Our paper further moves in this direction, presenting a simple model

to motivate empirical analysis based on more standard �nancial indicators, and showing that

the impact of liquidity constraint on R&D is also present at the industry level as well as in

the U.S. economy.

The rest of the paper is organized as follows. Section 2 presents the theory. Section 3

simulates a simple version of our theory numerically. Section 4 carries the theory to data.

We conclude in Section 5.
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2 The Model

The economy is populated by overlapping generations of entrepreneurs who live for two peri-

ods. There are L entrepreneurs in each generation. Each period, young generation produce

and innovate; old generation adopt the productivity gain from the last-period innovation,

produce, and die. Productivity gain is transferred between generations at no cost. Each

entrepreneur is endowed with a �xed amount of labor normalized as one. Let E to be the

production labor and R to be the innovation labor: E + R = 1 for young generation; and

E = 1 for old generation.

2.1 Production and Innovation

Output produced by an young entrepreneur, denoted Yy, is determined by an endogenous

productivity A, and a production function f :

Yy = A"f (E) ; f 0 > 0, f 00 � 0: (1)

" is a cyclical shock that follows a Markov process with support
�
"l; "h

�
� R+, where "l < 1

and "h > 1. The unconditional mean of " is normalized to one, and its conditional mean

satis�es Et ("t+1) = "
�
t , where 0 < � < 1 captures the persistence. The key assumption re-

garding " is that it has direct impact on production only. In other words, " a¤ects innovation

only indirectly by in�uencing innovation�s opportunity cost.1 Higher " raises present output,

the present marginal product of labor, as well as the expected future cyclical productivity.

Innovation process takes two steps to complete. By the end of period one, R generates

potential growth � (R) in the endogenous productivity: � (R) � 1, �(0) = 1, and �0 > 0. To

adopt such gain into production, however, it requires an additional adoption cost Ac (R) at

the beginning of period two: c (0) = 0, c0 � 0, and c00 � 0. The adoption cost is normalized
1This is one of the key assumptions in the conventional theory on the virtue of bad times. Ouyang (2009)

proposes that technology shocks may have direct impact on innovation. However, this paper examines the
impact of production shocks only as a revisit of the conventional theory.
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by A, as more advanced technology can be costlier to adopt. As explained later with more

details, this adoption cost helps to break up the linearity of the marginal expected return to

innovation in cyclical shocks, and to incorporate �nancial-market frictions.

Let Yo to be the output of an old entrepreneur who inherited A and put R into innovation

when he was young. When � (R) is adopted,

Yo = A� (R) "f (1) : (2)

Let r to indicate the interest rate. Suppose that, for any R 2 (0; 1] and " 2
�
"l; "h

�
,�

�(R)�1
1+r

�
"f (1) > c (R). Thus, an old entrepreneur adopts � (R) whenever possible.

Under this setup, innovation raises future productivity, but requires the sacri�ce of

present production. Young entrepreneurs choose R to balance this trade-o¤. Financial-

market frictions a¤ect R through their impact on old entrepreneurs�ability to cover c (R).

2.2 Complete Financial Market

We simplify the supply side of the �nancial market by assuming that there are in�nite number

of credit suppliers who lend at an exogenous interest rate r. Under complete �nancial market,

an entrepreneur receives output "f (1�R) by the end of period one, borrows c (R) at the

beginning of period two to adopt � (R); then he produces in period two, receives output and

returns (1 + r) c (R) by the end of period two. Suppose that price equals one and there is

no in�ation. Let V to be the present discounted value of an entrepreneur�s life-time pro�t.

With A normalized as one, a forward-looking young entrepreneur optimizes as follows:

Max
R

V (R; ") = "f (1�R)� c (R) + � (R)
1 + r

"�f (1) ; (3)

The following assumption ensures the concavity of V and the existence of an unique

interior solution.
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Assumption 1: V is second-order di¤erentiable in R; VRR(R; ") < 0, 8R 2

(0; 1), 8" 2
�
"l; "h

�
; VR(0; ") > 0, VR (1; ") < 0, 8 " 2

�
"l; "h

�
.

The �rst-order condition with respect to R, VR(R; ") = 0, gives:

"f 0 (1�R) =
�
f (1)

1 + r
"��0 (R)� c0 (R)

�
(4)

The left-hand side of (4) captures the marginal opportunity cost of innovation as the

forgone present output. The right-hand side is the marginal expected (net) return to inno-

vation. (4) suggests that the optimal R balances the trade-o¤ between present and future

production, equating the marginal opportunity cost to the marginal expected return.

Let R�� to represent the optimal R under complete �nancial market. Di¤erentiating (4)

with respect to R and " re�ects the response of R�� to ":

dR��

d"
=
f 0 (1�R��)� f(1)

1+r
�0 (R��) �"��1

VRR (R��)
(5)

According to Assumption 1, VRR (R��) is negative. Thus, the sign of dR
��

d"
is determined by the

magnitude of f 0 (1�R��), the impact of " on the marginal opportunity cost, relative to that

of f(1)
1+r
�0 (R��) �"��1, the impact of " on the marginal expected return. Intuitively, higher "

raises innovation�s marginal opportunity cost as well as its marginal expected return, so that

whether higher " encourages or discourages innovation depends on which e¤ect dominates.

Proposition 1 Under complete �nancial market, a positive production shock reduces inno-

vation if and only if the cyclicality of innovation�s marginal opportunity cost dominates that

of its marginal expected return; in this case, innovation co-moves negatively with output over

time.

Put di¤erently, dR
��

d"
< 0 if and only f 0 (1�R��) > f(1)

1+r
�0 (R��) �"��1. Let Y to be the
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total output of young and old generation divided by the generation size L:

Y = Yy + Yo = " [f(1�R) + f(1)] . (6)

Correspondingly, dY
d"
= f(1�R) + f(1)� "f 0(1�R)dR

d"
. Apparently, dY

d"
> 0 when dR��

d"
< 0:

higher " lowers innovation but raises production, so that innovation and output co-move

negatively over time.

