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Abstract

This paper studies how the interplay of individual and social learning affects price dynamics.

I consider a monopolist selling a new experience good over time to many buyers. Buyers learn

from their own private experiences (individual learning) as well as by observing other buyers’

experiences (social learning). Individual learning generates ex post heterogeneity, which affects

the buyers’ purchasing decisions and the firm’s pricing strategy. When learning is through good

news signals, the monopolist’s incentive to exploit the known buyers causes experimentation to

be terminated too early. After the arrival of a good news signal, the price could instantaneously

go down in order to induce the remaining unknown buyer to experiment. When learning is

through bad news signals, experimentation is efficient, since only the homogeneous unknown

buyers purchase the experience good.
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1 Introduction

In many markets for new experience goods, the buyers are facing both common and idiosyncratic

uncertainty. Take the market for new drugs, for example. The effectiveness of a new drug first

depends on the unknown common quality. However, a good quality does not guarantee that the drug

is effective for everybody. Each patient’s idiosyncratic uncertainty also matters.1 Patients learn

from others’ experiences (social learning) as well as their own (individual learning). The success of

the new drug for one patient is good news about product quality, but it does not necessarily mean

that the drug would also be effective for other patients.

Consider a monopolist selling a new experience good to many buyers in such a market. The

monopolist and the buyers initially are equally unsure about the effectiveness of the product. How

will this monopolist price strategically if she observes each buyer’s past actions and outcomes?

Without success of the product, everyone becomes increasingly pessimistic. In order to keep the

buyers purchasing the product, the price has to be reduced. How will the monopolist react when

the product is revealed to be effective for one buyer? Will strategic pricing achieve an efficient

allocation?

In this paper, dynamic monopoly pricing is modelled as an infinite-horizon, continuous-time

process. The monopolist sells a perishable experience good. She cannot price-discriminate across

buyers. At each instant of time, the monopolist first posts a price, which is contingent on the

available public information about the experiences of the buyers. Each buyer then decides to either

buy one unit of the experience good or take an outside option (modelled as another good of known

characteristics). The experience good generates random lump-sum payoffs according to a Poisson

process. The arrival rate of the lump-sum payoffs depends on an unknown product characteristic

and an unknown individual attribute, both of which are binary. For tractability, we assume the

public arrival of lump-sum payoffs immediately resolves both the common uncertainty and the

idiosyncratic uncertainty of the receiver. As a result, there is a simple dichotomy of the learning

process: in the social learning phase, the uncertainty about the product characteristic has not

been resolved; in the individual learning phase, there is common knowledge about the product

characteristic. A key feature of the model is that buyers become ex post heterogeneous in the

individual learning phase: some buyers have received lump-sum payoffs, while others have not.

The model setting consists of two different cases. In the good news case, the experience good

generates positive lump-sum payoffs; in the bad news case, it generates negative lump-sum damages

(e.g., side effects of new drugs). This paper gives full characterizations of the symmetric Markov

1Although the F.D.A. conducts an extensive period of pre-launch testing in the pharmaceutical industry, some
drugs enter the market with substantial uncertainty about their product qualities. For example, dietary supplements
do not need to be pre-approved by the F.D.A. before entering the market. There is also a “hurry-up mechanism,”
which allows approval of a drug that has not yet been proved effective in thorough clinical trials but has shown
promise that it might benefit patients with life-threatening diseases. A recent example is a cancer drug Avastin,
which was approved by the F.D.A. based on one clinical trial (New York Times (2010)).
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perfect equilibrium for both cases. In the good news case, because of the ex post heterogeneity,

the interplay of individual and social learning leads to implications significantly different from the

ones obtained when only social learning exists. In particular, the buyers’ purchasing behavior, the

equilibrium price path and efficiency all significantly differ from the pure social learning model.

In the benchmark case where there is a single buyer in the market, that buyer’s purchasing

decision is purely myopic. The key reason is that in this one-buyer case, the equilibrium price is set

such that the buyer is indifferent between purchasing the experience good and taking the outside

option. The buyer’s continuation value is independent of the learning outcomes. Since learning is

not valuable, the buyer only compares the instantaneous cost and benefit when making the purchas-

ing decisions.2 With many buyers, this property also holds when the buyers’ payoffs are perfectly

correlated, but it no longer applies when the buyers’ payoffs are only partially correlated. Consider

a situation where two ex ante identical unknown buyers make different purchasing decisions (an

“unknown” buyer refers to a buyer whose value of the good has not been fully revealed). One buyer

keeps purchasing the experience good, while the other buyer deviates to take the outside option

for a small amount of time. If the experimenter does not receive any lump-sum payoffs during that

period, she becomes more pessimistic about her individual attribute. Without price discrimination,

if the monopolist sells to two different buyers, the optimal price is set to make the more pessimistic

buyer indifferent between the alternatives. The deviator, who is more optimistic about the ex-

perience good, pays less than what she is willing to pay. This implies that with multiple buyers

and partial payoff correlations, there could be non-trivial intertemporal incentive considerations in

making the purchasing decisions.

We first characterize the symmetric Markov perfect equilibrium when there are two buyers. In

the social learning phase – when no lump-sum payoff has arrived yet – the critical tradeoff for the

monopolist is between selling to both buyers and exiting the market; in the individual learning

phase – after lump-sum payoffs have arrived to one buyer – the critical tradeoff is between selling

to both buyers and selling only to the known buyer who has received lump-sum payoffs. In both

learning phases, the equilibrium purchasing behavior is determined by a cutoff in the posterior belief

about the unknown buyer’s individual attribute. Each unknown buyer purchases the experience

good above this cutoff and takes the outside option below this cutoff.

By comparing cutoffs in different learning phases, we distinguish a mass market from a niche

market. The cutoff in the social learning phase is higher than the cutoff in the individual learning

phase in a mass market, but lower in a niche market. Along the equilibrium path, in a mass market,

the monopolist always sells to both buyers after the arrival of the first lump-sum payoff; in a niche

market, if the first lump-sum payoff arrives too late, experimentation by the unknown buyer will

2In a dynamic duopoly pricing model (e.g., Bergemann and Välimäki (1996)), learning determines the future
competition positions of different sellers. The buyer generally is not making myopic decisions since her continuation
value varies with posterior beliefs. But if one seller’s price is fixed to a constant, the buyer’s optimal decisions become
purely myopic in the framework of Bergemann and Välimäki (1996).
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be immediately terminated. When experimentation by the unknown buyer occurs in the individual

learning phase, the equilibrium price is set the same as in the one-buyer case. Although the

unknown buyer is indifferent between the alternatives, the known buyer receives a larger consumer

surplus, since she is more optimistic about the experience good than the unknown buyer.

The presence of idiosyncratic uncertainty has two important implications for the equilibrium

price. First, in the social learning phase, since there is a future benefit by taking the outside option

for a small amount of time, each unknown buyer receives a value higher than the outside option to

deter deviation. This deterrence effect forces the monopolist to reduce the price in order to provide

the extra subsidy. Second, it also affects how price responds to the arrival of lump-sum payoffs. In

particular, when the first lump-sum payoff arrives, there might be an instantaneous drop in price.

This is driven by two opposing effects on the unknown buyer’s reservation value. On the one hand,

the arrival of a good news signal makes the unknown buyer more optimistic. This informational

effect raises the unknown buyer’s reservation value. On the other hand, the unknown buyer loses

the chance of becoming the first known buyer. The resulting loss of rents lowers the unknown

buyer’s reservation value. This continuation value effect is driven by ex post heterogeneity. If the

buyers’ payoffs are perfectly correlated, there is no such effect, and the equilibrium price always

goes up after the arrival of the first lump-sum payoff.

If the buyers’ payoffs are perfectly correlated, efficiency is achieved for any number of buyers

since the monopolist is able to fully internalize the social surplus by subsidizing experimentation.

However, if the buyers’ payoffs are only partially correlated, the equilibrium experimentation level

is always lower than the socially efficient one. This is due to the existence of ex post heterogeneity:

the known buyers are willing to pay more than the unknown buyers in the individual learning

phase. Without price discrimination, the monopolist faces a tradeoff between exploitation of the

known buyers and exploration for a higher future value. The exploitation incentive always causes

experimentation to be terminated too early. The inefficiency in the individual learning phase

reduces the monopolist’s incentives to subsidize experimentation in the social learning phase. As a

result, the equilibrium experimentation is inefficiently low in the social learning phase as well.

We then characterize the symmetric Markov perfect equilibrium in the bad news case. It is

shown that the equilibrium is always efficient as is the case when the buyers’ payoffs are perfectly

correlated. The key insight is that although buyers become heterogeneous in the individual learning

phase, the buyers who have received lump-sum damages will never purchase the experience good.

The potential buyers are only the unknown ones, who are ex post homogeneous in a symmetric

equilibrium. Another important difference between the good and bade news cases is that no extra

subsidy is needed in the bad news case since deviations of an unknown buyer make the deviator

more pessimistic. As a result, there is no deterrence effect and no continuation value effect. The

instantaneous price reaction to the arrival of the first lump-sum damage is always to go down.

The presence of multi-dimensional beliefs complicates the analysis significantly: the posterior
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belief about the product characteristic and the posterior beliefs about the individual attributes

are all relevant for decision-making. The dimension of the state space is reduced by the fact that

given the priors, the posterior about the product characteristic is a function of the posteriors about

the individual attributes. When considering the symmetric Markov perfect equilibrium, on the

equilibrium path, one posterior is sufficient to represent all the posteriors. But off the equilibrium

path, the deviations lead to heterogeneous posterior beliefs about the individual attributes. Even

in that case, the problem is transformed in a way such that all value functions can be explicitly

derived by solving ordinary differential equations. The benefit of this approach is to ensure that

the traditional value matching and smooth pasting conditions can still be applied to characterize

the optimal stopping decisions.

Related Literature

Bergemann and Välimäki (1996) and Felli and Harris (1996) are two early papers analyzing the

impact of price competition on experimentation. They show that if there is only individual learning,

the dynamic duopoly competition with vertically differentiated products can achieve efficiency.

However, Bergemann and Välimäki (2000) show that in the presence of social learning, the dynamic

duopoly competition cannot achieve efficiency. Bergemann and Välimäki (2002) and Bonatti (2009)

allow ex ante heterogeneity in the sense that buyers are different in their willingness to pay.3 Both

papers assume a continuum of buyers. At each instant of time, an individual buyer only makes a

myopic optimal choice and strategic interactions between the buyers don’t exist.

Bergemann and Välimäki (2006) also consider a dynamic monopoly pricing problem, but with a

continuum of buyers and independent valuations. The difference in crucial modelling assumptions

leads them to investigate different properties of equilibrium price path. The framework of a con-

tinuum of buyers makes it impossible to discuss the impact of a single good news signal on price.

Instead, Bergemann and Välimäki (2006) are more concerned about whether price would always go

down or eventually go up in equilibrium. Bose, Orosel, Ottaviani, and Versterlund (2006) and Bose,

Orosel, Ottaviani, and Versterlund (2008) develop another way of modelling dynamic monopoly

pricing under social learning. Their model is closer to the herding literature: each short-lived buyer

makes a purchasing decision in a pre-determined sequence. In contrast, in our model, all buyers

are long-lived and are making purchasing decisions repeatedly.

This paper is also closely connected to the continuous-time strategic experimentation literature.

A nonexhaustive list of related papers includes Bolton and Harris (1999), Keller and Rady (1999),

Keller and Rady (2010) and Keller, Rady, and Cripps (2005).4 The analysis of our model setting is

3Villas-Boas (2004) also investigates a duopoly model with ex ante heterogeneity along a location. He considers a
two-period model and is mainly concerned about consumer loyalty, i.e., whether in the second period, buyers return
to the seller they bought from in the first period.

4The strategic experimentation framework is also used as a building block to investigate broader issues. For
example, Strulovici (2010) investigates voting in a strategic experimentation environment; Bergemann and Hege
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greatly simplified by the use of exponential bandits, building on Keller, Rady, and Cripps (2005).

Most of the papers in the strategic experimentation literature assume a common value environ-

ment, where the players’ payoffs are perfectly correlated. This enables us to use a uni-dimensional

posterior belief as the unique state variable to characterize the value functions. By considering

a partial payoff correlation, we introduce multi-dimensional posterior beliefs and show that the

dimensionality of the problem can be reduced by expressing one posterior as a function of other

posteriors.

In addition to the theoretical body of work, there are a few empirical studies attempting to

quantify the importance of learning considerations on consumers’ dynamic purchasing behavior.

However, most of the existing works have exclusively focused on modelling individual consumer

behavior and analyzing the impact of idiosyncratic uncertainty (see, e.g., Ackerberg (2003), Craw-

ford and Shum (2005), Erdem and Keane (1996) and so on). Several recent works, including Ching

(2010), Chintagunta, Jiang, and Jin (2009), Kim (2010), use both individual learning and social

learning to investigate the diffusion of new drugs. In particular, Ching’s paper is based on the pas-

sage of the Hatch-Waxman Act in 1984. This act eliminates the clinical trial study requirements for

approving generic drugs and encourages more entries of generic drugs that have uncertain product

qualities. Ching shows that both individual learning and social learning are needed to explain the

slow diffusion of generic drugs into the market.

The remainder of this paper is organized as follows. Section 2 introduces the model and defines

the solution concept. Section 3 and Section 4 solve a symmetric Markov perfect equilibrium and

discuss the efficiency of the equilibrium for the good news case and the bad news case, respectively.

Section 5 concludes the paper.

2 Model Setting

Time t ∈ [0,+∞) is continuous. The market consists of n ≥ 2 buyers indexed by i = 1, 2, · · · , n
and one monopolist, who are all risk-neutral with the common discount rate r > 0. The monopolist

with a zero cost of production sells a risky product with unknown value. At each point in time, a

buyer can either buy one unit of the risky product or take a safe outside option/product.

If a buyer purchases the safe product, she receives a known deterministic flow payoff s > 0.5

The value of the risky product to a buyer i consists of two components: a deterministic flow payoff

ξf ≥ 0 and a random lump-sum payoff ξl. The arrival of lump-sum payoffs depends on both an

intrinsic characteristic of the product (common uncertainty) and the quality of the match between

the product and that buyer (idiosyncratic uncertainty). The product characteristic is either high

(2005), Hörner and Samuelson (2009) and Bonatti and Hörner (2009) consider moral hazard problems when effort
affects speed of learning.

5Alternatively, we can assume the flow payoff is random but drawn from a commonly known distribution with
expectation s > 0.
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(λ = λH ) or low (λ = λL = 0), and the match between buyer i and the risky product is either

relevant (κi = 1) or irrelevant(κi = 0). The arrival of random lump-sum payoffs ξl is independent

across buyers and modelled as a Poisson process with intensity λκi. Therefore, a buyer i is able

to receive random lump-sum payoffs if and only if both the product characteristic is high and

the individual match quality is relevant. Before the game starts, nature chooses randomly and

independently the product characteristic and the individual match quality for each buyer. The

common priors are such that: q0 = Pr(λ = λH), and for each buyer i, ρ0 = Pr(κi = 1). The

product characteristic and the match qualities are initially unobservable to all players (seller and

buyers), but the parameters λH , ξf , ξl, ρ0 and q0 are common knowledge.

We consider two cases in the above setting. In the good news case, ξl > 0 and the arrival of

lump-sum payoffs makes the risky product more attractive than the safe one. We assume the risky

product is superior to the safe one only when the buyers can receive lump-sum payoffs:

Assumption 1 (Good News Case) In the good news case, ξl > 0 and ξf < s < ξf + λHξl.

In the bad news case, ξl < 0 and the arrival of lump-sum payoffs makes the risky product less

attractive than the safe one. We impose the requirement that the risky product is superior to the

safe one only when the buyers cannot receive lump-sum payoffs:

Assumption 2 (Bad News Case) In the bad news case, ξl < 0 and ξf > s > ξf + λHξl.

All players observe each buyer’s past actions and outcomes. As a result, both the seller and

the buyers hold common posterior beliefs about the common characteristic and any given buyer’s

match quality. In both cases, if one buyer receives a lump-sum payoff from the risky product,

every player immediately knows that that buyer’s match is relevant and the product characteristic

is high. The non-arrival of lump-sum payoffs may be due to either a low characteristic or an

irrelevant match. Social learning is important because it provides additional information about

the product characteristic even if the buyers’ match qualities are drawn independently. Although

the assumption λL = 0 seems a little restrictive, the current model is rich enough to include the

extreme cases of common value (ρ0 = 1, q0 < 1) and independent values (q0 = 1, ρ0 < 1).

