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1 Introduction

Relational contracts often su¤er from con�icts during which workers punish managers for broken

promises. A common cause for such con�icts is disagreement over the availability and e¢ cient use

of funds. In a typical con�ict of this sort, workers demand that a bonus be paid while managers

insist that the necessary funds are either non-existent or better used on something else, such as an

exceptional investment opportunity.

One source for disagreements over the availability and e¢ cient use of funds is asymmetric

information. In general, managers are better informed than workers about the challenges and

opportunities that their �rms face. As a result, managers often have private information about

the opportunity costs of paying their workers. The aim of this paper is to explore optimal

relational contracts in such a setting. For this purpose, we examine the repeated relationship

between a manager and a worker in which the manager�s opportunity costs of paying the worker

are stochastic and privately observed by her. We show that in the optimal relational contract,

the manager promises a bonus if opportunity costs are low but none if they are high. Con�icts

therefore arise whenever opportunity costs are high and the manager does not pay the bonus.

To manage these con�icts, the manager relies on a combination of informal promises and formal

commitments that evolves with the duration of the con�ict. Because of the manager�s actions,

e¤ort and expected pro�ts decline during a con�ict only gradually and then recover instantaneously.

The same pattern is repeated over time. The relationship between the manager and the worker

therefore never terminates, nor does it reach a steady state. Instead, it cycles inde�nitely.

The Lincoln Electric Company provides an example of the type of situation that motivates this

paper. In the early 1990s, Lincoln Electric was a leading manufacturer of welding machines that was

well-known for its promise to share a signi�cant fraction of pro�ts with its factory workers. In 1992

Lincoln�s U.S. business had generated a signi�cant pro�t and as a result its U.S. workers expected

to be paid their bonus. Mounting losses in its recently acquired foreign operations, however, more

than wiped out U.S. pro�ts. This presented CEO Donald Hastings with a dilemma: �Our 3,000

U.S. workers would expect to receive, as a group, more than $50 million. If we were in default, we

might not be able to pay them. But if we didn�t pay the bonus, the whole company might unravel�

(Hastings 1999, p.164). To prevent the company from unraveling, Hastings decided to borrow

$52.1 million and pay the bonus.

Why would Hastings have to take the seemingly ine¢ cient step of borrowing money to pay

the bonus? After all, the bonus was explicitly a �cash-sharing bonus� and U.S. workers had a

long history of accepting �uctuations in the bonus in response to �uctuations in U.S. pro�ts. The
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reason, it seems, was that U.S. workers were unable to observe foreign losses and therefore did not

know whether U.S. pro�ts really were needed to cover those losses. This explains why shortly after

he paid the bonus, Hastings also �[...] instituted a �nancial education program so that employees

would understand that no money was being hidden from them [...]�(Hastings 1999, p.172).

The Lincoln Electric case illustrates the issues that arise if a manager is privately informed

about the opportunity costs of paying her worker. In such a setting, if the manager does not pay

a bonus, the worker cannot observe her motives. Is the manager not paying the bonus because it

is more e¢ cient to spend resources on something else, as she claims? Or is she just making up an

excuse to extract some of the worker�s rents? To keep the manager honest, the worker must then

punish her whenever she does not pay a bonus. As a result, the manager faces a trade-o¤ between

the current bene�ts of adapting bonus payments to their opportunity costs and the future costs the

worker in�icts on her if she does not pay a bonus. In short, the manager faces a trade-o¤ between

the bene�ts of adaptation and the costs of con�icts.

To explore this trade-o¤, we examine a �rm that consists of a risk neutral owner-manager

and a risk neutral but liquidity constrained worker. Output and e¤ort are observable but not

contractible. At the beginning of every period the manager o¤ers the worker a contractible wage

and a non-contractible bonus. After accepting the o¤er, the worker decides on his e¤ort level.

E¤ort is continuous and imposes a cost on the worker. Finally, output is realized and the manager

decides how much to pay the worker. So far this is a relational contracting model with public

information that is well understood (MacLeod and Malcomson 1989). The only change we make

to this standard model is to assume that the manager�s opportunity costs of paying the worker

are stochastic and privately observed by her. In particular, just before the manager decides how

much to pay the worker, she observes whether the �rm has been hit by a shock - in which case

opportunity costs are high - or not - in which case they are low.

In this setting, the manager could avoid con�icts altogether by promising to pay the same bonus

whether opportunity costs are high or low. This is essentially what CEO Hastings did at Lincoln

Electric when he decided to pay the bonus even though he had to borrow the funds to do so. In

our setting, however, this is never optimal. Instead, the manager always promises a positive bonus

if opportunity costs are low and none if they are high. The bene�ts of adaptation therefore always

outweigh the costs of con�icts.

To see how con�icts evolve over time, consider an arbitrary sequence of shock and no-shock

periods. In any period in which the �rm is hit by a shock, expected pro�ts in the next period

will be strictly lower, unless expected pro�ts are already at their lower bound, in which case they
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stay there. And in any period in which the �rm is not hit by a shock, expected pro�ts will jump

back to their upper bound in the next period. Expected pro�ts therefore cycle inde�nitely and the

relationship never terminates. These cycles di¤er in length depending on the number of consecutive

shock periods the �rm experiences. They all, however, follow the same pattern in which downturns

are gradual and recoveries instantaneous.

To understand what generates this pattern, consider a typical con�ict. In particular, consider

a period in which expected pro�ts are at their upper bound and suppose the �rm is then hit by

shocks in a large number of consecutive periods. As we just saw, expected pro�ts will then decline

gradually until they bottom out at their lower bound. And once they have bottomed out at their

lower bound, expected pro�ts will stay there until the next no-shock period. We can now divide

this con�ict into three phases that di¤er according to the actions the manager takes to manage the

con�ict.

In the initial phase of the con�ict, the manager promises the worker a larger and larger bonus

but she does not commit to a wage. The worker accepts the manager�s o¤ers but provides less

and less e¤ort. Initially, the manager therefore relies only on informal promises to slow down the

worker�s e¤ort reductions.

In the intermediate phase of the con�ict, the manager complements the informal promise to

pay a no-shock bonus with a formal commitment also to pay a wage. Both the no-shock bonus

and the wage increase throughout this phase of the con�ict. The worker accepts the manager�s

o¤ers and always provides the same e¤ort level. Notice that the manager�s commitment to pay a

wage is costly, since she has to pay the wage even if the �rm is hit by a shock. In the intermediate

phase of the con�ict, however, e¤ort is so low that it is more e¢ cient to commit to a wage than to

tolerate further e¤ort reductions.

In the �nal phase of the con�ict, the bonus, the wage, and e¤ort stay constant until a period in

which the �rm is not hit by a shock. In that period the manager �nally pays the promised bonus

and expected pro�ts return to their upper bound. Once a con�ict hits rock bottom, therefore, the

manager makes no more changes to the compensation package. Instead, she simply waits for the

next no-shock period to revive her relationship with the worker.

A key assumption in our model is that the �rm is not liquidity constrained, that is, the manager

can always pay the worker any positive amount, even if the opportunity costs of doing so may be

high. In our main extension we relax this assumption. We show that liquidity constraints limit the

manager�s ability to manage con�icts, which slows down recoveries and may lead to termination.

They can also, however, induce the worker to respond to a con�ict by providing more e¤ort rather
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than less. Essentially, the worker understands that more e¤ort relaxes the �rm�s liquidity constraint

which, in turn, allows the manager to pay him a larger bonus.

To illustrate the role of liquidity constraints in managing relational contracts, we return to the

Lincoln Electric case. In early 1993, a few months after he had borrowed the necessary funds

to pay his workers, CEO Hastings realized that European losses would once again wipe out U.S.

pro�ts. The covenants in the debt that he took on the previous year, however, prevented him from

again borrowing the necessary funds to pay the bonus:

�The way I saw it, we had two choices: we could resort to massive layo¤s and cut executive

salaries to save money, or we could make extraordinary e¤orts to increase revenues and pro�ts. I

never seriously considered the �rst option. [...] Our longtime covenant with our workers guaranteed

them a least 30 hours of work per week. Downsizing could only result in deterioration of morale,

trust, and productivity. It�s bad long-term business. [...]

So rather than downsize, we turned to our U.S. employees for help. I presented a 21-point

plan to the board that called for our U.S. factories to boost production dramatically [...]. �We blew

it,� I said [to the U.S. employees]. �Now we need you to bail the company out. If we violate the

covenants, banks won�t lend us money. And if they don�t lend us money, there will be no bonus in

December��(Hastings 1999, pp. 171-172).

According to Hastings, his �statement appealed not only to [the U.S. workers�] loyalty but also

to what James F. Lincoln called their �intelligent sel�shness�� (Hastings 1999, p.172). And,

apparently, it worked:

�Thanks to the Herculean e¤ort in the factories and in the �eld, we were able to increase

revenues and pro�ts enough in the United States to avoid violating our loan covenants�(Hastings

1999, p.178).

As a result, Hastings was able to renew the covenants which, in turn, allowed him to once

again borrow the necessary funds and pay the bonus. In line with the reasoning that we sketched

above, therefore, Lincoln Electric�s U.S. workers increased their e¤orts to relax the �rm�s liquidity

constraints which, in turn, allowed Hastings to pay their bonus.

2 Related Literature

There is a large literature that examines relational contracts both between and within �rms; see

MacLeod (2007) and Malcomson (forthcoming) for recent reviews. Our paper contributes to the

branch of this literature that studies the actions managers can take to sustain relational contracts

better, such as the timing of payments (MacLeod and Malcomson 1998), the design of explicit
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contracts (Baker, Gibbons, and Murphy 1994, Che and Yoo 2001), the allocation of ownership

rights (Baker, Gibbons, and Murphy 2002, Rayo 2007), the di¤erential treatment of workers (Levin

2002), the grouping of tasks (Mukherjee and Vasconcelos 2011), and others. In contrast to these

papers, our focus is on how to manage con�icts once they arise, rather than on how to prevent

them in the �rst place.

A closely related model is the second part of Levin (2003), which examines the optimal rela-

tional contract when a manager cannot observe e¤ort but does have private information about a

worker�s performance. In this setting, the manager faces a similar trade-o¤ between the bene�ts

of adaptation and the costs of con�icts as in our model. In contrast to our model, however, the

optimal relational contract is stationary and takes the form of a termination contract. The key

di¤erence between the models is that in our settings transfers are ine¢ cient when the �rm is hit by

a shock while they are always e¢ cient in Levin (2003). Moreover, in Levin (2003) e¤ort is privately

observed by the worker, while it is publicly observed in our setting. In Section 7 we discuss why

these two di¤erences imply that termination contracts are not optimal in our setting.

Two other closely related papers are Yared (2010) and Englmaier and Segal (2011). Both papers

allow for ine¢ cient transfers and assume one-sided private information. Yared (2010) characterizes

the optimal relational contract between an aggressive country that seeks concessions and a non-

aggressive country with private information about the costs of concessions. Englmaier and Segal

(2011) study the relationship between a worker and a manager who is privately informed about the

costs of transfers. They focus on a particular class of relational contracts and examine the role of

unions in mitigating con�icts.

Our paper also contributes to the recent and growing literature on dynamics within relational

contracts. Chassang (2010) studies a model of exploration with private information and shows

that the relationship is path-dependent and can settle in di¤erent long-run equilibria. Fong and Li

(2010) study a moral hazard problem in which the worker has limited liability and explore patterns

of the worker�s job security, pay level, and the sensitivity of pay to performance. Padro i Miquel and

Yared (2011) examine a political economy model and study the likelihood, duration, and intensity

of war. Thomas and Worrall (2010) examine a partnership game with perfect information and

two-sided limited liability. They show that the relationship becomes more e¢ cient over time as the

division of future rents becomes more equal. Dynamics also arise in models of relational contracts

in which agents have private and �xed types; see for example, Halac (forthcoming), Watson (1999,

2002), and Yang (2011). In these papers, dynamics arise when the principal updates her beliefs

about the agent�s type.
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In terms of its analytical structure, our model is related to the literature of dynamic games with

hidden information; see for example Abdulkadiroglu and Bagwell (2010), Athey and Bagwell (2001,

2008), Athey, Bagwell and Sanchirico (2004), Hauser and Hopenhayn (2008), Mobius (2001), and

for surveys, Mailath and Samuelson (2006) and Samuelson (2006). Most of this literature examines

settings with symmetric players, multi-sided private information, and without monetary transfers.

Our model instead explores a setting with one-sided private information and ine¢ cient transfers.

As a result, �rst best is not possible in our model. We discuss the reason for this di¤erence in

more detail in Section 7.

Our model is also related to the literature on dynamic contracting between banks and privately

informed entrepreneurs (DeMarzo and Fishman 2007, DeMarzo and Sannikov 2006, Biais et al.

2007, and Clementi and Hopenhayn 2006). In contrast to this literature, we focus on a setting in

which long-term contracts are not feasible. The availability of long-term contracts is crucial for

our results. Indeed, we show in Section 7 that if the long-term contracts were feasible, the parties

could approximate �rst best.

Finally, since the e¢ ciency of transfers depends on the state of the world, our model is related

to the large literature on risk sharing. Kocherlakota (1996) and Ligon, Thomas, and Worrall (2002)

explore e¢ cient risk sharing between risk averse agents when information is public and commit-

ment is limited. Hertel (2004) examines the case with two-sided asymmetric information without

commitment. Thomas and Worrall (1990) study a one-sided asymmetric information problem with

commitment. This literature typically assumes that the player�s endowments are exogenously given

and path-independent. In our model, instead, output depends on the worker�s e¤ort and thus on

how it was divided in the past.

3 The Model

A �rm consists of a risk neutral owner-manager and a risk neutral but liquidity constrained worker.