Proposition 1 captures the case emphasized by the conventional theories on the virtue

of bad times. For example, Aghion and Saint-Paul (1998) model the expected return to

innovation reaped over the entire future, including periods with high pro�tability and those

with low pro�tability, so that the cyclical response of innovation�s marginal expected return

fails to dominate that of innovation�s marginal opportunity cost. Conversely, theories that

question the virtue of bad times emphasize the dominance of the cyclicality of innovation�s

marginal expected return. For example, Barlevy (2007) argues that the return to R&D is

short-run rather than long-run due to dynamic externalities inherent to the R&D process,

which ampli�es the cyclicality of R&D�s marginal return and therefore drives R&D pro-

cyclical.

An important note should be made. The case modeled by Aghion and Saint-Paul (1998)

can be captured by our model with the absence of adoption cost. With c(R) = 0, (5) can be

re-written as
dR��

d"
=
(1� �)f(1)

1+r
�0 (R��) �"��1

VRR (R��)
;

which is negative because VRR (R��) < 0 and � < 1. In this case, the marginal opportunity

cost is linear in ", and the marginal expected return is linear in "�; therefore, the impact of

" on the marginal opportunity cost must dominate as long as � < 1.

However, there is no reason to believe that the marginal opportunity cost and the mar-

ginal expected return are both linear in (expected) cyclical shocks. Our model assumes an

adoption cost to break up such linearity and thus provide an example for a more general case.
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Caballero and Hammour (1994) provide an example in which the cyclicality of the marginal

opportunity cost dominates without such linearity: they model the return to productivity

growth embodied through entry and the corresponding opportunity cost realized by exit;

cyclical response in entry is dampened by an entry cost increasing in entry size, so that it

fails to dominate the cyclical response in exit.

2.3 Incomplete Financial Market

When the �nancial market is incomplete, an old entrepreneur has limited ability to cover

c (R). We assume a time-invariant parameter � to capture such ability. � is the fraction of

an old entrepreneur�s wealth that can be used to �nance c (R) either directly or indirectly.

� can be the fraction of wealth as liquid assets for internal �nance, or the fraction of it as

net worth used as collateral for external borrowing. Since an entrepreneur is born with zero

initial wealth in period one, his initial wealth in period two equals the period-one output.

Therefore, the total amount of �nancial resource equals �Yy, where Yy re�ects the impact

of the output cycle on en entrepreneur�s �nancial ability and � captures factors other than

the output cycle. In spirit, � is similar to a standard �nancial indicator in the �nance and

growth literature as the ratio of total credit divided by GDP (King and Levine, 1993; and

Levine et al., 2000).

With constraint c (R) � �Yy, an entrepreneur optimizes as follows:

Max
R

"f (1�R)� c (R) + � (R)
1 + r

"�f (1) + � [�"f (1�R)� c (R)] ; (7)

� is the shadow value of the �nancial constraint. � > 0 when the constraint binds and

9



� = 0 otherwise. The �rst-order conditions yield

"f 0 (1�R) + � [�"f 0 (1�R) + c0 (R)] = "�f (1)

1 + r
�0 (R)� c0 (R) ; (8)

� [�"f (1�R)� c (R)] = 0,

� � 0 and �"f (1�R)� c (R) � 0:

� > 0 when �"f (1�R)� c (R) = 0

Like (4), (8) equates the marginal opportunity cost of innovation to its marginal expected

return. The right-hand side of (8) is identical to that of (4). The left-hand side of (8) includes

an additional term � [�"f 0 (1�R) + c0 (R)]. When the constraint does not bind (� = 0), (8)

is equivalent to (4). When the constraint binds (� > 0), an increase in R brings not only

higher marginal opportunity cost but also tighter constraint.

Proposition 2 Under incomplete �nancial market, for any given " the �nancial constraint

is less likely to bind with higher �.

Proposition 2 is easy to prove. Let R�� (") to be the optimal innovation under complete �-

nancial market that satis�es (4) with production shock "; de�ne� ("; �) = �"f (1�R�� ("))�

c (R�� (")). Apparently �� > 0: � monotonically increases in �, given ". Put intuitively,

lower � tends to cause or further tighten the binding constraint.

Let R� to be the optimal innovation that satisfy (8) with binding constraint (� > 0). (8)

suggests VR (R�) > 0 and

�"f (1�R�) = c (R�) ; (9)

Proposition 3 captures the cyclicality of R�.

Proposition 3 Under incomplete �nancial market with binding constraint, a positive pro-

duction shock raises innovation; innovation and output co-move positively over time.
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Di¤erentiating (9) with respect to " and R� gives

dR�

d"
=

�f (1�R�)
c0 (R�) + �"f 0 (1�R�) (10)

(10) suggests dR�

d"
> 0: higher " raises R� by relaxing the binding constraint. Combining

(10) with (6) gives
dY

d"
=

f (1�R�) c0 (R�)
c0 (R�) + �"f 0 (1�R�) + f(1) (11)

(11) suggests dY
d"
> 0: higher " raises output. Thus, R� and Y commove positively in response

to "; innovation is pro-cyclical.

Proposition 4 Given ", innovation is weakly increasing in �.

The proof takes several steps. Since�� > 0, the �nancial constraint binds with su¢ ciently

low � and does not bind with su¢ ciently high � for any given ". First, suppose � is su¢ ciently

low, the �nancial constraint binds, and an entrepreneur chooses R�. Conditional on binding

constraint, di¤erentiating (9) with respect to � and R� gives

dR�

d�
=

"f (1�R�)
c0 (R�) + �"f 0 (1�R�) (12)

Apparently, dR
�

d�
> 0: R� is strictly increasing in �. Second, suppose that the constraint

does not bind with � su¢ ciently high, and an entrepreneur chooses R��. With VRR (R) < 0

according to Assumption 1, VR (R��) = 0 and VR (R�) > 0 suggest R� < R��. Third, once an

entrepreneur reaches R��, further increases in � no longer a¤ect R��. In summary, innovation

is weakly increasing in �.

3 An Example

To illustrate quantitatively how �nancial-market frictions in�uence the cyclicality of innova-

tion, this section solves a version of the model in Section 2 with linear production function:
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"f (E) = "E. The adoption cost is also linear in R, c (R) = cR, where c is a constant. The

return to innovation is concave, � (R) = 1 +R�, with � 2 (0; 1). Et ("t+1) = "�t . We further

assume that c(1 + r) <
�
"l
��
, which ensures "�

1+r
R� > cR for any " 2

�
"l; "h

�
and R 2 [0; 1],

so that � (R) is adopted whenever possible.

