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Abstract

We develop a general theory to characterize the set of direct mechanisms of

nonlinear pricing that are implementable by practical pricing schemes. Here a

practical pricing scheme is required to take the form of a menu of tari¤ options,

where the set of admissible tari¤ options and the number of tari¤ options in the

menu are pre-speci�ed. Our results are applied to compare the maximum pro�ts

of three forms of pricing schemes: incremental discounts, all-units discounts,

and quantity forcing. We found that, when the number of blocks is unrestricted,

incremental discounts perform weakly the worst. However, if the performance

of incremental discounts is not strictly worse when the number of blocks is

unrestricted, then it performs the best when the number of blocks is restricted.

It is because incremental discounts have the smallest "implementation power"

and the largest "approximation power".

Keywords: Nonlinear pricing, Incentive compatible mechanisms, Incre-

mental discounts, All-units discounts

JEL Classi�cation Numbers: D42, D82, D86, L12.

1 Introduction

We revisit Maskin and Riley (1984) monopolistic nonlinear pricing problem, in which

a monopolist faces heterogeneous consumers with one-dimensional continuous types,
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and the consumers�types are private information. If the monopolist is free to adopt

any pricing scheme to maximize pro�t, the optimal (or second best) solution is now

well known. However, in this continuous type model, the optimal nonlinear pricing

scheme is complicated, at least far more complicated than what we observe in reality.

What if the monopolist has to use a pricing scheme that is in some "practical" form

(e.g. o¤ering a menu of two-part tari¤s)? Given a practical form, what are the

restrictions it put on the set of feasible direct selling mechanisms? How should the

monopolist choose among di¤erent practical forms of pricing schemes?

To tackle these issues, we need to be more precise about what forms of pricing

schemes we consider practical. Our treatment to this has two levels. At the �rst

level, the general theory level, the meaning of practicality is �exible, and we develop

a general theory that su¢ ces to analyze any particular form of pricing schemes, pro-

vided that it is in the "menu class" that we explain below. At the second level, the

application level, we consider three forms of pricing schemes to be practical: incre-

mental discounts (ID), all-units discounts (AUD), and quantity forcing (QF). These

three forms are illustrated in Figure 1. Under ID, illustrated in the left panel, mar-

ginal prices of successive units decline in steps. We also allow a �xed fee under ID.1

Under AUD, illustrated in the middle panel, the per-unit price progressively drops

when the order size exceeds certain thresholds. We also allow a minimum purchase

under AUD.2 Under QF, illustrated in the right panel, only several quantities, each

associated with a gross price, are o¤ered for consumers to choose.3

In order to motivate our general theory, let us notice two things from Figure 1.

First, the three pricing schemes in Figure 1 have arguably the same level of complexity:

each of them has three blocks, and can be characterized by six parameters. Indeed,

under any of the three forms, a pricing scheme with n blocks requires 2n parameters

to characterize. It then makes much sense to ask, with the same number of blocks,

which of the three forms yields the highest pro�t for the monopolist.

Second, each of the three forms can be regarded as o¤ering a menu of simple tari¤

options for consumers to select. O¤ering an ID pricing scheme with n blocks is equiv-

1If one insists that ID has no �xed fee, we can mimic the �xed fee by letting the marginal price
huge for the very �rst units.

2If one insists that AUD has no minimum purchase, we can mimic the minimum purchase by
letting the per-unit price huge for the order size below the �rst threshold.

3I was originally interested in comparing ID and AUD, but I later found that it is theoretically
meaningful to add QF into the picture. See e.g. the paragraph right after Theorem 8.
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Figure 1: Incremental discounts (left), All-units discounts (middle) and Quantity
forcing (right)

alent to o¤ering n two-part tari¤s.4 O¤ering an AUD pricing scheme with n blocks

is equivalent to o¤ering n "minimum purchase tari¤s" (see Section 6). O¤ering a QF

pricing scheme with n blocks (or n points here) is equivalent to o¤ering n quantity-

payment pairs. That makes it possible to build an elegant unifying framework to

analyze all the three forms.

Our theory generally analyzes forms of pricing schemes that can be described

as a menu of tari¤ options, where the set of admissible tari¤ options C and the
number of tari¤ options n in the menu are pre-speci�ed. From revelation principle,

any pricing scheme can be represented as a direct (selling) mechanism, under which

consumers are asked to report their types and each reported type is associated with a

quantity-payment pair. The main theorems (Theorems 4 and 5) of our general theory

characterize the set of direct mechanisms that is implementable by a menu of tari¤

options given the number n and the set C. We say the direct mechanisms in this
set is menu implementable with respect to (n; C), or simply (n; C)-implementable. In
general, restricting to o¤ering a menu makes the issue of incentive compatibility more

severe. Hence menu implementability is strictly stronger than the ordinary incentive

compatibility.

Applying our theorems of menu implementability to ID, AUD and QF, we are

able to characterize the set of direct mechanisms implementable by each of the three

forms, given any number of blocks n. (Theorems 6, 7 and 8) Those mechanisms are

called n-ID implementable, n-AUD implementable, and n-QF implementable. When

the number of blocks is unrestricted, i.e. n =1, we simply call them ID, AUD or QF
implementable. Then we are able to derive many results with our characterizations.

4An ID pricing scheme with n blocks can be regarded as the lower envelope of n two-part tari¤s.
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First, ID implementability is the most restrictive, and in this sense we say that ID

has the smallest "implementation power" among the three forms.5 (Theorem 9) It

follows that when the number of blocks is unrestricted, ID can never perform better

than AUD.

Second, we derive the condition under which ID or AUD can attain the Maskin-

Riley second best pro�t, when the number of blocks is unrestricted. It amounts to

derive the condition under which the second best direct mechanism is ID (or AUD)

implementable.

Third, if ID can attain the second best pro�t when the number of blocks is unre-

stricted, then it performs the best among the three forms when the number of blocks

is restricted, i.e. n < 1. Proving this result is harder because, for �nite n, the
three concepts n-ID, n-AUD and n-QF implementability do not imply one another.

However, it can be done by showing that, under the premise and given any n-AUD or

n-QF implementable direct mechanism, there exists an n-ID direct mechanism that

better approximate the Maskin-Riley second best solution. In this sense, we say that

ID has the largest "approximation power" among the three forms. (Theorem 10) The

variations of implementation power and approximation power are closely related to

trade-o¤s between control and �exibility, which we discuss in the concluding remarks.

Although the use of AUD in intermediate-goods markets is common,6 there is little

theoretical analysis on it in the literature.7 Why does a seller use AUD rather than ID?

It has been informally argued that the use of AUD is anticompetitive or exclusionary

(to exclude entry of competitors, or induce downstream retailers to promote the

products at the expense of other substitute products).8 So one might wonder whether

a monopolist without fear of competition would �nd AUD superior. The implication

of our results on this has two sides. First, in principle both AUD and ID could

perform better for a monopolist without fear of competition. But second, under

certain conditions (which could be plausible in certain contexts but not in others) ID

must outperform AUD for such a monopolist.9

5It is trivial that QF implementability is the least restrictive. Indeed, if the number of blocks is
in�nity, QF allows any nonlinear pricing scheme so that we are back to Maskin-Riley.

6According to Kolay, Sha¤er, and Ordover (2004), AUD is used by Coca-Cola, Irish Sugar British
Airways, and Michelin.

7Kolay, Sha¤er, and Ordover (2004) is an exception. They concentrate on a situation where an
upstream �rm faces a downstream �rm with only two types, and �nd that AUD is always better
than ID under incomplete information.

8See, for example, Tom, Balto, and Averitt (1999).
9For example, ID must outperform AUD if marginal cost is constant, the hazard rate of types�
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O¤ering simple menus as a practical scheme is relevant in other principal-agent

contexts (e.g. the ones in La¤ont and Martimort (2002)), where our general theory of

menu implementability applies equally well. We list some related works on this line.

In the context of procurement contracting, Rogerson (2003) considers "Fixed Price

Cost Reimbursement (FPCR) menus", that is, two-item menus where one item is a

cost-reimbursement contract and the other item is a �xed-price contract, of which

the principal allows the agent to pick one. He shows that, if the agent�s utility is

quadratic and the agent�s type is distributed uniformly, then "the optimal FPCR

menu always captures at least three-quarters of the gain that the optimal complex

menu achieves". Chu and Sappington (2007) relax the assumption of uniform distri-

bution, and show that a menu of two options, namely, a cost-reimbursement contract

and a linear cost sharing contract, can always secure at least 73 percent of the gain.

In the context of nonlinear pricing, Wilson (1993) claims that the loss due to limiting

the number n of two-part tari¤s is of order 1=n2. Bergemann, Shen, Xu, and Yeh

(2010) consider Mussa and Rosen (1978) quality di¤erentiation setting and show un-

der "linear-quadratic speci�cation" that the loss resulting from the usage of a �nite

n-class menu is of order 1=n2. Wong (2009) also considers Mussa and Rosen (1978)

setting and shows that the marginal gain of increasing the number n is diminish-

ing, and of order 1=n3. Miravete (2007) uses a large sample of independent cellular

telephone markets to structurally estimate a monopolistic nonlinear pricing model.

His estimates suggests that "�rms should only o¤er few tari¤ options if the product

development costs of designing them are non-negligible."

The rest of the paper is organized as follows. Section 2 describes the environment.

Sections 3 �5 are the general theory part. Sections 3 and 4 build the basic concepts.

Section 5 presents our characterization of menu implementability. Sections 6 �7 are

the application part. Section 6 characterizes the set of direct mechanisms that is

implementable by each of the three forms of pricing schemes. Section 7 compares the

performances of the three forms. Section 8 concludes. The proofs that are not in the

main text are in Appendix.

distribution is nondecreasing, and consumers�utility takes the form �s (q) � t where � is type, t is
payment, and s is a concave function of quantity q. But AUD could outperform ID under the above
conditions except that marginal cost is increasing. Consider the speci�cation in Example 1 with
1=2 < � �

p
2=2 and large enough n.
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2 Environment

Consider a monopolistic nonlinear pricing problem, in which each consumer�s utility

function is

S (q; �)� t

where S : � � � ! R is the consumer�s gross utility function and t 2 R denotes

the payment from the consumer to the monopolist. The argument q denotes the

quantity consumed, whose domain � can be any closed subset of R that includes

0. The argument � denotes the consumer�s type (or preference parameter), whose

domain � is an interval
�
�; ��
�
. A consumer�s type is her private information. The

monopolist only knows the cumulative distribution function F of consumers�types,

which has a positive density f on the support �. Each consumer has an outside

option (q; t) = (0; 0), i.e. buying nothing and paying nothing.