The manager and the worker are in an in�nitely repeated relationship. Time is discrete and

denoted by t = f1; 2; :::;1g.
At the beginning of any period t the manager makes the worker an o¤er. The o¤er consists of

a contractible commitment to pay wage wt � 0 and a non-contractible promise to pay bonuses bs;t
and bn;t, where s and n stand for �shock�and �no-shock.� The worker either accepts the o¤er or

rejects it. We denote the worker�s decision by dt, where dt = 0 if he rejects the o¤er and dt = 1 if

he accepts it. If the worker rejects the o¤er, the manager and the worker realize their per period

outside options � > 0 and u > 0 and time moves on to period t+ 1.
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If, instead, the worker accepts the manager�s o¤er, he next decides on his e¤ort level et � 0.

E¤ort is costly to the worker and we denote his e¤ort costs by c(et). The cost function is strictly

increasing and convex with c (0) = c0 (0) = 0 and lime!1 c0(e) = 1. After the worker provides

e¤ort et, the manager realizes output y(et). The output function is strictly increasing and concave

with y (0) = 0. E¤ort et, e¤ort costs c (et), and output y (et) are observable to both parties but not

contractible. We denote the �rst best e¤ort level that maximizes y(e) � c(e) by eFB and assume
that y(eFB)� c(eFB) > � + u. The relationship is therefore productive, provided that the worker
puts in enough e¤ort.

After the manager realizes output y(et), she privately observes the state of the world �t 2 fs; ng,
where, as mentioned above, s and n stand for �shock� and �no-shock.� The states are drawn

independently across time from a binary distribution. The probability with which a shock state

occurs is given by � 2 (0; 1). The state of the world determines the opportunity cost of paying

the worker: if the �rm is not hit by a shock, paying the worker an amount of w + b costs the

manager w + b; if, instead, the �rm is hit by a shock, paying the worker w + b costs the manager

(1 + �) (w+ b), where � 2 (0;1). We do not model explicitly why opportunity costs may be high.
As discussed above, however, managers do sometimes face high opportunity costs of paying their

workers. This may be the case, for instance, because they need to borrow money to make their

payments, as in the Lincoln Electric case.

After the manager observes the state of the world, she pays the worker the wage wt and a bonus

bt � 0. Since the promised bonus is not contractible, the payment bt can be di¤erent from the

promises bn;t and bs;t.

Finally, at the end of period t, the manager and the worker observe the realization xt of a public

randomization device. The existence of a public randomization device is a common assumption in

the literature and is made to convexify the set of equilibrium payo¤s. The timing is summarized

in Figure 1.

Worker chooses
effort

Manager realizes
output

Manager decides
how much to pay

Manager observes
the state

Public
randomization

Manager offers
bonus and wage

Worker accepts
or rejects offer

Worker chooses
effort

Manager realizes
output

Manager decides
how much to pay

Manager observes
the state

Public
randomization

Manager offers
bonus and wage

Worker accepts
or rejects offer

Figure 1: Timeline

The manager and the worker share the same discount factor � 2 (0; 1). At the beginning of
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any period t, their respective expected payo¤s are therefore given by

�t = (1� �)
1X
�=t

���tE
�
d�y (e� )�

�
1 + 1f��=sg�

�
(w� + b� ) + (1� d� )�

�
and

ut = (1� �)
1X
�=t

���tE [d� (w� + b� � c (e� )) + (1� d� )u] .

Note that we multiply the right-hand side of each expression by (1� �) to express pro�ts and
payo¤s as per period averages.

We follow the literature on imperfect public monitoring and de�ne a �relational contract�as a

pure-strategy Perfect Public Equilibrium (henceforth PPE) in which the manager and the worker

play public strategies and, following every history, the strategies are a Nash Equilibrium. Public

strategies are strategies in which the players condition their actions only on publicly available

information. In particular, the manager�s strategy does not depend on her past private information.

We consider only pure strategies to avoid issues of measurability which arise because the action

spaces of the manager and the worker are a continuum. Notice that when the parties use pure

strategies, there is no need to consider private strategies since every sequential equilibrium outcome

is also a PPE outcome (Mailath and Samuelson 2006).

Formally, let ht+1 = fw� ; bn;� , bs;� , d� , e� , b� , x�gt�=1 denote the public history at the beginning
of any period t + 1 and let Ht+1denote the set of period t + 1 public histories. Note that H1 =

�. A public strategy for the manager is a sequence of functions fWt; Bs;t, Bn;t, Btg1t=1, where
Wt : Ht ! [0;1) ; Bs;t : Ht ! [0;1), Bn;t : Ht ! [0;1), and Bt : Ht [ fwt; bs;t, bn;t, dt, et; �tg !
[0;1). Similarly, a public strategy for the worker is a sequence of functions fDt, Etg1t=1, where
Dt : Ht [ fwt; bs;t, bn;tg ! f0; 1g and Et : Ht [ fwt; bs;t, bn;t, dtg ! [0;1).

We de�ne an �optimal relational contract�as a PPE with payo¤s that are not Pareto-dominated

by any other PPEs. Note that when the discount factor is su¢ ciently small, the only relational

contract is a trivial one in which the parties forever take their outside options. To make the analysis

more interesting, we assume that the parties are su¢ ciently patient so that a non-trivial relational

contract exists. Our objective is to characterize the set of optimal relational contracts.

4 Preliminaries

In this section we use the technique developed by Abreu, Pearce, and Stacchetti (1990) to charac-

terize the PPE payo¤ set. In the �rst sub-section we show that we can restrict attention to the

PPE frontier and then derive its basic properties. In the second sub-section we then provide the

recursive formulation of the PPE frontier.
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4.1 PPE Frontier

We denote the set of PPE payo¤s by E. Each payo¤ pair (�; u) 2 E is supported by a set of

actions and continuation payo¤s. Suppose for now that the worker accepts the manager�s o¤er.

We then need to specify the worker�s e¤ort e; the wage w, the bonuses bs and bn, and the associated

continuation payo¤s. It is without loss of generality that if either party deviates publicly, the

continuation payo¤s are given by the outside options � and u. If, instead, neither party deviates

publicly, the continuation payo¤s are given by (�s; us) and (�n; un). To support (�; u) as a PPE

payo¤, it is necessary and su¢ cient that (i.) the set of actions and continuation payo¤s are feasible,

including the restriction that the continuation payo¤s are again in E, (ii.) neither party can bene�t

from deviating to other actions, and (iii.) the weighted average of current and continuation payo¤s

are equal to (�; u).

Before we characterize the payo¤ set E, it is useful to derive a few results that will simplify the

analysis. For this purpose, we de�ne the payo¤ frontier as

u(�) � supfu0 : (�; u0) 2 Eg:

We can now state our �rst lemma.

LEMMA 1. The PPE payo¤ set E is compact. Let � be the manager�s maximum PPE payo¤. The

PPE payo¤ set E is then given by

E = f(�0; u0) : �0 2 [�; �]; u0 2 [u; u(�0)]g:

Moreover,

u(�) = u:

A key implication of this lemma is that the payo¤ set E is fully characterized by its frontier

u(�). There are two reasons for this. First, taking the outside options forever is a PPE that

gives both parties their minimax payo¤s. Second, since there is a public randomization device

any payo¤ below the frontier and above the outside options can be obtained by randomization.

Randomization, however, is not needed to support payo¤s on the frontier, as shown in the next

lemma.

LEMMA 2. Any payo¤ pair on the frontier (�; u(�)) can be supported by pure actions in the stage

game. Moreover, for all � 2 [�; �]; the PPE frontier u(�) is concave and di¤erentiable and its
derivative satis�es �1 < u0(�) � �1= (1 + ��) :
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This lemma states several properties of the PPE frontier that we will need later on. First, the

PPE frontier is di¤erentiable mainly because there is a continuum of e¤ort levels. If e¤ort levels

were discrete, the PPE frontier would not be di¤erentiable. Second, the PPE frontier is everywhere

downward sloping because the wage is contractible. If the manager were not able to contractually

commit to a wage, the PPE frontier could have an upward sloping portion. Finally, the fact that

the slope of the PPE frontier is strictly larger than �1 implies that the parties can never achieve
�rst best as we will see below.

The next lemma shows that as long as neither party deviates publicly, the continuation payo¤ of

any payo¤ pair on the frontier must also be on the frontier. In other words, the optimal relational

contracts are sequentially optimal.

LEMMA 3. Consider a payo¤ pair (�; u(�)) on the PPE frontier. Let (�s; us) and (�n; un) be the

associated continuation payo¤s following the shock and no-shock state respectively. Then

us = u(�s) and un = u(�n):

Essentially, since the worker�s actions are publicly observable, it is not necessary to punish him

by moving below the PPE frontier. This feature of our model is similar, for instance, to Spear and

Srivastava (1987) and the �rst part of Levin (2003). In contrast, joint punishments are necessary

in models with two-sided private information, such as Green and Porter (1984), Athey and Bagwell

(2001), and the second part of Levin (2003).

Recall from Lemma 2 that the public randomization device is not needed for payo¤s on the PPE

frontier. Lemma 3 then implies that the optimal relational contracts can be played out without the

public randomization device. To simplify the exposition, we refer to an optimal relational contract

as one in which no public randomization device is used.

4.2 Recursive Formulation

To support each PPE payo¤, a number of constraints have to be satis�ed. In this section we �rst

list a subset of these constraints and then combine and simplify them. At the end of this section

we then show that the PPE frontier is characterized by a maximization problem subject to these

constraints.

Consider a payo¤ pair (�; u(�)) on the frontier with associated stage game actions e; w, bs;

and bn, and the continuation payo¤s (�s; u(�s)) and (�n; u(�n)). For the actions and continuation

payo¤s to support (�; u(�)); we need the following constraints to hold:
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First, the promise-keeping condition for the manager requires that the manager�s payo¤ � is

equal to the weighted sum of her current and continuation payo¤s, that is,

� = � f(1� �) [y (e)� (1 + �)(w + bs)] + ��sg+ (1� �) f(1� �) [y (e)� w � bn] + ��ng : (PKM)

Second, the self-enforcing constraints require that the continuation payo¤s remain in the PPE

payo¤ set. In particular, we need

�s � � (SES)

and

�n � �: (SEN)

Third, the wage must be non-negative, that is,

w � 0: (NNW)

And �nally, the manager�s truth-telling constraint in a no-shock period requires that

� (�n � �s) � (1� �) (bn � bs): (TTN)

To further simplify these constraints, we �rst need to establish the next lemma which shows

that the manager always pays a weakly larger bonus if the �rm is not hit by a shock.

LEMMA 4. The no-shock bonus is always weakly larger than the shock bonus, that is, bn (�) � bs (�)
for all � 2 [�; �].

We can now prove the next lemma which will allow us to eliminate the shock and no-shock

bonuses from the above constraints.

LEMMA 5. For any payo¤ pair (�; u(�)) on the frontier, there exists a set of actions and continu-

ation payo¤s supporting it such that (i.) the manager�s truth-telling constraint in a no-shock period

TTN is binding and (ii.) the shock bonus bs(�) is zero.

For the �rst part of the lemma notice that since the PPE frontier is concave we can increase

the worker�s expected payo¤ by reducing the distance between �n and �s. And we can do so

until the manager�s truth-telling constraint binds. For the second part of the lemma, consider a

payo¤ pair on the frontier that is supported by actions that include a strictly positive shock bonus.

Speci�cally, suppose that the payo¤ pair is supported by some bw � 0, bbs > 0, and bbn � bbs. Now

consider alternative actions for which the shock bonus is zero but wages are given by bw + bbs and
the no-shock bonus is given by bbn �bbs. It can be shown that since the original relational contract

11



satis�es all the necessary constraints for the payo¤s to be on the frontier, so does this alternative

one. And of course their payo¤s are identical.

Finally, using Lemmas 2-5, we can represent the PPE frontier recursively. For this purpose,

consider any bounded function f with support [�; �], in which � is arbitrarily chosen. We then

de�ne the operator T as follows: for all � 2 [�; �],

Tf(�) = max
e;w;�s;�n

(1� �) [y (e)� c (e)] + �� [�s + u (�s)] + (1� �) � [�n + u (�n)]� (1� �) ��w (1)

subject to

� = (1� �) y (e) + ��s � (1� �) (1 + ��)w; (PKM)

�s � �; (SES)

�n � �; and (SEN)

w � 0: (NNW)

Notice that in this maximization problem we are not choosing bs and bn and we are not listing

the manager�s truth-telling constraint (TTN). The reason is that we have solved the TTN constraint

for bn and then substituted it into the PKM constraint. Moreover, we set bs equal to zero which,

as we just saw, is without loss of generality.

The next lemma states that the joint payo¤ on the PPE frontier is equal to the maximal joint

PPE payo¤ - expressed as the weighted sum of current and continuation joint payo¤s - subject to

the constraints discussed above.

LEMMA 6. For all � 2 [�; �], the joint payo¤ � + u(�) satis�es

� + u(�) = T (� + u(�)):

Recall that an optimal relational contract is a PPE whose payo¤s are on the PPE frontier. It

is therefore characterized by the constrained maximization problem (1). Since in that problem we

have set bs = 0, from now on an optimal relational contract refers to one in which the manager

does not pay a bonus in a shock period.

Notice that the above lemma speci�es a necessary condition for the joint payo¤ on the PPE

frontier, not a su¢ cient one. In general, T can have multiple �xed points; see for example, Baker,

Gibbons and Murphy (1994) for an illustration. The multiplicity arises, in part, because � appears

in the constraint SEN. As a result, T is no longer a contraction mapping. It is immediate, however,

that even if T has multiple �xed points, the joint payo¤ on the PPE frontier is the largest one.
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5 The Optimal Relational Contract

In this section we �rst characterize the optimal relational contract and then trace out its evolution

over time.

5.1 Characterizing the Optimal Relational Contract

The optimal relational contract is determined by PPE frontier u (�). Figures 2a and 2b illustrate

some of the key properties of the PPE frontier that we derived in the previous section and that will

be relevant for the characterization of the optimal relational contract.