Under complete �nancial market, an entrepreneur optimizes as follows:

Max
R

V (R) = " (1�R)� cR + "�

1 + r
(1 +R�)

Suppose that �
1+r

<
�
"l
�1��

, so that Assumption 1 is satis�ed for any " 2
�
"l; "h

�
: V (R) is

concave in R, V (0) > 0, and V 0 (1) < 0. The �rst-order condition with respect to R yields:

R�� =

�
�"�

(1 + r) ("+ c)

� 1
1��

: (13)

(13) suggests that dR
��

d"
< 0 if and only if � < "

"+c
. In this case, the marginal opportunity

cost of innovation is linear in "; and the expected marginal return to innovation is linear in

"�. The elasticity of "� with respect to " equals �. The elasticity of the marginal cost of

innovation (as the sum of the marginal opportunity cost and the marginal adoption cost)

with respect to " equals "
"+c
: @ ln("+c)

@ ln "
= "

"+c
. With � < "

"+c
, the marginal cost of innovation is

more responsive to " than the marginal expected return, and innovation is counter-cyclical

under complete �nancial market. This is consistent with Proposition 1.

Under incomplete �nancial market, an entrepreneur optimizes as follows:

Max
R

" (1�R) + "�

1 + r
(1 +R�)� cR + � [�" (1�R)� cR] ; (14)

The constraint binds for any " if and only if

� < � =
cR��

�
"h
�

"h (1�R�� ("h)) , where R
�� �"h� = " �

�
"h
��

(1 + r) ("h + c)

# 1
1��

; (15)
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and does not bind for any " if and only if

� > � =
cR��

�
"l
�

"l (1�R�� ("l)) , where R
�� �"l� = " �

�
"l
��

(1 + r) ("l + c)

# 1
1��

; (16)

Innovation and output under binding constraint are:

R� =
�"

c+ �"
; Y � =

c"

c+ �"
+ " (17)

Apparently, dR
�

d"
> 0 dY �

d"
> 0: R� and Y � commove positively in response to ", consistent with

Proposition 3. Moreover, (17) suggests that dR�

d�
> 0; it can also be proven that R� < R��;

thus, R is weakly increasing in �, consistent with Propositions 4.

Figure 1 plots the optimal innovation corresponding to �ve di¤erent � values. The �gure is

generated assuming � = 0:6, � = 0:75, r = 0:05, c = 0:5, "l = exp(�0:14) and "h = exp(0:14).

Correspondingly, � = 0:0278 and � = 0:0454. The parameterization satis�es Assumptions 1

as well as � < "
"+c

for any ", implying counter-cyclical innovation under complete �nancial

market.

Panel 1 of Figure 1 plots innovation against ". The solid line indicates R�� with � >

�. The dotted line at the bottom indicates R� with � < �; the dotted line at a higher

position refers to R� with � = �. Apparently, R�� declines in ", but R� rises in ". Panel

2 plots innovation against output. Since our parameterization ensures that " raises Y , the

relationship between innovation and output resembles that between innovation and ". In

both panels, higher � raises the dotted line to a higher position, implying a positive impact

of � on innovation under binding constraints.

Interestingly, as � rises to a value above � but below �, the cyclicality of innovation

displays an asymmetry. This is shown in Figure 1 as the dashed lines that meet the solid

line at some threshold " in panel 1 and at Y in panel 2. In this case, the constraint binds

for Y < Y and doe not bind for Y > Y , so that innovation is pro-cyclical for Y < Y and

counter-cyclical for Y > Y . With higher �, the position of the binding range of the dashed
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line moves higher, Y lowers, and the innovation is pro-cyclical for a smaller value range of

output.2

To see how �nancial-market frictions hinder potential virtue of bad times, suppose that

� 2
�
�; �

�
and output is initially above Y . When a negative shock drives Y below Y , inno-

vation would move somewhere on the dashed line due to binding constraints, although the

optimal innovation would have been on the solid line if the �nancial market were complete.

Hence, the distance between the dashed line and the solid line indicates the potential virtue

of bad times hindered by �nancial-market frictions.

4 R&D�s Cyclicality and Industry Financial Strength

This section applies our theory to data. In particular, we examine the cyclicality of R&D,

namely, the comovement between R&D and output, using an industry panel of R&D, output,

and �nance from the U.S. manufacturing sector. The idea is to take advantage of the fact

that industry cycles are not perfectly synchronized, due to either industry-speci�c shocks or

industry-speci�c responses to common aggregate shocks (Ouyang, 2009).

4.1 Data

Three data sources are combined to construct our industry panel. R&D by industry is from

the National Science Foundation (NSF) that publishes annual data on R&D expenditure

for major manufacturing industries from 1958 to 1998 based on the 1987 Standard Industry

Classi�cation (SIC) system.3 Data on output are taken from the NBER manufacturing pro-

ductivity (MP) database that provides annual data on production from 1958 to 2002 for 469

2The asymmetry in the cyclicality of innovation with � 2
�
�; �

�
is consistent with Ouyang (2009), who

estimates that demand shocks cause asymmetric response in R&D. She reports that a demand shock, either
positive or negative, reduces R&D always. To see how this can be captured in Figure 1, suppose that output
is initially at Y . Then, an " shock would cause innovation to respond asymmetrically: higher " raises output,
but lowers innovation by raising innovation�s opportunity cost; lower " reduces both output and innovation
by tightening the binding constraint.

3After 1998, R&D by industry is published based on the North American Industry Classi�cation System.
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four-digit manufacturing industries. Data on industry �nance are from the Quarterly Finan-

cial Report (QFR) published by Bureau of the Census, who presents the income statements

and the balance sheets for major manufacturing industries.

Ideally we would like to have R&D data for all 469 industries. Unfortunately, the R&D

data is available only for 20major industries at the two-digit or the combination of three-digit

SIC level, out of which 16 are covered by the QFR. The MP data is aggregated according

to the de�nitions of R&D industries. These 16 industries, together with their detailed SIC

codes, are listed in the �rst two columns of Table 1. This gives us a panel of R&D and

output for 16 manufacturing industries from 1958 to 1998.