At each instant of time t, the monopolist first announces a price based on the previous history

and then each buyer decides which product to purchase conditional on the previous history and

the announced price. It is assumed that the monopolist cannot price-discriminate and so charges

the same price to all buyers.

2.1 Belief Updating

Denote by Nit the total number of lump-sum payoffs received by buyer i before time t. Let Pt be

the price charged by the monopolist at time t. Set ait = 1 if buyer i purchases the risky product
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at time t; ait = 0 if buyer i purchases the safe product at time t. A public history before time t is

defined as:

ht , ({aiτ , Niτ}ni=1, Pτ )0≤τ<t .

Posterior beliefs are defined as:

qt , Pr[λH | ht] and ρit , Pr[κi = 1 | λH , ht]

such that the posterior belief of receiving lump-sum payoffs is given by

Pr[λκi = λH | ht] = ρitqt.

Given a pair of priors (ρ0, q0), the posteriors (ρ1t, · · · , ρnt, qt) evolve according to Bayes’ rule. A

buyer i who has not received any lump-sum payoff before time t expects an arrival of lump-sum

payoffs from the risky product with rate λHaitρitqt. If a lump-sum payoff is received, ρit immediately

jumps to 1; otherwise, ρit obeys the following differential equation at those times t when ait is right

continuous:6

ρ̇it = −λHaitρit(1− ρit). (1)

If no buyer has received a lump-sum payoff, then with an expected arrival rate λHqt
∑n

i=1 aitρit,

some buyer receives a lump-sum payoff and qt jumps to 1. Otherwise, qt obeys the following

differential equation at those times when ait is right continuous for ∀i:

q̇t = −λHqt(1− qt)
n∑
i=1

aitρit. (2)

The posterior belief q can be expressed as a function of ρi’s. When no buyer has received a

lump-sum payoff for a length of time t, let xit , ρ0e
−λH

∫ t
0 aiτdτ +1−ρ0 denote the probability of the

event that unknown buyer i has not received lump-sum payoffs for a length of time t conditional

on λH . By Bayes’ rule

qt =
q0
∏n
i=1 xit

q0
∏n
i=1 xit + 1− q0

. (3)

6If buyer i has not received good news within time t and t+h, then the posterior belief ρi,t+h could be written as:

ρi,t+h =
ρite

−λH
∫ h
0 ai,t+τdτ

ρite−λH
∫ h
0 ai,t+τdτ + 1− ρit

.

Since aiτ is right continuous with respect to time at time t, there exists some h̄ > 0 such that ai,t+τ = ai,t for all
τ ≤ h̄. Hence by definition,

ρ̇it = lim
h→0

ρi,t+h − ρi,t
h

= −λHaitρit(1− ρit).

q̇t is derived similarly.
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From equation (1),

ρit =
ρ0e
−λH

∫ t
0 aiτdτ

xit
=⇒ 1− ρit =

1− ρ0

xit
. (4)

Substituting (4) into (3) yields:

qt =
q0(1− ρ0)n

q0(1− ρ0)n + (1− q0)
∏n
i=1(1− ρit)

. (5)

Notice that equation (5) also holds when at least one buyer has received lump-sum payoffs. In that

situation, at least one of the ρit’s is one and qt is also one. After long history of no realization of

lump-sum payoffs, the posteriors ρit would converge to zero while qt would not. This reflects the

fact that ρit is a conditional probability and qt is bounded below by q0(1− ρ0)n.

A nice property about equation (5) is that it only depends on ρit’s and does not explicitly

depend on previous purchasing decisions or time t. Differential equations (1) and (2) imply: given

a particular history of purchasing decisions, both ρit and qt can be written as a function of time.

In the critical history when nobody has received lump-sum payoffs, ρit is sufficient to encode time

t and the relevant information about previous purchasing decisions, which are needed for the the

updating of qt. Therefore, we are able to express qt as a function of ρt , (ρ1t, · · · , ρnt) for a given

pair of priors (ρ0, q0).

2.2 Strategies and Payoffs

Throughout the paper, we focus on symmetric Markov perfect equilibria. The natural state vari-

ables include a posterior about common uncertainty q and posteriors about idiosyncratic uncertainty

ρ. Given a pair of priors (ρ0, q0), it suffices to use posterior beliefs ρt as state variables since q can

be expressed as a function of ρ. This enables us to reduce the dimensionality of the state space by

one. The state variable ρt is required to be feasible in the sense that

ρt ∈ Σ = {ρ ∈ [0, 1]n : either ρi = 1 or ρi ≤ ρ0 all for i}.

Purchasing Decision Given a pair of priors (ρ0, q0), buyer i’s acceptance policy is a function of

states ρ and price P

αi : Σ× R→ {0, 1}.7

Since lump-sum payoffs arrive with rate ρitqtλH , the expected flow of utility associated with

purchasing decision ait is

aitρitqtλHξl + ait(ξf − Pt) + (1− ait)s.

The choice of ait affects not only flow utility but also how beliefs ρt and qt are updated. Given

7More accurately, the strategy should be written as αi(ρ, P ; ρ0, q0). Throughout the paper, (ρ0, q0) will be dropped
since no confusion is caused.
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beliefs ρ ∈ Σ, monopolist’s strategy P and other buyers’ strategies α−i, buyer i’s value (sum of

normalized expected discounted utility) from purchasing strategy αi is

Ui(αi, P, α−i;ρ) = E
∫
re−rt {αi(ρt, Pt) (ρitq(ρt)λHξl + ξf − Pt) + (1− αi(ρt, Pt))s} dt

where the expectation is taken over {ρt : t ∈ [0,∞)} with ρ0 = ρ and q(ρt) is given by equation

(5).

Pricing Decision Given a pair of priors (ρ0, q0), the monopolist’s price is a function of states ρ

P : Σ→ R.

Given buyers’ strategies {αi}ni=1, the flow profits associated with price Pt are
∑n

i=1 αi(ρt, Pt)Pt.

The choice of Pt affects not only flow profits but also the purchasing decisions and so how beliefs are

updated. Given beliefs ρ and buyers’ strategies {αi}ni=1, the monopolist’s value (sum of normalized

expected discounted profits) from the pricing policy P is

J(P, α;ρ) = E
∫
re−rt

n∑
i=1

αi(ρt, P (ρt))P (ρt)dt

where the expectation is taken over {ρt : t ∈ [0,∞)} with ρ0 = ρ.

Admissible Strategies A critical issue associated with continuous time model setting is that a well-

defined strategy profile need not yield a well-defined outcome. Some restrictions on strategies have

to be imposed to overcome this issue. In particular, we require the Markovian strategy profile (P, α)

to be admissible. The formal definition can be found in the appendix. If a strategy profile satisfies

this requirement, the induced outcome is well behaved in the sense that the purchasing decisions

ait and pricing decisions Pt are right continuous functions when there is no arrival of lump-sum

payoffs.

2.3 Symmetric Markov Perfect Equilibrium

We consider a Markov perfect equilibrium in symmetric strategies. The formal definition of our

solution concept is the following:

Definition 1 Given a pair of priors (ρ0, q0), an admissible Markov strategies profile {P ∗, α∗} is a

Markov perfect equilibrium if for all i, feasible beliefs ρ and all admissible strategies P̃ and α̃i:
8

J(P ∗, α∗;ρ) ≥ J(P̃ , α∗;ρ) and Ui(α
∗
i , P

∗, α∗−i;ρ) ≥ Ui(α̃i, P ∗, α∗−i;ρ).

8Strategies P̃ and α̃i need not be Markovian. The definition of admissible non-Markovian strategies can also be
found in the appendix.

11



Moreover, {P ∗, α∗} is symmetric if for all permutations π : {1, · · · , n} → {1, · · · , n}, P (ρ̃) = P (ρ)

where ρ̃i = ρπ−1(i) and αi(ρ, P ) = απ(i)(ρ̃, P ).

3 Equilibrium in the Good News Case

In the good news case, ξl > 0 and the arrival of a lump-sum payoff makes the risky product more

favorable to the receiver of this payoff. In this section, we normalize ξf = 0 and ξl = v > 0.

Assumption 1 implies g , λHv > s > 0.

Since the arrival of one lump-sum payoff immediately resolves common uncertainty, there are

only two situations to consider: a social learning phase, where the common uncertainty has not been

resolved, and an individual learning phase, where the common uncertainty has been resolved. In

the individual learning phase, an unknown buyer just needs to learn her individual match quality

and for such a buyer i, without the arrival of a lump-sum payoff, posterior belief ρi is updated

according to equation (1).

In the social learning phase, both individual learning and social learning exist. If unknown

buyers behave symmetrically, they share the same posterior belief ρ, and belief q about λH is given

by equation (5):

q =
(1− ρ0)nq0

(1− ρ0)nq0 + (1− ρ)n(1− q0)
. (6)

Therefore, in a symmetric Markov perfect equilibrium, it suffices to use the common posterior belief

ρ as the unique state variable.

3.1 Socially Efficient Allocation

Before solving for a symmetric Markov perfect equilibrium, we first solve for the socially efficient

allocation. The linear utility function enables us to obtain the efficient allocation policy by solving

a specific multi-armed bandit problem where payoffs are given by the aggregate surplus.

Given the priors ρ0 and q0, the socially efficient allocation is characterized by a cutoff strategy

in posterior belief ρ. There are two cutoffs ρeI and ρeS for the individual learning phase and the

social learning phase, respectively. In the individual (social) learning phase, it is optimal for the

social planner to keep the unknown buyers experimenting until belief drops to ρeI (ρeS) and no

lump-sum payoff has been received before that. A backward procedure is used to solve for the

socially efficient allocation. We first characterize the socially efficient allocation in the individual

learning phase and then use the optimal social surplus function in the individual learning phase to

solve the cooperative problem in the social learning phase.

Socially Efficient Allocation in the Individual Learning Phase In the individual learning phase,

suppose k buyers have received good news; then it is socially optimal for them to keep purchasing

the risky product by assumption 2 and the social surplus function is

12



Ωk(ρ) = kg + (n− k)W (ρ)

where

W (ρ) = sup
α∈{0,1}

E
∫ ∞
t=0

re−rt[αρtg + (1− α)s]dt

is the optimal value for an unknown buyer with posterior belief ρ.

Since the unknown buyers are facing a standard independent two-armed bandit problem, previ-

ous research (see Keller, Rady, and Cripps (2005)) has characterized the optimal cutoff and value

function W . It is efficient for the remaining n − k unknown buyers to stop purchasing the risky

product once the posterior belief ρ reaches

ρeI =
rs

(r + λH)g − λHs

and still no lump-sum payoff has been received. Since in the individual learning phase, the common

uncertainty has been resolved (q = 1), the efficient cutoff ρeI does not depend on the priors ρ0 and

q0. The value function for a buyer with posterior belief ρ is

W (ρ) = max

{
s, gρ+

λHs

r + λH
(

rs

(r + λH)(g − s)
)r/λH (1− ρ)(

1− ρ
ρ

)r/λH
}
. (7)

Efficiency in the Social Learning Phase In the social learning phase, the socially efficient allocation

solves the symmetric cooperative problem (see claim 2 in the appendix):

ΩS(ρ) = sup
α(·)∈{0,1}

E
{∫ h

t=0
re−rtn[α(ρt)ρtq(ρt)g + (1− α(ρt))s]dt+ e−rhΩ(ρh | α)

}

where

EΩ(ρh | α) = q

n∑
k=1

(
n

k

)
ρk
(

1− e−λH
∫ h
0 αtdt

)k (
ρe−λH

∫ h
0 αtdt + 1− ρ

)n−k
Ωk(ρh)

+
[
q
(
ρe−λH

∫ h
0 αtdt + 1− ρ

)n
+ 1− q

]
ΩS(ρh)

and

ρh =
ρe−λH

∫ h
0 αtdt

ρe−λH
∫ h
0 αtdt + 1− ρ

.

In the continuous time framework, the probability that more than two buyers receive lump-sum

payoffs at the same time is zero. The Hamilton-Jacobi-Bellman equation (HJB equation hereafter)

for the above problem hence is simplified as:

13



rΩS(ρ) = max
{
rns, rnρq(ρ)g + nρq(ρ)λH(Ω1(ρ)− ΩS(ρ))− λHρ(1− ρ)Ω

′
S(ρ)

}
, (8)

where Ω1(ρ) = g + (n− 1)W (ρ) is the social surplus when one buyer receives a lump-sum payoff.

The first part of the maximand corresponds to using the safe product, the second to the risky

product. The effect of using the risky product for the social planner can be decomposed into three

elements: i) the (normalized) expected payoff rate rnρq(ρ)g, ii) the jump of the value function to

Ω1(·) if one buyer receives a lump-sum payoff, which occurs at rate nλH with probability pq(ρ),

and iii) the effect of Bayesian updating on the value function when no lump-sum payoff is received.

When no lump-sum payoff is received, both ρ and q are updated. The updating of q is implicitly

incorporated as a function of ρ.

The optimal cutoff ρeS is pinned down by solving the following differential equation:

rΩS(ρ) = rnρq(ρ)g + nρq(ρ)λH(Ω1(ρ)− ΩS(ρ))− λHρ(1− ρ)Ω′S(ρ), (9)

with boundary conditions:

ΩS(ρeS) = ns (value matching condition) and Ω′S(ρeS) = 0 (smooth pasting condition).

Substitute the two boundary conditions into differential equation (9) and we immediately show

that the cutoff ρeS should satisfy

rnρq(ρ)g + nρq(ρ)λHΩ1(ρ) = (r + nρq(ρ)λH)ns. (10)

In the appendix, we show that equation (10) implies a unique solution ρeS for a given pair of priors

(ρ0, q0). The socially efficient allocation in the social learning phase can be characterized as follows:

Proposition 1 (Characterize socially efficient allocation) For any posteriors (ρ, q), it is socially

efficient to purchase the risky product in the social learning phase if and only if

ρq >
rs

(r + λH)g + (n− 1)λHW (ρ)− nλHs
.

When the common uncertainty is resolved, it is always socially efficient for the unknown buyers to

continue experimentation until the posterior reaches ρeI .

Proof. In the appendix.

Given the priors, the unique pair of efficient cutoffs (ρeS(ρ0, q0), qeS(ρ0, q0)) is determined by

equations

qeS =
(1− ρ0)nq0

(1− ρ0)nq0 + (1− ρeS)n(1− q0)
(11)
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Figure 1: Solutions to the Cooperative Problem with Two Players

and

qeS =
rs

ρeS [(r + λH)g + (n− 1)λHW (ρeS)− nλHs]
, (12)

where W (·) is given by equation (7). Figure 1 is an illustration of how we can use equations (11)

and (12) to determine the efficient cutoffs in the social learning phase. Equation (12) describes

a stationary stopping curve because it consists of all pairs of stopping cutoffs (ρeS , q
e
S) and this

equation is independent of priors (ρ0, q0). Equation (11) describes how ρ and q evolve jointly over

time starting from ρ0 and q0. This equation indeed depends on priors.

Unlike the individual learning phase, the cutoff ρeS does depend on the priors (ρ0, q0). We

formulate the problem so that ρ is the unique state variable in order to avoid solving partial

differential equations. But the actual optimal stopping decision depends not only on belief ρ but

also on q. For a fixed ρ0, a higher q0 means that the society can afford to experiment more and

thus the efficient cutoff ρeS should be lower. For a fixed pair of priors (ρ0, q0), a two-dimensional

optimal stopping problem is transformed into a one-dimensional one by expressing q as a function

of ρ. As a result, we are able to apply traditional value matching and smooth pasting conditions

to solve our optimal stopping problems.
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3.2 Characterizing Equilibrium for n = 2

In the two-buyer case, there are three situations to consider. When the common uncertainty is not

resolved, denote US as the value function for each unknown buyer; and JS as the value function for

the monopolist. When one buyer has received lump-sum payoffs, denote UI as the value function

for the unknown buyer; VI as the value function for the known buyer; and JI as the value function

for the monopolist. When both buyers have received lump-sum payoffs, denote V2 as the value

function for the known buyers; and J2 as the value function for the monopolist.