π ππππ π

u u

u u

)(πu
)(πu

π̂ π ππππ π

u u

u u

)(πu
)(πu

π̂

Figures 2a and 2b: The PPE Frontier

In both �gures, the PPE frontier is di¤erentiable, concave, and its slope satis�es �1 < u0(�) �
�1=(1 + ��). The two �gures di¤er, however, in terms of the critical level of expected pro�ts b�,
which is de�ned by b� = (1� �)y(be) + ��; (2)

where be is the unique e¤ort level that solves
c0(be)
y0(be) = 1

1 + ��
. (3)

Notice that b� can be larger than �, as in Figure 2a, or it can be smaller, as in Figure 2b. If b� is
larger than �, then the PPE frontier is linear with slope u0(�) = �1=(1 + ��) for all � 2 [�; b�] and
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it is strictly concave for all � 2 (b�; �]. If, instead, b� is smaller than �, then the PPE frontier is
strictly concave for all � 2 [�; �].

Under the optimal relational contract, the parties�payo¤s move along the PPE frontier. How

they do so, and what e¤ort, bonus, and wage decisions support these payo¤s, is determined by

the solution to the problem stated in Lemma 6 and is characterized in the next proposition. The

proposition also shows that for any level of expected pro�ts �, there is a unique optimal relational

contract.

PROPOSITION 1. For any level of expected pro�ts �, there exists a unique optimal relational

contract that gives the worker u(�). Under the optimal relational contract:

(a.) E¤ort e� (�) is given by the unique e¤ort level e that solves

c0(e)

y0(e)
= �u0(�) for all � 2 [�; �] .

(b.) Wages are given by

w� (�) = max
� b� � �
(1� �)(1 + ��) ; 0

�
.

(c.) The no-shock bonus b�n(�) is given by

b�n (�) =
�

1� � (� � �
�
s (�)) > 0:

(d.) If the �rm is hit by a shock, the continuation pro�t ��s (�) satis�es

��s (�) = � and �
�
s (�) < � for all � 2 (�; �]

(e.) If the �rm is not hit by a shock, the continuation pro�t is given by

��n (�) = � for all � 2 [�; �] :

We will discuss this proposition in reverse, starting with Parts (d.) and (e.) and then working

our way up. Parts (d.) and (e.) show that the optimal continuation pro�ts are strictly smaller if

the �rm is hit by a shock than if it is not, that is, ��s (�) < �
�
n (�) for all � 2 [�; �]. The optimal

relational contract therefore punishes the manager if she does not pay a bonus and rewards her if

she pays the no-shock bonus b�n (�). This suggests that b�n (�) is not just weakly positive, as we

know from the previous section, but strictly so.

Part (c.) shows that this is indeed the case. Notice that the expression for the optimal no-shock

bonus follows immediately from substituting the zero shock bonus and the optimal continuation

pro�ts in the manager�s truth-telling constraint (TTN).
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The manager therefore always makes the bonus payments contingent on their opportunity costs.

Doing so does lead to con�icts that lower expected pro�ts. And since joint surplus � + u (�) is

increasing in expected pro�ts, it also destroys joint surplus. In our setting, however, the manager�s

current bene�ts of adapting bonuses to their opportunity costs always outweigh the future costs

that the worker in�icts on her if she does not pay a bonus.

Consider next the expression for wages in Part (b.). To interpret this expression, recall that b�
can be larger than �, as in Figure 2a, or smaller, as in Figure 2b. In particular, it follows from

(2) and (3) that there exists a critical value of the size of the shock � such that b� < � if and only
if � is above the critical value. From Part (b.) we then have the intuitive result that the manager

never commits to wages if paying the worker in a shock period is su¢ ciently costly. If, instead,

� is below the critical value, the manager does commit to strictly positive wages when expected

pro�ts are su¢ ciently low, that is, when � � b�.
Finally, Part (a.) shows that the optimal e¤ort level is determined by the slope of the PPE

frontier. Since the PPE frontier is concave, e¤ort is monotonically increasing in expected pro�ts.

Notice, however, that even when expected pro�ts are at their upper bound �, e¤ort is strictly less

than �rst best. The parties are therefore never able to achieve �rst best. We will return to this

issue in Section 7.

5.2 The Dynamics of the Optimal Relational Contract

We can now use the characterization of the optimal relational contract to trace out its evolution

over time. We focus on the case in which the manager pays wages at least sometimes, that is, we

focus on b� > �. Once we understand this case, the evolution of the optimal relational contract

when the manager never pays wages will be immediate.

Consider �rst the evolution of expected pro�ts. It follows from the proposition that if the �rm

is hit by a shock in one period, expected pro�ts in the next period will be strictly lower, unless

expected pro�ts are already at their lower bound � > 0, in which case they stay there. And

if the �rm is not hit by a shock in one period then expected pro�ts in the next period will be

at their upper bound �. Expected pro�ts therefore cycle inde�nitely and the relationship never

terminates. These cycles di¤er in length depending on the number of consecutive shock periods

the �rm experiences. They all, however, follow the same pattern in which downturns are gradual

and recoveries instantaneous. This is also illustrated in Figure 3 which plots expected pro�ts for

an arbitrary sequence of shock periods - indicated by red squares - and no-shock periods - indicated

by blue dots.
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Figure 3: Evolution of Expected Pro�ts

To understand what generates the evolution of expected pro�ts, consider a typical con�ict. In

particular, consider a period in which expected pro�ts are at their upper bound � and suppose the

�rm is then hit by shocks in a large number of consecutive periods. As we just saw, expected

pro�ts will then decline gradually until they bottom out at their lower bound �. Once expected

pro�ts have bottomed out at their lower bound, they will stay there until the next period in which

the �rm is not hit by a shock. We can now divide this con�ict into three phases: the initial phase,

which consists of the periods for which � 2 [b�; �], the intermediate phase, which consists of the
periods for which � 2 (�; b�), and the �nal phase, which consists of the periods for which � = �. In
terms of Figure 2a, the initial phase consists of periods in which expected pro�ts are on the strictly

concave segment of the PPE frontier, the intermediate phase consists of periods in which expected

pro�ts are on the linear segment, and the �nal phase consists of periods in which expected pro�ts

are at their lower bound.

In the initial phase of the con�ict, the manager promises the worker a larger and larger no-shock

bonus but she does not commit to a wage. The worker accepts the manager�s o¤ers but provides

less and less e¤ort.

In the intermediate phase of the con�ict, the manager complements the informal promise to pay

a no-shock bonus with a formal commitment also to pay a wage. Both the no-shock bonus and the

wage increase throughout this phase of the con�ict. The worker accepts the manager�s o¤ers and

always provides the same, strictly positive e¤ort level be. Committing to a wage is of course costly,
since the manager has to pay the wage even if the �rm is hit by a shock. In the intermediate phase

of the con�ict, however, e¤ort is so low that committing to a wage is less costly than further e¤ort

reductions would be.

In the �nal phase of the con�ict, the no-shock bonus and the wage stay constant at their
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maximized levels and e¤ort stays constant at be. This �nal phase of the con�ict continues until

the parties reach a period in which the �rm is not hit by a shock. In that period the manager

�nally pays the promised no-shock bonus and expected pro�ts return to their upper bound �. The

evolution of bonuses, wages, and e¤ort during this con�ict are also illustrated in Figure 4, where

once again red squares indicate shock periods and blue dots indicate no-shock periods.
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Figure 4: Evolution of E¤ort, Bonuses, and Wages

The three phases of a con�ict therefore di¤er according to the actions the manager takes to

manage the con�ict. In the initial phase, the manager relies only on informal promises to slow

down the worker�s e¤ort reductions. In the intermediate phase, the manager then depends on

both informal promises and formal commitments to halt further e¤ort reductions. And in the �nal

phase, the manager makes no more changes to the compensation package. Instead, she simply

waits for the next no-shock period to revive her relationship with the worker.
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6 Allowing for Liquidity Constraints

The Lincoln Electric case that we discussed in the Introduction suggests that liquidity constraints

can have signi�cant e¤ects on managers�ability to manage con�icts. In this section we explore

this issue by allowing for the �rm to be liquidity constrained.

Speci�cally, we now assume that if the �rm realizes output y (e) and is not hit by a shock,

the manager can pay the worker at most (1 +m) y (e), where the parameter m � 0 captures the

extent to which the �rm is liquidity constrained. Liquidity constraints make the PPE frontier

non-di¤erentiable and thus substantially complicate the characterization of the optimal relational

contract. To make the analysis more tractable, we now assume that the size of the shock � is equal

to in�nity. The manager therefore cannot pay the worker whenever the �rm is hit by a shock. An

immediate implication of this assumption is that wages and the shock bonus are always equal to

zero.

Recall that without liquidity constraints the entire PPE frontier can be sustained by pure

strategies and termination never occurs in equilibrium. The next lemma shows that if the �rm is

liquidity constrained this need no longer be the case.

LEMMA 7. There exists a critical level of expected pro�ts �0 2 [�; �) such that for all � � �0 the
PPE frontier u(�) is supported by pure actions and for all � < �0 it is supported by randomization.

Speci�cally, for any � < �0 the manager and the worker randomize between terminating their

relationship and playing the strategies that deliver expected payo¤s �0 and u(�0).

In Appendix B we provide a su¢ cient condition for �0 > �. In that case, the PPE frontier

is supported by randomization for su¢ ciently small levels of expected pro�ts. We will see below

that this implies that the relationship is certain to terminate after a �nite number of periods. If,

instead, �0 = �, the entire PPE frontier can once again be supported by pure strategies and the

relationship never terminates.

We can now state our next proposition which characterizes the optimal relational contract when

the �rm is liquidity constrained.

PROPOSITION 2. Suppose that the �rm is liquidity constrained. Then, in an optimal relational

contract:

(a.) E¤ort e� (�) is non-monotonic in expected pro�ts �. In particular, e� (�) increases in �

for all � 2 [�0; �1] [ [�2; �) but decreases in � for all � 2 (�1; �2), where �1 and �2 are de�ned in
Appendix B and where �0 � �1 � �2.
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(b.) The no-shock bonus b�n(�) is given by

b�n (�) =
�

1� � (�
�
n (�)� ��s (�)) > 0:

(c.) If the �rm is hit by a shock, the continuation pro�t ��s (�) satis�es

��s (�0) = � and �
�
s (�) < � for all � 2 (�0; �] .

(d.) If the �rm is not hit by a shock, the continuation pro�t ��n (�) satis�es

��n (�) = � for all � 2 [�1; �] and
� < ��n (�) < � for all � 2 [�0; �1] :

The proposition shows that liquidity constraints a¤ect the manager�s ability to manage relational

contracts in three main ways. First, they limit her ability to induce instantaneous recoveries. To

see this, consider a period in which the �rm is not hit by a shock. Without liquidity constraints,

expected pro�ts � then immediately return to their upper bound �. This is also the case if the �rm

is liquidity constrained provided that expected pro�ts are su¢ ciently large. If expected pro�ts are

quite low, however, then it takes at least two periods for expected pro�ts to return to their upper

bound. Essentially, for the worker to agree to move to the equilibrium in which expected pro�ts are

at their upper bound, the manager has to compensate him for the corresponding loss in his payo¤.

If the �rm is not liquidity constrained, the manager can do so with a single, large bonus payment.

But if the �rm is liquidity constrained, the manager may have to spread the bonus payment over

multiple periods. Liquidity constraints, therefore, slow down the recovery from su¢ ciently severe

con�icts.

As mentioned above, liquidity constraints may also force the manager to accept termination as

part of the optimal relational contract. To see this, consider a period in which expected pro�ts are

at their upper bound and suppose the �rm is then hit by shocks in a large number of consecutive

periods. As in the model without liquidity constraints, expected pro�ts will then gradually decline

over time. And if �0 = � expected pro�ts will again bottom out at their lower bound �, where

they will stay until a period in which the �rm is not hit by a shock. If �0 > �, however, the

manager and the worker will eventually reach a period in which ��s (�) � �0 < �. At that point it
will take at most two more consecutive shock periods for the relationship to terminate.

To get an intuition for why liquidity constraints may make termination necessary, recall that

if expected pro�ts are low, the continuation pro�ts in a no-shock period ��n (�) are small. The

manager�s reward for paying b�n (�) is therefore limited. To induce the manager to continue to

be truthful, the worker then needs to increase the manager�s punishment for not paying b�n (�).
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And when expected pro�ts are already small, the only way to do so is to increase the threat of

termination.

While liquidity constraints limit the manager�s ability to manage con�icts, they can also induce

the worker to respond to a con�ict by providing more e¤ort rather than less. This will be the

case, in particular, if �2 > �1, a su¢ cient condition for which we provide in Appendix B. The

worker may increase his e¤ort during a con�ict because he understands that this relaxes the �rm�s

liquidity constraint which, in turn, allows the manager to pay him a larger bonus if the �rm is not

hit by another shock. As discussed in the Introduction, this reasoning is broadly consistent with

the experience at Lincoln Electric.

In summary, liquidity constraints limit the manager�s ability to manage con�icts which slows

down recoveries and can lead to termination. Liquidity constraints, however, can also induce the

worker to respond to a con�ict by providing more e¤ort rather than less.

7 Discussion

In this section we revisit key features and assumptions of our model and examine them in more

detail. We focus on our main model without liquidity constraints.

7.1 Termination and Suspension Contracts

The optimal relational contract in our setting cannot be implemented by termination contracts. As

discussed in Section 2, this is in contrast to related models such as the second part of Levin (2003)

in which termination contracts are optimal (see also Fuchs 2007). There are two main reasons for

this di¤erence. First, in our setting, the worker�s e¤ort is publicly observable. This implies, in

particular, that in equilibrium the worker is never punished and the continuation payo¤s always

stay on the frontier. In contrast, in the second part of Levin (2003), joint punishment is necessary

and the continuation payo¤s fall below the frontier. The outside option can then help to sustain

the continuation payo¤. Second, in our setting transfers are ine¢ cient whenever the �rm is hit by

a shock. This friction implies that transfers cannot be used to divide surplus without a¤ecting its

size. In particular, in our model the PPE frontier is concave and not a negative 45 degree line as it

is in Levin (2003). To support any payo¤ on the PPE frontier, it is therefore not possible to have

the payo¤ itself, its continuation payo¤s, and its outside options on the same line. As a result,

termination contracts are not optimal.