We use real company-�nanced R&D expenditure to measure innovation.4 The nominal

R&D series are converted into 2000 dollars using the GDP de�ator, following Barlevy (2007).

Output is measured as real value added, as the de�ated value added using shipment-value-

weighted price de�ator. We use two measures provided by the QFR to indicate industry

�nancial strength: liquid assets (cash and U.S. government securities), which can be used

to �nance R&D internally, and net worth, which can be used as collateral for borrowing

externally. Because the full panel of �nancial indicators are not readily available, the quar-

terly average of each indicator in 1960, 1970, 1980, 1990, and 2000 are calculated to assess

the sample industries��nancial strength over the entire 1958-1998 sample period.5 More

speci�cally, � is measured as mean(�)
mean(y)

, where � denotes the value of net worth or liquid assets

in 2000 dollars, mean (�) is the the quarterly average of � for years 1960, 1970, 1980, 1990,

and 2000, and mean(y) is the time-series average of annual real value added from 1958 to

1998. When measured as the liquid-asset-over-output ratio, � indicates an industry�s ability

to �nance R&D internally; when measured as the net-worth-over-output ratio, it represents

an industry�s ability to �nance R&D through external borrowing.

4Some industry-year observations in the R&D panel are suppressed to avoid disclosure of individual �rms�
operations. Following Shea (1998), the growth of total R&D including both company-�nanced and federal-
�nanced is used to interpolate gaps in the series of company-�nanced R&D. There are three cases where
the observations on the total R&D spending are also missing, we use growth in company-�nanced R&D at
higher SIC level for interpolation.

5The QFR are not available in electronic format until 1987.
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We begin our empirical analysis by performing panel unit-root tests following Levin et

al.(2002). All tests employ industry-speci�c intercepts, industry-speci�c time trends, and

two lags. Critical values are taken from Levin et al.(2002). Results remain robust to leaving

out the industry �xed e¤ects or/and the time trend as well as to changing lag lengths. The

results suggest that both the series of real R&D expenditure and real value added contain a

unit root in log levels; but they are stationary in log-�rst di¤erences and are not co-integrated.

These results lead us to use log-�rst di¤erences (growth rates) in R&D and output when

examining the cyclicality of R&D.

4.2 Baseline Cyclicality of R&D

Table 1 summarizes the baseline cyclicality of R&D. Column three of Table 1 presents the

time-series correlation coe¢ cients between R&D growth and output growth for 16 sample

industries from 1958 to 1998. Out of the 16 coe¢ cients, �ve are negative and 11 are positive.

Pooling industries together gives an average correlation coe¢ cient of 0:0784.

We run the following OLS regression to estimate the cyclicality of R&D:

4 lnRit = �0 + �14 lnYit + �it: (18)

4 lnRit indicates the R&D growth for industry i in year t; 4 lnYit is the output growth; and

�it is the error. (18) examines the contemporaneous relationship between R&D growth and

output growth only, as the results with additional output lags are quantitatively similar. Our

results also remain robust to including a post-1992 dummy and quadratic time trends before

and after 1980 as additional controls following Ouyang (2009). All results are available upon

request.

The estimation results of (18) are listed in Column four of Table 1: �ve out of the 16

estimates are negative, only one statistically signi�cant. 11 are positive, out of which �ve

are statistically signi�cant. Pooling industries together produces an estimate around 0:1090,
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signi�cant at 5% level.

The conventional theory on the virtue of bad times predicts R&D to be concentrated

when output is low. Table 1 provides little support for such theory. Instead, it shows

that R&D is pro-cyclical on average and, more importantly, the cyclicality of R&D di¤ers

signi�cantly across industries.

4.3 Industry Financial Strength: cross-section evidence

We explore whether �nancial market frictions help to explain the cross-industry di¤erences in

R&D�s cyclicality. If binding �nancial constraint is what causes the contradiction between

the conventional theory and the data, industry �nancial strength should a¤ect both the

cyclicality and the level of R&D: in particular, R&D is counter-cyclical for industries with

su¢ ciently high �, but pro-cyclical for industries with su¢ ciently low �, and displays mixed

cyclicality with � whose value lies in the middle; moreover, the R&D level rises in � cross-

section.

4.3.1 Petroleum Re�ning

Table 2 presents the approximated � values for 16 sample industries, in the order of their rank

in the net-worth ratio. Apparently, Petroleum Re�ning (SIC 29) shows superior �nancial

strength by both indicators. Its liquid-asset ratio equals 0:7860, almost three times of that

for Drugs (SIC 283) that has the second highest liquid-asset ratio; its net-worth ratio equals

9:7762, almost �ve times of that of Electronics (SIC 36) that has the second highest net-

worth ratio. As a comparison, the liquid-asset ratio and the net-worth ratio average 0:1762

and 1:7567 only for the entire sample. Figure 2 presents the histograms of two approximated

� values, reinforcing this impression: the observation on the far right captures the � values

for Petroleum Re�ning (SIC 29), which are well above those of other industries.

Most interestingly, in Table 1 Petroleum Re�ning (SIC 29) is also the only industry

that features counter-cyclical R&D: the time-series correlation coe¢ cient between Petroleum
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output growth and Petroleum R&D growth is �0:3144; the OLS estimates show that a 10%

increase in Petroleum output growth is associated with about 1:74% decrease in Petroleum

R&D growth, signi�cant at 5% level. Figure 3 presents the time-series plots of R&D growth

and output growth for Petroleum Re�ning from 1958 to 1998: the two curves display negative

comovement over time, suggesting that Petroleum Re�ning R&D is counter-cyclical.

The counter-cyclicality of Petroleum Re�ning R&D is probably the �rst piece of evidence

in the literature consistent with the conventional theory on the virtue of bad times. Why

Petroleum Re�ning R&D co-moves negatively with its output, unlike other industries, is an

interesting phenomenon, and may intrigue di¤erent explanations.