For ζ = S, I, denote α0
ζ (α1

ζ) as the strategy for the known (unknown) buyers. Let Pζ be

the price charged by the monopolist. Then definition 1 implies that a triple of (Pζ , α
0
ζ , α

1
ζ) is a

symmetric Markov perfect equilibrium if the following conditions are satisfied:

• for ζ = I, α0
ζ = 1 if P ≤ g − s and = 0 otherwise;

• for ζ = S, the unknown buyers choose acceptance policy α1
ζ to maximize:

Uζ(ρ) = sup
α1
ζ

E
{∫ τ

t=0
re−rt

[
α1
ζ(ρtqζ(ρt)g − Pζ(ρt)) + (1− α1

ζ)s
]
dt+ e−rτ (

1

2
VI(ρτ ) +

1

2
UI(ρτ ))

}

and given α1
ζ , the monopolist chooses price Pζ(ρt) to maximize

Jζ(ρ) = sup
Pζ(·)

E
{∫ τ

t=0
2re−rtα0

ζ(Pζ(ρt))dt+ e−rτJI(ρτ )

}
,

where τ is the first (possibly infinite) time at which a new unknown buyer receives good news;

• for ζ = I, the unknown buyer chooses acceptance policy α1
ζ to maximize:

Uζ(ρ) = sup
α1
ζ

E
{∫ τ

t=0
re−rt

[
α1
ζ(ρtqζ(ρt)g − Pζ(ρt)) + (1− α1

ζ)s
]
dt+ e−rτV2(ρτ )

}

and given (α0
ζ , α

1
ζ), the monopolist chooses price Pζ(ρt) to maximize

Jζ(ρ) = sup
Pζ

E
{∫ τ

t=0
re−rt

[
α0
ζ(Pζ(ρt)) + α1

ζ(ρt, Pζ(ρt))
]
dt+ e−rτJ2(ρτ )

}
;

• beliefs update according to Bayes’ rule: ρt satisfies the law of motion, i.e., equation (1);

qζ(ρt) = 1 for ζ = I and qζ(ρt) is given by equation (6) for ζ = S;

• when both buyers have received received lump-sum payoffs, the price is g − s such that

J2 = 2(g − s) and V2 = s.
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First, it is straightforward to see that the known buyers always buy the risky product if the

price is lower than g − s and not buy otherwise. Second, when both unknown buyers purchase the

risky product, the conditional probability that any given unknown buyer becomes good is simply

1/2, since the two unknown buyers’ payoff distributions are identical. Finally, if both buyers turn

out to be good, it is optimal for the monopolist charging price g − s to extract all of the surplus.

3.2.1 Niche Market vs. Mass Market

As in the social planner’s problem, the equilibrium purchasing behavior can be characterized by

two cutoffs ρ?S and ρ?I . If no buyer has received lump-sum payoffs, the price is falling over time

to keep both unknown buyers experimenting until posterior ρ reaches ρ?S . After that, both buyers

purchase the safe product. If one buyer has received lump-sum payoffs, the monopolist stops selling

to the unknown buyer and only serves the known buyer when posterior belief about the unknown

buyer is below ρ?I .

The efficient cutoff in the individual learning phase ρeI is always smaller than the efficient cutoff

in the social learning phase ρeS for any pair of priors (ρ0, q0). Under strategic interactions, it turns

out that ρ?I could be either smaller or larger than ρ?S . We can distinguish a mass market from a

niche market by comparing these two cutoffs.

Definition 2 (Niche market and mass market)

1. The market is niche if the cutoffs determined by (ρ0, q0) satisfy: ρ?S ≤ ρ?I , and

2. The market is mass if the cutoffs determined by (ρ0, q0) satisfy: ρ?S > ρ?I .

In a mass market, the arrival of good news never terminates experimentation while in a niche

market, experimentation is shut down by the arrival of the first lump-sum payoff at ρ ≤ ρ?I .

Obviously, whether a mass or niche market appears in equilibrium depends on the priors, which

in turn determines the relative importance of social learning and individual learning. We expect

that experimentation would continue after the first arrival of lump-sum payoffs if the individual

learning component is quite important and vice versa.

3.2.2 Equilibrium in the Individual Learning Phase

A backward procedure is used to characterize ρ?I and ρ?S . In the individual learning phase, the

equilibrium cutoff ρ?I and the various value functions are provided by the following proposition.

Proposition 2 Fix a symmetric Markov perfect equilibrium. In the history such that the common

uncertainty is resolved, the unknown buyer purchases the risky product if and only if the posterior

belief ρ is larger than

ρ?I ,
r(g + s)

2rg + λH(g − s)
.
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The equilibrium price is PI(ρ) = gρ−s and the unknown buyer receives value UI(ρ) = s; the known

buyer receives value

VI(ρ) = max

{
s, s+ g(1− ρ)(1− [

(1− ρ)ρ?I
ρ(1− ρ?I)

]r/λH )

}
; (13)

and the monopolist receives value

JI(ρ) =

 2(gρ− s) + (g + s− 2gρ?I)
1−ρ
1−ρ?I

[
(1−ρ)ρ?I
(1−ρ?I )ρ ]r/λH if ρ > ρ?I

g − s otherwise.

Proof. In the appendix.

It is straightforward to see that the equilibrium cutoff ρ?I is strictly larger than the efficient

cutoff ρeI . This is because ex post heterogeneity means the known buyer is willing to pay more

than the unknown buyer. In the absence of price discrimination, the monopolist faces a tradeoff

between exploitation of the known buyers and exploration for a higher future value. The incentive

to charge a high price and extract the full surplus from the known buyer causes an early termination

of experimentation. Another remark is that the unknown buyer is making a myopic choice in the

individual learning phase since there is no learning value attached to the purchasing behavior (the

unknown buyer always receives value s regardless of whether she receives the lump-sum payoffs).

3.2.3 Equilibrium in the Social Learning Phase

Now consider the situation where none of the buyers have received lump-sum payoffs yet. Assume

that the posterior belief ρ is large enough that both buyers purchase the risky product in equi-

librium. To characterize the equilibrium price and cutoff, we proceed as follows. First, we use

the incentive compatibility constraint to derive the value function of the experimenting buyers.

Second, we derive expressions of equilibrium price and the monopolist’s value function based on

the experimenting buyers’ value function derived in the first step. Finally, we apply value matching

and smooth pasting conditions (see, e.g., Dixit (1993)) to pin down the equilibrium cutoff.

To keep both unknown buyers experimenting, the unknown buyers’ value should be such that

i) each buyer has an incentive to participate (i.e., the value is larger than the outside option s); ii)

each buyer should not benefit from the following deviations: stopping experimentation for a very

small amount of time and then switching back to the specified equilibrium behavior.

The deviations described in constraint ii) are similar to one-shot deviations in discrete time

models. Formally, it implies that for any ρ > ρ?S , there exists h̄ such that for all h ≤ h̄,
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US(ρ) ≥ Û(ρ;h) =

∫ h

t=0
re−rtsdt+ρq(1−e−λHh)e−rhUI(ρ)+[1−ρq(1−e−λHh)]e−rhUD(ρ, ρh) (14)

where Û(ρ;h) denotes the value for a deviator who deviates for h length of time. The deviator

receives a deterministic payoff s within the h length of time. After the deviation, with probability

ρq(1− e−λHh), the non-deviator has received lump-sum payoffs and the continuation value for the

deviator is UI(ρ) = s; with the complementary probability, the non-deviator has not received lump-

sum payoffs and the two unknown buyers become asymmetric. In the latter situation, the deviator

receives a continuation value UD(ρ, ρh) where superscript D stands for “deviator.” The non-deviator

ρh is more pessimistic than the deviator ρ since ρh = ρe−λHh

ρe−λHh+(1−ρ)
< ρ. Obviously, equation (14)

is a tighter constraint than the participation constraint since UI(ρ) = s and UD(ρ, ρh) ≥ s.
The most important technical result in this paper is to evaluate limh→0

US(ρ)−Û(ρ;h)
h . The result

is given by lemma 1 in the appendix. Here we just provide a sketch of the proof.

Sketch of the proof for lemma 1. The main difficulty of the proof is to evaluate the off-

equilibrium-path value function UD(ρ, ρh). First notice that ρ > ρ?S means that it is optimal for

the monopolist to sell to both unknown buyers on the equilibrium path. Then, for h sufficiently

small, it is still optimal for the monopolist to sell to both unknown buyers after an h-deviation.

In other words, given a sufficiently small h, there exists some h̄′ such that for all h′ ≤ h̄′, we

have:

UD(ρ, ρh) = E
∫ h′

t=0
re−rt(ρtqtg − P̃t)dt

+ ρq̃h(1− e−λHh′)e−rh′VI(ρh+h′) + ρhq̃h(1− e−λHh′)e−rh′s

+ [1− ρq̃h(1− e−λHh′)− ρhq̃h(1− e−λHh′)]e−rh′U(ρh′ , ρh+h′). (15)

In the above expression, ρt is the posterior about the deviator and starts from ρ0 = ρ; q̃h is the poste-

rior about the product characteristic after an h-deviation such that: q̃h = q0(1−ρ0)2

q0(1−ρ0)2+(1−q0)(1−ρ)(1−ρh)
;

and P̃t is the off-equilibrium-path price set by the monopolist after an h-deviation. Obviously, the

value function UD(ρ, ρh) depends on the off-equilibrium-path price and cannot be evaluated directly.

Meanwhile, notice the non-deviator’s value can be expressed as:

UND(ρ, ρh) = E
∫ h′

t=0
re−rt(ρ′tqtg − P̃t)dt

+ ρq̃h(1− e−λHh′)e−rh′s+ ρhq̃h(1− e−λHh′)e−rh′VI(ρh′)

+ [1− ρq̃h(1− e−λHh′)− ρhq̃h(1− e−λHh′)]e−rh′U(ρh+h′ , ρh′), (16)
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where ρ′t is the posterior about the non-deviator and starts from ρ′0 = ρh.

The key step is to decompose UD(ρ, ρh) as:

UD(ρ, ρh) = UND(ρ, ρh) + (UD(ρ, ρh)− UND(ρ, ρh)).

The reason for doing this decomposition is that the off-equilibrium-path price is cancelled when we

subtract UND(ρ, ρh) from UD(ρ, ρh), Hence, Z(ρ, ρh) , UD(ρ, ρh)− UND(ρ, ρh) is independent of

the off-equilibrium-path price P̃ and can be evaluated directly.

Buyer ρh’s value UND(ρ, ρh) can be computed without using the off-equilibrium-path price.

If the non-deviator has not received lump-sum payoffs during an h-deviation, she becomes more

pessimistic than the deviator. If the monopolist wants to make a sale to both buyers, the optimal

price is set according to the reservation value of the more pessimistic buyer. An expression of

UND(ρ, ρh) can be derived from the ρh buyer’s incentive compatibility constraint. In the appendix,

we show that this implies a first-order ordinary differential equation for UND(ρ, ρh), which can be

solved by imposing the boundary condition that U(ρh, ρh) = US(ρh).

Second, given any t < h′, notice equations (15) and (16) also hold for posteriors (ρ(t), ρh(t))

where

ρ(t) =
ρe−λH t

ρe−λH t + (1− ρ)
, and ρh(t) =

ρhe
−λH t

ρhe−λH t + (1− ρh)
.

Redefine

Z(t) = Z(ρ(t), ρh(t)) = U(ρ(t), ρh(t))− U(ρh(t), ρ(t))

to be a function of time t . A first-order ordinary differential equation about Z(t) can be obtained

by subtracting equation (16) from equation (15) and letting the length of time interval converge

to zero. Solving the ordinary differential equation, the expression for Z(ρ, ρh) can be recovered by

substituting time t as functions of ρ(t) and ρh(t). The boundary condition is such that Z = 0 once

ρh reaches ρ?S .

After UD(ρ, ρh) is evaluated, limh→0
US(ρ)−Û(ρ;h)

h can be computed directly. �

Lemma 2 in the appendix implies that in equilibrium, a profit-maximizing monopolist should

always make the incentive constraints to be “binding” in the sense that limh→0
US(ρ)−Û(ρ;h)

h = 0.

Lemma 1 and lemma 2 together gives an important characterization of the on-equilibrium-path

value function US :

Proposition 3 Fix the monopolist’s strategy such that ρ?S is the equilibrium cutoff in the social

learning phase. In a mass market, given any ρ > ρ?S, a necessary and sufficient condition for the
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unknown buyers to keep experimenting is that the value US(ρ) satisfies differential equation

0 = 2(r+λHρq)(US(ρ)−s)+λHρ(1−ρ)U ′S(ρ)+(r+λHρ)g(1−ρ)q(
(1− ρ)ρ?I
ρ(1− ρ?I)

)r/λH−λHgρ(1−ρ)q

−
[
r + λHρ

?
S

1− ρ?S
(

ρ?I
1− ρ?I

)r/λH − λH(
ρ?S

1− ρ?S
)1+r/λH

]
g(1− ρ)2q(

1− ρ
ρ

)r/λH . (17)

In a niche market, given any ρ > ρ?S, a necessary and sufficient condition for the unknown buyers

to keep experimenting is that the value US(ρ) satisfies differential equation

0 = 2(r + λHρq)(US(ρ)− s) + λHρ(1− ρ)U ′S(ρ)

+
rλHg

r + λH

(1− ρ)2qρ?S
1− ρ?S

(
(1− ρ)ρ?S
ρ(1− ρ?S)

)r/λH − rg

r + λH
λHρ(1− ρ)q (18)

for ρ ≤ ρ?I ; and differential equation

0 = 2(r+λHρq)(US(ρ)−s)+λHρ(1−ρ)U ′S(ρ)+(r+λHρ)g(1−ρ)q(
(1− ρ)ρ?I
ρ(1− ρ?I)

)r/λH−λHgρ(1−ρ)q

− r
[
r + λH + λHρ

?
I

(r + λH)(1− ρ?I)
(

ρ?I
1− ρ?I

)r/λH − λH
r + λH

(
ρ?S

1− ρ?S
)1+r/λH

]
g(1− ρ)2q(

1− ρ
ρ

)r/λH (19)

for ρ > ρ?I .

The necessity of proposition 3 just comes from combining lemma 1 and lemma 2. In the

appendix, we prove the sufficiency of this result as well: given the on-equilibrium-path value function

US(ρ) and off-equilibrium-path value function UD(ρ, ρh), it is not optimal for an experimenting

buyer to deviate.

The ordinary differential equations in proposition 3 can be solved by using observation 1 in the

appendix. In a mass market, for any ρ > ρ?S , the value function US(ρ) is given by

US(ρ) = s+
λH

2r + λH
gρ(1− ρ)q − g(1− ρ)q[

(1− ρ)ρ?I
ρ(1− ρ?I)

]r/λH

+

[
r + λHρ

?
S

r(1− ρ?S)
(

ρ?I
1− ρ?I

)r/λH − λH
r

(
ρ?S

1− ρ?S
)1+r/λH

]
g(1− ρ)2q(

1− ρ
ρ

)r/λH

+ C(1− ρ)2q(
1− ρ
ρ

)2r/λH . (20)

In a niche market, for any ρ?S < ρ ≤ ρ?I , the value function US(ρ) is given by

US(ρ) = s+
rλH

(2r + λH)(r + λH)
gρ(1− ρ)q − λHg

r + λH

ρ?S(1− ρ)2q

1− ρ?S
(
(1− ρ)ρ?S
ρ(1− ρ?S)

)r/λH

+ D(1− ρ)2q(
1− ρ
ρ

)2r/λH ; (21)
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and for ρ > ρ?I , the value function US(ρ) is given by9

US(ρ) = s+
λH

2r + λH
gρ(1− ρ)q − g(1− ρ)q[

(1− ρ)ρ?I
ρ(1− ρ?I)

]r/λH

+

[
r + λH + λHρ

?
I

(r + λH)(1− ρ?I)
(

ρ?I
1− ρ?I

)r/λH − λH
r + λH

(
ρ?S

1− ρ?S
)1+r/λH

]
g(1− ρ)2q(

1− ρ
ρ

)r/λH

+ (D − 2λHg

2r + λH
(

ρ?I
1− ρ?I

)1+2r/λH )(1− ρ)2q(
1− ρ
ρ

)2r/λH . (22)

Since there is learning value attached to purchasing behavior, the unknown buyer is not making

a myopic choice. The monopolist has to provide extra subsidy to deter deviations because the

deviator gains rents by becoming more optimistic: US(ρ) > s.

Denote the equilibrium price in the social learning phase to be PS(ρ). Then, the value for a

buyer from purchasing the risky product can be characterized by the following HJB equation:

rUS(ρ) = r(ρq(ρ)g−PS(ρ))+λHρq(ρ)(UI(ρ)−US(ρ))+λHρq(ρ)(VI(ρ)−US(ρ))−λHρ(1−ρ)U ′S(ρ)

(23)

where q(ρ) = q0(1−ρ0)2

q0(1−ρ0)2+(1−q0)(1−ρ)2
, UI(ρ) = s, and VI(ρ) is given by equation (13).