In another well-known type of relational contract, the parties alternate between cooperation

and punishment phases. We refer to such contracts as �suspension contracts�since cooperation is
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only suspended and not terminated. Suspension contracts are of course familiar from Green and

Porter (1984). And in the context of employment relationships they are examined in Englmaier

and Segal (2011) and Gary-Bobo and Jaaidane (2011).

In our setting, a suspension contract requires the parties to start out cooperating, with the

worker providing a high level of e¤ort. If the manager ever does not pay a bonus, the parties

switch to punishment for a �xed number of periods. During the punishment phase the worker

provides low e¤ort and the manager pays no bonus. After that, the parties revert back to the

cooperation phase.

Suspension contracts are not optimal in our setting. The reason, in part, is that e¤ort costs

are strictly convex. To see this, take any suspension contract and augment it by increasing the

e¤ort level that is associated with the punishment phase. One can then lengthen the duration of

the punishment phase to ensure that the manager�s truth-telling constraint is still satis�ed. Since

e¤ort costs are convex, this augmented suspension contract makes the worker better o¤ and is thus

more e¢ cient. Suspension contracts are therefore not optimal in our setting.

7.2 The Failure to Achieve First Best

We show in Appendix C (Proposition C1) that the Folk Theorem holds in our setting. Speci�cally,

we show that as the discount factor � goes to one, the limit set of the PPE payo¤ contains the

interior of the set of feasible payo¤s. Joint surplus therefore converges towards �rst best as the

parties become increasingly patient. It is important to note, however, that as long as the discount

factor � is strictly less than one, joint surplus is strictly less than �rst best. For any � < 1 the

optimal relational contract is therefore ine¢ cient. This is in contrast to related repeated games

with imperfect public monitoring such as Athey and Bagwell (2001) in which �rst best can be

achieved for a range of discount factors.

The reason for the parties�inability to achieve �rst best is that the worker can never be sure

that opportunity costs are low. The fact that the worker can never be sure that opportunity costs

are high, in contrast, does not matter for the parties�inability to achieve �rst best. To see this,

suppose that whenever the �rm is not hit by a shock, there is some probability p 2 [0; 1) with
which it becomes publicly known that the �rm�s opportunity costs are low. And whenever the

�rm is hit by a shock, there is some probability q 2 [0; 1) with which it becomes publicly known
that the �rm�s opportunity costs are high. If p = q = 0, this model is the same as our main model.

And if either p or q were equal to one, the state would be publicly observed and there would be no

need for the manager to be punished on the equilibrium path. We discuss this public information
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benchmark in the next section. In Appendix C (Proposition C2) we show that in the setting in

which p 2 [0; 1) and q 2 [0; 1), �rst best can be achieved for su¢ ciently high discount factors if and
only if p > 0. Essentially, when p > 0, the manager does not pay the worker when the �rm is hit

by a shock but promises him a larger bonus in the next period in which it is publicly observed that

the �rm�s opportunity costs are low. Since the occurrence of such an event is publicly observable,

the manager�s promise is credible and �rst best is feasible.

Firms that ask their workers to accept cuts to their compensation often open their books to

prove that those cuts really are necessary (recall, for instance, the Lincoln Electric case in the

Introduction; see also Englmaier and Segal 2011). The above argument suggests that �rms should

not only open their books during hard times, in the hope of avoiding worker punishments. Instead,

it may be even more important for �rms to keep their books open during good times, so as to make

punishments less costly.

7.3 Benchmarks: Public Information and Long-term Contracts

A �rst benchmark against which one can compare our model is one in which shocks are publicly

observed. In Appendix C (Proposition C3) we examine this case and characterize the PPE payo¤

set and the associated optimal relational contracts. Relative to our model, there are three key

di¤erences. First, when information is public, expected pro�ts, e¤ort, and joint surplus weakly

increase over time. Second, they reach their highest achievable levels with probability one and then

stay there forever. And third, if the manager and the worker are patient enough, those highest

achievable levels are equal to �rst best. The evolution of the relationship between the manager

and the worker therefore depends crucially on whether shocks are publicly observed.

A second benchmark against which one can compare our model is one in which the manager

can commit to a long-term contract. To explore this benchmark, suppose that in any period t the

manager �rst observes the state �t 2 fn; sg and then makes an announcement mt 2 fn; sg about
the state. Suppose also that before the �rst period, the manager can commit to a contract that,

for any period t, maps her announcements (m1;m2,...;mt) into the bonus bt that she has to pay

the worker at the end of period t.

A long-term contract does not allow the parties to achieve �rst best. It does, however, allow

them to approximate �rst best. To see this, let �(t) denote the number of consecutive periods

immediately preceding t in which the manager did not pay the worker. Now consider a contract

with three features. First, the contract asks the worker to provide �rst best e¤ort in all periods.

If the worker ever does not provide �rst best e¤ort, the manager will never again pay him. Second,
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the contract speci�es that if, in period t, the manager announces that the �rm has not been hit by

a shock, she pays the worker a bonus

bt (�(t)) =

�
1 +

1

�
+
1

�2
+ :::+

1

��(t)

��
u+ c

�
eFB

��
:

And third, the contract speci�es a number T � 1 that determines how much the manager has to
pay the worker whenever she announces that the �rm has been hit by a shock. In particular, if, in

period t, the manager announces that the �rm has been hit by a shock and if �(t) < T , then the

manager does not have to pay the worker. If, however, �(t) = T , then the manager has to pay the

worker a bonus bt (T ).

In Appendix C (Proposition C4) we show that under such a contract, the worker always pro-

vides �rst best e¤ort and the manager always announces the state truthfully. Essentially, under

this contract the manager has to pay the worker
�
u+ c

�
eFB

��
per period, independent of her an-

nouncements. By lying about the state, the manager can therefore a¤ect the timing of payments

but not their net present value.

This contract does not achieve �rst best since it induces ine¢ cient payment whenever the �rm

is hit by shocks in T consecutive periods. By agreeing to a large T , however, the parties can come

arbitrarily close to achieving �rst best. The evolution of the relationship between the manager and

the worker therefore depends crucially on whether the manager is able to commit to a long-term

contract. And as we saw above, it also depends on whether shocks are privately observed.

8 Conclusions

In a well-known article in The New Yorker, Stewart (1993) describes the upheavals at the investment

bank Credit Suisse First Boston (CSFB) after consecutive years of disappointing bonus payments.

Problems started in 1991 when traders demanded that management pay them a higher bonus.

Management, however, stood �rm, insisting that a higher bonus was not justi�ed because of the

need to �build capital.� To appease the traders, management then simply �promised that 1992 would

be di¤erent - that salaries and bonuses would again be competitive.� Traders were forthcoming in

expressing their disappointment but their retaliations were limited. The traders�behavior changed

the following year, however, when bonus payments were once again below expectations. This time

�many traders seemed to drag their heels, further depressing the �rm�s earnings�and �defections [...]

increased as soon as First Boston actually began paying bonuses.� This response forced management

to adapt its compensation policy by formally committing to �guaranteed pay raises,�in some cases

as much as 100%.
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At the heart of the con�ict at CSFB was uncertainty, and possibly private information, about

the opportunity costs of bonus payments. In particular, while there was no disagreement about the

traders�performance, there was disagreement about the extent to which bonus payments should be

contingent on the need to �build capital.� The aim of this paper was to explore the con�icts that

arise in such a setting. In our model, it is optimal for the manager to make payments contingent

on their opportunity costs, even though this makes con�icts inevitable. As in the CSFB example,

the manager responds to such con�icts by adapting compensation to their duration, moving from

the informal - promising that 1992 will be di¤erent - to the formal - committing to guaranteed pay

raises. Because the manager responds to a con�ict by changing the compensation she o¤ers the

worker, con�icts evolve gradually. This is again illustrated in the CSFB example in which traders

did not switch from cooperation to punishment abruptly. Instead, the relationship deteriorated

gradually in response to repeated disagreements about bonus pay. Finally, in our setting, expected

pro�ts cycle inde�nitely. The relationship between the manager and the worker therefore never

terminates, nor does it reach a steady state. This, of course, is in contrast to the CSFB example

where many traders did leave. Termination, however, can also arise in our setting once we allow

for the �rm to be liquidity constrained.

To discuss the empirical implications and testability of our model, it is useful to note that the

basic structure of the stage game is closely related to a �trust game.� In a standard trust game,

the �proposer��rst decides on the size of a monetary gift that he makes to the �responder.� The

gift is then increased by some amount after which the responder decides how much to give back to

the proposer. One can therefore view our model as an in�nitely repeated trust game in which the

responder faces shocks to the costs of giving back. There is an extensive literature in experimental

economics that examines trust games. This suggests that one could test our model in a laboratory

setting. Two predictions, in particular, are clear cut. First, the evolution of trust - as measured

by the size of the gift - depends crucially on whether shocks are publicly observed or not. If shocks

are publicly observed, trust increases over time until it tops out at some level. If shocks are instead

privately observed, trust evolves through booms and busts. Second, the long-term prospects of

a relationship depend on whether the responder is liquidity constrained. If the responder is not

liquidity constrained, the relationship continues forever. But if she is liquidity constrained, it is

certain to terminate eventually.

We have cast our model in the context of an employment relationship. The main ingredients of

the model - repeated interaction, limited commitment, and ine¢ cient transfers - are also relevant

in many other economic settings. One example is the lending relationship between an entrepreneur
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and an investor who are not able to commit to long-term contracts. The entrepreneur can have

private information about her marginal value of money and the investor can adjust his future

�nancing terms based on the payment history of the entrepreneur. Another example is that of

long-term and informal supplier relationships in which buyers face shocks to their ability to pay

their suppliers. In 1995, for instance, Continental Airlines was close to bankruptcy and its �most

pressing need was to shore up its cash position. The airline [...] was only able to make its January

1995 payroll when [its CEO] Bethune successfully begged Boeing to return cash deposits on aircraft

whose delivery he had deferred� (Frank 2009). A �nal example involves the informal insurance

relationships among farmers in developing countries. There is some evidence that the farmers�

income is private information; see, for example, Kinnan (2011). While most of the literature has

focused on moral hazard and insurance issues separately, our model suggests that these issues are

related since insurance decisions a¤ect future production choices.
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9 Appendix A: Main Model

In this appendix we prove the lemmas and proposition in Sections 4 and 5 which analyze our main

model. In the �rst part , we formally list all of the constraints to support (�; u(�)) as a payo¤on the

PPE frontier. In the second part, we prove the equivalent of Lemma 1-6 in the preliminary section

in the sense we consider a relaxed program that ignores the worker�s incentive compatibility (IC)

constraints. And in the third part, we check the worker�s ICs are satis�ed and prove Proposition 1.

9.1 List of Constraints

Recall that E is the set of PPE payo¤s. Consider a payo¤ pair (�; u) 2 E and the associated e; w,
bs; bn; (�s; us) and (�n; un). To support (�; u) as a PPE payo¤, we need three sets of constraints:

(a.) feasibility : the set of actions and continuation payo¤s are feasible, including the restrictions

that the continuation payo¤s are again in E, (b.) No deviation: the players cannot bene�t from

deviating to other actions, and (c.) Promise-keeping : (�; u) is equal to the weighted average of

current and continuation payo¤.

9.1.1 Feasibility

For the actions to be feasible, the base wage and bonuses need to be non-negative and so is the

e¤ort level. Speci�cally, we need

bs � 0; (NNS)

bn � 0; (NNN)

w � 0; and (NNW)

e � 0: (NNe)

For the continuation payo¤s to be feasible, the continuation payo¤s need also be PPE payo¤s:

(�s; us) 2 E and (SES)

(�n; un) 2 E: (SEN)

9.1.2 No Deviation

For the parties not to deviate, we need to consider two types of deviations: o¤-schedule and

on-schedule. O¤-schedule deviations are those that can be publicly observed. If an o¤-schedule

deviation occurs, there is no loss of generality in assuming that the parties will permanently break
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up the relationship by taking their outside options, as this is the worst possible equilibrium that

give each party its minimax payo¤. Here, the manager deviates o¤-schedule when he fails to pay a

bonus equalling either bs or bn: When this occurs, the manager�s continuation payo¤s will be �:

To prevent the manager from o¤-schedule deviations, it su¢ ces that her loss in future continua-

tion payo¤ exceeds her maximum possible current gain from deviating. The manager�s current gain

from deviation is maximized when she pays zero bonus. This gives us the non-reneging constraints

��s � �� � (1� �) (1 + �) bs (NRS)

and

��n � �� � (1� �) bn: (NRN)

For the worker, he deviates o¤-schedule when he does not put in e¤ort e:When this occurs, the

worker will receive zero bonus and that his continuation payo¤ will be u: By deviating away from

e; the worker gains most by putting in zero level of e¤ort. Therefore, to prevent the worker from

o¤-schedule deviation, the worker�s payo¤ from putting in zero e¤ort and receiving the base wage

and a continuation payo¤ of u must be smaller than his equilibrium payo¤. In other words,

�u+ (1� �)w � u: (ICW)

In addition to o¤-schedule, there are on-schedule deviations, which are those privately observed

by the parties. Since only the manager has private information, there are two types of on-schedule

deviations. First, the manager pays bs in a no-shock state. Second, she pays bn in a shock state.

To prevent the manager from paying out bs in a no-shock state, we need

� (�n � �s) � (1� �) (bn � bs): (TTN)

Similar, to prevent the manager from paying out bn in a shock state, we need

� (�n � �s) � (1 + �) (1� �) (bn � bs): (TTS)

9.1.3 Promise-Keeping

Finally, the consistency of the PPE payo¤decomposition requires that the players�payo¤s are equal

to the weighted sum of current and future payo¤s. Speci�cally, we have

� = � ((1� �) (y (e)� (1 + �)(w + bs)) + ��s) + (1� �) ((1� �) (y (e)� w � bn) + ��n) ; (PKM)

and

u = �((1� �) (w + bs) + �us) + (1� �) ((1� �) (w + bn) + �un)� (1� �) c (e) . (PKW)

27



9.2 Preliminary Lemmas

For the analysis below, we will �rst prove all of the results by ignoring ICW . In other words, the

analysis can be thought of as dealing with a model in which the worker�s e¤ort is contractible. We

check at the end of the analysis (in Part 4) that ICW holds for all optimal relational contracts for

this case.