Given q and t, the monopolist�s ex post (per-customer) pro�t is given by t� c (q),
where c : � ! R is the monopolist�s cost function. If each consumer of type � buys
quantity Q (�) and pays T (�), then the monopolist�s ex ante (per-customer) pro�t is

Z ��

�

[T (�)� c (Q (�))] dF (�) : (1)

The following assumptions are all we need for the next three sections (general

theory part).

Assumption 1 S (0; �) = 0 for all � 2 �. For any q 2 �, S (q; �) is absolutely

continuous, strictly increasing, and di¤erentiable in �. For any � 2 �, S (q; �) is
continuous in q. Moreover, S satis�es strictly increasing di¤erences in (q; �), i.e.

q1 � q2 and �1 � �2 imply

S (q2; �2)� S (q1; �2) � S (q2; �1)� S (q1; �1) ;

and the inequality becomes strict whenever q1 < q2 and �1 < �2.

Note that our general theory allows quantity to be discrete or continuous, and

Assumption 1 is very weak, so that our results can be adapted to many other principal-

agent settings. The only essential restriction in Assumption 1 is its last sentence,

which is the strict Spence-Mirrlees property.
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3 Direct mechanisms, menus, and menu-direct mech-

anisms

The following de�nitions about direct mechanisms (or direct selling mechanisms, or

direct revelation mechanisms) are standard. Theorem 1 is also well known and we

state it without proof for future reference.

De�nition 1 A direct mechanism, written as (Q; T ), is a pair of functions Q : �!
� and T : � ! R. Q is called the quantity function and T the payment function of

(Q; T ). A direct mechanism (Q; T ) is said to be incentive-compatible (IC) if for any

�; �0 2 �, we have

S (Q (�) ; �)� T (�) � S(Q(�0); �)� T (�0):

A direct mechanism (Q; T ) is said to be individually rational (IR) if for any � 2 �,
we have

U (�) � S (Q (�) ; �)� T (�) � 0:

If a direct mechanism (Q�; T �) maximizes the monopolist�s pro�t (1) subject to

IC and IR, we say (Q�; T �) is a second best direct mechanism, Q� is a second best

quantity function, and the associated pro�t, denoted as ��, is the second best pro�t.

Theorem 1 A direct mechanism (Q; T ) is IC if and only if Q (�) is nondecreasing
and U (�2)� U (�1) =

R �2
�1
S� (Q (x) ; x) dx for any �1; �2 2 �.

We now formalize the concepts of tari¤ option and menu of tari¤ options.

De�nition 2 A tari¤ option � is a function that assigns each quantity q 2 � a total
payment � (q) 2 R[f1g for purchasing q units, such that � (q) <1 for some q 2 �,
and lim infx!q � (x) > �1 for all q 2 �.10 (The interpretation of � (q) = 1 is that

purchasing q units is not allowed by � .) The set � (�) � fq 2 � : � (q) <1g is called
the domain of � . (The interpretation of � (�) is the set of order sizes allowed by � .)

10As usual, lim infx!q � (x) is de�ned by

lim
"#0
(inf f� (x) : jx� qj < " and x 2 �g) :
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Notice that our concept of tari¤ option is a general one: we formally allow the

payment associated with an order size to be in�nity to forbid that order size; we

also allow the payment to be negative, provided that it never converges to negative

in�nity. In this terminology, the consumers�outside option, i.e. to buy nothing and

pay nothing, is also a tari¤ option. We use � out to denote the tari¤ option that

represents the outside option, i.e.

� out (q) �
(
0 if q = 0

1 if q 2 �n f0g
:

Let C be a set of tari¤ options, which is meant to be a class of "admissible" tari¤
options that the monopolist can put into a menu for the consumers to choose.

De�nition 3 A menu is a set of tari¤ options. A menu-direct mechanism, written
as f� �g�2� or simply ��, is an indexed set of tari¤ options, in which every tari¤
option is indexed by � 2 �.11 We say a menu is on C if it is a subset of C. We say a
menu-direct mechanism is on C if it is a subset of C [ f� outg.

Intuitively, a menu is a list of admissible tari¤ options for each consumer to select

one, or none. Once a tari¤ option is selected, the consumer is free to choose an order

size, which determines the corresponding payment according to the tari¤ option. The

concept of menu-direct mechanism is derived from the concept of menu in the spirit

of revelation principle. Intuitively, under a menu-direct mechanism, a tari¤ option

(or the outside option) is designed for each type of consumers, and each consumer is

asked to report her type in order to determine her tari¤ option.

Having chosen a tari¤ option � , a consumer�s problem is to choose order size q to

maximize S (q; �)� � (q). For any tari¤ option � and any � 2 �, we write

V (� ; �) � sup
q2�

fS (q; �)� � (q)g ;

D (� ; �) � argmax
q2�

fS (q; �)� � (q)g :

De�nition 4 We say a menu �B � f��g�2B induces a direct mechanism (Q; T ) if

there exists a mapping � � : � ! �B [ f� outg, written as � 7! � ��, such that T (�) =

11The possibility that �1 6= �2 and ��1 = ��2 is allowed.
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� �� (Q (�)) and

S (Q (�) ; �)� � �� (Q (�)) � S (q; �)� � (q)

for any � 2 �, any q 2 �, and any � 2 �B [ f� outg. (We may call � � a consumers�
best response to �B.)

De�nition 5 We say a menu-direct mechanism �� induces a direct mechanism (Q; T )

if T (�) = � � (Q (�)) and Q (�) 2 D (� �; �) for any � 2 �.

Like direct mechanisms, menu-direct mechanisms can have the properties of in-

centive compatibility and individual rationality.

De�nition 6 We say a menu-direct mechanism �� is IC if for each � 2 �, there
exists a Q (�) such that

S (Q (�) ; �)� � � (Q (�)) � S (q0; �)� � �0 (q
0) for any (q0; �0) 2 ���:

In other words, a menu-direct mechanism �� is IC i¤

D (� �; �) 6= ? and V (� �; �) � V (� �0 ; �) for any �; �
0 2 �:

We say a menu-direct mechanism �� is IR if for each � 2 �, there exists a Q (�)
such that S (Q (�) ; �)� � � (Q (�)) � 0. In other words, a menu-direct mechanism ��

is IR i¤ for any � 2 �, either D (� �; �) 6= ? and V (� �; �) � 0, or V (� �; �) > 0.

Remark 1 In our analysis, a menu-direct mechanism �� always induces some direct

mechanism, so that D (� �; �) is always nonempty, and then the IC of �� is simply

V (� �; �) � V (� �0 ; �) for any �; �
0 2 �, and the IR of �� is simply V (� �; �) � 0 for

any � 2 �.

It is easy to see that a direct mechanism (Q; T ) is induced by some menu on C if
and only if (Q; T ) is induced by some IC and IR menu-direct mechanism on C.

4 Domination and single crossing properties for

tari¤ options

De�nition 7 For any two tari¤ options � 1 and � 2, we say � 1 is dominated by � 2
(or � 2 dominates � 1) if � 1 (q) � � 2 (q) for any q 2 �, and the inequality is strict for
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some q 2 �.

De�nition 8 For any two tari¤ options � 1 and � 2, we say (� 1; � 2) satis�es tari¤
single crossing property if for any q1; q2 2 � (� 1) [ � (� 2) with q1 < q2, we have

� 1 (q2) � � 2 (q2)) � 1 (q1) � � 2 (q1)

and

� 1 (q1) � � 2 (q1)) � 1 (q2) � � 2 (q2) :

That is, � 1 (q)� � 2 (q), regarded as a function of q and restricted on � (� 1) [ � (� 2),
crosses or touches zero only once and only from below. The interpretation is that � 1
is less favorable to high quantities than � 2.

De�nition 9 For any two tari¤ options � 1 and � 2, we say (� 1; � 2) satis�es tari¤
increasing di¤erences if � 1 (q)�� 2 (q) is nondecreasing in q on � (� 1)[� (� 2). Another
way to say that is: (� 1; � 2) satis�es tari¤ increasing di¤erences i¤ (� 1; � 2 + x) satis�es

tari¤ single crossing property for any x 2 R. The interpretation is that � 1 is less
favorable to incremental quantities than � 2.

It is easy to see that if (� 1; � 2) satis�es tari¤ increasing di¤erences, then it satis�es

tari¤ single crossing property.

For any tari¤ option � , we let � inf : � ! R [ f1g denote the highest lower
semi-continuous function that is weakly lower than � . That is, for each q 2 �,

� inf (q) = lim infx!q � (x). Clearly, � inf is also a tari¤ option; and � inf = � if and only

if � is lower semi-continuous. The following lemma is proved in Appendix.

Lemma 1 If (� 1; � 2) satis�es tari¤ increasing di¤erences, then
�
� inf1 ; �

inf
2

�
satis�es

tari¤ increasing di¤erences.

5 Menu implementability

The following is the central concept of this paper.

De�nition 10 We say a direct mechanism is (n; C)-implementable (where n is a
nonnegative integer or1) if it is induced by some menu on C that has at most n tari¤
options. We say a direct mechanism is C-implementable if it is (1; C)-implementable
(i.e. it is induced by some menu on C).
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From the logic of revelation principle, one can see the following proposition, which

we state without proof.

Proposition 1 An (n; C)-implementable direct mechanism must be IC and IR. A

direct mechanism is (n; C)-implementable if and only if it is induced by some IC and
IR menu-direct mechanism on C that has at most n distinct tari¤ options except � out.

The above proposition reveals that any C-implementable direct mechanism is IC

and IR. But the converse is not true: an IC and IR direct mechanism might not be

C-implementable. We have the following result though.

Theorem 2 Suppose that a menu-direct mechanism �� induces a direct mechanism

(Q; T ). Then �� is IR if and only if (Q; T ) is IR. Moreover, if �� is IC, then (Q; T )

is IC.

Proof. Since �� induces (Q; T ),

V (� �; �) = sup
q2�

fS (q; �)� � � (q)g = S (Q (�) ; �)� � � (Q (�)) = S (Q (�) ; �)� T (�) ;

V (� �0 ; �) = sup
q2�

fS (q; �)� � �0 (q)g � S (Q (�0) ; �)�� �0 (Q (�0)) = S (Q (�0) ; �)�T (�0) :

Therefore, S(Q(�); �) � T (�) � 0 if and only if V (� �; �) � 0. It follows that (Q; T )
is IR if and only if �� is IR. Moreover, if �� is IC, then, for any �; �

0 2 �, we have
V (� �; �) � V (� �0 ; �), and hence S(Q(�); �) � T (�) � S(Q(�0); �) � T (�0). Therefore

(Q; T ) is IC if �� is IC.