Meanwhile, by selling the products, the monopolist’s value can be characterized as follows:

rJS(ρ) = 2rPS(ρ) + 2λHρq(ρ)(JI(ρ)− JS(ρ))− λHρ(1− ρ)J ′S(ρ). (24)

where JI(ρ) is given by proposition 2.

Equations (23) and (24) are value functions if both unknown buyers purchase the risky product.

The RHS of equation (23) can be decomposed into four elements: i) the expected payoff rate from

purchasing the risky product r(ρq(ρ)g − PS(ρ)); ii) the jump of the value function to VI if a given

buyer receives a lump-sum payoff; iii) the drop of the value function to UI = s if the other buyer

receives a lump-sum payoff; and iv) the effect of Bayesian updating on the value function when no

lump-sum is received. Equation (24) could be interpreted similarly.

The on-equilibrium-path price PS(ρ) can be derived from the on-equilibrium-path value function

US(ρ). It is straightforward to show: in a mass market,

PS(ρ) = ρq(ρ)g − s+
λH

2r + λH
gρ(1− ρ)q(ρ) + Cq(ρ)(1− ρ)2(

1− ρ
ρ

)2r/λH (25)

for ρ > ρ?S ; while in a niche market,

PS(ρ) = ρq(ρ)g − s− λH
2r + λH

gρ(1− ρ)q(ρ) +Dq(ρ)(1− ρ)2(
1− ρ
ρ

)2r/λH (26)

9The undetermined coefficient in the differential equation is chosen such that US(ρ) is continuous at ρ?I .
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for ρ?S < ρ ≤ ρ?I , and

PS(ρ) = ρq(ρ)g−s+
λH

2r + λH
gρ(1−ρ)q(ρ)+(D− 2λHg

2r + λH
(

ρ?I
1− ρ?I

)1+2r/λH )q(ρ)(1−ρ)2(
1− ρ
ρ

)2r/λH

(27)

for ρ > ρ?I . In the above equations, C and D are constants in equations (20) to (22). Notice in

equations (26) and (27), the signs in front of term λH
2r+λH

gρ(1 − ρ)q(ρ) are different. This reflects

the change in continuation value when ρ drops below ρ?I . By proposition 2, for ρ ≤ ρ?I , upon the

arrival of the first lump-sum payoff, the monopolist immediately shuts down experimentation and

charges price g − s. This greatly reduces the unknown buyers’ incentives to experiment. However,

it is easy to check that in a niche market, the price PS(ρ) is still continuous at ρ?I .

We substitute the price expression PS(ρ) into equation (24) and characterize the equilibrium

cutoff ρ?S by applying value matching and smooth pasting conditions:

US(ρ?S) = s, JS(ρ?S) = 0, J ′S(ρ?S) = 0.

Proposition 4 (Characterize the symmetric Markov perfect equilibrium) In the social learning

phase, the unknown buyers purchase the risky product under posterior beliefs (ρ, q) if and only if

ρq >
rs

rg + λH(VI(ρ) + JI(ρ))− λHs
.

A mass market appears if and only if

1− q0

q0(1− ρ0)2
>

g

(1− ρ?I)s
. (28)

Moreover, for all ρ0 < 1 and q0 < 1, the symmetric Markov perfect equilibrium is inefficient so that

experimentation is terminated too early.

Proof. In the appendix.

The unique equilibrium cutoff ρ?S is characterized by equation

ρq(ρ) =
rs

rg + λH(VI(ρ) + JI(ρ))− λHs
. (29)

It is straightforward to show the equilibrium is inefficient by comparing the efficient stopping

curve with the equilibrium stopping curve. The inefficiency in the individual learning phase causes

a leakage of the social surplus for the monopolist, which reduces the monopolist’s incentives to

subsidize experimentation in the social learning phase. Therefore, the equilibrium experimentation

is terminated too early in the social learning phase as well.

There are two remarks about proposition 4. First, it is straightforward to check that at ρ?S ,

the smooth pasting condition for US(·) is also satisfied: U ′S(ρ?S) = 0. Explicitly, the monopolist is
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Figure 2: Equilibrium Price Dynamics

solving an optimal stopping problem given the price she has to charge in order to keep the unknown

buyers experimenting. Implicitly, given the equilibrium pricing strategy PS(·), the unknown buyers

are facing an optimal stopping problem as well. At the equilibrium cutoff, the smooth pasting

condition for US(·) should also be satisfied. This fact is useful when we discuss efficiency for any

n ≥ 2 buyers because it enables us to characterize the equilibrium cutoff without solving for the

value functions. Second, the appearance of a mass market depends on the relative importance

of social learning and individual learning. Given q0, when ρ0 goes up, the monopolist has higher

incentives to keep the remaining unknown buyer experimenting. A mass market is more likely to

appear as a result.

3.2.4 Equilibrium Price Path

After solving for the equilibrium cutoff ρ?S , the constants C and D in equations (20) and (21) can be

pinned down from the value matching condition and then the expression for the equilibrium prices

can be derived. Figure 2 depicts different price paths in the symmetric Markov perfect equilibrium

depending on how many buyers have received lump-sum payoffs.

The presence of idiosyncratic uncertainty has two important implications for the equilibrium

price.
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First, in the social learning phase, assume instead that the equilibrium value for each unknown

buyer is exactly s. Then the equilibrium price should be:

P̃S(ρ) = ρq(ρ)g − s+
λH
r
ρq(ρ)(VI(ρ)− s).

To deter the buyers from taking the outside option, the equilibrium value for each unknown

buyer must be strictly larger than s. The actual equilibrium price price PS(ρ) is strictly less than

P̃S(ρ) because of this deterrence effect. Figure 3 compares the equilibrium price path with and

without the deterrence effect. It shows that the price reduction caused by the deterrence effect is

quite significant.

Second, the instantaneous price reaction to the arrival of the first lump-sum payoff might be

ambiguous. In particular, when the first lump-sum payoff arrives, there could be an instantaneous

drop in price in order to encourage the buyer who remains unsure to experiment as shown by figure

2. To understand the negative response of the price to the arrival of a good news signal, we first

compare the equilibrium price in the individual learning phase PI(ρ) and the price without the

deterrence effect P̃S(ρ). Equation

PI(ρ)− P̃S(ρ) = ρ(1− q(ρ))g − λH
r
ρq(ρ)(VI(ρ)− s)
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shows that the arrival of good news brings two opposite effects on the reservation value of the buyer

who remains unsure. There is a positive informational effect captured by ρ(1− q(ρ))g: the arrival

of good news reveals that the product characteristic is high and hence makes the unknown buyer

more optimistic about the unconditional probability of receiving lump-sum payoffs. However, there

is another negative continuation value effect: the buyer who remains unsure loses the chance of

becoming the first known buyer to extract rents. The price has to be lower to compensate for the

loss of rents if the monopolist wishes to make a sale to the unknown buyer.

The comparison of the informational effect and the continuation value effect depends on the

comparison of 1− q(ρ) and q(ρ)(VI(ρ)− s).

Corollary 1 For ρ0 < 1 and q0 < 1, q(ρ)(VI(ρ)−s)
1−q(ρ) is strictly increasing in ρ.

Proof. Plug the formula of q(ρ) and VI(ρ) into q(ρ)(VI(ρ)−s)
1−q(ρ) and we can get q(ρ)(VI(ρ)−s)

1−q(ρ) is propor-

tional to
1− [

(1−ρ)ρ?I
ρ(1−ρ?I ) ]r/λH

1− ρ
,

which is strictly increasing in ρ.

The above corollary implies: in the early days of the market, ρ is higher and it is more likely

to have P̃S(ρ) > PI(ρ); in the late days of the market, ρ is lower and it is more likely to have

P̃S(ρ) < PI(ρ). Since the equilibrium price PS(ρ) is strictly below P̃S(ρ) due to the deterrence

effect, the above statement also holds if we replace P̃S(ρ) with PS(ρ). Figure 4 describes a situation

where with the same priors, the price might either drop or jump depending on the arrival time of

the first lump-sum payoff.

3.3 Efficiency

This section discusses the efficiency property of the symmetric Markov perfect equilibrium for an

arbitrary number of buyers. We first investigate the extreme case of the perfect payoff correlation

(ρ = 1) and then compare that result to the one in the partial payoff correlation case.

Perfect Payoff Correlation Under this special case, buyers are ex post homogeneous. In other words,

immediately after one buyer receives a lump-sum payoff, it becomes common knowledge that all

buyers are able to receive lump-sum payoffs, and the monopolist should immediately raise the price

to g − s to extract all of the surplus.

In the social learning phase, similarly the monopolist should set a price such that i) each

experimenting buyer has an incentive to participate (i.e., each buyer’s value is larger than the

outside option); ii) it is not optimal for each experimenting buyer to have “one-shot” deviations.

The common value assumption simplifies the analysis of the “one-shot deviation” problem since

the deviator always has the same posterior belief as the buyers who have not deviated. It turns out
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Figure 4: Instantaneous Price Response to the First Arrival of Good News

that under the common value case, restrictions i) and ii) coincide and the strategic equilibrium is

always efficient.

Proposition 5 When the buyers’ payoffs are perfectly correlated (ρ = 1), the unknown buyers will

always receive value s in equilibrium and the symmetric Markov perfect equilibrium is efficient.

Proof. In the appendix.

The intuitive explanation for the above efficiency result is that the ex post homogeneity means

the monopolist does not need to face the tradeoff between exploitation and exploration. This

enables the monopolis to completely internalize the social surplus and overcome the free riding

problem by subsidizing experimentation.

Partial Payoff Correlation Since ex post heterogeneity exists in the partial payoff correlation case,

it is natural to conjecture that the inefficiency result in proposition 4 can be extended to a general

n case. The induction argument is used to avoid solving for every value function explicitly.

Theorem 1 Consider a market with any n ≥ 2 buyers. The symmetric Markov perfect equilibrium

is inefficient in both the social learning and individual learning phases if ρ0 < 1 and q0 < 1.

Moreover, the equilibrium experimentation is always terminated too early.
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Proof. In the appendix.

We are in a position to summarize the roles played by ex post heterogeneity. First, in the

social learning phase, ex post heterogeneity means there is a future benefit for the deviator by

becoming more optimistic than the non-deviators. The monopolist has to provide extra subsidy

to deter deviations. In the common value case, such a future benefit does not exist and there is

no need to provide extra subsidy. Second, in the individual learning phase, ex post heterogeneity

implies that the receivers of lump-sum payoffs are more optimistic than the unknown buyers. If

the monopolist wishes to serve all buyers, the known buyers extract rents. This generates a loss of

rents for the buyers who stay unsure upon the arrival of the first lump-sum payoff. The reduction

in continuation values leads to an ambiguous instantaneous price reaction to the arrival of the first

lump-sum payoff. On the contrary, in the common value case, the equilibrium value for the buyers

is always the same as the outside option and there is no continuation value effect. Hence, upon the

arrival of the first lump-sum payoff, the instantaneous reaction of the equilibrium price is always

to go up. Finally, ex post heterogeneity generates a tradeoff between exploitation and exploration

for the monopolist. The equilibrium experimentation level is lower than the socially efficient level

as we have seen in the two-buyer case. On the other hand, in the common value case, there is no

ex post heterogeneity and the monopolist is able to fully internalize the social surplus.

4 Equilibrium in the Bad News Case

In the bad news case, the arrival of lump-sum payoffs (we call them lump-sum damages hereafter)

would immediately reveal that the risky product is unsuitable for the buyer. Denote ξf = A and

λHξl = −B < 0. Condition A − B < s < A is imposed such that the risky product is superior to

the safe one only when the buyers cannot receive lump-sum damages.

4.1 Socially Efficient Allocation

Different from the good news case, large priors (ρ0, q0) mean that the probability of receiving

lump-sum damages is high and this discourages the social planner from taking the risky product.

Therefore, instead of solving an optimal stopping problem (i.e., terminating experimentation when

belief reaches a certain cutoff), in the bad news case, we solve an optimal starting problem, i.e.,

beginning experimentation when belief is lower than a certain cutoff.

As in the good news case, we discuss socially efficient allocation separately in the individual

learning and social learning phases.

Socially Efficient Allocation in the Individual Learning Phase In the individual learning phase,

suppose k buyers have received lump-sum damages. The social surplus function could be written

as (the known buyers will take the safe product and receive s for sure)
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Ωk(ρ) = ks+ (n− k)W (ρ)

where

W (ρ) = sup
α∈{0,1}

E
∫ ∞
t=0

re−rt[α(A− ρtB) + (1− α)s]dt

defines the optimal control problem for the unknown buyer. The corresponding HJB equation is

W (ρ) = max

{
s,A− ρB +

1

r

[
λHρ(s−W (ρ))− λHρ(1− ρ)W ′(ρ)

]}
. (30)

Solve the optimal starting problem defined by equation (30) and we get the following result:

Proposition 6 In the individual learning phase, if k ≥ 1 buyers are known to receive lump-sum

damages, it is socially efficient for those k buyers to always purchase the safe product. For the

remaining n− k unknown buyers, it is socially efficient to start experimentation if and only if

ρ ≤ ρeI =
(r + λH)(A− s)
λHA+ rB − λHs

.

The value functions for a typical buyer with posterior belief ρ is given by:

W (ρ) = max

{
s,A− λHA+ rB − λHs

r + λH
ρ

}
.

Socially Efficient Allocation in the Social Learning Phase In the social learning phase, we similarly

write down the HJB equation as:

ΩS(ρ) = max

{
ns, n(A− ρq(ρ)B) +

1

r
[λHnρq(ρ)(Ω1(ρ)− ΩS(ρ))− λHρ(1− ρ)Ω′S(ρ)]

}
. (31)

The optimal starting problem (31) is solved by solving differential equation

(r + λHnρq)ΩS(ρ) = rn(A− ρqB) + λHnρq[(n− 1)W (ρ) + s]− λHρ(1− ρ)Ω′S(ρ), (32)

with boundary condition ΩS(ρeS) = ns.10

The socially efficient allocation in the social learning phase is characterized by the following

proposition:

10Notice that W (ρ) is not continuously differentiable at ρeI (smoothing pasting condition is no longer satisfied).
But it is Lipschitz continuous and hence the solution to the above boundary value problem is still unique.
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Proposition 7 Given any q0 < 1, there exists a unique ρeS(q0) > ρeI (ρeS(q0) could be one) such that

it is socially efficient to start experimentation in the social learning phase if and only if ρ ≤ ρeS(q0).

Proof. In the appendix.

4.2 Equilibrium

In any symmetric equilibrium, buyers can be divided into two groups: known buyers and unknown

buyers. Let α0
k (α1

k) be the strategy for the known (unknown) buyers where subscript k indicates

the number of buyers who have received lump-sum damages. Let Vk, Uk and Jk be value functions

for the known buyers, the unknown buyers and the monopolist, respectively, when k buyers have

received lump-sum damages. Finally, let Pk denote the price charged by the monopolist. Definition

1 implies that the triple of (Pk, α
0
k, α

1
k) is a symmetric Markov perfect equilibrium if:

• α0
k = 1 if P ≤ A−B − s and = 0 otherwise;

• for any k < n, given Pk, the unknown buyers choose acceptance policy α1
k to maximize:

Uk(ρ) = sup
α1
k

E
∫ τ

t=0
re−rt[α1

k(A− ρtqk(ρt)B − Pk(ρt)) + (1− α1
k)s]dt

+ e−rτ
(

1

n− k
Vk+1(ρτ ) +

n− k − 1

n− k
Uk+1(ρτ )

)

where τ is the first (possibly infinite) time at which a new unknown buyer receives good news;

• given (α0
k, α

1
k), the monopolist chooses price Pk(ρt) to maximize

Jk(ρ) = sup
Pk

E
{∫ τ

t=0
re−rt

[
kα0

k(Pk(ρt)) + (n− k)α1
k(ρt, Pk(ρt))

]
dt+ e−rτJk+1(ρτ )

}

• beliefs update according to Bayes’ rule: ρt satisfies the law of motion, i.e., equation (1);

qk(ρt) = 1 for k ≥ 1 and qk(ρt) is given by equation (6) for k = 0;

• for k = n, the monopolist will not serve any buyer such that Jn = 0 and Vn = s.

First, it is straightforward to see that the known buyers will buy the risky product if the price

is lower than A−B− s and not buy otherwise. Second, the assumption A−B− s < 0 implies that

selling to the known buyers is purely losing money. Hence, a profit-maximizing monopolist should

never set the price lower than A − B − s in order to sell to the known buyers. This also implies

that Vk is always s. Third, when n−k unknown buyers purchase the risky product, the conditional
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probability that any given unknown buyer receives lump-sum damages is simply 1/(n − k), since

the n − k unknown buyers’ payoff distributions are identical. Finally, the cutoff strategy for the

monopolist means that she will start selling to the unknown buyers if the belief ρ is lower than a

certain cutoff. Once the monopolist starts to sell to the unknown buyers, she will continue to sell

as long as no lump-sum damage is received.