LEMMA 1�. The PPE payo¤ set E is compact. Let � be the maximum PPE payo¤ of the manager.

The PPE payo¤ set E is given by

E = f(�0; u0) : �0 2 [�; �]; u0 2 [u; u(�0)]g:

In addition,

u(�) = u:

Proof: First, note that (�; u) is in the PPE payo¤ set, enforced by that the parties taking their

outside options in each period. Note also that � is the manager�s minmax payo¤ and u is the

worker�s minmax payo¤, it follows that any PPE payo¤ must give the manager at least � and the

worker at least u: It is then immediate that the bonus payment of the managers in any PPE is

bounded above, and consequently, the worker�s e¤ort is also bounded above. In other words, we

can restrict the actions of the manager and the worker to compact sets. Standard argument then

implies that the PPE payo¤ set E is compact, and

u(�) = maxfu; (�; u) 2 Eg:

Now to see that u(�) = u; suppose to the contrary that u(�) > u: Note that (�; u(�)) is an

extremal point of the PPE, so it is sustained by pure action in period 1. Let e(�) be the worker�s

e¤ort associated with � in period 1: Now by increasing e(�) to e(�)+" for small enough " and keep

everything else the same. This change results in a strategy that is also a PPE. But the new PPE

gives the manager a higher payo¤ than �: This contradicts the de�nition of �:

Now the availability of the public randomization device implies that any payo¤ on the line

segment between (�; u) and (�; u) can be supported as a PPE payo¤. It then follows that any payo¤

(�; u0) can be obtained from the randomization between (�; u) and (�; u(�)) for all u0 2 [u; u(�)]:
Finally, since each player can choose to take its outside option, any PPE payo¤ pair must give the

manager at least � and the worker at least u: This �nishes the proof. �
The next lemma corresponds to Lemma 2 in the text except that it does not contain u0 > �1;

which will be proved later.
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LEMMA 2�. For all � 2 [�; �]; the following properties hold. (i.): (�; u(�)) can be supported by
pure actions in the stage game (other than taking the outside option), (ii.): u is concave, (iii.): u

is di¤erentiable with u0(�) � �1=(1 + ��).

Proof: Part (ii.) follows directly from the availability of the public randomization device.

Part (i.) results from the following two steps. In Step 1, we show that, for any �1 < �2; if both

u(�1) and u(�2) can be sustained by pure actions in the stage game other than taking the outside

option, then u(�) can also be sustained by pure actions for any � 2 (�1; �2). In Step 2, we show
that u(�) is supported by a pure action in the stage game without taking the outside option.

To prove Step 1, it su¢ ces to show that for any �1 < �2; if both u(�1) and u(�2) can be sustained

by pure actions in the stage game (other than the outside option), then for any � = ��1+(1��)�2
for some � 2 (0; 1); we can support (�; �u(�1)+(1��)u(�2)) with pure actions. To do this, suppose
ei; wi; bsi ; bni ; �si;�ni ; i = 1; 2 are the actions and continuation payo¤s associated with �1 and �2.

De�ne e be the e¤ort level such that

y(e) = �y(e1) + (1� �)y(e2):

Since y is increasing and concave,

y(�e1 + (1� �)e2) � �y(e1) + (1� �)y(e2):

Therefore, by the monotonicity of y; we have

e � �e1 + (1� �)e2:

Also, let

w = �w1 + (1� �)w2;

bs = �bs1 + (1� �)bs2 ;

bn = �bn1 + (1� �)bn2 ;

�s = ��s1 + (1� �)�s2 ;

�n = ��n1 + (1� �)�n2 :

One can check that this set of e; w; bs; bn; �s; and �n supports a PPE that gives the manager � and

the worker at least �u(�1) + (1� �)u(�2): Therefore, u(�) can be sustained by pure actions.
For Step 2, de�ne �0 as the smallest payo¤ of the manager such that u(�0) is sustained by pure

action. If �0 > �; then on the one hand, for � 2 (�; �0); we have u(�) < u(�0): This is because
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u(�) is sustained by randomization (and that u(�) = u < u(�0)), so its value falls in (�; u(�0)). On

the other hand, consider the actions and continuation payo¤s that supports u(�0); keep everything

except increases the wage by small enough ": It can be checked that this change implements a PPE

payo¤ of (�0 � (1 + ��)"; u(�0) + "): By the de�nition of u; this implies that

u(�0 � (1 + ��)") � u(�0) + ":

By taking " to 0, we then have that

u0�(�) � �
1

1 + ��
< 0;

where u0�(�) is the left derivative of u at �: This implies that u(�0) < u(�0 � (1 + ��)") for small
enough "; which contradicts the above. Therefore, we must have �0 = �; so Part (ii.) is proved.

For Part (iii.), consider � < �: Let e be the worker�s e¤ort that supports u(�): By increasing

e¤ort to e+ " for small enough "; we can support (� + y(e+ ")� y(e); u(�)� (c(e+ ")� c(e))) as
a PPE payo¤. By the de�nition of u; this implies that

u(� + y(e+ ")� y(e)) � u(�)� (c(e+ ")� c(e)):

Sending " to zero, we obtain that

� c
0 (e)

y0 (e)
� u0+(�):

By the concavity of u; we have u0+(�) � u0�(�); which is smaller than �1=(1 + ��) by above.
Therefore,

c0 (e)

y0 (e)
� 1

1 + ��
;

so e > 0: Now, by keeping everything the same except by lowering the e¤ort for small enough ";

the same argument as above shows that u0�(�) � �c0 (e) =y0 (e) :
This implies that u0+(�) = u0�(�), and, thus, u is di¤erentiable. And since we have u

0
�(�) �

�1=(1 + ��); by above, Part (iii.) is proved. �

LEMMA 3�. Consider a payo¤ pair, (�; u(�)); on the PPE frontier. Let (�s; us) and (�n; un) be

the associated continuation payo¤s following the shock and no-shock state respectively. Then

us = u(�s);

un = u(�n):

Proof: Suppose to the contrary that us < u(�s): Now keep the same actions and continuation

payo¤s as (�; u(�)) except change the continuation payo¤ (�s; us) to (�s; us + ") for some small
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positive ": This change does not violate any of the constraints, and therefore the new payo¤ pair

from this change is also a PPE payo¤. This new payo¤ pair again gives the manager the same

payo¤ of �: But the worker�s payo¤ has increased to u(�) + �(1 � �)"; violating the de�nition of
u(�). Identical argument shows that un = u(�n): �

LEMMA 4�. The no-shock bonus is always weakly larger than the shock bonus, that is, bn (�) � bs (�)
for all � 2 [�; �].

Proof: By combining the truth-telling constraints both in the shock and no-shock state, we have

(1 + �) (1� �) (bn � bs) � � (�n � �s) � (1� �) (bn � bs):

This implies bn � bs � 0: �

LEMMA 5�. For any payo¤ pair (�; u(�)) on the frontier, there exists a set of actions and continu-

ation payo¤s supporting it such that (i.) the manager�s truth-telling constraint in a no-shock period

TTN is binding and (ii.) the shock bonus bs(�) is zero.

Proof: For Part (i.), consider, to the contrary that � (�n � �s) > (1� �) (bn� bs) for some �: Let

�0s = �s + �";

�0n = �n � (1� �)":

for some small " (while keeping w; bs; bn and e): This change keep all of the constraints satis�ed,

and in addition, the new set of continuation payo¤s satisfy

��0s + (1� �)�0n = ��s + (1� �)�n:

This implies that the worker�s payo¤ under the new continuation payo¤s is

(1� �) (w + �bs + (1� �) bn � c (e)) + �(�u
�
�0s
�
+ (1� �)u

�
�0n
�
)

� (1� �) (w + �bs + (1� �) bn � c (e)) + �(�u (�s) + (1� �)u (�n));

where the inequality follows from the concavity of u: In other words, we can (weakly) increase u(�)

by shortening the distance between �s and �n until TTN binds, and this proves Part (i.).

For Part (ii.), suppose u(�) is supported with w; bs; bn; and the associated e¤ort and continuation

payo¤s. Replace w; bs;and bn with w + bs; 0; and bn � bs and keep the rest: All constraints remain
satis�ed with this change, and this proves Part (ii.). �

LEMMA 6�. The PPE frontier u(�) satis�es the following. For all � 2 [�; �]; �+u(�) is equal to

max
e;w;�s;�n

(1� �) (y (e)� c (e)) + �� (�s + u (�s)) + (1� �) � (�n + u (�n))� (1� �) ��w (4)

31



such that

� = (1� �) y (e) + ��s � (1� �) (1 + ��)w; (PKM)

�s � �; (SES)

�n � �; and (SEN)

w � 0: (NNW)

Proof: By Lemma 2�, every point on the PPE frontier can be supported by pure actions other

than the outside options. Lemma 3�and the de�nition of u then imply that � + u(�) is given by

(1) subject to the constraints discussed in the List of Constraints subsection. In particular bs and

bn do not appear in the maximization program because by Lemma 4�and 5�, we can use w; �s and

�n to substitute out bs and bn:

Now to reduce the constraints in the List of Constraints subsection, we �rst consider the feasi-

bility constraints. By Lemma 5�, NNS and NNN no longer exists. From the proof in Lemma 2�, we

see that NNe is always satis�ed. In addition, Lemma 3�implies that SES and SEN can be reduced

to

� � �s � �;

� � �n � �:

Since bn � bs (by Lemma 4�), Part (i.) of Lemma 5� then implies �n � �s: This implies that

feasibility constraints above can be reduced to � � �s and �n � �: In other words, the remaining
feasibility constraints are SEN SES, and NNW :

Next, we examine the No-Deviation constraints. NRS follows immediately from Lemma 5�and

SES: NRN follows from SES; Lemma 4�, and Part (i.) of Lemma 5�. TTN and TTS are satis�ed

by Lemma 4�. This eliminates all of the No-Deviation constraints.

Finally, PKM in Lemma 6�is obtained by substituting bs and bn out of the original PKM and

PKW is replaced by the restriction that u(�) is equal to the value from the constrained maximization

problem. �

9.3 Dynamics

De�ne the Lagrangian as

L = (1� �) (y (e)� c (e)) + �� (�s + u (�s)) + (1� �) � (�n + u (�n))� (1� �) ��w

+�1(� � (1� �) y (e)� ��s + (1� �) (1 + ��)w)

+�2(��s � ��) + �3(1� �)w + �4(�� � ��n):
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Note that this is a well-de�ned concave program. In particular, we have the following conditions.

The FOCs with respect to �s, w, and �n are given by

�(1 + u0 (�s))� �1 + �2 = 0; (FOCS)

���+ �1 (1 + ��) + �3 = 0; (FOCW)

(1� �)(1 + u0 (�n))� �4 = 0; (FOCN)

y0 (e)� c0 (e)� �1y0(e) = 0: (FOCe)

The envelop condition is given by

1 + u0(�) = �1: (envelop)

Now we can prove the missing part in Lemma 2�on the lower bound of u0(�):

LEMMA 2�. For each � 2 [�; �] ; u0(�) > �1:

Proof: To prove this, we �rst show that u0(�n) � u0(�): To see this, consider two cases. In Case
1, �4 > 0: In this case, we have �n = �; so u0(�n) � u0(�) by the concavity of u: In Case 2, �4 = 0:
In this case, adding FOCS and FOCN, and replacing �1 with 1 + u0(�); we get

�u0(�s) + (1� �)u0(�n) + �2 = u0(�):

Note that u0(�s) � u0(�n) by Lemma 4�and the concavity of u: The equality above then implies

that

u0(�n) � u0(�)

since �2 � 0: This �nishes proving that u0(�n) � u0(�):
Next, we show that u0(�) � �1 for all �: Note that from FOCN, we see that u0(�n) � �1 since

�4 � 0: Since u0(�n) � u0(�) by above, this gives that u0(�) � �1 for all �:
Now suppose to the contrary that u0(�) = �1: Then the following conditions must hold. First,

we have �1 = 0 from the envelop condition, implying that u0(�s) = �1 from FOCS. Second,

u0(�n) = �1 since u0(�n) � u0(�). Third, e = eFB by FOCe. Fourth, w = 0 because of FOCW .
The four conditions above imply that there is a line segment on the PPE frontier with slope

-1 such that a) w = 0 and e = eFB and b) the continuation payo¤s (without public deviation)

always stay on this line segment. This implies that the manager can maximize her pay by always

announcing that the state is a shock state (since the worker always puts in eFB and the manager

always pays out 0 in this case). But this is a contradiction because in this case, the worker�s payo¤

is �c(eFB); which is smaller than his outside option. �
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Proof of Proposition 1: We �rst prove the results by neglecting the ICW constraint. In other

words, we �rst show that Conditions (a.)-(e.) are satis�ed in each optimal relational contract in

which the worker�s e¤ort were contractible. We then show that for such optimal relational contracts,

the ICW constraint is satis�ed. This implies that the optimal relational contract with contractible

e¤ort coincides with the optimal relational contract in our model, and, thus, �nishes the proof.

Part (e.) follows from Lemma 2�and FOCN. For Part (d.), consider FOCS, and there are two

cases. In Case 1, �2 > 0; so �s = �; and trivially Part (d.) holds. In Case 2, �2 = 0; so

1 + u0 (�s) =
1

�
�1 =

1

�
(1 + u0 (�));

where the second equality comes from the envelop condition. Since 1 + u0 (�) > 0 by Lemma 2�,

we have u0 (�s) > u0 (�) ; and again (d.) holds by the concavity of u.

Part (c.) follows from TTN. Part (a.) follows from combining FOCe and the envelop condition.

Note that since c0 (e) =y0 (e) is strictly increasing, e�(�) is unique.

For Part (b.), recall from Lemma 2�that u0(�) � �1=(1+��): Now consider two cases. In Case
1, suppose u0(�) < �1=(1 + ��) for all � 2 [�; �] : In this case, we have w � 0 by FOCW and the

envelop condition.