If the monopolist is free to o¤er any pricing scheme, it is well understood that the

monopolist faces only incentive compatibility constraint and individual rationality

constraint when designing a direct mechanism. Theorem 2 reveals that restricting

to o¤ering a menu, rather than any pricing scheme, does not have an impact on

individual rationality constraint. However, restricting to o¤ering a menu generally

strengthens incentive compatibility constraint, in the sense that IC for a menu-direct

mechanism is stronger than IC for the corresponding direct mechanism. The last

result is intuitive. A direct mechanism speci�es a particular quantity-payment pair

once a consumer�s type has been reported, so a consumer has an incentive to report

a false type only if she prefers the quantity-payment pair designated for that false
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type. In contrast, under a menu-direct mechanism a tari¤ option is speci�ed after

reporting. A consumer has some �exibility to choose the quantity-payment pair after

a type has been reported, as long as the tari¤ option speci�ed for that reported type

is not degenerate. Hence a consumer has an incentive to report a false type whenever

she prefers any quantity-payment pair allowed by the tari¤ option designated for that

false type.

Then what is the additional restriction of the IC of a menu-direct mechanism on

top of the ordinary IC (i.e. IC of the corresponding direct mechanism)? The following

de�nition and theorem provide partial answers.

De�nition 11 We say a menu-direct mechanism �� = f� �g�2� is increasing di¤er-
ences monotonic if for any �1; �2 2 � with �1 < �2, (� �1 ; � �2) satis�es tari¤ increasing

di¤erences. Similarly, we say �� is single crossing monotonic if for any �1; �2 2 �
with �1 < �2, (� �1 ; � �2) satis�es tari¤ single crossing property.

Theorem 3 Suppose that a menu-direct mechanism �� induces an IC direct mecha-

nism (Q; T ). Then �� is IC if either one of the following two conditions holds.

1. �� is increasing di¤erences monotonic.

2. (i) �� is single crossing monotonic; and (ii) for any �; �
0 2 �, � � (Q (�)) �

� �0 (Q (�)).

Proof. Suppose that �� induces (Q; T ) and (Q; T ) is IC, but �� is not IC. Then there
exist some �1; �2 2 � and some q0 2 � such that U (�1) = V (� �1 ; �1) < S (q0; �1) �
� �2 (q

0) � S (q0; �1)� � inf�2 (q
0). (Recall that U (�) � S (Q (�) ; �)� T (�) and � inf� (q) �

lim infx!q � � (x) for any (q; �) 2 ���.)
Let �0 � � \

��
Q (�) ; Q

�
��
��
[ fq0g

�
. For any �; �0 2 �, the set

D
�
� inf�0 ; �;�

0� � argmax
q2�0

�
S (q; �)� � inf�0 (q)

	
is nonempty since �0 is compact and the objective function is upper semi-continuous

in q (from the lower semi-continuity of � inf�0 and the continuity of S (�; �)).
For any � 2 �, we have Q (�) 2 D (� �; �), since �� induces (Q; T ). Then S (q; �)�

� � (q)must be upper semi-continuous in q atQ (�), and hence � � (Q (�)) = � inf� (Q (�)).

Then Q (�) 2 D
�
� inf� ; �

�
. Since Q (�) 2 �0, we also have Q (�) 2 D

�
� inf� ; �;�

0�.
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For any � 2 �, let

V
�
� inf�2 ; �;�

0� � sup
q2�0

�
S (q; �)� � inf�2 (q)

	
= sup

q2�0
fS (q; �)� � �2 (q)g :

Since q0 2 �0, we have U (�1) < S (q0; �1)�� inf�2 (q
0) � V

�
� inf�2 ; �1;�

0�. Since Q (�2) 2 �0,
we have U (�2) = V (� �2 ; �2) = V

�
� inf�2 ; �2

�
= V

�
� inf�2 ; �2;�

0�. In other words, the value
of U (�) is strictly below the the value of V

�
� inf�2 ; �;�

0� at �1, but the values of these
two functions are equal at �2. By IC of (Q; T ) and Theorem 1, U (�) is absolutely con-
tinuous, and U 0 (x) = S� (Q (x) ; x) for almost every x 2 �. By Envelope Theorem (in
the version of Milgrom and Segal (2002)), V

�
� inf�2 ; �;�

0� is absolutely continuous, and
@V

�
� inf�2 ; x;�

0� =@x = S�
�
d
�
� inf�2 ; x;�

0� ; x� for almost every x 2 �, where d �� inf�2 ; �;�0�
is any selection from D

�
� inf�2 ; �;�

0�.
It follows that, if �1 < �2, then there is some x0 2 [�1; �2] such that U (x0) <

V
�
� inf�2 ; x0;�

0� and U 0 (x0) > @V
�
� inf�2 ; x0;�

0� =@x0, and then S� (Q (x0) ; x0) > S�
�
d
�
� inf�2 ; x0;�

0� ; x0�,
and then Q (x0) > d

�
� inf�2 ; x0;�

0�. (Notice that Assumption 1 implies that S� (q; �) is
nondecreasing in q.) Similarly, if �1 > �2, then there is some x0 2 [�2; �1] such that
U (x0) < V

�
� inf�2 ; x0;�

0� and Q (x0) < d
�
� inf�2 ; x0;�

0�.
So far neither condition 1 nor condition 2 is imposed yet. In the following we show

that either one would derive contradiction.

Case of condition 1. Increasing di¤erences monotonicity and Lemma 1 imply
that S (q; �)� � inf�0 (q) satis�es increasing di¤erences in (q; �

0). By monotone compar-

ative statics (see Topkis (1978) or Milgrom and Shannon (1994)), we obtain that,

given any � 2 �, D
�
� inf�0 ; �;�

0� is nondecreasing in �0 in the strong set order �s. (For
any D1; D2 � R, D1 �s D2 i¤ d1 2 D1 and d2 2 D2 imply min fd1; d2g 2 D1 and

max fd1; d2g 2 D2.) If �0 < �, then D
�
� inf�0 ; �;�

0� �s D �� inf� ; �;�0�, then there is
some d 2 D

�
� inf�0 ; �;�

0� such that d � Q (�). (Recall that Q (�) 2 D
�
� inf� ; �;�

0� and
D
�
� inf�0 ; �;�

0� is nonempty.) Similarly, if �0 > �, then there is some d 2 D
�
� inf�0 ; �;�

0�
such that d � Q (�). Now, we pick a selection d

�
� inf�0 ; �;�

0� from D
�
� inf�0 ; �;�

0� such
that

d
�
� inf�0 ; �;�

0� �=
�
Q (�) if �0

<

=

>

�:

It contradicts to our previous claim when we take �0 as �2 and � as x0.
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Case of condition 2. Since d
�
� inf�2 ; x0;�

0� is some selection of D �� inf�2 ; x0;�0�,
there exists a sequence fdig on � (� �2) such that di ! d

�
� inf�2 ; x0;�

0� and S (di; x0)�
� �2 (d

i) ! V
�
� inf�2 ; x0;�

0�. Consider �1 < �2. From our previous claim, for all large

enough i, we have

U (x0) < S
�
di; x0

�
� � �2

�
di
�
and Q (x0) > di:

Let i be large enough so that the above properties hold. Since U (x0) � S (di; x0) �
�x0 (d

i), we have S (di; x0)� �x0 (di) < S (di; x0)� � �2 (di) and then �x0 (di) > � �2 (d
i).

On the other hand, condition 2(ii) implies �x0 (Q (x0)) � � �2 (Q (x0)). Then sin-

gle crossing monotonicity implies �x0 (d
i) � � �2 (d

i), because Q (x0) 2 � (�x0) (since

�x0 (Q (x0)) = T (x0) <1), di 2 � (� �2), x0 � �2 and Q (x0) > di. We have a contra-

diction. By an analogous argument, the case of �1 > �2 also yields a contradiction.

Theorem 3 can be informally understood as follows. Working with direct mecha-

nism, it is well known that IC requires higher type consumers to purchase more. Work-

ing with menu-direct mechanism, we have a natural extension: IC requires higher type

consumers to pick menus that are favorable to purchasing more. The latter is for-

malized by increasing di¤erences monotonicity. If we replace increasing di¤erences

monotonicity by the related but weaker condition single crossing monotonicity, then

an additional condition, condition 2(ii) in Theorem 3, is needed.

Remark 2 Notice that in Theorem 3, condition 2(ii) clearly has to be satis�ed any-

way, as long as �� is IC and induces (Q; T ). So actually condition 1, together with IC

of (Q; T ), implies condition 2. However, the su¢ ciency of condition 1 is worth know-

ing on top of knowing the su¢ ciency of condition 2, because for some applications

condition 1 is more useful. Indeed, in our applications in Section 6, checking increas-

ing di¤erences monotonicity is not harder than checking single crossing monotonicity

and hence we do not need to worry about condition 2(ii).

Proposition 1, Theorem 2 and Theorem 3, put together, provide two sets of su¢ -

cient conditions for a direct mechanism to be (n; C)-implementable. The correspond-
ing necessity requires some restrictions on C.

De�nition 12 We say a set C of tari¤ options is closed if it is closed under the
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product topology in the space of tari¤ options, i.e. whenever a net in C pointwise
converges to a tari¤ option, this tari¤ option is also in C.

De�nition 13 We say a set C of tari¤ options is increasing di¤erences comparable
if for any two tari¤ options � 1 and � 2 in C which are not dominated by each other,
either (� 1; � 2) or (� 2; � 1) satis�es tari¤ increasing di¤erences. Similarly, we say C
is single crossing comparable if for any two tari¤ options � 1 and � 2 in C which are
not dominated by each other, either (� 1; � 2) or (� 2; � 1) satis�es tari¤ single crossing

property.

The proof of our main results requires the following two lemmas, which are proved

in Appendix.

Lemma 2 If a direct mechanism (Q; T ) is (n; C)-implementable with either n �nite
or C [ f� outg closed, then the associated menu �B � f��g�2B (that is on C, has at
most n elements, and induces (Q; T )) can be chosen such that

1. for any q 2 �, argmin�2�B[f�outg � (q) is nonempty, and

2. the tari¤ options in �B do not dominate one another.

Lemma 3 If tari¤ options � 1; : : : ; �n do not dominate one another, and (� 1; � 2),
(� 2; � 3), : : :, (�n�1; �n) and (�n; � 1) satisfy tari¤ single crossing property or tari¤

increasing di¤erences, then � 1 = � � � = �n.

Now we are ready to state and prove the main results of our general theory.

Theorem 4 A direct mechanism (Q; T ) is (n; C)-implementable if it is IC and IR,
and is induced by some menu-direct mechanism �� on C such that:

1. �� is increasing di¤erences monotonic, and

2. j��n f� outgj � n.

Moreover, if (i) n is �nite or C[f� outg is closed, and (ii) C is increasing di¤erences
comparable, then the above set of su¢ cient conditions for (n; C)-implementability is
also necessary, and the menu-direct mechanism �� can be chosen such that the tari¤

options in �� do not dominate one another.
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Proof. Su¢ ciency. It is a straightforward corollary of Proposition 1, Theorem 2

and Theorem 3.