In a symmetric Markov perfect equilibrium, when experimentation takes place on the equilib-

rium path, the monopolist also has to charge a price such that both the participation constraint

and the no profitable one-shot deviation constraint are satisfied. In the bad news case, it turns out

that the “one-shot” deviations don’t impose more restrictions than the participation constraint.

Claim 1 In equilibrium, the most pessimistic unknown buyer’s value is always s.

Claim 1 implies that the on-equilibrium-path value for each unknown buyer is always s since

they are equally pessimistic. This is different from proposition 3 in the good news case. In the

good news case, a one-shot deviation makes the non-deviators more pessimistic if they haven’t

received any lump-sum payoffs during the deviation period. In that situation, the price charged

by the monopolist is lower than what the deviator is willing to pay. The deviator can benefit

from a deviation and thus the equilibrium value for the experimenting buyers has to be larger than

s to deter deviations. However, in the bad news case, a one-shot deviation makes the deviator

more pessimistic. After the deviation, if the monopolist wishes to serve all unknown buyers, the

optimal price is determined by what the deviator is willing to pay; if the monopolist does not

wish to serve all unknown buyers, the deviator is the first buyer to be excluded. In both cases,

the deviator cannot gain more than the outside option after a deviation. Therefore, setting the

on-equilibrium-path value to be s is enough to deter deviations.

The equilibrium price path could be derived from claim 1: in the individual learning phase,

the monopolist would charge PI(ρ) = A− ρB − s and in the social learning phase, the monopolist

would charge PS(ρ) = A− ρq(ρ)B− s. The arrival of the first lump-sum damage will unanimously

lead to a drop in price if q0 < 1 but the subsequent arrival of lump-sum damages will not have any

impact on price. The negative response in price to the arrival of the first lump-sum damage reflects

the fact that there is no continuation value effect from claim 1. The informational effect always

discourages the unknown buyers from experimenting and reduces the price. But the subsequent

arrival of bad news reveals no more information to the remaining unknown buyers and hence has no

effect on the price at all. Solve the monopolist’s optimal starting problem and we get the following

theorem:

Theorem 2 Consider a market with n ≥ 2 buyers. The symmetric Markov perfect equilibrium is

efficient in both the social learning and the individual learning phases.

Proof. In the appendix.
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The above theorem is very intuitive: different from the good news model, there is no tradeoff

between exploitation and exploration in the individual learning phase because the buyers who have

received lump-sum damages will never purchase the risky product. As a result, although buyers

become ex post heterogeneous, the potential buyers of the risky product are always the unknown

ones, who are ex post homogeneous in a symmetric equilibrium. Hence, the equilibrium is always

efficient in the individual learning phase. The efficiency in the social learning phase is a little

surprising. It seems that the monopolist cannot fully internalize social surplus since the unknown

buyers can benefit from social learning by switching to the safe product. The intuition turns out

to be incorrect. In the good news case, society benefits from the arrival of good news but the

receivers of the lump-sum payoffs pay less than what they are willing to pay. In other words, the

known buyers “steal” some of the social surplus from the monopolist and this causes inefficiency.

On the contrary, in the bad news case, society benefits from the non-arrival of the bad news. The

unknown buyers cannot “steal” social surplus from the monopolist when no lump-sum damages

have been received.

5 Conclusion

By combining common and idiosyncratic uncertainty, this paper relaxes the usual common value

assumption made in the social learning literature (see, e.g., Banerjee (1992), Bikhchandani, Hir-

shleifer, and Welch (1992) and Rosenberg, Solan, and Vieille (2007)).11 We consider a dynamic

monopoly pricing environment where the monopolist cannot price-discriminate among the buyers.

The partial payoff correlation among the buyers generates ex post heterogeneity. If the monopolist

wishes to make a sale to several buyers, the optimal price is set to make the most pessimistic buyer

indifferent between the alternatives. In the good news case, this has significant implications both

on the equilibrium path and off the equilibrium path. On the equilibrium path, the receivers of

lump-sum payoffs become more optimistic than the non-receivers. This implies: i) the arrival of

the first good news signal generates a reduction in the continuation value for the buyers who stay

unsure, and this effect might lead to an instantaneous drop in price; and ii) the monopolist faces

different buyers after the arrival of lump-sum payoffs and the absence of price discrimination leads

to an inefficient level of experimentation. On the contrary, if there is a perfect payoff correlation

among the buyers, the arrival of the first good news signal always leads to a jump in price and the

equilibrium is efficient.

There is another subtle off-equilibrium-path implication. By taking the outside option, each

buyer can extract rents if she becomes more optimistic than other buyers after the deviation. This

generates a future benefit from deviation. If the monopolist wishes to make a sale to several

11An exception is Murto and Välimäki (2009), who consider partial payoff correlation in an observational learning
setting.
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unknown buyers, each unknown buyer receives a value higher than the outside option to deter

deviations. Such a deterrence effect leads to a significant reduction in the equilibrium price. If

there is perfect payoff correlation among the buyers, there is no need to provide such an extra

subsidy.

However, in the bad news case, the above implications do not exist for two reasons. On the

equilibrium path, the receivers of lump-sum damages immediately take the outside option and the

buyers who stay in the experience good market are still ex post homogeneous. Off the equilibrium

path, a buyer cannot benefit from deviations because the deviator becomes more pessimistic after

a deviation.

There are several extensions to consider in the future. For tractability, we have assumed that

the arrival of lump-sum payoffs immediately resolves the common uncertainty and the idiosyncratic

uncertainty of the receiver. It is possible to consider a model where the arrival of lump-sum payoffs

cannot immediately resolve the common uncertainty or the idiosyncratic uncertainty of the receiver.

For example, we may assume lump-sum payoffs arrive at another Poisson rate when the product

characteristic is low. As long as ex post heterogeneity exists, the resulting equilibrium would be

inefficient as well.

Another natural extension of the current model is to consider a dynamic duopoly pricing envi-

ronment. This issue is partially investigated by Bergemann and Välimäki (2002), who consider a

model with a continuum of buyers such that buyers are choosing according to their myopic prefer-

ences at each instant in time. It would be interesting to consider a model with a finite number of

buyers such that each buyer’s choice has non-trivial effects on learning and future prices.
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Appendix

A Admissible Strategies

Before formally defining admissible Markovian strategies, we define admissibility for general strate-
gies. First denote an outcome h to be

h , ({ait, Nit}ni=1, Pt)0≤t<∞ ;

and H is the set of all possible outcomes. A sub-outcome h− ⊂ h only includes information about
purchasing decisions and lump-sum payoffs:

h− , ({ait, Nit}ni=1)0≤t<∞ ;

and H− is the set of all possible sub-outcomes.
In general, a strategy can be viewed as a map from the set of outcomes to actions. We focus on

strategies which are independent of previous prices since allowing pricing as a function of previous
prices may generate more complicated problems.12 The monopolist’s pricing decision is given by
the mapping:

P : H− × [0,∞)→ R;

and the buyers’ acceptance decision is given by the mapping:

αi : H × [0,∞)→ {0, 1}.

P (h−, t) is the price charged by the monopolist at time t, and αi(h, t) is the purchasing decision
made by buyer i at time t. Assumptions A1 and A2 stated below guarantee the strategies are well
defined.

Denote vector a = (a1, · · · , an) and vector N = (N1, · · · , Nn). A metric on the sets of outcomes
is defined as:

D−(ĥ−t , h̃
−
t ) =

∫ t

0

[
d(âτ , ãτ ) + d(N̂τ , Ñτ )

]
dτ

and

D(ĥt, h̃t) =

∫ t

0

[
d(âτ , ãτ ) + d(N̂τ , Ñτ )

]
dτ + |P̂t − P̃t|

where d is the Euclidean norm. In particular, the previous prices do not enter in the definition of
D(ĥt, h̃t); only the current price matters. The metric D (D−) determines a Borel σ-algebra BH
(BH−). The first restriction on strategies is that:

A1. P is a BH− × B[0,∞) measurable function and αi is a BH × B[0,∞) measurable function.

The second restriction requires the strategies take the same actions if two histories are almost
the same:

A2. For all t, and ĥ, h̃ ∈ H such that D(ĥt, h̃t) = 0, then P (ĥ−, t) = P (h̃−, t) and αi(ĥ, t) = αi(h̃, t).

A1 and A2 are two natural restrictions on strategies. Additional conditions have to be imposed
to guarantee the induced outcome is unique. Before doing that, we define an outcome h to be

12For example, any decreasing price path is consistent with the pricing function P (h, t) = infτ<t Pτ .
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compatible with a given strategy profile {P, α} if h satisfies: P (h−, t) = Pt and αi(h, t) = ait. A
straightforward modification of the argument in Bergin and McLeod (1993) shows the following:

Proposition 8 A strategy profile (P, α) generates a unique distribution over compatible outcomes
if it satisfies:

1. for any outcomes ĥ and h̃ and any time t such that D(ĥt, h̃t) = 0 and N̂t = Ñt,

lim
ε↘0

P (ĥ, t+ ε) = lim
ε↘0

P (h̃, t+ ε);

and

2. for any ĥ and h̃ and any t such that D(ĥt, h̃t) = 0, N̂t = Ñt and limε↘0 P̂t+ε = limε↘0 P̃t+ε,

then there exists ε > 0 and a ∈ {0, 1} such that αi(ĥ, t̃) = αi(h̃, t̃) = a for any t̃ ∈ (t, t+ ε).

We say a strategy profile (P, α) is weakly admissible if it satisfies conditions 1 and 2 in proposition
8. In proposition 8, condition 2 is the key condition. This condition is slightly different from the
inertia condition proposed in Bergin and McLeod (1993). The modification is needed to handle
the possible situation when the arrival of a lump-sum payoff at time t results in the purchasing
decisions at to be not right continuous in time.

Any Markovian strategy profile (P, α) which induces a weakly admissible strategy profile gen-
erates a unique distribution over compatible outcomes. But the notion of weak admissibility does
not guarantee that the induced outcome allows us to use equations (1) and (2) to update beliefs.

Definition 3 A Markovian strategy profile (P, α) is strongly admissible in the good news case if
it satisfies:13

1. P (ρ) is left continuous and non-decreasing when it is continuous: for each ρ ∈ Σ and δ > 0,
there exists some ε > 0 s.t. P (ρ′) ≤ P (ρ) and |P (ρ′)− P (ρ)| ≤ δ for all feasible ρ′ ≤ ρ such
that ||ρ′ − ρ|| ≤ ε;14

2. αi(ρ, P ) is left continuous: for each ρ ∈ Σ and δ > 0, there exists some ε′ > 0 s.t. αi(ρ
′, P ′) =

αi(ρ, P ) for all feasible (ρ′, P ′) ≤ (ρ, P ) such that ||(ρ′, P ′)− (ρ, P )|| ≤ ε′; and

3. if h is a history compatible with (P, α), C(t;h) < ∞ for t < ∞, where C(t;h) denotes the
number of times τ before t such that purchasing behavior aτ is discontinuous.

It is straightforward to check that conditions 1 and 2 in definition 3 are sufficient to guarantee
that (P, α) induces a weakly admissible strategy profile. More than that, these two conditions
imply any outcome induced by the Markovian strategy profile (P, α) is well behaved in the sense
that the purchasing decisions ait and pricing decisions Pt are right continuous functions when there
is no arrival of lump-sum payoffs. This enables us to use equations (1) and (2) to update beliefs.
In the good news case, condition 1 implies Pt is decreasing when it is continuous but it also allows
jumps in the price path. Condition 3 requires that each buyer can change actions no more than a
finite number of times in a finite time interval, since condition 2 does not preclude the possibility of

13For the bad news case, condition 1 should be changed to require that P is piecewise non-increasing.
14We write (x1, · · · , xn) ≤ (y1, · · · , yn) if xi ≤ yi for i = 1, · · · , n, and || · || is the Euclidean norm.
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an infinite number of changes on any time interval. This additional condition is needed to simplify
the analysis of the equilibrium.

Definition 3 is too strong in the sense that even cutoff strategies may not be strongly admis-
sible.15 We use the completion argument in Bergin and McLeod (1993) to overcome this issue.
First define a metric on the space of strongly admissible strategies. A Markovian strategy profile
(P, α) is admissible if there exists strongly admissible Markovian strategy profiles {(Pk, αk)}∞k=1

such that limk→∞(Pk, αk) = (P, α). An outcome h is consistent with an admissible strategy profile
(P, α) if there exists strongly admissible Markovian strategy profiles {(Pk, αk)}∞k=1 and outcomes
{hk}∞k=1 satisfying the following three conditions: i) for each k, hk is compatible with (Pk, αk), ii)
limk→∞(Pk, αk) = (P, α) and iii) limk→∞ hk = h. An admissible Markovian strategy profile (P, α)
may not generate a unique distribution over compatible outcomes. But the proof of theorem 2 in
Bergin and McLeod (1993) applies here as well to show that each admissible Markovian strategy
profile (P, α) is identified with a unique distribution over consistent outcomes. When referring to
outcomes generated by an admissible Markovian strategy profile (P, α), we restrict to the consistent
outcomes.

In the definition of Markov perfect equilibrium, we allow the deviating strategies to be non-
Markovian. Additional conditions on the non-Markovian strategies are also needed to make sure
that the induced outcome is well behaved even off the equilibrium path. The conditions imposed
are counterparts of conditions 1-3 in definition 3.

Definition 4 Define time t as a regular time for outcome h if there is no arrival of lump-sum
payoffs at time t. A weakly admissible strategy profile (P, α) is strongly admissible in the good
news case if it satisfies:

1. P is right continuous and non-increasing when continuous at any regular time: for any out-
comes h and any regular time t,

lim
ε↘0

P (h, t+ ε) = P (h, t);

and there exists ε̄1 > 0 such that P (h, t+ ε) ≤ P (h, t) for all ε ≤ ε̄1;

2. for any h and any regular t such that Pt is right continuous and non-increasing at time t,
there exists ε̄2 > 0 and a ∈ {0, 1} such that αi(h, t̃) = αi(h, t) for any t̃ ∈ (t, t+ ε̄2); and

3. if h is a history compatible with (P, α), C(t;h) <∞ for t <∞.

A non-Markovian strategy profile (P, α) is admissible if there exists strongly admissible non-
Markovian strategy profiles {(Pk, αk)}∞k=1 such that limk→∞(Pk, αk) = (P, α). For an admissible
non-Markovian strategy profile (P, α), we also restrict to the consistent outcomes which can be
similarly defined.

B Proofs of Results from Section 3

B.0 General Solution to Linear First Order Ordinary Differential Equations

The following observation is widely used throughout the paper to solve linear first order ordinary
differential equations.

15For example, consider a cutoff strategy such that the cutoff price for buyer i is strictly increasing in beliefs and
buyer i takes the risky product at the cutoff price. This strategy violates the condition that αi is left continuous in
beliefs.
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Observation 1 Given that f and g are continuous functions on an interval I, the ordinary dif-
ferential equation y′ + f(x)y = g(x) has a general solution

y(x) =
H(x)

h(x)

where h(x) = eR(x), R(x) is an antiderivative of f(x) on I and H(x) is an antiderivative of h(x)g(x)
on I.16

Proof. Multiply both sides of differential equation y′ + f(x)y = g(x) by h(x). Then the original
differential equation becomes

d

dx
(h(x)y(x)) = h(x)g(x).

After integration, it is straightforward to see that the general solution is y(x) = H(x)
h(x) .

B.1 Proof of Proposition 1

Proof. Before proving the proposition, we first show the socially optimal allocation is indeed
symmetric.

Claim 2 The socially optimal allocation is symmetric when buyers are homogeneous.

Proof. For any posteriors ρ, denote the social surplus to be Ω(ρ). The social planner’s problem
can be written as:

Ω(ρ) = sup
α(·)∈{0,1}n

E

{∫ h

t=0
re−rt

n∑
i=1

[αi(ρt)ρitq(ρt)g + (1− αi(ρt))s]dt+ e−rhΩ(ρh | α)

}
.

Consider any ρ̃ which is a permutation of ρ. Naturally, the social surplus should be the same:
Ω(ρ) = Ω(ρ̃) since the strategies α can be permuted as well. Suppose buyers are homogeneous
with the same prior ρ0 and denote ρ0 = (ρ0, · · · , ρ0). From the HJB equation, it is socially optimal
for buyer i to purchase the risky product if and only if:

rρ0q0g + ρ0q0λH(Ω1(ρ0)− Ω(ρ0))− λHρ(1− ρ)
∂Ω(ρ0)

∂ρi
> rs.