For example, one may argue that Petroleum Re�ning could be a counter-cyclical industry

over the aggregate cycle, possibly due to �uctuations in oil prices. However, it is hard to

argue theoretically why oil-price shocks in�uence the cyclicality of R&D di¤erently as they

raise the production cost, lower the production pro�t, and thus reduce the opportunity cost of

R&D. Moreover, our data shows that Petroleum Re�ning output growth co-moves positively

with real GDP growth with a time-series correlation coe¢ cient of 0:4159, just like most of

the other industries.6

Moreover, one may argue that counter-cyclical R&D does not necessarily suggest that

R&D responds negatively to production shocks. According to our theory, dY
d"
= f(1� R) +

f(1) � "f 0(1 � R)dR
d"
. Hence, there are two cases in which R&D appears counter-cyclical.

dR��

d"
< 0 and dY

d"
> 0 is the case with the virtue of bad times. Another case is dR��

d"
> 0

and dY
d"
< 0 with f(1 � R) + f(1) < "f 0(1 � R)

��dR
d"

��: a positive production shock raises
R&D by so much that output declines. However, the literature has provided little evidence

suggesting that positive production shocks actually reduce output. Moreover, our data show

that R is very small quantitatively for all industries including Petroleum Re�ning: annual

real Petroleum Re�ning R&D spending averages 20:78 million in 2000 dollars from 1958 to

1998, only 0:64% of its 1958-1998 average annual real investment of 3:22 billion. Su¢ ciently

6As a matter of fact, the only industry in our panel that moves against the aggregate cycle is Food (SIC
20): its time-series correlation coe¢ cient with real GDP growth is �0:0289.
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small R makes it unlikely for f(1�R) + f(1) < "f 0(1�R)
��dR
d"

�� to hold.
Nonetheless, Table 2 suggests one reasonable explanation based on our theory for counter-

cyclical Petroleum Re�ning R&D, presenting this industry�s superior �nancial strength: with

su¢ ciently high � and thus non-binding �nancial constraint, entrepreneur are able to concen-

trate R&D when its opportunity cost as forgone output is low. This points to the possibility

that the conventional theory does capture the key factor in determining innovation�s cycli-

cality. In other words, bad times do have virtue in boosting innovation for long-run growth,

at least for Petroleum Re�ning.

4.3.2 Pro-cyclical R&D

According to Table 1, R&D is pro-cyclical for �ve industries with signi�cant positive esti-

mates: Rubber (SIC 30), Stones(SIC 32), Electronics (SIC 36), Aerospace (SIC 372, 376),

and Instruments (SIC 38). To examine how industry �nancial strength a¤ects the probabil-

ity of industry R&D�s being pro-cyclical, we estimate the following linear probability model

(LPM) and probit model :

P (proi = 1j�;b�) = �0 + �1�i + �2b�i + �i (19)

P (proi = 1j�;b�) = � (�0 + �1�i + �2b�i) :
proi equals one for Stones, Rubber, Electronics, Aerospace, and Instruments and equals zero

for all other industries. � is the standard normal distribution function b�i is an additional
control.

We control for b�i because �i is not the only factor determining R&D�cyclicality. Ac-
cording to our theory, the expected future productivity equals "�, where � is the elasticity

of "� with respect to ". Thus, � captures how responsive the expected future pro�tability is

to present shock or, alternatively, the magnitude of the cyclicality of the marginal expected

future return. Intuitively, su¢ ciently high � makes it more likely for the cyclicality of the
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marginal return to R&D to dominate, so that R&D is pro-cyclical even with non-binding

constraint. This is shown in Section 3 as that R�� is pro-cyclical when � > "
"+c
.

Since � is not directly observable, we estimate � using data on the �ve-factor total factor

productivity (TFP) growth. More speci�cally,

4 ln "it = �i4 ln "it�1 + � i lnRi + �it. (20)

4 ln "it is the TFP growth for industry i in year t. lnRi is the time-series average of real

R&D spending in log level for industry i. We include lnRi in the regression to control for

the in�uence of past innovation on endogenous productivity growth. Ideally, such in�uence

should be controlled for using lagged R&D. However, it is hard to determine the appropriate

lag length for R&D to impact productivity: some research projects may take over twenty

years to in�uence production, while some others can generate prompt productivity gain.

Moreover, longer lag length reduces the sample size. Therefore, we use lnRi instead to

control for average endogenous productivity growth driven by innovation.

(20) is estimated for each of the sample industries; the estimated �i therefore re�ects the

1958-1998 average persistence in productivity for industry i, controlling for industry R&D

level. Table 3 summarizes the estimated �0is in Column two and the estimated �
0
is in Column

three. Pooling all industries together produces an average annual persistence of 0:1353,

signi�cant at 5% level.7 The results stay robust to replacing the average log level of R&D

by the average growth in R&D or by a constant. All our results employing b�i�s stay robust
to replacing insigni�cant b�i�s with zeros or estimating b�i�s using the output growth instead
of the TFP growth.8

7Note that the estimated persistence at the industry level is smaller than that at the aggregate level
documented by the literature. This should not be surprising as it has been established theoretically and
empirically that cross-industry comovement contributes signi�cantly to the aggregate cycle, and therefore
ampli�es the aggregate persistence (Long and Plosser, 1983; Shea, 2002).

8There are both advantages and disadvantages of estimating cyclical persistence using the TFP growth
or the output growth. For example, demand shocks, as an important force for the production cycle, may
not be re�ected in the TFP growth. The output growth incorporates demand shocks; but the estimated
persistence in the output growth may be driven by input adjustment cost instead of the demand persistence
itself.
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Accordingly, we estimate (19) with � measured as the net-worth ratio, as the liquid-asset

ratio, with and without b�i. The estimate on �1 re�ects the impact of � on the probability
of industry R&D�s being pro-cyclical. The sample size is 16. Table 4 summarizes the

results. The eight estimates on �1 are all negative. Without controlling for b�i, only one
estimate is statistically signi�cant. After controlling for b�i, the four estimates all become
statistically signi�cant with bigger point estimates. These results are robust to leaving

Petroleum Re�ning out of the sample. In summary, Table 4 suggests a negative relationship

between industry �nancial strength and the probability of industry R&D�s being procyclical.