Necessity. Suppose that the assumptions (i) and (ii) hold and a direct mechanism
(Q; T ) is (n; C)-implementable. By Proposition 1, (Q; T ) is IC and IR. By de�nition
of (n; C)-implementability, (Q; T ) is induced by some menu �B � f��g�2B � C with
j�Bj � n. That is, there exists a consumers�best response � � : � ! �B [ f� outg,
written as � 7! � ��, such that T (�) = � �� (Q (�)) and

S (Q (�) ; �)� � �� (Q (�)) � S (q; �)� � (q)

for any � 2 �, any q 2 �, and any � 2 �B [ f� outg. Let � �� be the range of � �. By
assumption (i) and Lemma 2, we can without loss of generality assume that the tari¤

options in � �� do not dominate one another.

To introduce convenient notation, we write � 1 E � 2 if (� 1; � 2) satis�es tari¤ in-

creasing di¤erences. Obviously, E is a re�exive binary relation over tari¤ options.

Increasing di¤erences comparability of C (assumption (ii)) carries over to C[ f� outg
(because � out E � for any tari¤ option �) and hence also carries over to � �� (because

� �� � C[f� outg). Thus, E is complete on � ��. From Lemma 3, E is antisymmetric on
� ��. From re�exivity, completeness and Lemma 3, E is transitive on � ��. Therefore,

E is a linear order on � ��. It makes � �� a chain.
De�ne T (�) as the set f� 2 � �� : � (Q (�)) � � 0 (Q (�)) for any � 0 2 � ��g. T (�) is

nonempty because � �� 2 T (�) for every � 2 � (otherwise � �� is not IC). Let Es be the
strong set order on � �� induced by E. That is, for any two subsets T1; T2 of � ��, we
say T1 Es T2 if � 1 2 T1 and � 2 2 T2 and � 2 E � 1 imply � 1 2 T2 and � 2 2 T1. Then Es
is a partial order on the set P (� ��) of nonempty subsets of � ��.
We want to show that the mapping T is nondecreasing on ((�;�) ; (P (� ��) ;Es)).

Consider any �1; �2 2 � such that �1 < �2, and we need to show T (�1) Es T (�2).
Suppose � 1 2 T (�1) and � 2 2 T (�2) and � 2 E � 1. Let q1 � Q (�1) and q2 � Q (�2).

From IC of (Q; T ), we have q1 � q2. From IR of (Q; T ), we have S (q1; �1)� � 1 (q1) �
S (q1; �1) � � ��1 (q1) = S (q1; �1) � T (�1) � 0 so that � 1 (q1) < 1, and similarly
� 2 (q2) <1. Thus q1 2 � (� 1) and q2 2 � (� 2). Since � 1 2 T (�1) and � 2 2 T (�2), we
have � 1 (q1) � � 2 (q1) and � 2 (q2) � � 1 (q2). Now it follows from � 2 E � 1 and q1 � q2

that � 1 (q2) � � 2 (q2) and � 2 (q1) � � 1 (q1), and hence � 1 2 T (�2) and � 2 2 T (�1).
Therefore, T (�1) Es T (�2). We conclude that the mapping T is nondecreasing on
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((�;�) ; (P (� ��) ;Es)).
Regard T as a correspondence from � to � ��. Our previous results show that T

is nonempty-valued and nondecreasing (with respect to the strong set order induced

by E), so that it has a nondecreasing selection � 7! � � (see Milgrom and Shannon

(1994) Theorem A2). Now �� � f� �g�2�, regarded as a menu-direct mechanism
on C, satis�es conditions 1 and 2, and is such that the tari¤ options in it do not
dominate one another. Finally, this �� induces (Q; T ) because T (�) = � �� (Q (�)) =

min�02� �
�
�0 (Q (�)) = � � (Q (�)) for any � 2 �, and

S (Q (�) ; �)� � � (Q (�)) = S (Q (�) ; �)� � �� (Q (�)) � S (q; �)� � � (q)

for any � 2 � and any q 2 �.

Theorem 5 A direct mechanism (Q; T ) is (n; C)-implementable if it is IC and IR,
and is induced by some menu-direct mechanism �� on C such that:

1. �� is single crossing monotonic,

2. for any �; �0 2 �, � � (Q (�)) � � �0 (Q (�)), and

3. j��n f� outgj � n.

Moreover, if (i) n is �nite or C [ f� outg is closed, and (ii) C is single crossing
comparable, then the above set of su¢ cient conditions for (n; C)-implementability is
also necessary, and the menu-direct mechanism �� can be chosen such that the tari¤

options in �� do not dominate one another.

Proof. Su¢ ciency. It is a straightforward corollary of Proposition 1, Theorem 2

and Theorem 3.

Necessity. Essentially repeat the proof of Theorem 4 except that the binary

relation E is rede�ned: � 1 E � 2 if and only if (� 1; � 2) satis�es tari¤ single crossing

property.

The monopolist�s problem is to maximize the pro�t (1) by choosing a direct mecha-

nism (Q; T ), subject to the constraint that (Q; T ) is (n; C)-implementable, given some
exogenous n and C.
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De�nition 14 We say a direct mechanism (Q; T ) is (n; C)-optimal (where n is a
nonnegative integer or 1) if it maximizes the pro�t (1) subject to the constraint that
(Q; T ) is (n; C)-implementable. If (Q; T ) is an (n; C)-optimal direct mechanism, we
call Q an (n; C)-optimal quantity function, and call the associated pro�t the (n; C)-
maximum pro�t. We say a direct mechanism (Q; T ) is C-optimal if it is (1; C)-optimal
(i.e. it maximizes the pro�t subject to the constraint that (Q; T ) is C-implementable).
If (Q; T ) is a C-optimal direct mechanism, we call Q a C-optimal quantity function,
and call the associated pro�t the C-maximum pro�t.

Results particularly for (n; C)-optimal direct mechanism or (n; C)-maximum pro�t
are not available, until C is speci�ed in context of applications, which we do next.

6 Incremental discounts, all-units discounts, and

quantity forcing

In this and the next sections (application part), we add the following to supplement

Assumption 1.

Assumption 2 The domain � of quantity is R+. For every � 2 �, S (q; �) is di¤er-
entiable in q.

It in particular does not require the gross utility S to be increasing or concave in

quantity q. Hence, the consumer can be for example interpreted as a down-stream

retailer, and the gross utility function as the retailer�s revenue function, as in e.g.

Kolay, Sha¤er, and Ordover (2004).

A two-part tari¤ is a tari¤ option that is a¢ ne. That is, a two-part tari¤ is of

the form q 7! pq + �, where p 2 R and � 2 R are the marginal price and the �xed
fee associated with this two-part tari¤. An incremental discounts (ID) scheme is a

menu of two-part tari¤s o¤ered by the monopolist. If a type � consumer chooses

a two-part tari¤ characterized by (p; �) and a purchase quantity q � 0, then her

utility is S (q; �) � pq � �. If any consumer chooses none, then her outside option

is buying nothing and paying nothing, and her utility is 0. If an ID scheme has at

most n options (or blocks), where n could be �nite or in�nite, then it is called an

n-incremental discounts scheme (n-ID scheme).
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The form of ID schemes is simply a special case of our general concept of menu

in Sections 3 �5 where the set of admissible tari¤ options C comprises all two-part
tari¤s. With such a C, a C-implementable (respectively (n; C)-implementable, or C-
optimal, or (n; C)-optimal) direct mechanism is also said to be ID-implementable (re-
spectively n-ID-implementable, or ID-optimal, or n-ID-optimal), and the C-maximum
(respectively (n; C)-maximum) pro�t is also called the ID-maximum (respectively n-

ID-maximum) pro�t. Theorem 4 translates into the following theorem, which we

prove in Appendix. In particular, the increasing di¤erences monotonicity condition

in Theorem 4 translates into the monotonicity of marginal price (i.e. condition 2 in

Theorem 6).

Theorem 6 A direct mechanism (Q; T ) is n-ID-implementable if and only if it is IC
and IR, and there exists a function P : A! R, where A = f� 2 � : (Q (�) ; T (�)) 6= (0; 0)g,
such that

1. Q (�) 2 argmaxq�0 fS (q; �)� P (�) qg for every � 2 A,

2. P is nonincreasing, and

3. P takes at most n values.12

If the above conditions hold, then (Q; T ) is induced by the IC and IR menu-direct

mechanism �� � f� �g�2� with � � being � out for � 2 �nA, and with � � being q 7!
P (�) q + �(�) for � 2 A, where � (�) = T (�)� P (�)Q (�) for every � 2 A.

We can similarly analyze all-units discounts. Aminimum purchase tari¤ is a tari¤

option that is of the form

q 7!
(
pq if q � m

1 if 0 � q < m
;

where m 2 R+ and p 2 R are the minimum purchase and the per-unit (or average)

price associated with this minimum purchase tari¤. An all-units discounts (AUD)

scheme is a menu of minimum purchase tari¤s o¤ered by the monopolist. If a type

� consumer chooses a minimum purchase tari¤ characterized by (m; p), she has to

12Since S (�; �) is assumed to be di¤erentiable, a necessary condition is that Sq (Q (�) ; �) is nonin-
creasing and takes at most n values on f� 2 � : Q (�) > 0g.
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choose an order size q � m, and then her utility is S (q; �) � pq. If any consumer

chooses none, then her outside option is buying nothing and paying nothing, and her

utility is 0. If an AUD scheme has at most n options (or blocks), where n could be

�nite or in�nite, then it is called an n-all-units discounts scheme (n-AUD scheme).

The form of AUD schemes is simply a special case of our general concept of menu

in Sections 3 �5 where the set of admissible tari¤ options C comprises all minimum
purchase tari¤s. The concepts of AUD-implementability, n-AUD-implementability,

AUD-optimality, n-AUD-optimality, AUD-maximum pro�t and n-AUD-maximum

pro�t are all de�ned analogously. Theorem 4 translates into the following theorem,

which we prove in Appendix. In particular, the increasing di¤erences monotonicity

condition in Theorem 4 translates into the monotonicity of minimum purchase and

per-unit price (i.e. condition 3 in Theorem 7).

Theorem 7 A direct mechanism (Q; T ) is n-AUD-implementable if and only if it

is IC and IR, and there exist functions M : A ! R+ and P : A ! R, where
A = f� 2 � : (Q (�) ; T (�)) 6= (0; 0)g, such that

1. Q (�) 2 argmaxq�M(�) fS (q; �)� P (�) qg for every � 2 A,

2. T (�) = P (�)Q (�) for every � 2 A,

3. M is nondecreasing and P is nonincreasing, and

4. (M;P ) takes at most n values.