In Case 2, there exists a line segment with u0(�) = �1=(1+��). Now recall that be is the unique
e¤ort level with Figure 3(be)=y0(be) = 1=(1 + ��): On this line segment, we have e = be by Part (a.).
In addition, we must have �s = �. To see this, note that when u0(�) = �1=(1 + ��); we also have
u0(�s) = �1=(1 + ��) by Part (d.) and Lemma 2�. Substituting out u0(�s) and �1 in FOCS, we
obtain that �2 > 0: The complementary slackness then implies that �s = �: With �s(�) = � and

e(�) = be for � on the line segment, we have, by PKM , that
w�(�) =

1

(1� �)(1 + ��)((1� �)y(be) + �� � �):
Note that the right end of this line segment, b�; satis�es w�(�) = 0: This proves Part (b.).

Note that in all of the derivations above, e�(�); w�(�); and ��n(�) are unique. Then by PKM ,

��s(�) is also unique. This implies that the implementation of the optimal relational contract is

unique.

Finally, we check that ICW is satis�ed for each point on the PPE frontier, i.e.,

�u+ (1� �)w�(�) � u(�):

The inequality is clearly satis�ed when w = 0: From Part (b.), this then implies that the inequality

is satis�ed for all � � b�:
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For � < b�; Part (b.) implies that
d(�u+ (1� �)w�(�))

d�
= � 1

1 + ��
= u0(�):

Therefore, for all � < b�;
u(�)� (�u+ (1� �)w�(�)) = u(b�)� (�u+ (1� �)w�(b�)) > 0:

This shows that ICW is satis�ed for all � 2 [�; �]: �
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10 Appendix B: Allowing for Liquidity Constraints

In this appendix we prove the results in Section 6 that analyzes the model with liquidity constraints.

Speci�cally, the �rm is subject to the liquidity constraint that

maxfw + bs; w + bng � (1 +m)y

for some m > 0: This constraint signi�cantly complicates the analysis. In particular, the PPE

frontier is no longer di¤erentiable. To make the analysis more tractable, we assume that the

manager cannot pay the worker in a shock state (� = 1): Consequently, this implies that w � 0
and bs � 0:

Since the analysis with the liquidity constraints follows similar steps as the main model, we

omit the proofs for results that are obtained from identical arguments. Below, we �rst describe the

basic properties of the PPE frontier in the background subsection and then prove the main results

in the dynamics subsection. The last subsection provides several su¢ cient conditions that allow

for further characterization of the dynamics.

10.1 Background

Proceeding in the same way as the main model, we can show that for each payo¤ on the PPE

frontier sustainable by pure actions (other than the outside options) must satisfy the following:

� + u(�) = max
e;�s;�n

(1� �) (y (e)� c (e)) + �� (�s + u (�s)) + (1� �) � (�n + u (�n)) (5)

subject to

� = (1� �) y (e) + ��s; (LPKM)

��n � � + (1� �)my(e); (LIQF)

�s � �; and (LSES)

�n � �: (LSEN)

The functional equation above corresponds with that in Lemma 6 with proper modi�cations. In

particular, LIQF is the extra liquidity constraint for the �rm, and there is no NNW because � =1:
Moreover, LPKM is obtained with a simpli�ed truth-telling condition of the manager that

�(�n � �s) = (1� �)bn: (LTTN)

In addition to these modi�cations, there are some additional di¤erences between the main model

and the liquidity constraint case. First, unlike the main model, it is no longer true that each point
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on the PPE frontier is sustainable by pure actions. De�ne �0 as the smallest payo¤ of the manager

at which u(�0) can be sustained by pure actions other than the outside options. The following

lemma captures the di¤erence.

LEMMA 7. There exists a critical level of expected pro�ts �0 2 [�; �) such that for all � � �0

the PPE frontier u(�) is supported by pure actions and for all � 2 (�; �0) it is supported by

randomization. Speci�cally, for any � < �0 the manager and the worker randomize between

terminating their relationship and playing the strategies that deliver expected payo¤s �0 and u(�0).

Proof: The part that for all � � �0 the PPE frontier u(�) is supported by pure actions follows
from identical proof as in Lemma 2�. It remains to show that for any � 2 (�; �0) the manager
and the worker randomize between terminating their relationship and playing the strategies that

deliver expected payo¤s �0 and u(�0): Now consider two cases. In Case 1, �0 = �; we return to

Lemma 2�, and the lemma is clearly satis�ed.

In Case 2, �0 > �: In this case, since (�; u(�)) is an extremal point of the PPE payo¤ set, it

must be supported by pure actions. Given that �0 > �; (�; u(�)) must be supported by the outside

options. It then follows that (�; u(�)) = (�; u).

Now for any � 2 (�; �0); (�; u(�)) is sustained by randomization by the de�nition of �0. We
may assume that (�; u(�)) is the weighted average of (�0; u(�0)) and (�00; u(�00)) such that �0 <

� < �00 and that u(�0) and u(�00) are both sustained by pure actions.

Since �0 < � < �0 and that u(�0) is supported by pure actions, we must have �0 = � by the

de�nition of �0: Now by the concavity of u; it is clear that we can have �00 = �0: In fact, we can

show that �00 must equal to �0: The argument follows the exact same logic as Step 2 and Step 3 in

Lemma B3 below and is omitted. �

Second, the PPE frontier u is no longer di¤erentiable for all � for some parameter value m.

However, since u is again concave (given the public randomization device), both the left and the

right derivatives exist. This implies that the results written as equalities of derivatives can be

replaced with a pair of corresponding inequalities involving left and right derivatives.

Third, while it remains true that u0�(�) > �1 for all �; we no longer always have �n = �:When
LIQF binds, �n < �: The lemma below gives the exact expression for �n:

LEMMA B1. The continuation payo¤ following a no-shock period satis�es the following:

�n = minf�;
1

�
(� + (1� �)my)g:

Proof: Immediate. �
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Fourth, unlike the main model in which there is �exibility in choosing between w and bs; the max-

imizers (e(�); �s(�); �n(�)) are unique. Note that since the maximizers are upper-hemicontinuous,

a direct consequence of the uniqueness result is that e; �s; and �n are continuous in �:

LEMMA B2. For each � � �0; there is a unique set of e(�); �s(�); and �n(�) that maximizes

u(�):

Proof: Let ei; �si;�ni ; i = 1; 2 be the associated e¤ort and continuation payo¤s as maximizers.

Then for some � 2 (0; 1); let

�s = ��s1 + (1� �)�s2 ;

�n = ��n1 + (1� �)�n2 ;

Let e be the unique e¤ort level such that

y(e) = �y(e1) + (1� �)y(e2):

The strict concavity of y then implies e � �e1 + (1� �)e2:
It is clear that e; �s; �n also supports �. Moreover, the strict concavity of y and the strict

convexity of the cost function c implies that the value generated by this new set of choices is

strictly larger than those from ei; �si;�ni ; i = 1; 2 when e1 6= e2: Therefore, we must e1 = e2: It

then follows that �s1 = �s2 from LPKM . Finally, by Lemma B1, �n = minf�; (� + (1� �)my) =�g;
so �n is also unique. �

Fifth, the proof that e > 0 in the liquidity constraints case is di¤erent from that in the main

model. We state this result as a separate lemma below.

LEMMA B3. For each � � �0; e(�) > 0:

Proof: We �rst prove that e(�) > 0 for � > �: Suppose to the contrary that there exists a �0 > �

with e = 0. In this case, the liquidity constraint implies that bn = 0; and LTTN then implies that

�s(�
0) = �n(�0): Now from LPKM , we have �s(�0) = �n(�0) = �=� > �: This allows us to derive a

contradiction in three steps.

In Step 1, we show that u0�(�
0) = u0�(�

0=�); so u is a line segment in [�0; �0=�]. To see this,

suppose to the contrary that u0�(�
0) > u0�(�

0=�): Now for small enough " > 0; we can change the

continuation payo¤s (both in the shock and no-shock state) to (�0=� � "; u(�0=� � ")) with the
actions unchanged. This change generates a PPE payo¤ that gives the manager �0 � �" and the
worker u(�0) + �(u(�0=� � ")� u(�0=�)):
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By the de�nition of u; we have

u(�0 � �") � u(�0) + �(u(�
0

�
� ")� u(�

0

�
)):

Sending " to 0; the above implies that

u0�(�
0) � u0�(�0=�);

contradicting the assumption that u0�(�
0) > u0�(�

0=�):

In Step 2, we show that u is a line segment in [�; �0=�]: To see this, for all � < �0; let e(�) = 0,

bn(�) = 0, and �n(�) = �s(�) = �=�: It can be checked that this choice generates a PPE payo¤

that lies on the left extension of the line segment between (�0; u(�0)) and (�0=�; u(�0=�)): By the

concavity of u; it follows that these payo¤s are on the PPE frontier. It follows that u is a line

segment in [�; �0=�]:

By Step 2, the PPE frontier contains a line segment in the left. Let �+ be the right end point

of this segment. In Step 3, we derive a contradiction on the left derivative of u for payo¤s near

��+. To do so, �rst note that by the same construction as in Step 2, we must have e(��+) = 0;

�s(��+) = �s(��+) = �+ by the uniqueness of the maximizer. It then follows that for any

�00 2 (��+; ��+ + ") for small enough " > 0; we must have �n(�00) > �+ by LIQF and �s(�00) > �
by the continuity of �s: Now by the de�nition of �+; we have

u0�(�n(�
00)) < u0�(�

00):

In addition, �s(�00) > �; so u0�(�s(�
00)) exists. Moreover,

u0�(�s(�
00)) � u0�(�00)

since u is a line segment in [�; �+]: The two inequalities above then imply that

(1� �)u0�(�n(�00)) + �u0�(�s(�00)) < u0�(�00):

Now, starting at (�00; u(�00)); by changing the continuation payo¤s to (�s(�00)�"; u(�s(�00)�"))
and (�n(�00)� "; u(�n(�00)� ")) and keeping the actions unchanged, the same argument as in Step
1 implies that

(1� �)u0�(�n(�00)) + �u0�(�s(�00)) � u0�(�00);

which contradicts the earlier inequality. This proves that we cannot have e(�) = 0 for � > �.

The argument above also helps prove e(�) > 0: Suppose to the contrary that e(�) = 0, then

�s(�) = �n(�) > �: The same argument as above can be used to show that u is a line segment in

[�; �n(�)]; and we can derive a similar type of contradiction as above. �
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The next lemma shows that for � � �0; the PPE frontier can be divided into (at most) three
regions. In the right region, the liquidity constraints are slack. In the left region, the liquidity

constraints are binding and �n < �: In the middle region, the liquidity constraints are binding and

�n = �:

LEMMA B4. There exists �1 and �2 with �0 � �1 � �2 < � such that the following holds: (i.) If
� > �2; �n = � and � + (1 � �)my > ��, (ii.) if � 2 [�1; �2]; �n = � and � + (1 � �)my = ��,
and (iii.) If � < �1; �n < � and � + (1� �)my = ��:

Proof: To prove Part (i.), if su¢ ces to show that for any �0 � �; if �+(1��)my(e (�)) > ��; then
we also have �0+(1��)my(e (�0)) > ��: Now take a manager�s payo¤ � with �+(1��)my(e (�)) >
��; the same argument as in Lemma 2�shows that u is di¤erentiable at � with

u0(�) = � c
0 (e (�))

y0 (e (�))
:

In addition, for �0 > �; again the same argument as in Lemma 2�shows that

c0 (e (�0))

y0 (e (�0))
� �u0+(�0):

Note that u0+(�
0) � u0+(�) since u is concave, it follows that

c0 (e (�0))

y0 (e (�0))
>
c0 (e (�))

y0 (e (�))
:

This gives that e(�0) � e(�); and, thus, �0 + (1� �)my(e (�0)) > ��: This proves Part (i.).
Given Part (i.), we prove Parts (ii.) and (iii.) simultaneously by showing that if �n(�) = �;

then for all �0 > �; �n(�0) = �: Suppose the contrary. Then there exists a pair of �0 > � such that

�0n = �
0 + (1� �)my(e

�
�0
�
) < � + (1� �)my(e (�)) = �:

Now at �0; increase e(�0) to e(�0) + ", keep �s(�0) the same, and increase �n(�0) correspondingly

so that the liquidity constraint remains to bind. This change is feasible, so it creates a payo¤ that

falls weakly below the PPE frontier. Sending " to zero, we get

c0 (e (�0))

y0 (e (�0))
� (m+ 1)(1� �)(1 + u0+(�n(�0))� u0+(�0):

Similarly, at �; decrease e(�) to e(�)� ", keep �s(�) the same, and decrease �n(�) correspond-
ingly, we get

c0 (e (�))

y0 (e (�))
� (m+ 1)(1� �)(1 + u0�(�))� u0�(�):
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Since u is concave, we have u0+(�n(�
0) > u0�(�) and u

0
+(�

0) � u0�(�): The two inequalities above
then imply that

c0 (e (�0))

y0 (e (�0))
� c0 (e (�))

y0 (e (�))
;

so e(�0) � e(�): But this contradicts

�0 + (1� �)my(e
�
�0
�
) < � + (1� �)my(e (�)): �

Note that the right region always exist (so that �2 < �) because for all � > ��; � + (1 �
�)my(e (�)) > ��. In contrast, the middle region or the left region does not always exist. This can

occur, for example, when m is large and when � is large. In this case, the �rm�s liquidity constraint

is always slack, and we return to the main model. At the end of this section, we give su¢ cient

conditions for the existence of the left and the middle region.

10.2 PPE Frontier

In this subsection, we describe the dynamics of the optimal relational contract.

LEMMA B5. The set of e¤ort and continuation payo¤s (e(�); �s(�); and �n(�)) satis�es the

following.

