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Abstract

We develop a new dependent randomized rounding method for approximation of a num-
ber of optimization problems with integral assignment constraints. The core of the method
is a simple, intuitive, and computationally efficient geometric rounding that simultaneously
rounds multiple points in a multi-dimensional simplex to its vertices. Using this method we
obtain in a systematic way known as well as new results for the hub location, metric label-
ing, winner determination and consistent labeling problems. A comprehensive comparison
to the dependent randomized rounding method developed by Kleinberg and Tardos [19] and
its variants is also conducted, both theoretically and numerically. Overall, our geometric
rounding provides a simple and effective alternative for rounding various integer optimization
problems.

Keywords: integer programming; linear programming; approximation algorithm; random-
ized rounding.

1. Introduction

Approximation algorithms based on randomized rounding of fractional solutions have been ap-
plied to a variety of optimization problems in recent years. A generic randomized rounding
algorithm first formulates a 0 − 1 integer programming problem and solves its relaxation in
polynomial time to get a (fractional) optimal solution x∗, then rounds each variable xi to 0 or
1 by a randomization scheme. A polynomial-time ρ-approximation algorithm to a minimiza-
tion(maximization) problem is defined to be an algorithm that finishes in polynomial time and
outputs a solution with a value at most ρ(at least 1/ρ) times the optimal value. ρ(≥ 1) is called
approximation ratio or performance guarantee. Raghavan and Thompson first introduce the
idea rounding variable xi to 1 independently with probability x∗

i in the study of approximation
algorithms for covering, packing and routing problems [25, 26]. A variety of randomized inde-
pendent rounding techniques, which round each variable xi independently, have been applied
to several classes of discrete optimization problems [6, 12, 15, 18, 28]. Meanwhile, dependent
rounding schemes have been also developed in parallel [1, 4, 5, 8, 9, 13, 14, 19, 20, 30]. Although
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some of these rounding procedures may be deterministically built [1], or be based on a convex
programming relaxation [14], all of them underscore the fact that random choices they make
highly emphasize the dependencies in the rounding process.

Bertsimas et al. devise dependent rounding schemes in their seminal work for a series of
combinatorial optimization problems [4, 5]. Basically, instead of rounding each xi independently
with probability x∗

i , they compare all x∗
i ’s with a threshold U that is generated between [0, 1]

uniformly at random and round every variable xi above the threshold to 1. A revision of this
rounding generates a 2(1 − 1

k )-approximation algorithm for the multiway cut problem with
k terminals. Later, Calinescu et al. [9] improve the approximation ratio to (1.5 − 1

k ) by a
more sophisticated rounding scheme. Their algorithm treats the LP relaxation solutions as
k-dimensional vectors of a standard simplex, and applies the threshold to every vertex of the
simplex sequentially to create a random partition of this simplex. The sequential order is
carefully designed and the partition automatically creates an allocation pattern.

Later, a similar dependent rounding scheme was presented by Kleinberg and Tardos to solve
a classification problem [19, 20]. The idea is to uniformly pick a vertex at random and to apply
Bertsimas et al.’s dependent rounding scheme on the selected one-variable. The algorithm keeps
looping until no points are left. They consider the classification problem arising from metric
labeling and Markov random fields, where one needs to assign one of k labels (or classes) to
each of n objects. In contrast to the multiway cut problem, the classification problem has
a more complex objective function as the penalty for labeling two nodes differently should
depend on the identities of the labels they receive. The resulting labeling problem is equivalent
to a type of uncapacitated quadratic assignment problem. Their rounding implies an O(log k)-
approximation algorithm for the metric labeling problem [2, 19] and a 2-approximation for the
uniform metric case. Recently, Krauthgamer and Roughgarden [21] extend the Kleinberg-Tardos
rounding to a series of optimization problems in metric space, including graph decomposition,
sparse cover and metric triangulation. They cast these metric clustering problems into a unified
modeling and algorithm framework, the consistent labeling problem, and make further analyses
of the rounding method and necessary revision on some models.