If the above conditions hold, then (Q; T ) is induced by the IC and IR menu-direct

mechanism �� � f� �g�2� with � � being � out for � 2 �nA, and with � � being

q 7!
(
P (�) q if q �M (�)

1 if 0 � q < M (�)

for � 2 A. (If n =1, the function M can be chosen as the restriction of Q on A.)

A quantity forcing (QF) scheme (or a menu of quantity-payment pairs) is a menu

of options o¤ered by the monopolist, with each option composed of a purchase quan-

tity q � 0 and a total payment t 2 R. If a type � consumer chooses a quantity-
payment pair (q; t), then her utility is S (q; �)� t. If any consumer chooses none, then
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her outside option is buying nothing and paying nothing, and her utility is 0. If a QF

scheme has at most n options, then it is called an n-quantity forcing scheme (n-QF

scheme).

The form of QF schemes is simply a special case of our general concept of menu

in Sections 3 � 5 where the set of admissible tari¤ options C comprises all tar-
i¤ options with singleton domain. The concepts of QF-implementability, n-QF-

implementability, QF-optimality, n-QF-optimality, QF-maximum pro�t and n-QF-

maximum pro�t are all de�ned analogously. However, the structure of QF schemes

is so simple that one does not need to invoke our general theory to analyze. The

following theorem is obvious, and we state it without proof.13

Theorem 8 A direct mechanism (Q; T ) is n-QF-implementable if and only if it is

IC and IR, and Q takes at most n values except 0.

For each nonnegative integer n, let �IDn (respectively �AUDn , or �QFn ) denote the n-

ID-maximum (respectively n-AUD-maximum, or n-QF-maximum) pro�t, and let �ID1
(respectively �AUD1 , or �QF1 ) denote the ID-maximum (respectively AUD-maximum,

or QF-maximum) pro�t. From now on we assume that the corresponding optimal

solutions exist, so that all these maximum pro�ts are well de�ned.

From Theorem 8, any QF-optimal direct mechanism is also a second best di-

rect mechanism, and �QF1 is also the second best pro�t ��. From Theorems 6 �8

one can immediately see that limn!1�
QF
n = �QF1 = ��, limn!1�

ID
n = �ID1 , and

limn!1�
AUD
n = �AUD1 .14

Theorems 6 �8 imply restrictions on quantity functions that can be induced by

n-ID, n-AUD and n-QF schemes. Figures 2 and 3 illustrate the patterns of those quan-

tity functions. The following observations are important. Adopting an ID scheme,

the induced quantity function cannot respond to type too little, because (i) within

each block, the quantity function has to follow a "type-demand curve", which is typ-

ically strictly increasing,15 and (ii) across blocks, the relevant "type-demand curve"

can only shift up, since marginal price has to be nonincreasing in type. In contrast,

13Simply notice that if (Q;T ) is IC and Q (�) is constant over an interval, then T (�) is also constant
over that interval.
14It is because a monotonic function (e.g. Q in Theorem 8, P in Theorem 6,M and P in Theorem

7) can be arbitrarily well approximated by a step function.
15Assumption 1 guarantees that any selection of demand correspondence with respect to type is

nondecreasing.
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Figure 2: Quantity functions induced by a 3-ID scheme (left) and a 3-QF scheme
(right)
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Figure 3: A quantity function induced by a 3-AUD scheme
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adopting a QF scheme, the induced quantity function has to be �at within each block.

(Of course the jumps have to be upward by ordinary IC.) From this viewpoint, AUD

stands between ID and QF. (This is why I include QF into our analysis.) Adopting

an AUD scheme, within a block, the induced quantity function can have both a �at

portion when the minimum purchase is binding, and a "type-demand curve portion"

when the minimum purchase is not binding.

Comparing Figures 2 and 3, one might suspect that, given the number of blocks,

AUD can induce more general quantity functions than ID and QF can. But it is

not true, because we are not totally free to choose the combination of the minimum

purchases (mi�s), the per-unit prices (pi�s) and the thresholds. The combination of

those parameters has to make every marginal type between two blocks indi¤erent

between picking the two minimum purchase tari¤s corresponding to the two blocks.

After all, we have 2n degrees of freedom if the number of blocks is n, under any of

the three forms of pricing schemes. The comparison among the maximum pro�ts of

the three forms is studied in the next section.

7 Comparison among the three forms of pricing

schemes

When the number of blocks is unrestricted, we can rank the maximum pro�ts of

ID, AUD and QF, because we can rank the concepts of ID-implementability, AUD-

implementability and QF-implementability. The proof of the following theorem,

which applies Theorems 6, 7 and 8, is provided in Appendix.

Theorem 9 Any ID-implementable or AUD-implementable direct mechanism is also
QF-implementable. If an ID-implementable direct mechanism (Q; T ) satis�es S (Q (�) ; �)�
T (�) = 0, then it is also AUD-implementable.

The �rst statement of Theorem 9 is trivial. When the number of quantity-payment

pairs is unrestricted, QF puts no restriction on implementable direct mechanism ex-

cept the ordinary IC and IR. The second statement can be informally understood

as follows. Under any ID scheme, the tari¤ function (i.e. payment as a function

of quantity) must be concave. In contrast, for a tari¤ function to be generated by

an AUD scheme, it only has to have nonincreasing average per-unit price. If we
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only consider tari¤ functions with nonnegative payment for zero order size (which

is natural in this monopolist context and is formally guaranteed by the condition

S (Q (�) ; �)�T (�) = 0), then it is geometrically easy to see that concavity is strictly
stronger nonincreasing average. That is, when the number of blocks is unrestricted,

AUD can generate strictly more tari¤ functions than ID can.

An alternative way to understand Theorem 9 is recalling the insights from Figures

2 and 3. Under ID, the induced quantity function cannot be too �at. When the num-

ber of blocks n tends to in�nity, the induced quantity function can become smooth,

but still cannot be �atter than type-demand curve. In contrast, under QF any non-

decreasing quantity function can be induced when n tends to in�nity. Under AUD,

which stands in middle, induced quantity functions with portions �atter than type-

demand curve are possible. In this sense, we say ID has the smallest "implementation

power" among the three forms, while QF has the largest.

Corollary 1 (a) Any ID-optimal direct mechanism is AUD-implementable. (b) �� =
�QF1 � �AUD1 � �ID1 .

Proof. Suppose that a direct mechanism (Q; T ) is ID-optimal. Then it is ID-

implementable and hence IC and IR. It also satis�es S (Q (�) ; �) � T (�) = 0, for

if S (Q (�) ; �) � T (�) > 0, the monopolist could increase pro�t by raising the �xed

fees of all two-part tari¤s. Then part (a) follows from Theorem 9. Part (b) follows

from part (a) and Theorem 8.

Can ID or AUD attain the second best pro�t? It amounts to check whether

some second best direct mechanism is ID-implementable or AUD-implementable. In

particular, if the second best direct mechanism involves bunching, then typically it is

not ID-implementable because type-demand curves are typically strictly increasing.

Corollary 2 (a) �� = �ID1 if and only if there exist some second best quantity func-

tion Q� and some nonincreasing function P � : f� 2 � : Q� (�) > 0g ! R such that

Q� (�) 2 argmaxq�0 fS (q; �)� P � (�) qg whenever Q� (�) > 0. (b) �� = �AUD1 if and

only if there exist some second best direct mechanism (Q�; T �) and some nonincreasing

function P � : f� 2 � : Q� (�) > 0g ! R such that Q� (�) 2 argmaxq�Q�(�) fS (q; �)� P � (�) qg
and T � (�) = P � (�)Q� (�) whenever Q� (�) > 0.

Proof. To see the su¢ ciency part of (a), suppose that Q� and P � satisfy the condi-
tions. Denote the domain of P � as A� = f� 2 � : Q� (�) > 0g. De�ne T � : �! R as
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in (4) below. It is straightforward to verify that (Q�; T �; A�; P �) satis�es conditions

1-2 in Theorem 6 and that A� = f� 2 � : (Q� (�) ; T � (�)) 6= (0; 0)g. Therefore, the
second best (and hence IC and IR) direct mechanism (Q�; T �) is ID-implementable,

so that �� = �ID1 . To see the necessity part of (a), suppose that �
� = �ID1 . Then

some second best direct mechanism (Q�; T �) is ID-implementable. Then Theorem 6

implies the condition in the second statement. ((Q� (�) ; T � (�)) 6= (0; 0) is equivalent
to Q� (�) > 0, because of the IC of (Q�; T �).)

Part (b) can be proved similarly by applying Theorem 7, with de�ning M� (�) �
Q� (�) for any � 2 A� � f� 2 � : Q� (�) > 0g.

Remark 3 The function P � in Corollary 2(a), if exists, must be given by P � (�) =
Sq (Q

� (�) ; �). The function P � in Corollary 2(b), if exists, must be given by P � (�) =

T � (�) =Q� (�), where T � is given by (4) below.

It is well known that the pro�t (1) can be rewritten using IC of (Q; T ) as

Z ��

�

H (Q (�) ; �) dF (�)� U (�) ; (2)

where H is the "virtual surplus function" de�ned as

H (q; �) � S (q; �)� S� (q; �)
1� F (�)

f (�)
� c (q) :

If C is unrestricted, then U (�) = 0 at optimum, and the maximum monopolist

pro�t can be written as

�� = max
Q(�)�0

( R ��
�
H (Q (�) ; �) dF (�)

s.t. Q (�) is nondecreasing

)
: (3)

A direct mechanism (Q�; T �) is second best if and only if Q� (�) solves problem (3)

and

T � (�) = S (Q� (�) ; �)�
Z �

�

S� (Q
� (x) ; x) dx: (4)

Example 1 Suppose that S (q; �) = �s (q) and � is uniformly distributed on [0; 1].

Let s (�) and c (�) take the following forms:

s (q) =
q�

�
; c (q) =

q�+1

�+ 1
;
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where � 2 (0; 1) is a parameter. Then the second best mechanism is

(Q� (�) ; T � (�)) =

( �
2� � 1; (2��1)

�(2��+1)
2�(1+�)

�
if � � 1=2

(0; 0) if � < 1=2
:

One can verify that (Q�; T �) is ID-implementable if and only if � � 1=2, while

it is AUD-implementable if and only if � �
p
2=2. (Of course, it is always QF-

implementable.)

We now turn to the comparison among the three forms when the number of blocks

is restricted to be no larger than some �nite number. It is a harder job because

when n is �nite, the concepts of n-ID-implementability, n-AUD-implementability and

n-QF-implementability do not imply one another. While ID has the smallest imple-

mentation power (i.e. has the smallest set of implementable direct mechanisms) when

the number of blocks is unrestricted, we will nonetheless see that ID has the following

advantage when the number of blocks is restricted. Provided that a second best di-

rect mechanism is ID-implementable, ID schemes with a �nite number of blocks can

be constructed to better approximate the second best direct mechanism than AUD

schemes or QF schemes with the same number of blocks do. In this sense, we say ID

has the largest "approximation power".