According to our theory, it can be explained as that lower � are more likely to cause binding

�nancial constraints that causes pro-cyclical R&D.

4.3.3 The R&D level

To further con�rm the impact of binding �nancial constraint on industry R&D, we apply

to our panel Proposition 4 that predicts the level of R&D to increase in �: with binding

constraint, higher � relaxes the constraints and makes higher R&D spending feasible; with

non-binding constraint, � has no impact on the level of R&D. Accordingly, we estimate the

following:

lnRi = �0 + �1�i + �2 lnYi + "i: (21)

lnRi and lnYi are the time-series averages of real R&D spending and output in log levels

for industry i. The sample size is 16. �1 > 0 under the null. We include lnYi to control

for the industry size: for example, L is taken as constant in our theory, but it di¤ers across

industries in practice. We estimate (21) with and without Petroleum Re�ning.

Our results are summarized in Table 5. The estimated coe¢ cients on �i are all positive

and statistically signi�cant at 5% level or above, either with � approximated as the net-

worth ratio or as the liquid-asset ratio, and either with or without Petroleum Re�ning. In

particular, a 10% higher net-worth ratio is associated with 2:0% higher R&D spending for

the full sample, and with 13:4% higher R&D spending for industries other than Petroleum
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Re�ning; a 10% higher liquid-asset ratio is associated with 29:0% higher R&D spending for

the full sample, and with 105:4% higher R&D spending for industries other than Petroleum

Re�ning. The bigger point estimates when Petroleum Re�ning is excluded from the estima-

tion is consistent with Proposition 4, as the R&D level strictly rises in � only for industries

with binding constraint.

4.4 Industry �nancial strength: panel evidence

Note that our cross-section evidence is based on 16 observations only due to limited data

availability. To test our theory with more observations and higher degrees of freedom, we

run the following panel regression to examine the impact of industry �nancial strength on

the cyclicality of R&D:

4 lnRit = �0 + �14 lnYit + �2�i4 lnYit + �3b�i4 lnYit + �it: (22)

Compared to (18), (22) includes two additional interaction terms: �i4 lnYit and b�i4 lnYit.
�2 captures an additional in�uence of �i on R&D�s cyclicality. Industry R&D is pro-cyclical

on average according to Table 1. If binding constraints contribute to such procyclicality.

Then higher �i should reduce R&D�s procyclicality by relaxing the binding constraint. There-

fore, �2 < 0 under the null. Similarly, �3 re�ects an additional impact of b�i on R&D�s
cyclicality. Higher b�i drives the marginal expected future return more responsive to present
shocks, so that R&D is more likely to be pro-cyclical. Hence, �3 > 0 under the null.

Alternatively, �i4 lnYit and b�i4 lnYit can be interpreted as follows. Because �i is the
�nancial resource as a fraction of output, �i4 lnYit stands for growth in �nancial resources

over the production cycle. Since b�i is the persistence in the cyclical shock, b�i4 lnYit rep-
resents the expected future pro�tability based on current pro�tability.9 Intuitively, (22)

9One may argue that b�i is the annual persistence, but the return to R&D usually takes longer than a
year to realize. Nonetheless, persistence over �ve-year, ten-year, or twenty-year horizon is still based on the
persistence over one year, so that �3 still qualitatively captues the in�uence of the expected future return to
R&D.
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estimates the cyclicality of R&D and how industry �nancial strength a¤ects such cyclicality,

controlling for the expected future pro�tability.

We estimate (22) with �i approximated as the net-worth ratio and as the liquid-asset

ratio. Our results are summarized in Column two of Table 6. The estimated �1�s are both

positive and signi�cant at 5% level, suggesting that industry R&D is pro-cyclical on average.

The estimated �2�s are both negative and signi�cant at 1% level, suggesting that higher �

reduces such pro-cyclicality. In particular, a 10% increase in output growth is associated

with about 2:2% increase in R&D growth; but such pro-cyclicality is reduced by 0:5% with

higher net-worth ratio, and by 6:3% with higher liquid-asset ratio. The estimated �3�s are

both positive and signi�cant at 5% level, consistent with the null.

However, several cautionary remarks should be made. First, it is possible that the nega-

tive estimates on �2 comes entirely from Petroleum Re�ning: if this is true, then the results

in Column two of Table 6 are just a simple replication of the cross-section evidence. Secondly,

our theory suggests that � a¤ects the possibility of R&D�s being procyclical; but, conditional

on R&D�s being pro-cyclical, it is hard to tell how � a¤ects the estimated output coe¢ cient.

As a matter of fact, (11) and (12) suggest that ��s impact on the estimated output coe¢ cient

conditional on binding constraint can be positive, depending on the speci�c functional form

of c(R).10 In the example presented in Section 3, Figure 1 shows that the slope is higher

with higher � between the two lines at the bottom displaying pro-cyclical R&D with binding

constraint,

More interestingly, industry �nancial strength should contribute to the mixed cyclicality

of R&D for industries whose R&D appears acyclical. This is shown in Figure 1: with

� 2
�
�; �

�
, innovation is pro-cyclical when output is low and when the constraint binds,

and is counter-cyclical when output is high and when the constraint does not bind; lower

� enlarges the output range within which the constraint binds. Intuitively, higher � makes

R&D co-moving with output positively less often for industries whose R&D displays mixed

10Combining (11) and (12) suggests that, in response to ", dRdY =
�f

fc0+f(1)c0+f(1)�"f 0 .
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cyclicality. This is an interesting pattern that cannot be captured by the cross-section

evidence.

Accordingly, we re-estimate (22), allowing �2 to di¤er for industries with pro-cyclical

R&D, acyclical R&D, and counter-cyclical R&D based on Table 1. More speci�cally:

4 lnRit = �0 + �14 lnYit + �
pro
2 �i4 lnYitDpro + �acy2 �i4 lnYitDacy + �cou2 �i4 lnYitDcou

+�3b�i4 lnYit + �it; (23)

where Dpro, Dacy and Dcou are dummy variables indicating industry R&D�s being pro-

cyclical, acyclical, and counter-cyclical. Based on Table 1, Dpro equals one for Rubber,

Stones, Electronics, Aerospace, and Instruments; Dcou equals one for Petroleum Re�ning,

and Dacy equals one for the other 11 industries. Under the null, �acy2 < 0 and �cou2 < 0.