Since Ω(ρ) = Ω(ρ̃), for any j 6= i, we can switch i and j without affecting the partial derivatives.

In other words, the partial derivatives are identical when buyers are homogeneous: ∂Ω(ρ0)
∂ρi

= ∂Ω(ρ0)
∂ρj

.

Therefore, it is socially optimal for buyer i to purchase the risky product if and only if it is also
optimal for buyer j to purchase. This implies the socially optimal allocation is symmetric.

Notice in equation

rnρq(ρ)g + nρq(ρ)λHΩ1(ρ) = (r + nρq(ρ)λH)ns, (33)

Ω1(·) is a piece-wise function since W (·) is a piece-wise function. The next result claims that ρeS is
always larger than ρeI such that Ω1(ρeS) > (n− 1)s+ g.

Claim 3 Beginning from any combination of ρ0 < 1 and q0 < 1, the efficient cutoff in the social
learning phase will always be larger than the efficient cutoff in the individual learning phase: ρeS >
ρeI .

16An antiderivative of a function f(x) is defined as any function F (x) whose derivative is f(x): F ′(x) = f(x).
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Proof. We first substitute the expression Ω1(ρ) = g + (n− 1)W (ρ) into equation (33) and get

rnρq(ρ)g + nρq(ρ)λH [g + (n− 1)W (ρ)] = (r + nρq(ρ)λH)ns. (34)

By contradiction, assume ρeS ≤ ρeI and W (ρeS) = s by definition. Equation (34) then gives us a
cutoff ρ̃eS satisfying

ρ̃eSq(ρ̃
e
S) = ρeI =

rs

(r + λH)g − λHs
.

As q(ρ̃eS) < 1, the above equation implies that: ρ̃eS > ρeI , which contradicts the assumption ρeS ≤ ρeI .
Therefore, it must be true that ρeS > ρeI and thus W (ρeS) > s.

From claim 3, ρeS should satisfy equation (34) where q(ρeS) is given by equation (6). Given the
priors, the efficient cutoffs (ρeS(ρ0, q0), qeS(ρ0, q0)) can be solved jointly:

qeS =
rs

ρeS [(r + λH)g + (n− 1)λHW (ρeS)− nλHs]
. (35)

qeS =
(1− ρ0)nq0

(1− ρ0)nq0 + (1− ρeS)n(1− q0)
. (36)

Clearly, W (ρeS) is increasing in ρeS and thus qeS is decreasing in ρeS from equation (35). Equation
(36) describes how ρ and q evolve jointly over time: since both ρ and q decrease over time, qeS
is increasing in ρeS . Hence the intersection of equations (36) and (35) is unique. Equation (35)
describes the stopping curve such that it is socially efficient to keep experimenting if

ρq >
rs

(r + λH)g + (n− 1)λHW (ρeS)− nλHs
.

Finally, we still have to check that it is indeed the case that ρeS > ρeI . Notice that ρeS is
decreasing in qeS on the stopping curve. If q = 1, it is easy to check the unique cutoff ρeS is the same
as ρeI = rs

(r+λH)g−λHs . And for qeS < 1, we should have ρeS > ρeI .

B.2 Proof of Proposition 2

Proof. In the individual learning phase, denote ρ to be the common posterior belief about the
unknown buyer’s idiosyncratic uncertainty. Denote PI(ρ) as the price set by the monopolist for
ρ > ρ?I , where ρ?I is the equilibrium cutoff. Then, the value function for the unknown buyer satisfies

rUI(ρ) = r(gρ− PI(ρ)) + ρλH(s− UI(ρ))− λHρ(1− ρ)U ′I(ρ).

Certainly, a profit-maximizing monopolist always sets prices PI(ρ) = gρ−s such that UI(ρ) = s.
The monopolist’s problem is to choose between charging a low price gρ− s to keep experimenting
and charging a high price g − s to extract the full surplus from the known buyer. Obviously, this
is an optimal stopping problem with HJB equation

rJI(ρ) = max
{
r(g − s), 2r(gρ− s) + ρλH(2(g − s)− JI(ρ))− λHρ(1− ρ)J ′I(ρ)

}
. (37)

On the RHS of equation (37), g − s is the value if the monopolist only sells to the good buyer
by charging g − s; if the monopolist decides to continue experimentation, she not only receives
instantaneous revenue 2(gρ − s) by selling to both buyers but also may receive a future value of
2(g − s) if the unknown buyer receives a lump-sum payoff. From the value matching and smooth
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pasting conditions, it is straightforward to characterize the equilibrium cutoff as

ρ?I =
r(g + s)

2rg + λH(g − s)
.

The equilibrium value function JI(ρ) could be solved as:

JI(ρ) =

{
2(gρ− s) + (g + s− 2gρ?I)

1−ρ
1−ρ?I

[
(1−ρ)ρ?I
(1−ρ?I )ρ ]r/λH if ρ > ρ?I

g − s otherwise.

The known buyer only needs to pay PI(ρ) = gρ− s < g− s before ρ reaches ρ?I , but has to pay
g − s afterwards. The value function for this buyer is given by differential equation

rVI(ρ) = r(g(1− ρ) + s) + ρλH(s− VI(ρ))− λHρ(1− ρ)V ′I (ρ) (38)

for ρ > ρ?I = r(g+s)
2rg+λH(g−s) and VI(ρ) = s for ρ ≤ ρ?I = r(g+s)

2rg+λH(g−s) . Equation (38) is an ordinary

differential equation with boundary condition: VI(ρ
?
I) = s. This gives us the expression of VI(ρ) in

the proposition.

B.3 Characterize limh→0
US(ρ)−Û(ρ;h)

h

Lemma 1 Fix a pair of priors (ρ0, q0) such that ρ?S is the equilibrium cutoff in the social learning
phase. In a mass market, for any ρ > ρ?S,

lim
h→0

US(ρ)− Û(ρ;h)

h
= 2(r + λHρq)(US(ρ)− s) + λHρ(1− ρ)U ′S(ρ)

+ (r + λHρ)g(1− ρ)q(
(1− ρ)ρ?I
ρ(1− ρ?I)

)r/λH − λHgρ(1− ρ)q

−
[
r + λHρ

?
S

1− ρ?S
(

ρ?I
1− ρ?I

)r/λH − λH(
ρ?S

1− ρ?S
)1+r/λH

]
g(1− ρ)2q(

1− ρ
ρ

)r/λH . (39)

In a niche market, for ρ?S < ρ ≤ ρ?I ,

lim
h→0

US(ρ)− Û(ρ;h)

h
= 2(r + λHρq)(US(ρ)− s) + λHρ(1− ρ)U ′S(ρ)

− rg

r + λH
λHρ(1− ρ)q +

rλHg

r + λH

ρ?S(1− ρ)2q

1− ρ?S
(
(1− ρ)ρ?S
ρ(1− ρ?S)

)r/λH ; (40)

and for ρ > ρ?I ,

lim
h→0

US(ρ)− Û(ρ;h)

h
= 2(r + λHρq)(US(ρ)− s) + λHρ(1− ρ)U ′S(ρ)

+ (r + λHρ)g(1− ρ)q(
(1− ρ)ρ?I
ρ(1− ρ?I)

)r/λH − λHgρ(1− ρ)q

− r
[
r + λH + λHρ

?
I

(r + λH)(1− ρ?I)
(

ρ?I
1− ρ?I

)r/λH − λH
r + λH

(
ρ?S

1− ρ?S
)1+r/λH

]
g(1− ρ)2q(

1− ρ
ρ

)r/λH . (41)
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Proof. First notice that if limh→0
US(ρ)−UD(ρ,ρh)

h exists, limh→0
US(ρ)−Û(ρ;h)

h can be written as:

lim
h→0

US(ρ)− Û(ρ;h)

h
= (r + λHρq(ρ))(US(ρ)− s) + lim

h→0

US(ρ)− UD(ρ, ρh)

h
. (42)

The main issue is to evaluate UD(ρ, ρh) for ρ > ρh. We proceed in the following steps:

1. Decompose off-equilibrium-path value function

Fix h > 0 to be sufficiently small and the monopolist will still sell to both buyers after an
h-deviation.17 Therefore, there exists h̄′ such that for all h′ ≤ h̄′, we have:

UD(ρ, ρh) = E
∫ h′

t=0
re−rt(ρtqtg − P̃t)dt

+ ρq̃h(1− e−λHh′)e−rh′VI(ρh+h′) + ρhq̃h(1− e−λHh′)e−rh′s

+ [1− ρq̃h(1− e−λHh′)− ρhq̃h(1− e−λHh′)]e−rh′U(ρh′ , ρh+h′). (43)

In the above expression, ρt is the posterior about the deviator and starts from ρ0 = ρ; q̃h is the

posterior about the product characteristic after an h-deviation: q̃h = q0(1−ρ0)2

q0(1−ρ0)2+(1−q0)(1−ρ)(1−ρh)
;

and P̃t is the off-equilibrium-path price set by the monopolist after an h-deviation.

By purchasing the risky product, the non-deviator gets value

UND(ρ, ρh) = E
∫ h′

t=0
re−rt(ρ′tqtg − P̃t)dt

+ ρq̃h(1− e−λHh′)e−rh′s+ ρhq̃h(1− e−λHh′)e−rh′VI(ρh′)

+ [1− ρq̃h(1− e−λHh′)− ρhq̃h(1− e−λHh′)]e−rh′U(ρh+h′ , ρh′), (44)

where ρ′t is the posterior about the non-deviator and starts from ρh.

Obviously, the off-equilibrium-path value function UD(ρ, ρh) can be decomposed as

UD(ρ, ρh) = UND(ρ, ρh) + Z(ρ, ρh)

where Z(ρ, ρh) = UD(ρ, ρh)− UND(ρ, ρh).

The fact that the ρh buyer purchases the risky product means that it is not profitable for her
to have “one-shot” deviations:

UND(ρ, ρh) ≥ Ũ(h′) =

∫ h′

t=0
re−rtsdt+ ρq̃h(1− e−λHh′)e−rh′s

+ [1− ρq̃h(1− e−λHh′)]e−rh′U(ρh, ρh′). (45)

Since the ρh buyer is more pessimistic about the probability of receiving lump-sum payoffs,
the optimal off-equilibrium-path price P̃ is set such that the ρh buyer has incentives to
experiment.

17If the monopolist only sells to the deviator, the loss from not selling to the non-deviator is proportional to JS(ρh)
where JS > 0 is the equilibrium value for the monopolist in the social learning phase but the gain is proportional to
ρ− ρh. As h goes to zero, the loss always dominates the gain.
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Denote Ũ(ρ; ρh) as UND(ρ, ρh) for a fixed ρh since ρh does not change in the expression of
Ũ(h′). The fact that

lim
h′→0

UND(ρ, ρh)− Ũ(h′)

h′
= (r + λHρq̃h)Ũ(ρ; ρh)− (r + λHρq̃h)s+ λHρ(1− ρ)Ũ ′(ρ; ρh)

is left-continuous in ρ and ρh implies that in equilibrium, the following equation is satisfied:18

lim
h′→0

UND(ρ, ρh)− Ũ(h′)

h′
= 0.

Thus we derive an ordinary differential equation for Ũ(ρ; ρh)

(r + λHρq̃h)Ũ(ρ; ρh) = (r + λHρq̃h)s− λHρ(1− ρ)Ũ ′(ρ; ρh) (46)

where the expression for q̃h is provided by equation (5)

q̃h(ρ) =
q0(1− ρ0)2

q0(1− ρ0)2 + (1− q0)(1− ρ)(1− ρh)
.

The off-equilibrium-path value function UD(ρ, ρh) can be further decomposed as:

UD(ρ, ρh) = Ũ(ρ; ρh) + Z(ρ, ρh).

2. Solve for the off-equilibrium-path value function Ũ(ρ; ρh).

Equation (46) is an ordinary differential equation with general solution:

Ũ(ρ; ρh) = s+ Ch × (1− ρ)q̃h(
1− ρ
ρ

)r/λH .

When ρ = ρh, the two buyers are identical and it goes back to the equilibrium path:
Ũ(ρh; ρh) = US(ρh). This boundary condition implies:

Ch =
US(ρh)− s

(1− ρh)qh(1−ρh
ρh

)r/λH
; (47)

where qh satisfies: qh = q0(1−ρ0)2

q0(1−ρ0)2+(1−q0)(1−ρh)2
.

Since on the equilibrium path, experimentation stops at ρ?S , the unknown buyer receives a
value less than the outside (US(ρ) < s) for ρ < ρ?S . Equation (47) implies that the non-
deviator’s posterior will never be lower than ρ∗S no matter how large h is. In other words, the
monopolist always stops selling to both buyers if (ρ, ρh) = (f(ρ?S ;h), ρ?S), where

f(ρ?S ;h) =
ρ?S

ρ?S + e−λHh(1− ρ?S)

18The proof is similar to the proof of lemma 2. If it is strictly larger than zero, we can find a neighborhood of
beliefs to increase price P̃ (ρ, ρh) but the buyers will still purchase the risky product. This constitutes a profitable
deviation for the monopolist.

41



corresponds to the deviator’s posterior when the non-deviator’s posterior drops to ρ?S .

3. Solve for the off-equilibrium-path value function Z(ρ, ρh).

Denote
Z(t) = Z(ρ(t), ρh(t)) = U(ρ(t), ρh(t))− U(ρh(t), ρ(t))

where ρ(t) and ρh(t) are posterior beliefs after t length of time beginning from ρ and ρh (given
that no lump-sum payoff is received during this period). The posteriors can be expressed as:

ρ(t) =
ρe−λH t

ρe−λH t + (1− ρ)
, ρh(t) =

ρhe
−λH t

ρhe−λH t + (1− ρh)
,

and

q̃h(t) =
q0(1− ρ0)2

q0(1− ρ0)2 + (1− q0)(1− ρ(t))(1− ρh(t))
.

Given any t < h′, the monopolist would also make a sale to both buyers ρ(t) and ρh(t).
Subtract equation (44) from (43) yields:

Z(t) = E
∫ h′′

0
re−rτ (ρτqτg − ρ′τqτg)dτ

+ e−rh
′′
(1− e−λHh′′)

{
ρ(t)q̃h(t)[VI(ρh(t+ h′′))− s] + ρh(t)q̃h(t)[s− VI(ρ(t+ h′′))]

}
+ e−rh

′′
[
1− ρ(t)q̃h(t)(1− e−λHh′′)− ρh(t)q̃h(t)(1− e−λHh′′)

]
Z(t+ h′′). (48)

Let h′′ go to 0 and we get an ordinary differential equation about Z(t):

(r + λHρ(t)q̃h(t) + λHρh(t)q̃h(t))Z(t)− Ż(t) = H(t) (49)

where

H(t) = r(ρ(t)− ρh(t))q̃h(t)g + λHρ(t)q̃h(t)(VI(ρh(t))− s)− λHρh(t)q̃h(t)(VI(ρ(t))− s).

Next, the explicit expression for Z can be derived for mass and niche markets, respectively.

In a mass market, both ρ(t) and ρh(t) are larger than ρ?I . In that case,

VI(ρ) = s+ g(1− ρ)(1− [
(1− ρ)ρ?I
ρ(1− ρ?I)

]r/λH )

and

H(t) = r(ρ(t)− ρh(t))q̃h(t)g + λHρ(t)q̃h(t)g(1− ρh(t))(1− [
(1− ρh(t))ρ?I
ρh(t)(1− ρ?I)

]r/λH )

− λHρh(t)q̃h(t)g(1− ρ(t))(1− [
(1− ρ(t))ρ?I
ρ(t)(1− ρ?I)

]r/λH ).

The solution to differential equation (49) is
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Z(t) = (ρ(t)−ρh(t))q̃h(t)g−[(1−ρh(t))(
1− ρh(t)

ρh(t)
)r/λH−(1−ρ(t))(

1− ρ(t)

ρ(t)
)r/λH ]q̃h(t)g(

ρ?I
1− ρ?I

)r/λH

+ Cert(1− ρ(t))(1− ρh(t))q̃h(t). (50)

From the expressions of ρ(t) and ρh(t), time t can be inversely expressed as either

− 1

λH
log[

(1− ρ)ρ(t)

ρ(1− ρ(t))
] or − 1

λH
log[

(1− ρh)ρh(t)

ρh(1− ρh(t))
].