In the rest we impose the following regularity assumptions on the virtual surplus

function H, which ensure that second best direct mechanism is essential unique, and

better approximating the second best direct mechanism raises pro�t.

Assumption 3 H is continuous. argmaxq�0H (q; �) is single-valued and nonde-

creasing in �. H (�; �) is single-peaked (i.e. H (q; �) gets weakly higher when q gets
closer to the unique maximizer).

Lemma 4 Let Q� be a second best quantity function. Let (Q1; T 1) and (Q2; T 2) be
two IC direct mechanisms such that, for almost every � 2 �, either Q2 (�) � Q1 (�) �
Q� (�) or Q2 (�) � Q1 (�) � Q� (�), and S (Q1 (�) ; �)�T 1 (�) � S (Q2 (�) ; �)�T 2 (�).
Then the pro�t (1) generated by (Q1; T 1) is weakly higher than that generated by

(Q2; T 2). The last inequality is strict unless S (Q1 (�) ; �) � T 1 (�) = S (Q2 (�) ; �) �
T 2 (�) and Q1 (�) = Q2 (�) for almost every � 2 �.

Proof. Under Assumption 3, fQ� (�)g = argmaxq�0H (q; �) for all � 2 � except

possibly � and ��. Apply formula (2).
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Theorem 10 Suppose that �� = �ID1 and n is �nite. (a) �IDn � �AUDn , and this

inequality is strict unless some n-ID-optimal direct mechanism coincides with some

n-AUD-optimal direct mechanism almost everywhere. (b) �IDn � �QFn , and this in-

equality is strict unless some n-ID-optimal direct mechanism coincides with some

n-QF-optimal direct mechanism almost everywhere.

The formal proof of Theorem 10 is provided in Appendix. The idea is the following.

To show �IDn � �AUDn , it amounts to show that, given an n-AUD-optimal direct mech-

anism, there exists an n-ID implementable direct mechanism whose quantity function

is uniformly closer to the second best than the quantity function of the n-AUD-

optimal direct mechanism. In fact, we do not need to know the characteristics of the

n-AUD-optimal direct mechanism except knowing that it is n-AUD-implementable.

Let us �x n = 3 for example and start with some 3-AUD-implementable direct mech-

anism. The bold curve in Figure 4 illustrates the quantity function QAUD of such a 3-

AUD-implementable direct mechanism, and the thin curve illustrates the second best

quantity function Q�. Under the assumption �� = �ID1 , Q
� is drawn to cross every

type-demand curve from below. (Recall that, for the second best direct mechanism to

be ID-implementable, Q� cannot be �atter than type-demand curves.) Then we can

draw a quantity function QID of a 3-ID-implementable direct mechanism as shown by

the dashed curve in Figure 4. Notice that QID is uniformly closer to Q� than QAUD.

Now according to Lemma 4, the 3-ID-implementable direct mechanism
�
QID; T ID

�
that leaves the lowest type of consumer a zero rent would make a higher pro�t than

the original 3-AUD-implementable direct mechanism does. Therefore �IDn � �AUDn .

We can similarly argue that �IDn � �QFn under the assumption �� = �ID1 .

8 Concluding remarks

In the context of nonlinear pricing (or more generally principal-agent model), we

introduce and characterize the concept of menu implementability. Notably, for a direct

selling mechanism to be menu implementable, the familiar monotonicity constraint

in incentive theory has to be strengthened to what we call "increasing di¤erences

monotonicity" or "single crossing monotonicity".

Our theory can be comfortably used to analyze a large class of practical pricing

schemes, such as incremental discounts (ID), all-units discounts (AUD) and quan-

tity forcing (QF). So which of the three forms of pricing schemes makes the highest
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Figure 4: Improving upon AUD by ID

pro�t? Our comparison among them shed lights on a general issue: how should

an uninformed principal choose among di¤erent practical contract forms to o¤er to

an informed agent? If the level of contract complexity and communication between

the principal and the agent are unlimited, it is well known that restricting to direct

revelation mechanisms is without loss. A heuristic reason is that direct revelation

mechanisms have full control over the agent�s action once the agent�s private infor-

mation is reported. Hence, under appropriately chosen direct revelation mechanism,

the harm of private information is minimal. However, when contract complexity or

communication is limited, it might pay to leave certain kind of �exibility or discretion

power to the agent.

The above trade-o¤ between control and �exibility explains the ranking among

ID, AUD and QF. QF exhibits the largest control: each option speci�es a single

quantity. ID exhibits the smallest control: a two-part tari¤ does not directly control

quantity, but only control indirectly through a marginal price. AUD is somehow

in the middle: a minimum purchase tari¤ controls quantity through both a direct

instrument, minimum purchase, and an indirect instrument, per-unit price. This is

why when the number of blocks (contract complexity) is unrestricted, QF has the

largest and ID the smallest implementation power (Theorem 9 and Corollary 1).

When the number of blocks is restricted, ID leaves certain kind of �exibility (one

constrained by price) to the agent. Leaving �exibility to the agent, or giving up some

control, in general may or may not be good since the agent has di¤erent interest from
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the principal. However, if the control loss implied by such kind of �exibility can be

fully overcome when the number of blocks is unrestricted (i.e. �� = �ID1 ), then this

kind of �exibility must help the approximation to second best. This is why ID has

the largest approximation power (Theorem 10 and the paragraph thereafter).

The lesson is: when contract complexity is limited for practical concerns, the prin-

cipal might gain from leaving to the agent some kind of �exibility that is nonbinding

under unlimited contract complexity.

Appendix

Proof of Lemma 1. We must show that if � 1 (q)� � 2 (q) is nondecreasing in q on

� (� 1) [ � (� 2), then � inf1 (q)� � inf2 (q) is nondecreasing in q on �
�
� inf1
�
[ �

�
� inf2
�
. Let

�1 � � (� 1) and �2 � � (� 2). Notice that �
�
� inf1
�
= cl (�1) and �

�
� inf2
�
= cl (�2).

16

Suppose that � inf1 (q)� � inf2 (q) is not nondecreasing in q on cl (�1)[ cl (�2). Then
there exist q1; q2 2 cl (�1) [ cl (�2) such that q1 < q2 and

� inf1 (q1)� � inf2 (q1) > � inf1 (q2)� � inf2 (q2) : (5)

(Since q1; q2 2 �
�
� inf1
�
[�

�
� inf2
�
, both sides of (5) are not1�1 and hence are well-

de�ned.) (5) implies � inf2 (q1) <1 and � inf1 (q2) <1. Since � 2 (x) <1 i¤ x 2 �2, we
have

� inf2 (q1) = lim inf
x!q1

� 2 (x) = lim inf
x2�2 & x!q1

� 2 (x) :

Since � 1 (x) <1 i¤ x 2 �1, we have

� inf1 (q2) = lim inf
x!q2

� 1 (x) = lim inf
x2�1 & x!q2

� 1 (x) :

16As usual, cl denotes closure.
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Then,

� inf1 (q1)� � inf2 (q1) = lim inf
x!q1

� 1 (x)� lim inf
x2�2 & x!q1

� 2 (x)

� lim inf
x2�2 & x!q1

� 1 (x)� lim inf
x2�2 & x!q1

� 2 (x)

� lim sup
x2�2 & x!q1

� 1 (x)� lim inf
x2�2 & x!q1

� 2 (x)

= lim sup
x2�2 & x!q1

(� 1 (x)� � 2 (x)) ;

and

� inf1 (q2)� � inf2 (q2) = lim inf
x2�1 & x!q2

� 1 (x)� lim inf
x!q2

� 2 (x)

� lim inf
x2�1 & x!q2

� 1 (x)� lim inf
x2�1 & x!q2

� 2 (x)

� lim inf
x2�1 & x!q2

� 1 (x)� lim sup
x2�1 & x!q2

� 2 (x)

= lim inf
x2�1 & x!q2

(� 1 (x)� � 2 (x)) :

Now, (5) implies that

lim sup
x2�2 & x!q1

(� 1 (x)� � 2 (x)) > lim inf
x2�1 & x!q2

(� 1 (x)� � 2 (x)) :

Thus, there exist sequences qm1 ! q1 on �2 and q
m
2 ! q2 on �1 such that, for all m,

� 1 (q
m
1 ) � � 2 (q

m
1 ) > � 1 (q

m
2 ) � � 2 (q

m
2 ) and q

m
1 < qm2 , and hence � 1 (q) � � 2 (q) is not

nondecreasing in q on � (� 1) [ � (� 2).

Proof of Lemma 2.
Suppose that (Q; T ) is (n; C)-implementable, i.e. (Q; T ) is induced by some menu

�B � f��g�2B � C with j�Bj � n. Let � : R+ ! R [ f�1;1g denote the lower
envelope of �B [ f� outg, i.e. � (q) � inf�2�B[f�outg � (q).
If n is �nite, then �B [ f� outg is a nonempty �nite set. We delete any dominated

tari¤ options in �B so that condition 2 holds. After the deletion, �B [f� outg is still a
nonempty �nite set so that condition 1 holds, and the lower envelope of �B [ f� outg
is the same as before so that (Q; T ) is still induced.

We hereafter suppose that n =1 and C[f� outg is closed. Let	 � f� 2 C [ f� outg : � � �g.
Also, for any q 2 �, we de�ne the following partial order�q over tari¤options: for any
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tari¤options � 1; � 2, we say � 1 �q � 2 i¤ either � 1 (q) < � 2 (q), or � 1 (q) = � 2 (q) & � 1 �
� 2 on �n fqg. Then (	;�q) is a partially ordered set. Notice that 	 is closed since
C [ f� outg is closed. We claim that every chain in (	;�q) has a lower bound in 	.
Indeed, any chain in (	;�q), when regarded as a net directed downward by �q, must
have a pointwise limit in 	, and this pointwise limit is a lower bound of the chain.

By Zorn�s Lemma, (	;�q) has a minimal element  q. By Axiom of Choice, there

exists a family
�
 q
	
q2� of tari¤ options such that every  q is a minimal element of

(	;�q).
Regard

�
 q
	
q2� n f� outg as a menu. By our construction, this menu is on C. For

any q; q0 2 �,  q (q) = � (q) �  q0 (q). Thus this menu satis�es condition 1. Since�
 q
	
q2� and �B [ f� outg share a common lower envelope � ,

�
 q
	
q2� n f� outg induces

the same direct mechanism as �B does. Finally, if  q is dominated by  q0, then  q is

not a minimal element of 	, a contradiction. Therefore, our menu satis�es condition

2.

In the following, we prove a stronger version of Lemma 3. Before doing it, we

introduce a concept weaker than the tari¤ single crossing property.