We estimate (23) with � measured as the net-worth ratio and as the liquid-asset ratio.

Our results are summarized in Columns three, four, and �ve of Table 6. Apparently, the

two estimates on �cou2 are both negative and signi�cant at 1% level, showing that Petroleum

Re�ning R&D�s being counter-cyclical can be explained by its high �. The two estimates

on �pro2 are both statistically insigni�cant. Most interestingly, the two estimates on �acy2 are

both negative, one signi�cant at 1% level and the other signi�cant at 5% level, implying that

R&D is less likely to co-move positively with output with high � or, alternatively, that �

value contributes to the mixed cyclicality for industries with acyclical R&D. These results

suggest that the negative estimates on �2 listed in Column two of Table 6 comes not only

from Petroleum Re�ning, but also from industries whose R&D display mixed cyclicality.

In summary, Table 6 suggest the following. Industry R&D is pro-cyclical on average,

but stronger �nancial strength dampens such pro-cyclicality. This is consistent with our

null, and points to the possibility that binding �nancial constraint is a key factor causing

the contradiction between the conventional theory and data. In other words, the potential

virtue of bad times does exist potentially, but is hindered by �nancial-market frictions.
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5 Conclusion

We revisit the virtue of bad times theoretically and empirically. Our theory suggests that

whether bad times have virtue relies on the magnitude of the cyclicality of innovation�s

marginal opportunity cost relative to that of its marginal return. However, even if bad times

do possess potential virtue, �nancial-market frictions can hinder such virtue, preventing

innovation from rising during recessions.

We carry our theory to an industry panel, and �nd evidence consistent with its pre-

dictions. The cross-section evidence suggests that stronger industry �nancial strength is

associated with higher R&D level as well as a smaller probability of having pro-cyclical

R&D; Petroleum Re�ning, which displays superior �nancial strength relative to the rest of

the sample, is also the only industry with counter-cyclical R&D as the conventional theory

predicts. Our panel evidence further suggests that industry �nancial strength contributes to

the mixed cyclicality of R&D for industries whose R&D appear acyclical.

Future theoretical research should investigate factors determining the cyclicality of inno-

vation�s opportunity cost relative to that of its expected return or, alternatively, conditions

under which bad times indeed possess potential virtue in boosting innovation. Future em-

pirical research should improve on data availability on R&D and �nance at the industry or

aggregate level, and evaluate di¤erent theoretical explanations for pro-cyclical R&D, to shed

light on the link between cycles and growth through the cyclicality of innovation.
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Figure 1: Innovation and Production corresponding to di¤erent �: the four lines in each
panel corresponds to, from bottom to top, � = 0:0268, � = 0:0278, � = 0:0358, � = 0:0376,
and � = 0:0454. Upper panel plots innovation against production shock "; lower panel plots
innovation against output. The �gure is generated assuming � = 0:6, � = 0:75, r = 0:05,
c = 0:5, "l = exp(�0:14) and "h = exp(0:14). See text for more details.
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Figure 2: Sample distribution of � across 16 industries. Each bin is an industry. � is
approximated as the net-worth ratio in the left panel and as the liquid-asset ratio in the
right panel. The net-worth ratio is calculated as the quarterly average of an industry�s net
worth value in 2000 dollars for years 1960, 1970, 1980, 1990, and 2000 over the time-series
average of an industry�s annual real value added from 1958 yo 1998. The liquid-asset ratio
is calculated as an industry�s liquid asset value in 2000 dollars for years 1960, 1970, 1980,
1990, and 2000 over the time-series average of an industry�s real value added from 1958 to
1998. The bin with the highest � value is Petroleum Re�ning (SIC29) in either panel. Data
on net worth and liquid assets are from the Quarterly Financial Reports published by the
Census of Bureau. Data on output is from the NBER manufacturing productivity database.
See text for more details.
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Figure 3: The R&D growth and output growth for Petroleum Re�ning (SIC 29) from 1958
to 1998. The solid line indicates R&D growth and the dashed line indicates output growth.
Data on R&D are from the NSF and data on output are from the NBER Manufacturing
Productivity databases. See text for more details.
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Industry 1987 SIC Corr(Rt,Yt ) c�1
Food 20, 21 0:0741 0:1499
Lumber 24,25 0:0193 0:0764
Paper 26 �0:0787 �0:1785
Industry Chemicals 281,282, 286 �0:1069 �0:0775
Drugs 284 0:2243 0:2992
Other Chemicals 283, 285, 287, 289 �0:1501 �0:3515
Petroleum 29 �0:3144 �0:1744���
Rubber 30 0:1866 0:3384��

Stones 32 0:3208 0:6298��

Furrous Metals 331, 332, 339 0:0327 0:0355
Non-Ferrous Metals 333, 334, 335, 336 �0:0690 �0:0974
Metal Products 34 0:1050 0:1743
Machinery 35 0:1627 0:2214
Electronics 36 0:5638 0:4143���

Aerospace 372, 376 0:3736 0:5197���

Instruments 38 0:2771 0:2883�

average 0:0784 0:1090��

Table 1: Baseline cyclicality of industry R&D. corr(R,Y) is the time-series correlation be-

tween R&D growth and output growth from 1958 to 1998;c�1 is the OLS estimate on output
growth by regressing R&D growth on a constant and output growth; � indicates signi�cance
at 10% level. �� indicates signi�cance at 5% level. ��� indicates signi�cance at 1% level. Data
on R&D growth are from the National Science Foundation; data on output growth are from
the NBER manufacturing productivity database. See text for more details.
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Industry liquid assets/Output Net worth/Output
Petroleum 0:7860 9:7762
Electronics 0:2367 2:1252
Drugs 0:2820 2:0355
Non-Ferrous Metals 0:1559 1:9652
Industry Chemicals 0:1041 1:5057
Instruments 0:1217 1:3971
Paper 0:0852 1:2401
Other Chemicals 0:1728 1:2347
Machinery 0:1373 1:1173
Furrous Metals 0:1658 1:1034
Stone 0:1211 1:0437
Food 0:1100 0:9485
Aerospace 0:1067 0:7442
Rubber 0:0744 0:7405
Metal Products 0:0957 0:7261
Lumber 0:0638 0:4040