(a.) For � > �2; the PPE frontier is di¤erentiable with

c0 (e)

y0 (e)
= �u0(�) and

� (1� �) + �u0+ (�s) � u0 (�) � � (1� �) + �u0� (�s) :

In this region, both e and �sweakly increase with �:

(b.) For � 2 [�1; �2]; if m 6= 0; then

y =
�� � �
(1� �)m and �s =

(m+ 1)� + ��

m
:

In this region, e strictly decreases with � and �s strictly increases with �:

If m = 0; then �1 = �2 = ��: u is not di¤erentiable at ��, and e and �s satisfy

�u0+(��) � c0 (e)

y0 (e)
� �u0�(��) and

� (1� �) + �u0+ (�s) � u0 (�) � � (1� �) + �u0� (�s) :

(c.) For � 2 [�0; �1]; e, �s; and �n satisfy
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(1 +m) (1� �) (1 + u0+ (�n))�
c0 (e)

y0 (e)
� u0+ (�) � u0� (�) (L-e-n)

� (1 +m) (1� �) (1 + u0� (�n))�
c0 (e)

y0 (e)
:

When �s > �;

(1 +m)(� (1� �) + �u0+ (�s)) +
c0 (e)

y0 (e)
� mu0+ (�) � mu0� (�) (L-e-s)

� (1 +m)(� (1� �) + �u0� (�s)) +
c0 (e)

y0 (e)
;

and

�u0+ (�s) + (1� �)u0+ (�n) � u0+ (�) � u0� (�) � �u0� (�s) + (1� �)u0� (�n) : (L-s-n)

In this region, �s weakly increases in �:

Proof: The inequalities in this lemma are all equalities if u is di¤erentiable: In this case, the

equalities can be obtained directly from the Kuhn-Tucker conditions of Lagrangian associated with

the constrained maximization problem (5). The formal proof of the inequalities is standard and is

omitted here. Below, we show that u is not di¤erentiable at �� and that �s is weakly increasing in

[�0; �1]:

First, to see that u is not di¤erentiable at �� when m = 0; note that � = �� is the only point

in the middle region: Moving from the right, we have by Part (a.) that

u0+(��) = �
c0 (e)

y0 (e)
:

Moving from the left, we have by L-e-n that

u0�(��) � �
c0 (e)

y0 (e)
+ (1 +m) (1� �) (1 + u0+ (�n)):

Since u0+ (�n) > �1, we have
u0�(��) > u

0
+(��):

This shows that u is not di¤erentiable at ��:

Second, to see that �s is weakly increasing for � 2 [�0; �1]; we assume that u is di¤erentiable at
� and �s to ease exposition. The argument can be adapted to the non-di¤erentiable case. When u

is di¤erentiable at � and �s; L-e-s becomes

�(1 +m) (1� �) + (1 +m)�u0 (�s) +
c0 (e)

y0 (e)
= mu0 (�) :
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Now as � increases, the right hand side weakly decreases. Now suppose to the contrary that �s

decreases. In this case u0 (�s) weakly increases. Moreover, when � increases and �s decreases, e

increases by the LPKM . Consequently, c0 (e) =y0 (e) strictly increases. Therefore, if �s decreases,

the left hand side strictly increases. This contradicts that the right hand side decreases. �
Since �s(�) is weakly increasing in � in all three regions, the continuity of �s(�) then implies

that �s(�) is weakly increasing for all � 2 [�0; �]: In contrast, e(�) is decreasing in the middle
region. In other words, the worker�s e¤ort level increases as the manager�s payo¤ decreases. Next,

we characterize the dynamics of the optimal relational contract.

LEMMA B6. For all � 2 [�0; �]; �n(�) > �:

Proof: It is clear that �n(�) > � for � in the middle and the right region. In the left region,

suppose the contrary. Then by the continuity of �n(�); there exists a largest � < � with �n(�) = �:

At this point, note that u0+(�s) � u0+(�n) = u0+(�). Then the �rst inequality in L-s-n implies that
u0+(�s) = u

0
+(�n): In other words, u is a line segment between �s and �n: Let �+ be the right end

point of this segment. Now consider two cases.

In Case 1, �+ = �. This is not possible because it implies that, for all �0 > �; we have

u0+(�s(�
0)) = u0+(�n(�

0)) = u0+(�
0): This violates the last inequality in Part (a.) of Lemma B5 since

u0� (�s) > �1:
In Case 2, �+ < �: By the de�nition of �; we have �n(�0) > �0 for all �0 > �: The continuity

of �n then implies that there exists a �00 2 (�; �+) with �n(�00) > �+: In addition, we have

�s(�
00) 2 (�s(�); �+) since �s increases with �: At �00; we have u0�(�s(�00)) = u0�(�00) > u0�(�n(�00));

violating the last inequality in L-s-n. �

LEMMA B7. For all � 2 [�0; �]; �s(�) < �:

Proof: It is clear that �s(�) < � for � in the middle and the right region. In the left region,

suppose to the contrary there exists a manager�s payo¤ � with �s(�) � �: By L-s-n, u must be

a line segment between � and �n(�): Let �+ be the right end point of this line segment. Just

as in the proof in Lemma B6, we must have �+ < �: Now by Lemma B6 and the monotonicity

of �s; there exists a �0 2 (�; �+) such that �n(�0) > �+ and �s(�0) 2 (�; �+): This implies that
u0�(�s(�

0)) = u0�(�
0) > u0�(�n(�

0)); violating L-s-n. �

The previous two lemma describe the dynamics of the relationship for � � �0: The next lemma
provides further information on the dynamics by characterizing �0:

LEMMA B8. Either �0 = � or �s(�0) = �:
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Proof: Suppose �0 > � and to the contrary �s(�0) > �: L-s-n implies that u0(�0) = u0(�s) =

u0(�n): Using the same argument as in Lemma B6, we can show that there exists �+ � �0 such

that u is a line segment in [�; �+] and derive a contradiction. �

Proof of Proposition 2: Part (a.) is direct consequence of Lemma B5. Part (b.) follows from

LTTN. Part (c.) follows from Lemma B6. Part (d.) follows from Lemma B7 and B8. �

10.3 Su¢ cient Conditions

In this subsection, we �rst provide a condition for the left region to exist, implying that the liquidity

constraint is relevant. A su¢ cient condition for �0 > � is given next. Finally, we provide a su¢ cient

condition for the existence of the middle region.

De�ne �u as the maximal equilibrium payo¤ of the manager in the main model.

LEMMA B9. The PPE frontier contains more than the right region, i.e., (�2 > �) if and only if

the following Condition L holds:

��u > (1 +m)�: (L)

Proof: It su¢ ces to look for the condition on whether the liquidity constraint is violated at � for

the problem in the main model. Under the unconstrained problem, �n (�) = �u and �s (�) = �: In

addition, NRS states that

� = ��s (�) + (1� �)y(e(�)):

This implies that y(e(�)) = (1��)�: Therefore, the liquidity constraint that ��n � �+(1��)my(e)
is equivalent to

��u � (1 +m)�: �

Next, we describe a su¢ cient condition for �0 > �:

LEMMA B10. Suppose Condition L holds. �0 > � if m < �
1�� and

u >
(1� �) (1 +m)
� �m(1� �)

y0 (e)� c0 (e)
y0(e)

� � c(e);

where e is the unique e¤ort level satisfying y(e) = �.

Proof: To prove that �0 > � if the conditions above hold, we proceed as if u were di¤erentiable

to simplify the exposition. The argument can be adapted for the non-di¤erentiable case by replac-

ing the equalities involving derivatives with inequalities involving left and right derivatives. Now
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suppose to the contrary �0 = �, de�ne the Lagrangian as

� + u(�) = L = (1� �) (y (e)� c (e)) + �� (�s + u (�s)) + (1� �) � (�n + u (�n))

+�1(� � (1� �) y (e)� ��s)

+�2(� + (1� �)my(e)� ��n)

+�3(��s � ��) + �4�(� � �n):

The FOCs are given by

�(1 + u0 (�s))� �1 + �3 = 0: (FOCS)

(1� �) (1 + u0 (�n))� �2 � �4 = 0: (FOCN)

(1� �1 +m�2)y0 (e)� c0 (e) = 0: (FOCe)

The envelop condition is given by

1 + u0(�) = �1 + �2: (Envelop Condition)

We now proceed in two steps. In Step 1, we provide an upper bound to u0(�): To do this, note

that by Condition L, �n(�) < �: FOCN then implies that at � = �;

(1� �)(1 + u0 (�n(�))) = �2:

By the envelop condition,

1 + u0(�) = �1 + �2:

Since u is concave, u0(�) � u0 (�n) : This then implies that �2 � (1� �)�1=�; and it follows that

1 + u0(�) � �1 +
1� �
�
�1 =

�1
�
:

Now to give an upper bound to �1; note that at �; we have �s(�) = � by Proposition 2; and

consequently, by LTTN; y(e(�)) = �: In other words, e(�) = e: FOCe then implies that

y0 (e)� c0 (e)
y0(e)

= �1 �m�2 �
� �m(1� �)

�
�1;

where the inequality follows because �2 � (1� �)�1=� as shown above.
Combining the two inequalities above and noting � �m(1� �) > 0; we then obtain

1 + u0(�) � �1
�
� 1

� �m(1� �)
y0 (e)� c0 (e)

y0(e)
;

which concludes Step 1.
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In Step 2, we derive a contradiction on the joint payo¤ at � using the upper bound in Step 1.

Since the liquidity constraint binds at �;

��n(�) = � + (1� �)my(e) = (1 + (1� �)m)�:

It follows that

�(�n(�)� �s(�)) = (1� �)(1 +m)�:

The concavity of u then implies that

u (�n(�))� u (�s(�))

� u0 (�s(�)))(�n(�)� �s(�))

= u0 (�) (
(1� �)(1 +m)

�
)�:

Therefore,

� + u(�)

= (1� �) (y(e)� c (e)) + � (�s(�) + u (�s(�)))

+ (1� �) �((�n(�) + u (�n(�))� ((�s(�) + u (�s(�)))

� (1� �) (� � c) + � (� + u(�)) + (1� �) (1� �)(1 +m)(1 + u0 (�))�:

Rearranging the above and substituting the inequality at the end of Step 1, we get

� + u(�) � � � c+ (1� �) (1 +m)
� �m(1� �)

y0 (e)� c0 (e)
y0(e)

�:

This contradicts the condition in the lemma. �

Finally, we provide a su¢ cient condition for the middle region to exist.

LEMMA B11. Suppose Condition L holds. The middle region exists, i.e., (�2 > �1) if m <

�=(1� �) and (1 +m)2(1� �)�=m < 1:

Proof: Condition L implies that the PPE frontier contains more than the right region. Now

suppose to the contrary that the middle region does not exist. Let �d be the payo¤ that divides the

left and the right region. The same argument as in Proposition 2 shows that u is not di¤erentiable

at �d with

u0+ (�d) = � c
0 (e)

y0 (e)
; and

u0� (�d) = (1 +m) (1� �) (1 + u0 (�))� c0 (e)

y0 (e)
:
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Let �u0(�d) = u0+ (�d)� u0� (�d) > 0: Then L-e-s implies that

�u0(�d) �
(1 +m)�

m
�u0(�s(�d)):

This implies that u is not di¤erentiable at �s(�d).

Note that by L-e-n, we have

�u0(�s(�d)) � (1 +m)(1� �)�u0(�n(�s(�d))):

This implies that u is not di¤erentiable at �n(�s(�d)).

Since u is di¤erentiable for all � 2 (�d; �]; the above implies that either �n(�s(�d)) = �d or

�n(�s(�d)) 2 (�s(�d); �d): In the later case, we can show, using the same argument as above,

that either �2n(�s(�d)) = �d or �
2
n(�s(�d)) 2 (�n(�s(�d)); �d); where the superscript denotes that

applying �n twice. Since �n > �; the sequence of �kn is monotone in k: It follows that there exists

some K such that

�d = �
K
n (�s(�d)):

Note that for all k � K; we have by above

�u0(�kn(�s(�d))) � (1 +m)(1� �)�u0(�k+1n (�s(�d)))

Linking this chain of inequalities, we get

�u0(�d) �
(1 +m)�

m
(1 +m)K(1� �)K�u0(�d):

This is a contradiction because

(1 +m)�

m
(1 +m)K(1� �)K < 1

by assumption. �
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11 Appendix C: Discussion

In this appendix we prove the results that we discussed in Section 7.

11.1 Failure to Achieve First Best

First, we show that the Folk Theorem holds in our setting. In particular, we show that as � ! 1; the

interior of the feasible payo¤ set is included in the set of PPE payo¤ set. To state the proposition,

de�ne �FB = y(eFB)� c(eFB)� u:

PROPOSITION C1. For all � 2 [�; �FB) and for any " > 0; there exists a �(") su¢ ciently large
such that for all � � �(");

u(�) > y(eFB)� c(eFB)� � � ":

Proof: It is equivalent to show that for any �; the expected surplus destruction (y(eFB)�c(eFB)�
� � u(�)) goes to 0 as � ! 1. To show this, �rst consider the sequence of contracts constructed

in the long-term contracting section, which is independent of this section. As � ! 1; we see

that this sequence of contracts becomes self-enforcing for arbitrarily large deadline T (with the

o¤-equilibrium path speci�es that the parties take the outside options forever): Since the surplus

destruction goes to 0 as T ! 1 and that the worker always receives u in this sequence of PPEs;

this implies that, for arbitrarily small " > 0; (�FB � "; u) can be sustained as a PPE payo¤.
Second, consider the surplus destruction at � = � as follows. In particular, let d be the expected

surplus destruction in the (�rst) stage game under the optimal relational contract at � = �. From

Proposition 1, we have

d =

(
y(eFB)� c(eFB)� (y(be)� c(be)� �

(1+��)(y(be)� �))
y(eFB)� c(eFB)� (y(e)� c(e))

y(be) > �
otherwise

;

where this expression is obtained from comparing the �rst best joint payo¤ with the expected joint

payo¤ in period 1 under the optimal relational contract.

Now de�ne "(�) = �FB ��(�) as the surplus destruction at � = �: Denote D as the normalized

destruction of surplus at � = �, then

D(�) = (1� �)d+ �((1� �)"(�) + �D(�)):

Solving for D; we have

D(�) =
(1� �)d+ �(1� �)"(�)

1� �� :
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As � ! 1; we have

lim
�!1

D(�) = lim
�!1

"(�) = 0:

This shows that at � = �; the PPE payo¤ approaches the set of feasible payo¤s.