De�nition 15 For any two tari¤ options � 1 and � 2, we say (� 1; � 2) satis�es tari¤
weak single crossing property if for any q1; q2 2 � with q1 < q2, we have

� 1 (q2) < � 2 (q2)) � 1 (q1) � � 2 (q1) :

That is, � 1 (�) crosses � 2 (�) only once and only from below. The interpretation is that
� 1 is weakly less favorable to high quantities than � 2.

It is easy to see that if (� 1; � 2) satis�es tari¤ single crossing property or tari¤

increasing di¤erences, then it also satis�es tari¤ weak single crossing property.

Lemma 5 If tari¤ options � 1; : : : ; �n do not dominate one another, and (� 1; � 2),
(� 2; � 3), : : :, (�n�1; �n) and (�n; � 1) satisfy tari¤ weak single crossing property, then

� 1 = � � � = �n.

Proof. We will use the induction argument. Let n = 2 �rst. Suppose that � 1 6= � 2,

and both (� 1; � 2) and (� 2; � 1) satisfy tari¤ single crossing property. Then pick some

x 2 � such that � 1 (x) 6= � 2 (x). Without loss of generality, assume � 1 (x) < � 2 (x).
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Since (� 1; � 2) satis�es tari¤ weak single crossing property, � 1 (q) � � 2 (q) for all q 2 �
with q < x. Since (� 2; � 1) satis�es tari¤ weak single crossing property, � 1 (q) � � 2 (q)

for all q 2 � with q > x. Therefore � 2 is dominated by � 1. (If � 1 (x) > � 2 (x), one

can prove that � 1 is dominated by � 2.) Hence, the lemma holds for n = 2.

Assume the induction hypothesis: the lemma holds for n = 2; 3; : : : ; k. Suppose

that � 1; � 2; : : : ; � k+1 do not dominate one another, and (� 1; � 2) ; (� 2; � 3) ; : : : ; (� k; � k+1)

and (� k+1; � 1) satisfy tari¤ weak single crossing property. If � i = � j for some i; j 2
f1; : : : ; k + 1g with i 6= j, then the induction hypothesis implies that � 1 = � � � =
� k+1, and we are done. So suppose that � 1; : : : ; � k+1 are all distinct. Consider any

i 2 f1; : : : ; kg. Since � i and � i+1 are distinct and do not dominate each other, there
exist xi; yi 2 � such that � i (xi) < � i+1 (xi) and � i (yi) > � i+1 (yi). Since (� i; � i+1)

satis�es tari¤ weak single crossing property, xi < yi. Let I 2 argmini2f1;:::;kg xi

and J 2 argmaxi2f1;:::;kg yi. Because (� 1; � 2) ; : : : ; (� k; � k+1) satisfy tari¤ weak single
crossing property, we have � 1 (xI) � � � � � � I (xI) < � I+1 (xI) � � � � � � k+1 (xI) and

� 1 (yJ) � � � � � �J (yJ) > �J+1 (yJ) � � � � � � k+1 (yJ). But we also have xI < yJ ,

hence (� k+1; � 1) does not satisfy tari¤ weak single crossing property.

Proof of Lemma 3. Clearly, Lemma 5 implies Lemma 3.

The proof of Theorem 6 requires the following lemma.

Lemma 6 The set of all two-part tari¤s is closed.

Proof. Let f��g be a net of two-part tari¤s, and suppose that it pointwise converges
to a tari¤ option �̂ . Since each �� is a two-part tari¤, it has the form �� (q) = p�q+��

for all q � 0. First notice that, for any q � 0, the limit �̂ (q) of f�� (q)g cannot be
�1, for otherwise �̂ is not a tari¤ option. The limit �̂ (q) cannot be 1 either, for

otherwise �̂ is 1 everywhere or is �1 somewhere (since each �� is linear) so that �̂

is not a tari¤ option. Now both �̂ � �̂ (0) and p̂ � �̂ (1)� �̂ (0) are �nite. Moreover,

we have �� = �� (0)! �̂ (0) = �̂ and p� = �� (1)� �� (0)! �̂ (1)� �̂ (0) = �̂. Then,

for any q � 0,
�� (q)� (p̂q + �̂) = (p� � p̂)q + (�� � �̂)! 0:

Therefore, �� pointwise converges to q 7! p̂q + �̂, which is a two-part tari¤.

Proof of Theorem 6. Let C be the set of all two-part tari¤s.
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Su¢ ciency. Suppose that the conditions in this theorem hold. Let �� be the

menu-direct mechanism �� characterized by (A;P;�) as described in the last para-

graph of this theorem. It su¢ ces to check that the su¢ cient conditions provided in

Theorem 4. Notice that �1 < �2 and Q (�2) = T (�2) = 0 imply Q (�1) = T (�1) = 0,

by IC of (Q; T ) and Theorem 1. Hence A is an increasing subset of �. (That is,

�1 2 A and �1 < �2 2 � imply �2 2 A.) It, together with condition 2, implies that ��
satis�es condition 1 in Theorem 4. Condition 1 and the de�nition of A and � imply

that �� induces (Q; T ). IC of (Q; T ) and Theorem 1 imply that, for any � 2 A and

�� 2 �,

� (�) = S (Q (�) ; �)� P (�)Q (�)�
Z �

��

S� (Q (x) ; x) dx� U (��) ;

where U (�) � S (Q (�) ; �)� T (�). If P (�) is some constant �p over an interval in A,
then, for any �; �� in that interval,

� (�) = v (P (�) ; �)�
Z �

��

v� (P (x) ; x) dx� U (��)

= v (�p; �)�
Z �

��

v� (�p; x) dx� U (��) = v (�p; ��)� U (��) ;

where v (p; �) � supq�0 fS (q; �)� pqg. Hence � (�) is constant over that interval.
Therefore, condition 3 implies that �� satis�es condition 2 in Theorem 4.

Necessity. Suppose that (Q; T ) is (n; C)-implementable. By Lemma 6, C is
closed, and thus C [ f� outg is also closed. For any two two-part tari¤s � 1 and � 2,
(� 1; � 2) (respectively (� 2; � 1)) satis�es tari¤ increasing di¤erences if and only if p1 � p2

(respectively p2 � p1), where pi denotes the marginal price of � i. Hence, the conditions

provided by Theorem 4 are necessary for (n; C)-implementability. Then the conditions
in Theorem 4 are satis�ed by some menu-direct mechanism �� on C. For any � 2 �
with Q (�) = T (�) = 0 and � � 6= � out, we rede�ne � � as � out. Clearly the new �� still

satis�es the conditions in Theorem 4. Since ��n f� outg � C, �� can be characterized
by some (A;P;�) as described in the last sentence of this theorem. Then condition

1 holds because �� induces (Q; T ). Conditions 2-3 follow from conditions 1-2 in

Theorem 4.

The proof of Theorem 7 requires the following lemma.
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Lemma 7 The closure of the set of all minimum purchase tari¤s17 comprises the

outside option � out, all minimum purchase tari¤s, and all "quasi-minimum purchase

tari¤s" of the form

q 7!
(
pq if q > m

1 if 0 � q � m
;

where m � 0 and p 2 R.

Proof. Let f��g be a net of minimum purchase tari¤s, with each �� characterized

by (m�; p�). If m� = 0 and p� ! 1, then �� pointwise converges to � out. Suppose
that f��g pointwise converges to a tari¤ option �̂ 6= � out. Since �̂ is a tari¤ option,

�̂ (q) is never �1, and the set fq � 0 : �̂ (q) <1g is nonempty, and we let m̂ � 0

be its in�mum. Then m� ! m̂. For any q > m̂, �̂ (q) is the limit of fp�qg, and then
�̂ (q) cannot be 1, for otherwise p� !1 and hence �̂ = � out or �̂ is 1 everywhere.

Now p̂ � �̂ (m̂+ 2)� �̂ (m̂+ 1) is �nite. Moreover, for large �,

p� = �� (m̂+ 2)� �� (m̂+ 1)! �̂ (m̂+ 2)� �̂ (m̂+ 1) = p̂:

Therefore, for any q > m̂, we have �̂ (q) = lim �� (q) = lim p�q = p̂q. For any

q < m̂, we have �̂ (q) = lim �� (q) = 1. The limit �̂ (q) of f�� (m̂)g must be either
lim p�q = p̂q or 1. We conclude that �̂ is the minimum purchase tari¤ or the quasi-

minimum purchase tari¤ with minimum purchase m̂ and per-unit price p̂.

Proof of Theorem 7. Let C be the set of all minimum purchase tari¤s, and C+ be
the set of all minimum purchase tari¤s and all "quasi-minimum purchase tari¤s" (see

Lemma 7). If a direct mechanism (Q; T ) is (n; C)-implementable, then it is (n; C+)-
implementable, since C � C+. The converse is also true. Indeed, if a direct mechanism
(Q; T ) is (n; C+)-implementable, then it is induced by some menu �B � f��g�2B � C+

with j�Bj � n. Then clearly (Q; T ) is also induced by � infB � f� inf� g�2B. But now
� infB � C and

��� infB �� � n, so that (Q; T ) is (n; C)-implementable.
Su¢ ciency. Suppose that the conditions in this theorem hold. Let �� be the

menu-direct mechanism �� characterized by (A;M;P ) as described in the last para-

graph of this theorem. It su¢ ces to check that the su¢ cient conditions provided in

Theorem 4. Notice that �1 < �2 and Q (�2) = T (�2) = 0 imply Q (�1) = T (�1) = 0,

17As usual, the closure �C of a set C of tari¤ options is de�ned as the smallest closed set of tari¤
options that contains C, i.e. �C comprises all tari¤ options that is a pointwise limit of a net in C.
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by IC of (Q; T ) and Theorem 1. Hence A is an increasing subset of �. It, together

with condition 3, implies that �� satis�es condition 1 in Theorem 4. The de�nition

of A and conditions 1-2 imply that �� induces (Q; T ). Condition 4 implies that ��
satis�es condition 2 in Theorem 4. If in addition n = 1, the function M can be

chosen as the restriction of Q on A without a¤ecting the validity of conditions 1 and

3.

Necessity. Suppose that (Q; T ) is (n; C)-implementable and hence (n; C+)-implementable.
By Lemma 7, C+ [ f� outg is closed. For any two tari¤ options � 1 and � 2 in C+, they
do not dominate each other if and only if either � (� 2) is a proper subset of � (� 1)

and p2 < p1, or � (� 1) is a proper subset of � (� 2) and p1 < p2, where pi denotes

the per-unit price of � i. In the �rst case (respectively second case), (� 1; � 2) (respec-

tively (� 2; � 1)) satis�es tari¤ increasing di¤erences. Hence, the conditions provided by

Theorem 4 with C replaced by C+ are necessary for (n; C+)-implementability. Then
the conditions in Theorem 4 are satis�ed by some menu-direct mechanism �� on C+.
We claim that the conditions in Theorem 4 are also satis�ed by some menu-direct

mechanism on C. Indeed, the menu-direct mechanism � inf� � f� inf� g�2� does the job.
Clearly, � inf� is on C, induces the same direct mechanism as �� does (since S (�; �) is
continuous), and j� inf� j � j��j � n. Moreover, by Lemma 1, � inf� satis�es condition 1

in Theorem 4 as �� does.