As a result, Cert(1− ρ(t))(1− ρh(t))q̃h(t) can be written as:

D̃1(1− ρ(t))(1− ρh(t))q̃h(t)(
1− ρh(t)

ρh(t)
)r/λH + D̃2(1− ρ(t))(1− ρh(t))q̃h(t)(

1− ρ(t)

ρ(t)
)r/λH .

When the two buyers are identical, there should be no difference in the values: Z(ρ(t), ρh(t)) =
0 for ρ(t) = ρh(t). This implies D̃1 = −D̃2 = Dh. Drop the time index t to transform Z(t)
back into Z(ρ, ρh):

Z(ρ, ρh) = (ρ− ρh)q̃hg − [(1− ρh)(
1− ρh
ρh

)r/λH − (1− ρ)(
1− ρ
ρ

)r/λH ]q̃hg(
ρ?I

1− ρ?I
)r/λH

+Dh(1− ρ)(1− ρh)q̃h[(
1− ρh
ρh

)r/λH − (
1− ρ
ρ

)r/λH ]. (51)

Observe that: after the non-deviator stops purchasing the risky product, the deviator always
receives the outside option. This implies a boundary condition for Z(ρ, ρh): Z(f(ρ?S ;h), ρ?S) =
0. The constant Dh can be pinned down by the boundary condition:

Dh = −(eλHh − 1)g

1− e−rh
(

ρ?S
1− ρ?S

)1+r/λH +

[
1 + (eλHh − 1)ρ?S − e−rh

]
g

(1− ρ?S)(1− e−rh)
(

ρ?I
1− ρ?I

)r/λH . (52)

Summing up UND and Z yields an expression for UD(ρ, ρh):

UD(ρ, ρh) = s+ (ρ− ρh)q̃hg +
(1− ρ)q̃h(1−ρ

ρ )r/λH

(1− ρh)qh(1−ρh
ρh

)r/λH
(US(ρh)− s)

− [(1− ρh)(
1− ρh
ρh

)r/λH − (1− ρ)(
1− ρ
ρ

)r/λH ]q̃hg(
ρ?I

1− ρ?I
)r/λH

+Dh(1− ρ)(1− ρh)q̃h[(
1− ρh
ρh

)r/λH − (
1− ρ
ρ

)r/λH ], (53)

where Dh is given by equation (52).

In a niche market, the value function Z can be derived by a backward procedure.

First, if both ρ(t) and ρh(t) are smaller than ρ?I , then both VI(ρ(t)) and VI(ρh(t)) are s and
H(t) = r(ρ(t)− ρh(t))q̃h(t)g. It is straightforward to solve differential equation (49):

Z(t) =
rg

r + λH
(ρ(t)− ρh(t))q̃h(t) + Cert(1− ρ(t))(1− ρh(t))q̃h(t). (54)
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Repeating the above procedure yields

Z3(ρ, ρh) =
rg

r + λH
(ρ− ρh)q̃h +Dh3(1− ρ)(1− ρh)q̃h[(

1− ρh
ρh

)r/λH − (
1− ρ
ρ

)r/λH ], (55)

where

Dh3 = − rg

r + λH

eλHh − 1

1− e−rh
(

ρ?S
1− ρ?S

)1+r/λH .

Second, if ρ(t) > ρ?I and ρh(t) ≤ ρ?I , then

H(t) = r(ρ(t)− ρh(t))q̃h(t)g − λHρh(t)q̃h(t)g(1− ρ(t))(1− [
(1− ρ(t))ρ?I
ρ(t)(1− ρ?I)

]r/λH ).

Similarly, we solve Z as:

Z2(ρ, ρh) =
rg

r + λH
(ρ− ρh)q̃h −

λHg

r + λH
ρh(1− ρ)q̃h + ρh(1− ρ)q̃hg[

(1− ρ)ρ?I
ρ(1− ρ?I)

]r/λH

+Dh2(1− ρ)(1− ρh)q̃h(
1− ρ
ρ

)r/λH . (56)

Dh2 is determined such that Z2 and Z3 coincide when ρ = ρ?I . This gives us

Dh2 = − rg

r + λH

[
(e(r+λH)h − erh)(

ρ?S
1− ρ?S

)1+r/λH + e−λHh(
ρ?I

1− ρ?I
)1+r/λH

]
.

Finally, if both ρ(t) and ρh(t) are larger than ρ?I , then we have already solved

Z1(ρ, ρh) = (ρ− ρh)q̃hg − [(1− ρh)(
1− ρh
ρh

)r/λH − (1− ρ)(
1− ρ
ρ

)r/λH ]q̃hg(
ρ?I

1− ρ?I
)r/λH

+Dh1(1− ρ)(1− ρh)q̃h[(
1− ρh
ρh

)r/λH − (
1− ρ
ρ

)r/λH ]. (57)

Dh1 is determined such that Z1 and Z2 coincide when ρh = ρ?I :

Dh1 =

[
1

ρ?I
+

(r + λH)e−rh − λH − re−(r+λH)h

(r + λH)(1− e−rh)
+

r(eλHh − 1)

(r + λH)(1− e−rh)

]
(

ρ?I
1− ρ?I

)1+r/λH +Dh3.

After solving for UD(ρ, ρh), limh→0
US(ρ)−UD(ρ,ρh)

h can be evaluated directly. Substitute the
results into equation (42) and we get the equations stated in lemma 1.

B.4 “Binding” Incentive Constraint

Lemma 2 Fix a pair of priors (ρ0, q0) such that ρ?S is the equilibrium cutoff in the social learning
phase. For ρ > ρ?S, we must have:
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lim
h→0

US(ρ)− Û(ρ;h)

h
= 0.

Proof. First, it is obvious that

lim
h→0

US(ρ)− Û(ρ;h)

h
≥ 0

since US(ρ) ≥ Û(ρ;h) for h ≤ h̄. Suppose by contradiction that there exists ρ1 such that

F (ρ1) , lim
h→0

US(ρ1)− Û(ρ1;h)

h
= c > 0.

From lemma 1, F (ρ) is left continuous in ρ, which implies that if F (ρ1) = c > 0, then there
exists h† and ε1 such that for all h < h† and ρ1 − ε1 < ρ′ < ρ1,

US(ρ′)− Û(ρ′;h) > hc/2.

Choose ε2 to satisfy

ρ1 − ε =
ρ1e
−λHh†

ρ1e−λHh
† + (1− ρ1)

and define ε̂ = min{ε1, ε2}. Now define a new pricing strategy such that

P̃S(ρ) =

{
PS(ρ) + c

2 if ρ1 − ε̂ < ρ ≤ ρ1

PS(ρ) otherwise.

Obviously, under this new pricing strategy, the unknown buyer will still purchase the risky product
since

US(ρ′)− Û(ρ′;h) > hc/2.

But the monopolist obtains a higher profit and hence this constitutes a profitable deviation for the
monopolist. Therefore, it is impossible to have

lim
h→0

US(ρ)− Û(ρ;h)

h
> 0

in equilibrium.

B.5 Proof of Proposition 3

Proof. The necessity part directly comes from lemma 1 and lemma 2. To prove the sufficiency
part, the first step is to show there does not exist profitable one-shot deviations.

Lemma 3 The value functions derived are sufficient to deter one-shot deviations: it is not prof-
itable for an experimenting buyer to deviate for any h ≥ 0 length of time.

Proof. After a buyer deviates h length of time, the monopolist can either make a sell to both
buyers or sell only to the deviator. If the latter is the continuation play, UD(ρ, ρh) = s since the
optimal price only needs to satisfy the deviator’s participation constraint. Since US(ρ) > s, it is
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immediate to see that it is not profitable to deviate. Therefore, the interesting case happens when
the monopolist makes a sell to both buyers after an h-deviation.

In a mass market, the value associated with an h > 0 deviation is given by:

Û(ρ;h) =

∫ h

t=0
re−rtsdt+ ρq(1− e−λHh)e−rhs+ [1− ρq(1− e−λHh)]e−rhUD(ρ, ρh)

where UD(ρ, ρh) satisfies equation (53).
Rearranging terms yields

Û(ρ;h)− s = e−rh[1− ρq(1− e−λHh)](UD(ρ, ρh)− s). (58)

Using the expressions that

ρh =
ρe−λHh

1− ρ(1− e−λHh)
and q̃h =

q[1− ρ(1− e−λHh)]

1− ρq(1− e−λHh)
,

we can directly evaluate US(ρ)− Û(ρ;h) and get

US(ρ)− Û(ρ;h) =

[
λH(1− e−(2r+λH)h)

2r + λH
− e−rh(1− e−λHh)

]
gρ(1− ρ)q

+ (eλHh − 1− λH(1− e−rh)

r
)

[
(

ρ?S
1− ρ?S

)r/λH − (
ρ?I

1− ρ?I
)r/λH

]
gq(1− ρ)2 ρ?S

1− ρ?S
(
1− ρ
ρ

)r/λH .

A sufficient condition for US(ρ)− Û(ρ;h) ≥ 0 is that both

S(h) ,
λH(1− e−(2r+λH)h)

2r + λH
− e−rh(1− e−λHh)

and

T (h) , (eλHh − 1− λH(1− e−rh)

r
)

are larger than zero. Notice S(0) = 0, S′(0) = 0 and S′′(h) > 0. Therefore, S(h) is a convex
function which achieves its minimum at h = 0. As a result, S(h) ≥ 0 for all h ≥ 0. Similarly, it
can be shown that T (0) = 0, T ′(0) = 0 and T ′′(h) > 0. Therefore, T (h) ≥ 0 as well. Hence, for
any h > 0, there is no profitable one-shot deviation.

In a niche market, we have to consider the following two cases.
Case 1. ρ ≤ ρ?I . In this case, it is straightforward to show

Û(ρ;h)− s =

[
rλHe

−(2r+λH)h

(2r + λH)(r + λH)
+
re−rh(1− e−λHh)

r + λH

]
gρ(1− ρ)q

−
[
e−rhλH + r(eλHh − 1)

]
g

r + λH

(1− ρ)2qρ?S
1− ρ?S

[
(1− ρ)ρ?S
ρ(1− ρ?S)

]r/λH +Dq(1− ρ)2(
1− ρ
ρ

)2r/λH

and

US(ρ)−s =
rλH

(2r + λH)(r + λH)
gρ(1−ρ)q− λHg

r + λH

(1− ρ)2qρ?S
1− ρ?S

[
(1− ρ)ρ?S
ρ(1− ρ?S)

]r/λH+Dq(1−ρ)2(
1− ρ
ρ

)2r/λH .
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In order to show Û(ρ;h) ≤ U(ρ), it suffices to prove for all h ≥ 0, S(h) ≥ 0 and T (h) ≥ 0, which
have been shown already.
Case 2. ρ > ρ?I . In this case, ρh > ρ?I for h sufficiently small and we have:

US(ρ)− Û(ρ;h) =

[
λH(1− e−(2r+λH)h)

2r + λH
− e−rh(1− e−λHh)

]
gρ(1− ρ)q

+

(
r(eλHh − 1)− λH(1− e−rh)

r + λH

)
[
(1− ρ)ρ?S
ρ(1− ρ?S)

]1+r/λHgρ(1− ρ)q

−

[
(r + λH)e−rh − λH − re−(r+λH)h

r + λH
+
r(eλHh − 1)− λH(1− e−rh)

r + λH

]
[
(1− ρ)ρ?I
ρ(1− ρ?I)

]1+r/λHgρ(1−ρ)q.

Notice ρh > ρ?I implies that [
(1−ρ)ρ?I
ρ(1−ρ?I

)]1+r/λH < (e−λHh)1+r/λH . Hence, US(ρ)− Û(ρ;h) ≥ 0 if

S(h)e(r+λH)h +
rT (h)

r + λH

(
[
(1− ρ?I)ρ?S
ρ?I(1− ρ?S)

]1+r/λH − 1

)
− (r + λH)e−rh − λH − re−(r+λH)h

(r + λH)
≥ 0.

We have shown that T (h) ≥ 0. It is straightforward to check that

X(h) , e(r+λH)hS(h)− rT (h)

r + λH
− (r + λH)e−rh − λH − re−(r+λH)h

r + λH
≥ 0.

This implies that it is not profitable to deviate in a niche market as well.
The next step is to show after some deviations, both the deviator and the non-deviator do not

want to have another deviation.

Lemma 4 Given the deviator has deviated h length of time in total such that the posterior beliefs
are ρ and ρh, respectively, it is not profitable for both buyers to have another deviation.

Proof. First, assume after the deviation, the monopolist is selling only to the deviator. Then
setting UD(ρ, ρh) = s is sufficient to deter deviations. If the monopolist is making a sell to both
buyers, then given the expressions of off the equilibrium path value function UD(ρ, ρh), we are also
able to show it is not profitable to deviate for h′ length of time. The proof is similar to the tedious
proof of lemma 3 and is omitted.

Second, for the non-deviator, if the monopolist is only selling to the deviator, it is not profitable
for the non-deviator to purchase the risky product since she is more pessimistic. We only need to
show, if the monopolist is selling to both buyers, the ρh buyer will not deviate for any h′ length
of time. Notice that it suffices to consider h′ ≤ h because lemma 4 already implies that it is not
optimal to deviate any longer once h′ exceeds h. The value associated with an h′-deviation is
provided by:

Ũ(h′) =

∫ h′

t=0
re−rtsdt+ ρq̃h(1− e−λHh′)e−rh′s+ [1− ρq̃h(1− e−λHh′)]e−rh′UND(ρh, ρh′).

Given

UND(ρ, ρh) = s+ Ch × (1− ρ)q̃h(
1− ρ
ρ

)r/λH ,
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it is straightforward to show: UND(ρ, ρh) ≥ Ũ(h′) for all h′ ≤ h.
Finally, we are in a position to show any admissible deviation is not profitable. Suppose on the

contrary, there exists another admissible strategy α̃1 (could be Non-Markovian) for buyer 1 such
that the value under this strategy is higher than the equilibrium value for some ρ

U1(α̃1, P
∗, α∗2; ρ)− US(ρ) = ε > 0.

Notice by the definition of admissible strategies, α̃1 can be written as the limit of a sequence of
strongly admissible strategies α̃k1 . Take T sufficiently large and define a new strategy α̂1 as:

α̂1 =

{
α̃1 if t < T ;
α∗1 if t ≥ T .

For T sufficiently large, this new strategy also generates a value higher than US(ρ).19 Similarly
define α̂k1 and obviously, α̂1 is the limit of α̂k1 . For each α̂k1 , there can be at most a finite number
of deviations in a finite time interval [0, T ). Lemma 3 and lemma 4 together imply that any finite
deviation is not profitable: U1(α̂k1 , P

∗, α∗2; ρ) − US(ρ) ≤ 0 for all k. But by the construction of
admissible strategies,

U1(α̂1, P
∗, α∗2; ρ) = lim

k→∞
U1(α̂k1 , P

∗, α∗2; ρ) ≤ US(ρ),

which leads to a contradiction.

B.6 Proof of Proposition 4

Proof. In a niche market, US(ρ?S) = s and equation (21) implies

D =
λH

2r + λH
(

ρ?S
1− ρ?S

)1+2r/λH .

Substituting this expression into equation (26) yields

PS(ρ?S) = ρ?Sq(ρ
?
S)g − s.

Then boundary conditions
JS(ρ?S) = 0 and J ′S(ρ?S) = 0

immediately imply that ρ?S should satisfy equation

ρq(ρ) =
rs

rg + λHg − λHs
=

rs

rg + λH(VI(ρ) + JI(ρ))− λHs
.

In a mass market, similarly we get ρ?S should also satisfy

ρq(ρ) =
rs

rg + λH(VI(ρ) + JI(ρ))− λHs
.

Thus, the equilibrium cutoff ρ?S is characterized by equation (29) regardless of whether it is a mass
or niche market. Since ρq(ρ), VI(ρ) and JI(ρ) are all increasing in ρ, the solution to the above
equation is unique given a pair of priors (ρ0, q0).

19Notice the value each buyer is able to get cannot exceed g. Therefore, we can choose T such that e−rT g = ε/2.
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Furthermore, a mass market appears (ρ?S > ρ?I) if and only if

ρ?Iq(ρ
?
I) <

rs

rg + λH(VI(ρ?I) + JI(ρ?I))− λHs

or equivalently,
q0(1− ρ0)2

q0(1− ρ0)2 + (1− q0)(1− ρ?I)2
<
ρeI
ρ?I
.

Rearrange terms and we get the condition stated in the proposition.
From proposition 1, the efficient cutoff ρeS is characterized by equation

ρq(ρ) =
rs

(r + λH)g + λHW (ρ)− 2λHs
.