Average 0:1762 1:7567

Table 2: Industry �nancial strength. The net-worth ratio is calculated as the quarterly
average of an industry�s net worth value in 2000 dollars for years 1960, 1970, 1980, 1990,
and 2000 over the time-series average of an industry�s annual real value added from 1958 yo
1998. The liquid-asset ratio is calculated as an industry�s liquid asset value in 2000 dollars
for years 1960, 1970, 1980, 1990, and 2000 over the time-series average of an industry�s real
value added from 1958 to 1998. Industries are ranked according to the value of their net-
worth ratio. Data on liquid assets and net worth are from the Quarterly Financial Reports
published by the Census of Bureau. Data on output are from the NBER manufacturing
productivity database. See text for details.
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Industry b�i b� i
Food �0:3460�� 0:0018��

Lumber 0:0675 0:0049
Paper �0:1255 0:0016
Industry Chemicals 0:1205 0:0020
Drugs 0:4412��� 0:0001
Other Chemicals �0:1176 0:0024
Petroleum 0:1336 0:0018
Rubber �0:0835 0:0060��

Stones 0:1413 0:0031
Furrous Metals �0:0206 0:0036
Non-Ferrous Metals 0:0426 0:0023
Metal Products �0:0170 0:0016
Machinery 0:2346 0:0033
Electronics 0:4193�� 0:0031��

Aerospace �0:1529 0:0003
Instruments 0:2289 0:0010

average 0:1351�� 0:0023���

Table 3: Persistence in industry productivity. The OLS estimation results of regressing in-
dustry TFP growth on one-year lagged TFP growth and industry average real R&D spending
in log levels. The sample size of each regression is 39. b�i is the estimated coe¢ cient on lagged
TFP growth for industry i; b� i is the estimated coe¢ cient on log real R&D level for industry
i. � indicates signi�cance at 10% level. �� indicates signi�cance at 5% level. ��� indicates
signi�cance at 1% level. See text for more details.
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LPM Probit LPM Probit
no control controlling for b�

� as net-worth ratio
�0:0417�
(0:0206)

�0:3428
(0:2665)

�0:0530��
(0:0231)

�0:5406�
(0:2972)

Log-likelihood - �9:4874 - �8:7869
Pseudo R-squared 0:0365 0:0460 0:4918 0:1341

� as liquid-asset ratio
�0:4582
(0:3066)

�2:8649
(1:9855)

�0:6590�
(0:4930)

�4:4013�
(2:6744)

Log-likelihood - �9:6810 - �9:0441
Pseudo R-squared 0:0273 0:0296 0:0805 0:0910

Table 4: LPM and Probit Estimations of the impact of � on industry R&D�s being pro-
cyclical. LPM refers to the Linear Probability Model. The LPM is estimated as ordinary
least square and the probit model is estimated using maximum likelihood. The number of
observations is 16. Robust standard errors are in parentheses. The Pseudo R-squared for
the LPM is just the usual R-quared for OLS; the Pseudo R-squared for probit is calcuated
according to Wooldrige (2002). See notes to Tables 1, 2 and 3 for data sources; see text for
more details.

With SIC 29 Without SIC 29

� as net-worth ratio
0:2036��

(0:0900)
-

1:3487��

(0:4592)
-

� as liquid-asset ratio -
2:9004��

(1:2123)
-

10:5443���

(2:7835)

lnY
1:1155��

(0:5175)
1:1426��

(0:4529)
1:2325��

(0:4165)
1:1399���

(0:3328)
R-squared 0:2892 0:3226 0:5282 0:4844

Table 5: The R&D level and industry �nancial strength: the OLS results of lnRi = �0 +
�1�i + �2 lnYi + "i. lnRi is the time-series average of real R&D spending in log level for
industry i; �i is the �nancial indicator; lnYi is the time-series average of industry output in
log level for industry i. SIC 29 refers to the industry of Petroleum Re�ning. The sample
size is 16 with Petroleum Re�ning and 15 without Petroleum Re�ning. Robust standard
errors are in parentheses. �� indicates signi�cance at 5% level. ��� indicates signi�cance at
1% level. See notes to Tables 1 and 2 for data sources. See text for more details.
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� as net-worth ratio
full sample
# of obs: 640

Dcou= 1
# of obs:40

Dacy= 1
# of obs:440

Dpro= 1
# of obs: 160

4 lnYit
0:2145��

(0:0816)
0:4377���

(0:1122)

�i4 lnYit
�0:0504���
(0:0062)

�:0736���
(0:0121)

�0:2822���
(0:0800)

�0:1375
(0:0895)b�i4 lnYit

0:5625��

(0:2523)
0:6956�

(0:3415)
R-sqared 0:0256 0:0324

� liquid-asset ratio
full sample
# of obs: 640

Dcou= 1
# of obs:40

Dacy= 1
# of obs:440

Dpro= 1
# of obs: 160

4 lnYit
0:2328��

(0:0884)
0:4131���

(0:1388)

�i4 lnYit
�0:6329���
(0:0960)

�0:7986���
(0:2151)

�2:5542��
(0:8831)

�0:3253
(1:0874)b�i4 lnYit

0:5910��

(0:2632)
0:2098
(0:3426)

R-sqared 0:0241 0:0281

Table 6: R&D�s cyclicality and industry �nancial strength: the OLS results of regressing
R&D growth on a constant, output growth, and the interaction of �i and output growth,
and the interaction of b�i and output growth. The sample size is 640. 4 lnYit is the output
growth for industry i in year t. b�i is from Table 3. Based on Table 1, Dcou = 1 indicates
industry with counter-cyclical R&D (Petroleum Re�ning); Dacy = 1 indicates industries with
acyclical R&D; Dpro = 1 indicates industries with pro-cyclical R&D. Robust standard errors
clustered by industry are in parentheses. � indicates signi�cance at 10% level. �� indicates
signi�cance at 5% level. ��� indicates signi�cance at 1% level. See notes to Tables 1, 2 and
3 for data sources. See text for more details.
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