Finally, since u is concave, for each �; the expected surplus is decreasing in �: Given that the

normalized destruction goes to 0 at � = �; the destruction of surplus must also goes to 0 for all

� > �: �

Next, suppose that whenever the �rm is not hit by a shock, with some probability p 2 [0; 1) it
becomes publicly known that the �rm�s opportunity costs are low. And whenever the �rm is hit

by a shock, with some probability q 2 [0; 1) it becomes publicly known that the �rm�s opportunity
costs are high. The next proposition shows that �rst best can be achieved for su¢ ciently high

discount factors if and only if p > 0.

PROPOSITION C2. If p = 0; there does not exist a PPE in which the joint payo¤ of the manager

and worker is equal to y(eFB)� c(eFB): Otherwise, when

� � c(eFB) + u

c(eFB) + u+ (1� �)p(y(eFB)� c(eFB)� u� �) ,

there exists a PPE such that the joint payo¤ of the manager and worker is equal to y(eFB)�c(eFB):

Proof: Suppose p = 0: In this case, the manager�s action includes w; bn; bsk; bsu; where bsk stands

for the bonus payment when it is publicly known that the �rm is hit by a shock and bsu stands for

the bonus payment when the shock is unknown to the worker.

Suppose to the contrary that the �rst best can be achieved. Let �f be the smallest PPE payo¤

of the manager in which �rst best is achieved. Note that at �f , we have w = bsk = bsu = 0; the

worker puts the �rst best level of e¤ort, and the continuation payo¤s of the manager fall weakly to

the right of �f . Therefore, the promise-keeping constraint of the manager implies that

�f = (1� �)(y(eFB)� (1� �)bn) + �(�q�sk + �(1� q)�su + (1� �)�n);

where �sk; �su; and �n are the respective continuation payo¤s.

Note that

(1� �)(y(eFB)� (1� �)bn) + �(�q�sk + �(1� q)�su + (1� �)�n)

� (1� �)y(eFB) + �(�q�sk + �(1� q)�su + (1� �)�su)

� (1� �)y(eFB) + ��f ;
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where the �rst inequality follows from the manager�s truth-telling constraint in the no-shock state

(�(�n � �su) � (1� �)(bn � bsu) = (1� �)bn) and the second inequality follows from the de�nition

of �f :

Therefore, the inequality above implies that �f � y(eFB); but this is a contradiction because
the maximal feasible payo¤ of the manager that gives the worker a payo¤ of least u is y(eFB) �
c(eFB)� u < y(eFB):

Next, we construct a PPE that reaches �rst best when p > 0: Consider the following strategy

in which the bonus payment satis�es bsk = bsu � bs:
Along the equilibrium path: (i.) the worker puts in the �rst best level of e¤ort eFB; (ii.)

the manager o¤ers w = 0, bs = 0; and bn =
c(eFB)+u
(1��)p ; and (iii.) the manager pays out a bonus

bn = (c(e
FB) + u)=((1 � �)p); when it is publicly revealed that the opportunity cost is low. Note

that this happens with probability (1� �)p:
O¤ the equilibrium path: (i.) the parties take their outside options, (ii.) the worker puts in

e = 0; (iii.) the manager o¤ers a base wage w = 0; bs = 0; and bn = 0; and (iv.) the manager does

not pay out the bonus in any state.

For the strategy above to be an equilibrium, we need to check that the worker is willing to

participate and to put in e¤ort, that is

�c(eFB) + (1� �)pbn � u and c(eFB) � (1� �)pbn:

Given bn = (c(eFB) + u)=((1� �)p); it is immediate that both inequalities above are satis�ed.
In addition, we need to check that the manager is willing to pay to bonus:

(1� �)bn � �(y(eFB)� c(eFB)� u� �):

Note that once this constraint is satis�ed, it implies that the manager�s participation constraint is

also satis�ed. Since bn = (c(eFB) + u)=((1� �)p), the inequality above is equivalent to

� � c(eFB) + u

c(eFB) + u+ (1� �)p(y(eFB)� c(eFB)� u� �) :

This is exactly the condition in the proposition, so the strategy is a PPE that reaches �rst best. �

11.2 Benchmarks: Public Information and Long-term Contracts

In this subsection, we analyze the dynamics of the relationship when the state of the world is public

information. We characterize the PPE frontier, and for each payo¤pair on the frontier, we state the

associated e¤ort, base wage, bonuses, and the continuation payo¤s. This essentially speci�es the
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dynamics of the relationship. Since the analysis is similar to and simpler than that in the private

information case, we only state and prove the main results.

LEMMA C1. With public information, the PPE frontier satis�es the following. For each PPE

payo¤ of the manager �;

� + u(�) = max
e;w;�s;bn

(1� �) (y (e)� c (e)) + �� (�s + u (�s)) + (1� �) � (� + u (�))� (1� �) ��w
(Public Program)

subject to

� = (1� �) (y (e)� (1 + ��)w � (1� �) bn) + �(��s + (1� �)�); (PKM)

w � 0; and (NNW)

(1� �)bn � �(� � �): (NRS)

Lemma C1 directly corresponds to Lemma 6 in the main model. As in the main model, bs � 0
and �n � �; so they do not appear as choice variables. A key di¤erence, however, is that the

maximization problem does not contain the truth-telling constraint in the no-shock state ((1 �
�)(bn � bs) = �(�n � �s)) since information is public. This implies that bn is now a choice variable
included in the program. It follows that we need to include the non-reneging constraint in the

no-shock state. Since the proof of Lemma C1 parallel with that of Lemma 6, we omit it here. The

next proposition is the main result of this subsection.

PROPOSITION C3. The followings hold:

(a.) For all � � �;
u0(�) � � 1

1 + ��
:

(b.) For all � � �; the associated e¤ort level and the continuation payo¤ following the no-shock
state satis�es

c0(e)

y0(e)
= �u0(�) and

�n = �:

(c.) (The middle region) If u0(�) 2 (�1;�1=(1 + ��)); then

w = 0;

�s = �; and

bn =
�

1� � (� � �):
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In this region, u0(�) is strictly decreasing.

(d.) (The right region) If u0(�) = �1; then

u(�) = y(eFB)� c(eFB)� � and

w = 0:

There can be multiple choices of �s and bn: One such choice is

�s = � and

bn =
(1� �)y(e)� (1 + ��)� � � (1� �)�

(1� �)(1� �) ;

where � = y(eFB)� c(eFB)� u:
The right region exists if and only if

(1� �)c(e
FB) + u

1� � � �(y(eFB)� c(eFB)� u� �);

and its left boundary is given by ((1� �)y(eFB) + (1� �)��)=(1� ��):
(e.) (The left region) When u0(�) = �1=(1 + ��); then

bn =
�

1� � (� � �):

There can be multiple choices of �s and bn: One such choice is

�s = � and

w =
1

(1� �)(1 + ��)((1� �)y(be) + �(1� �)� � (1� ��)�):
The left region exists if y(be) > �; where recall be is the unique e¤ort level satisfying c0 (e) =y0 (e) =

1=(1 + ��): The right boundary of this region is given by ((1� �)y(be) + �(1� �)�)=(1� ��):
Proof: From Lemma C1, we form the Lagrangian

L = (1� �) (y (e)� c (e)) + �� (�s + u (�s)) + (1� �) � (� + u (�))� (1� �) ��w

+�1(� � (1� �) (y (e)� (1 + ��)w � (1� �) bn)� �(��s + (1� �)�))

+�2(1� �)w + �3(�(� � �)� (1� �)bn):

The FOCs and the envelop condition are given by

1 + u0 (�s) = �1: (FOCS)

���+ �1 (1 + ��) + �2 = 0: (FOCW)

52



y0 (e)� c0 (e) = �1y0 (e) : (FOCe)

�1 (1� �) = �3: (FOCN)

1 + u0(�) = �1: (envelop)

Note that FOCW implies �1 � ��=(1+��): From the envelop condition, we then obtain u0(�) �
�1=(1 + ��): This proves Part (a.).

By FOCe; �1 = (y0 (e)� c0 (e))=y0 (e). Substituting this into the envelop condition, we get Part
(b.).

To prove Part (c.), note that if u0(�) 2 (�1;�1=(1 + ��)); �1 > 0 by the envelop condition:

This then implies that �3 > 0 by FOCN: From the complementarity slackness condition on the non-

reneging constraint, we then get bn = �(�� �)=(1� �): In addition, when u0(�) < �1=(1 + ��); we
have �2 > 0 from FOCW and the envelop condition, and, thus, w = 0: Substituting the expression

of bn and w into PKM , we get

� = (1� �) y (e) + �(��s + (1� �)�):

Now from the FOCS; we have u0(�s) = u0(�): Therefore, we must have �s = � unless there is

an interval in which u0(�) is constant. But if this were the case, y (e) is a constant in the interval

by Part (b.), and the expression above then implies that for all � in the interval

d�s
d�

=
1

��
> 1:

But the above expression clearly cannot hold for the entire interval. Therefore, we must have

�s = �: This proves Part (c.).

For Part (d.), note that we have e = eFB in this region by Part (b.). FOCW implies that w = 0

in this region. In addition, by the FOCS; u0(�s) = u0(�) = �1; so this region is self-generating and
reaches �rst best.

In this region, there is some �exibility in choosing �s. By having �s = � (to be more consistent

with the middle region), the expression of bn follows from the PKm .

For this region to exist, a necessary and su¢ cient condition is that, at � = �; the non-reneging

constraint holds. PKM at � implies that

bn(�) =
y
�
eFB

�
� �

1� � =
c
�
eFB

�
+ u

1� � ;

where the second inequality uses that the �rst best is obtained at �: Substituting this into the

non-reneging constraint, we obtain the necessary and su¢ cient condition in Part (d.).
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Now at the left boundary of the region, the non-reneging constraint must bind. This implies

that (1� �)bn = �(� � �): Substituting this into PKM , we have

� = (1� �) y
�
eFB

�
+ �(�� + (1� �)�):

This proves Part (d.).

For Part (e.), note that in this region we have e = be: In addition, we have (1� �)bn = �(� � �)
since �3 > 0 in this region. Substituting these into PKM , we get

� = ((1� �) y (be)� (1 + ��)w) + �(��s + (1� �)�):
There is again some �exibility is choosing �s here except for at the right boundary of this region.

To be consistent with the middle region, we have �s = � and this gives the expression for w:

For this region to exist, a necessary and su¢ cient condition is that at � = �; we have w > 0;

and this is equivalent to � < y (be) : Finally, at the right boundary of this region, we have w = 0

and �s = �. Substituting these into the PKM proves Part (e.). �

Now we proceed to the long-term contracts. Recall that ht = fy1; :::ytg is the history of past
outputs. Let mt = fm1; ::mtg be the history of past announcements, and tn be the last time the
manager announces no-shock (and tn = 0 if the manager has never announced no-shock.) Let

bt(h
t;mt) be the manager�s payment to the worker in period t:

PROPOSITION C4. As T approaches 1; the following sequence of contracts approaches �rst best.

bt(h
t;mt) =

8>><>>:
0

0

(c(eFB) + u)(1 + ��1 + ��2 + :::+ ��(t�1�tn))

if ht 6= fyFB; :::::; yFBg
if mt = n and t < tn + T

otherwise.

Proof: To simplify the exposition, we normalize u to be zero. We �rst show that this sequence

of contracts are incentive compatible for su¢ ciently large T: Under the construction above, the

worker�s payo¤ is 0 by putting eFB in each period. Any other e¤ort choice (except e = 0) gives

the worker a negative payo¤. Therefore, choosing et = eFB along the equilibrium path is a best

response for the worker.

It remains to check that it is incentive compatible for the manager to be truth-telling. Note that

when the worker puts in �rst best level of e¤ort, his expected payo¤ is always zero for any strategy

taken by the manager. Therefore, the manager�s payo¤ is equal to the value of the relationship.

This implies that the manager�s payo¤ is maximized when she minimizes the surplus destruction,
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i.e., when she minimizes the expected payment shock states. This makes it clear that it is incentive

compatible for the manager to be truth-telling in a no-shock state.

It remains to check the manager�s incentive compatibility in shock states. Note that once the

manager announces a no-shock state, the contract immediately restarts in the next period. Given

this renewal feature and that the manager is always truth-telling in no-shock states, it su¢ ces to

consider the following sequence of strategies in which the manager makes truthful announcements

until period n after which she always announces that it is a no-shock state. For truth-telling to be

optimal, it is equivalent that the surplus destruction from such strategies is minimized at n = T:

Now let V ni be the associated expected surplus destruction if the manager has announced shock

states in the past ith periods. Denote k = �c(eFB); then V ni satis�es the following.

V n0 = (1� �)(0 + �V n0 ) + ��V n1 ;

V n1 = (1� �)(0 + �V n0 ) + ��V n2 ;

:::

V nn�1 = (1� �)(0 + �V n0 ) + ��V nn ; and

V nn = �k(1 + �
�1 + ��2 + :::+ ��(n�1)) + �V n0 :

Solving for the n equations, we obtain that

V n0 = ��k
1� ��
(1� �)2

�n(1� �n)
(1� (��)n+1)

:

Note that

�n�1(1� �n�1)
1� (��)n � �n(1� �n)

1� (��)n+1

>
�n�1

(1� (��)n)(1� (��)n+1)
�
1� �n�1 � �

�
:

Therefore, for n > 1 + log(1� �)= log �;

�n�1(1� �n�1)
1� (��)n >

�n(1� �n)
1� (��)n+1

;

so V n0 is decreasing in n:

Moreover, �n(1 � �n)=(1 � (��)n+1) goes to zero as n goes to in�nity. It follows that for T
su¢ ciently large, V n0 is minimized at n = T: This proves the incentive compatibility. Since V

T
0 goes

to zero as T goes to in�nity, this sequence of contracts approximates �rst best. �
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