Let us rede�ne �� as a menu-direct mechanism on C that satis�es the conditions
in Theorem 4. For any � 2 � with Q (�) = T (�) = 0 and � � 6= � out, we rede�ne

� � as � out. Clearly the new �� still satis�es the conditions in Theorem 4. Since

��n f� outg � C, �� can be characterized by some (A;M;P ) as described in the last

paragraph of this theorem. Then conditions 1-2 hold because �� induces (Q; T ).

Conditions 3-4 follow from conditions 1-2 in Theorem 4.

Proof of Theorem 9. Apply Theorems 6, 7 and 8. The �rst statement in this

theorem is obvious.

Suppose that a direct mechanism (Q; T ) is ID-implementable. Then it is IC and

IR, and there exists a function P : A! R, whereA = f� 2 � : (Q (�) ; T (�)) 6= (0; 0)g,
such that conditions 1-2 in Theorem 6 hold. Suppose also that U (�) = 0, where

U (�) � S (Q (�) ; �) � T (�). For each � 2 A, de�ne M (�) � Q (�) and PAUD (�) �
T (�) =Q (�).

Then (A;M;PAUD) satis�es condition 2 in Theorem 7. Since (Q; T ) is IC, Q is
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nondecreasing by Theorem 1. Hence M is nondecreasing. It remains to verify that

Q (�) 2 arg max
q�Q(�)

�
S (q; �)� PAUD (�) q

	
(6)

for � 2 A, and that PAUD is nonincreasing.
Since the menu-direct mechanism characterized by (A;P;�) as described in The-

orem 6 is IC, type � has no incentive to deviate to pick the two-part tari¤ for any

type � 2 A. Thus, for any � 2 A,

0 = U (�) � max
q�0

fS (q; �)� P (�) q � � (�)g � �� (�) :

That is, � is nonnegative.

Pick any � 2 A. By nonnegativity of �,

PAUD (�) =
T (�)

Q (�)
=
P (�)Q (�) + � (�)

Q (�)
� P (�) :

It, together with Q (�) 2 argmaxq�0 fS (q; �)� P (�) qg, implies (6).
Pick any �1; �2 2 A with �1 < �2. Since the menu-direct mechanism characterized

by (A;P;�) is IC, type �2 has no incentive to deviate to pick the two-part tari¤ for

type �1. Thus, T (�2) � P (�1)Q (�2) + � (�1). It, together with the monotonicity of

Q and the nonnegativity of �, implies that

PAUD (�2) =
T (�2)

Q (�2)
� P (�1) +

� (�1)

Q (�2)
� P (�1) +

� (�1)

Q (�1)
=
T (�1)

Q (�1)
= PAUD (�1) :

Therefore, PAUD is nonincreasing.

Proof of Theorem 10.
In the following we prove part (a). The proof of part (b) is similar to but easier

than the proof of part (a), and is omitted.

Suppose that �� = �ID1 . By Corollary 2, there exist some second best quantity

function Q� and some nonincreasing function P � : f� 2 � : Q� (�) > 0g ! R such

that

Q� (�) 2 argmax
q�0

fS (q; �)� P � (�) qg (7)

wheneverQ� (�) > 0. By Assumption 3, Q� (�) is the unique solution ofmaxq�0H (q; �)
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for all � 2 � except possibly � and ��. By Berge Maximum Theorem, Q� is continuous
on �n

�
�; ��
	
.

Let
�
QAUDn ; TAUDn

�
be an n-AUD-optimal direct mechanism with a �nite n. Apply

Theorem 7.
�
QAUDn ; TAUDn

�
is associated with some A;M;P as described in Theorem

7. Since M is nondecreasing, P is nonincreasing, and (M;P ) takes at most n values,

we can let

(M (�) ; P (�)) =

8>><>>:
(m1; p1) if � 2 �1

...
...

(mn0 ; pn0) if � 2 �n0

where f�1; : : : ;�n0g is a partition of A, n0 � n, each �i (i = 1; : : : ; n0) is nonempty,

and

�1 < �2 < � � � < �n0 ;

m1 � m2 � � � � � mn0 ;

p1 � p2 � � � � � pn0 :

Moreover, for � 2 �i,

QAUDn (�) 2 argmax
q�mi

fS (q; �)� piqg : (8)

Claim 1: For every i = 1; : : : ; n0, exactly one of the following occurs: (I)

QAUDn (�) > Q� (�) for all � 2 �i; (II) QAUDn (�) < Q� (�) for all � 2 �i; (III) there
exists some �i 2 �i such that QAUDn (�i) = Q� (�i).

To prove Claim 1, suppose �rst that both (I) and (II) are false. Then QAUDn (�1) >

Q� (�1) and QAUDn (�2) < Q� (�2) for some �1; �2 2 �i. Notice that Q� is continuous
(by Assumption 3) and nondecreasing, and QAUDn is nondecreasing. If �1 < �2, then

there exists some �i 2 (�1; �2) such that QAUDn (�i) = Q� (�i). If �2 < �1, then

pi � P � (�1) (otherwise QAUDn (�1) � Q� (�1), a contradiction), and pi � P � (�2)

(otherwise QAUDn (�2) � Q� (�2), a contradiction), and P � (�2) � P � (�1) (because

P � is nonincreasing), and then P � (�) = pi on [�2; �1], and then QAUDn (�) = Q� (�)

for almost all � 2 (�2; �1) (otherwise QAUDn is not n-AUD-optimal, a contradiction).

Therefore, Claim 1 is true.

For every i = 1; : : : ; n0, we take �i � sup�i if case I in Claim 1 occurs, and take

�i � inf �i if case II in Claim 1 occurs, and take �i such that Q
AUD
n (�i) = Q� (�i) if

case III in Claim 1 occurs.
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Now we de�ne

P IDn (�) �

8>><>>:
P � (�1) if � 2 �1
...

...

P � (�n0) if � 2 �n0
:

Clearly, P IDn : A! R is nonincreasing because P � is.
We will design a direct mechanism

�
QIDn ; T IDn

�
such that

QIDn (�) = 0 for � 2 �nA;

QIDn (�) 2 argmax
q�0

fS (q; �)� P � (�i) qg for � 2 �i; (9)

T IDn (�) = S
�
QIDn (�) ; �

�
�
Z �

�

S�
�
QIDn (x) ; x

�
dx for � 2 �:

By Theorem 6, any such
�
QIDn ; T IDn

�
is n-ID-implementable.

Notice that S
�
QIDn (�) ; �

�
� T IDn (�) = 0 � S

�
QAUDn (�) ; �

�
� TAUDn (�). In order

to apply Lemma 4, we will prove, for every i = 1; : : : ; n0, that inf �i < � < �i

implies QAUDn (�) � QIDn (�) � Q� (�), and that �i < � < sup�i implies QAUDn (�) �
QIDn (�) � Q� (�).

Pick any i = 1; : : : ; n0 and any � 2 �i. Suppose that case I in Claim 1 occurs.

Then � � sup�i = �i. If the constraint q � mi is not binding in problem (8) for

type �i, then pi � P � (�i) � P � (�). Comparing (7), (8) and (9), we can select

QIDn (�) such that QAUDn (�) � QIDn (�) � Q� (�). If the constraint q � mi is binding

in problem (8) for type �i, then QAUDn (�) = mi = QAUDn (�i) � Q� (�i). Since

P � (�i) � P � (�), comparing (7) and (8), we can select QIDn (�) such that Q� (�i) =

QIDn (�i) � QIDn (�) � Q� (�).

Suppose that case II in Claim 1 occurs. Then � � inf �i = �i. Then pi � P � (�i) �
P � (�). Comparing (7), (8) and (9), we can select QIDn (�) such that QAUDn (�) �
QIDn (�) � Q� (�).

Suppose that case III in Claim 1 occurs and the constraint q � mi is not binding

in problem (8) for type �i. Then pi = Sq
�
QAUDn (�i) ; �i

�
= Sq (Q

� (�i) ; �i) = P � (�i).

For inf �i < � < �i, we have pi = P � (�i) � P � (�), so that we can select QIDn (�)

such that QAUDn (�) � QIDn (�) � Q� (�) whenever QAUDn (�) � Q� (�). If QAUDn (�) <

Q� (�), then, for small " > 0 and x 2 (� � "; �], we have QAUDn (x) < Q� (x) (since

Q� is continuous and QAUDn is nondecreasing) and pi = P � (x), and then QAUDn is not
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n-AUD-optimal because QAUDn (x) can be reselected as Q� (x) for all x 2 (� � "; �]

to raise pro�t, a contradiction. For �i < � < sup�i, we have pi = P � (�i) � P � (�),

so that we can select QIDn (�) such that QAUDn (�) � QIDn (�) � Q� (�) whenever

QAUDn (�) � Q� (�). If QAUDn (�) > Q� (�), then, for small " > 0 and x 2 [�; � + "), we
have QAUDn (x) > Q� (x) (again since Q� is continuous and QAUDn is nondecreasing)

and pi = P � (x), and then QAUDn is not n-AUD-optimal because QAUDn (x) can be

reselected as Q� (x) for all x 2 [�; � + ") to raise pro�t, a contradiction.

Suppose that case III in Claim 1 occurs and the constraint q � mi is binding

in problem (8) for type �i. Then pi � P � (�i) and mi = QAUDn (�i) = Q� (�i). For

inf �i < � < �i, we have Q
AUD
n (�) = mi = Q� (�i). Since P

� (�i) � P � (�), we can

select QIDn (�) such that Q� (�i) = QIDn (�i) � QIDn (�) � Q� (�). For �i < � < sup�i,

we have pi � P � (�i) � P � (�), so that we can select QIDn (�) such that QAUDn (�) �
QIDn (�) � Q� (�) whenever QAUDn (�) � Q� (�). Repeating our previous logic, one can

show that QAUDn (�) > Q� (�) is impossible.

Apply Lemma 4, we see that �IDn � �AUDn . If �IDn = �AUDn , then it must be the

case that
�
QAUDn ; TAUDn

�
and

�
QIDn ; T IDn

�
make the same pro�t and

�
QIDn ; T IDn

�
is n-

ID-optimal. Then Lemma 4 implies that
�
QAUDn (�) ; TAUDn (�)

�
=
�
QIDn (�) ; T IDn (�)

�
for almost all � 2 �. It completes the proof of part (a).
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