First, JI(ρ)+VI(ρ)+s represents the total equilibrium surplus in the individual learning phase,
and hence must be strictly less than the socially optimal surplus Ω1(ρ) = g +W (ρ) for any ρ > ρeI
since equilibrium is inefficient in the individual learning phase. Therefore,

rg + λH(VI(ρ) + JI(ρ))− λHs < (r + λH)g + λHW (ρ)− 2λHs. (59)

Second, it cannot be the case that ρ?S ≤ ρeI for q0 < 1. Otherwise, VI(ρ
?
S) = s, JI(ρ

?
S) = g − s

and VI(ρ
?
S) + JI(ρ

?
S) = g imply

ρ?S × q(ρ?S) = ρeI =
rs

rg + λH(g − s)
. (60)

The above equation contradicts the assumption that ρ?S ≤ ρeI .
Since W (·) is a strictly increasing function for ρ > ρeI , inequality (59) implies that ρ?S > ρeS .

B.7 Proof of Proposition 5

Proof. Given the monopoly price PS(q) (notice ρ = 1 and we should switch to use q as the state
variable), the value function for a representative unknown buyer can be written as

rUS(q) = r(gq − PS(q)) + nqλH(s− US(q))− nλHq(1− q)U ′S(q). (61)

Participation constraint implies that US(q) ≥ s and there is also an incentive compatibility con-
straint which means “one-shot deviations” are not profitable:

US(q) ≥ Û(q;h) =

∫ h

t=0
re−rtsdt+ e−rhq(1− e−(n−1)λHh)s+ e−rh(1− q + qe−(n−1)λHh)US(qh)

for any h > 0 where qh = qe−(n−1)λHh

1−q+qe−(n−1)λHh
. Let h go to zero and the incentive constraint is binding

such that the following differential equation is satisfied:

US(q) = s+
n− 1

r

[
qλH(s− US(q))− λHq(1− q)U ′S(q)

]
for q ≥ q?S . The general solution is

US(q) = s+DS(1− q)(1− q
q

)r/((n−1)λH).

49



On the other hand, given price PS(ρ), the monopolist’s value function is given by:

rJS(q) = nrPS(q)dt+ nqλH(n(g − s)− JS(q))− nλHq(1− q)J ′S(q). (62)

At the optimal stopping cutoff q?S , value matching and smooth pasting conditions are satisfied:

US(q?S) = s, JS(q?S) = 0 and J ′S(q?S) = 0. (63)

Boundary conditions (63) imply that US(q?S) = s for some q?S < 1. As a consequence, it must
be the case that DS = 0 and US(q) is always s. From equation (61), the equilibrium price is
PS(q) = gq − s. Substituting the price expression into equation (62) yields

rJS(q) = nr(gq − s) + nqλH(n(g − s)− JS(q))− nλHq(1− q)J ′S(q).

This is an ordinary differential equation with boundary conditions

JS(q?S) = 0 and J ′S(q?S) = 0.

It is easy to solve q?S as:

q?S = qeS =
rs

nλH(g − s) + rg
.

Therefore, the Markov perfect equilibrium is efficient.

B.8 Proof of Theorem 1

Proof. In the individual learning phase, denote ρ?k to be the equilibrium cutoff such that at this
belief, the monopolist would stop selling to the unknown buyers when k ≥ 1 buyers have received
lump-sum payoffs. Let Vk, Uk and Jk be the equilibrium value functions for the known buyers,
the unknown buyers and the monopolist, respectively, when k ≥ 1 buyers have received lump-sum
payoffs. Finally, let Pk denote the price charged by the monopolist. From a backward procedure,
it could be shown that:

Lemma 5 The equilibrium cutoffs satisfy

ρ?k =
nrs+ kr(g − s)

nrg + (n− k)λH(g − s)

and
ρeI < ρ?k < ρ?k+1

for all 1 ≤ k ≤ n− 2.

Proof. If all of the buyers turn out to be good, then it is optimal for the monopolist to charge
g − s and fully extract the total surplus. If all but one buyers have already received lump-sum
payoffs, the monopolist faces the same tradeoff of exploitation and exploration as in the two-buyer
case. The monopolist has to charge gρ− s to keep the unknown buyer experimenting and her value
function from selling to the unknown buyer is written as:

(r + ρλH)Jn−1(ρ) = nr(gρ− s) + nρλH(g − s)− λHρ(1− ρ)J ′n−1(ρ);
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with boundary conditions

Jn−1(ρ?n−1) = (n− 1)(g − s) and J ′n−1(ρ?n−1) = 0.

It is straightforward to see that:

ρ?n−1 =
rs+ (n− 1)rg

λH(g − s) + nrg

and

Jn−1(ρ) = max

{
(n− 1)(g − s), n(gρ− s) +

[
(n− 1)g + s− ngρ?n−1

] 1− ρ
1− ρ?n−1

[
(1− ρ)ρ?n−1

(1− ρ?n−1)ρ

]r/λH}
.

Meanwhile, the value for the known buyers is given by:

Vn−1(ρ) = max

{
s, s+ g(1− ρ)(1− [

(1− ρ)ρ?n−1

ρ(1− ρ?n−1)
]r/λH )

}
.

If all but two buyers have received lump-sum payoffs, the value function for the monopolist
becomes:

Jn−2(ρ) = max

{
(n− 2)(g − s), nPn−2(ρ) +

2ρλH
r

[Jn−1(ρ)− Jn−2(ρ)]− λHρ(1− ρ)

r
J ′n−2(ρ)

}
.

If the monopolist sells to the unknown buyers, the price Pn−2 is set such that the unknown
buyers have an incentive to keep experimenting:

rPn−2(ρ) = r(ρg − Un−2(ρ)) + λHρ(s− Un−2(ρ)) + λHρ(Vn−1(ρ)− Un−2(ρ))− λHρ(1− ρ)U ′n−2(ρ).

Value matching and smooth pasting conditions mean that at the equilibrium cutoff ρ?n−2,

Un−2(ρ?n−2) = s, U ′n−2(ρ?n−2) = 0, Jn−2(ρ?n−2) = (n− 2)(g − s) and J ′n−2(ρ?n−2) = 0.

The above equations imply that ρ?n−2 satisfies equation

(n−2)(g−s) = n

{
ρ?n−2g − s+

ρ?n−2λH

r

[
Vn−1(ρ?n−2)− s

]}
+

2ρ?n−2λH

r

[
Jn−1(ρ?n−2)− (n− 2)(g − s)

]
.

If ρ?n−2 > ρ?n−1, then Vn−1(ρ?n−2) > s and Jn−1(ρ?n−2) > (n− 1)(g − s). But this implies

(n− 2)(g − s) > n(ρ?n−2g − s) +
2ρ?n−2λH

r
(g − s)

=⇒ ρ?n−2 <
2rs+ (n− 2)rg

2λH(g − s) + nrg
< ρ?n−1 =

rs+ (n− 1)rg

λH(g − s) + nrg
.
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This contradicts the assumption that ρ?n−2 > ρ?n−1. Therefore, it must be the case that ρ?n−2 ≤ ρ?n−1

such that Vn−1(ρ?n−2) = s and Jn−1(ρ?n−2) = (n− 1)(g − s). It is straightforward to see

ρ?n−2 =
2rs+ (n− 2)rg

2λH(g − s) + nrg
.

For general 1 ≤ j ≤ n− 1, assume

ρ?k =
nrs+ kr(g − s)

nrg + (n− k)λH(g − s)

for k ≥ j + 1. At ρ?j ,

j(g − s) = n

[
(ρ?jg − s) +

λHρ
?
j

r
(Vj+1(ρ?j )− s)

]
+

(n− j)λHρ?j
r

[
Jj+1(ρ?j )− j(g − s)

]
.

It is similar to show by contradiction that it is impossible to have ρ?j > ρ?j+1 and hence the
equilibrium cutoff can be solved as

ρ?j =
nrs+ jr(g − s)

nrg + (n− j)λH(g − s)
.

Standard induction argument then implies that for all 1 ≤ k ≤ n− 1, we would have

ρ?k =
nrs+ kr(g − s)

nrg + (n− k)λH(g − s)

and it is trivial to check that
ρeI < ρ?k < ρ?k+1

for all 1 ≤ k ≤ n− 2.
Lemma 5 means the equilibrium is inefficient in the individual learning phase. From the bound-

ary conditions, the equilibrium cutoff ρ?S in the social learning phase should satisfy

ρ?Sq(ρ
?
S) =

rs

rg + λH
[
V1(ρ?S) + J1(ρ?S) + (n− 1)U1(ρ?S)

]
− nλHs

.

The inefficiency in the individual learning phase means

V1(ρ) + J1(ρ) + (n− 1)U1(ρ) < g + (n− 1)W (ρ) = Ω1(ρ)

for ρ > ρeI and hence

rg + λH [V1(ρ) + J1(ρ) + (n− 1)U1(ρ)]− nλHs < (r + λH)g + λH(n− 1)W (ρ)− nλHs.

This implies that the equilibrium is inefficient in the social learning phase as well: ρ?S > ρeS .
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C Proofs of Results from Section 4

C.1 Proof of Proposition 7

Proof. Notice the derivative of

r

λH
log(

ρ

1− ρ
) + log(

q0(1− ρ0)n + (1− q0)(1− ρ)n

(1− ρ)n
)

is r+λHnρq
λHρ(1−ρ) . From observation 1, a general solution to differential equation (32) is

ΩS(ρ) =

∫
h(x) rn[A−xq(x)B]+λHnxq(x)[(n−1)W (x)+s]

λHx(1−x) dx

h(ρ)

where

h(ρ) = (
ρ

1− ρ
)r/λH

q0(1− ρ0)n + (1− q0)(1− ρ)n

(1− ρ)n
.

First, we show ρeI is always smaller than ρeS .

Lemma 6 Given any q0 < 1, the efficient cutoff for starting experimentation in the social learning
phase is larger than the efficient cutoff in the individual learning phase: ρeS > ρeI .

Proof. For ρ ≤ ρeI ,

W (ρ) = A− λHA+ rB − λHs
r + λH

ρ.

We solve for ΩS(ρ) using integration by parts:

ΩS(ρ) =

∫
h(x) rn[A−xq(x)B]+λHnxq(x)[(n−1)W (x)+s]

λHx(1−x) dx

h(ρ)
= n

[
A− λH

r + λH
ρq(

rB

λH
+A− s)

]
+

C

h(ρ)
.

Since 0 is included in the domain of ΩS(·), the constant term C must be 0 to guarantee ΩS(·)
is bounded away from infinity. Therefore,

ΩS(ρ) = n

[
A− λH

r + λH
ρq(

rB

λH
+A− s)

]
.

Suppose on the contrary, we have ρeS ≤ ρeI , then ρeS should satisfy

n

[
A− λH

r + λH
ρeSq(ρ

e
S)(

rB

λH
+A− s)

]
= ns =⇒ ρeSq(ρ

e
S) = ρeI .

This leads to a contradiction since q < 1.
For ρ > ρeI , W (ρ) = s and by observation 1,

ΩS(ρ) =

∫ ρ
ρeI
h(x) rn[A−xq(x)B]+λHn

2xq(x)s
λHx(1−x) dx+ C

h(ρ)
.

The constant C is chosen such that ΩS(ρ) is continuous at ρeI :

C = h(ρeI)ΩS(ρeI) = h(ρeI)n

[
A− λH

r + λH
ρeIq(ρ

e
I)(

rB

λH
+A− s)

]
> 0.
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At the efficient starting cutoff ρeS(q0), ΩS(ρeS ; q0) = ns. Substituting the expression of ΩS(ρ)
into the above equation yields:

C − h(ρeI)ns+

∫ ρeS

ρeI

h(x)
rn[A− xq(x)B − s]

λHx(1− x)
dx = 0.

Notice

C − h(ρeI)ns = h(ρeI)n

[
A− s− λH

r + λH
ρeIq(ρ

e
I)(

rB

λH
+A− s)

]
> 0

doesn’t depend on ρeS . This implies: if an interior solution ρeS(q0) exists, it must be the case that∫ ρeS

ρeI

h(x)
rn[A− xq(x)B − s]

λHx(1− x)
dx < 0

and hence A − λHρeSq0B − s < 0. Suppose for a given q0, there exist two efficient cutoffs ρ1 and
ρ2 > ρ1. Then we have∫ ρ1

ρeI

h(x)
rn[A− xq(x)B − s]

λHx(1− x)
dx =

∫ ρ2

ρeI

h(x)
rn[A− xq(x)B − s]

λHx(1− x)
dx,

which is impossible since

h(x)
rn[A− xq(x)B − s]

λHx(1− x)
< 0

for x ∈ (ρ1, ρ2). Therefore, if there exists some ρeS satisfying ΩS(ρeS ; q0) = ns, such ρeS must be
unique. When there does not exist ρeS satisfying

C − h(ρeI)ns+

∫ ρeS

ρeI

h(x)
rn[A− xq(x)B − s]

λHx(1− x)
dx = 0,

just set ρeS = 1 since it is always beneficial to take the risky product. To summarize, for any q0,
there is a unique ρeS(q0) such that it is socially efficient to start experimentation if and only if
ρ ≤ ρeS(q0).

C.2 Proof of Theorem 2

Proof. When k buyers have already received lump-sum damages, the monopolist chooses to sell
to the unknown buyers if:

Jk(ρ) = (n− k)(A− ρB − s) +
1

r

[
(n− k)λHρ(Jk+1(ρ)− Jk(ρ))− λHρ(1− ρ)J ′k(ρ)

]
≥ 0.

Induction argument is used to solve the equilibrium cutoffs. First,

Jn−1(ρ) = A− s−
λH(A− s+ rB

λH
)

r + λH
ρ ≥ 0

54



if and only if ρ ≤ ρ?n−1 = ρeI . We can guess that

Jk(ρ) = (n− k)

[
A− s−

λH(A− s+ rB
λH

)

r + λH
ρ

]
.

Suppose this is true for j = k + 1, · · · , n− 1, then solving differential equation

Jk(ρ) = (n− k)(A− ρB − s) +
1

r

[
(n− k)λHρ(Jk+1(ρ)− Jk(ρ))− λHρ(1− ρ)J ′k(ρ)

]
yields

Jk(ρ) = (n− k)

[
A− s−

λH(A− s+ rB
λH

)

r + λH
ρ

]
.

The conjecture about Jk(ρ) hence is justified by induction.
Obviously,

Jk(ρ) = (n− k)

[
A− s−

λH(A− s+ rB
λH

)

r + λH
ρ

]
≥ 0

if and only if ρ ≥ ρeI for all k ≥ 1. Therefore, the symmetric Markov perfect equilibrium is efficient
in the individual learning phase. In the social learning phase, for ρ ≤ ρeI , the monopolist’s value
function is

JS(ρ) = n (A− ρqB − s) +
1

r

[
nλHρq(J1(ρ)− JS(ρ))− λHρ(1− ρ)J ′S(ρ)

]
.

The solution to the above differential equation is given by:

JS(ρ) = n(A− s)− nρq(ρ)
λH

r + λH
(A− s+

rB

λH
).

It is easy to check that for any q < 1, JS(ρ) > 0 for all ρ ≤ ρeI and hence the equilibrium cutoff
in the social learning phase must be larger than ρeI . For ρ > ρeI ,

JS(ρ) = n [A− ρqB − s]− 1

r

[
nλHρqJS(ρ) + λHρ(1− ρ)J ′S(ρ)

]
.

Solving the above differential equation yields

JS(ρ) =

∫ ρ
ρeI
h(x) rn(A−xq(x)B−s)

λHx(1−x) dx+D

h(ρ)

where

h(ρ) = (
ρ

1− ρ
)r/λH

q0(1− ρ0)n + (1− q0)(1− ρ)n

(1− ρ)n
.

The constant D is chosen such that JS(·) is continuous at ρeI . This implies: D = C − h(ρeI)ns,
where C is the constant given in the proof of proposition 7. From integration by parts,

∫ ρ

ρeI

h(x)
rn(A− xq(x)B − s)

λHx(1− x)
dx =

∫ ρ

ρeI

h(x)
rn(A− xq(x)B) + λHn

2xq(x)s

λHx(1− x)
dx− ns(h(ρ)− h(ρeI)).
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As a consequence, JS(ρ) = ΩS(ρ)− ns.
For a fixed q0, the monopolist starts selling her product as long as JS(ρ0; q0) ≥ 0, which implies

that the equilibrium cutoff ρ?S(q0) must be the same as ρeS(q0). Therefore, the symmetric Markov
perfect equilibrium is efficient in the social learning phase as well.
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