The rounding methods by Kleinberg and Tardos and Calinescu et al. both make multi-
dimensional random choices by sequentially implementing Bertsimas et al.’s rounding on one
chosen dimension one at a time, though their sequential orders are differently designed. There-
fore, it is natural to consider them as generalizations of Bertsimas et al.’s rounding in “time
horizon”. In this paper we present a new dependent rounding scheme, the geometric rounding,
which can be considered as an extension of Bertsimas et al.’s rounding in “space horizon”. The
key difference of our geometric rounding from the sequential rounding type is that the former
uses one randomly generated vector in a standard simplex as a multi-dimensional threshold and
makes a simultaneous rounding decisions for every point in the simplex by comparing its coor-
dinates with the threshold vector. Our new rounding method possesses a few desired features
to be elaborated in the paper: non-sequential or stationary, simple and intuitive, and compu-
tationally efficient (linear time in the number of points). By exploring the intrinsic geometric
structure and probabilistic distribution in the simplex, we develop in a systematic way known
as well as new results for the hub location, metric labeling, winner determination and consistent
labeling problems.

Our study also shows that the new geometric rounding and the Kleinberg-Tardos round-
ing may have some overlap on the scope of the applicability because both are designed for
rounding in a simplex with the same cardinality constraints. In particular, algorithms based
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on the Kleinberg-Tardos rounding and its variants generate solid theoretical bounds for every
problem studied in this paper. So we conduct a comprehensive comparison between the new
geometric rounding and the Kleinberg-Tardos rounding both theoretically and numerically. An
interesting observation emerging from our investigation of dependent rounding schemes is that
two rounding methods generate very similar performance guarantees in most studied problems.
The Kleinberg-Tardos rounding gains better theoretical bounds in two cases of consistent label-
ing problems, while the geometric rounding exhibits its advantage on some special cases of the
hub location, metric labeling and winner determination problems. Some examples also illustrate
that they are essentially different rounding techniques. Our computational tests and simulation
results indicate they do not dominate each other while the geometric rounding obtains higher
quality solutions more often in comparison to the Kleinberg-Tardos rounding.

The Hub Location and Metric Labeling Problem. The hub location problem [7, 23]
is a classical model of hub-and-spoke networks in operations research. In such networks, traffic
is routed from cities of origin to specific destinations through hubs. A solution to the problem
needs to specify which hubs to open and the allocations of cities to hubs. Demands between two
cities have to be routed through hubs to which they are assigned. The cost function includes the
linear assignment costs between cities and hubs, the quadratic interhub costs between hubs and
the costs of opening hubs. Most published work on the hub location problem mainly focuses
on practical heuristics while providing no theoretical bounds [10, 24, 23]. In this paper we
first prove that the geometric rounding provides an approximation algorithm with a constant
approximation ratio for its special case: the fixed-hub single allocation problem(FHSAP) in
which opening a hub is free of charge. The FHSAP is mathematically identical to the well-
studied metric labeling problem in computer science community [11, 19, 20] though they are
apparently in the context of different applications. Any specific algorithms to the metric labeling
problem can naturally transfer to the FHSAP and vice versa. Our further analysis shows that
the geometric rounding actually provides a first lnn-approximation for the equilateral-hub case
of the hub location problem. It is noteworthy that the hub location problem is quite general
and it encompasses many well known optimization problems as its special cases, such as the set
covering and nonmetric facility location problems.

The Winner Determination Problem. Consider the assignment problem in a combina-
torial auction problem: given k players (or bidders) and m items. Each player is single-minded,
i.e., player j is interested precisely in a subset Sj of items. The utility of set T for him is defined
to be v(Sj) if Sj ⊆ T and to be zero otherwise. We call Sj the preferred bundle of player j.
Provided that the utility function of each player is explicit, the associated winner determination
problem, also called the social welfare maximization problem, asks for an allocation of the items
to the players that maximizes the total valuation. It is well known that this assignment problem
is a special case of the packing integer programming problem and that it can not be approxi-
mated better than O(k) or O(

√
m) in polynomial time unless P=NP [17, 22]. For the general

case where each item has B(≥ 1) copies, Srinivasan [29] proposes an O( B
√

r)-approximation
algorithm where r(≤ m) is the maximal cardinality of the preferred bundles.

In this paper we generalize our geometric rounding to handle multi-assignment constraints
and apply it to the multi-unit winner determination problems. We prove that the geometric
rounding provides O(r)-approximation algorithms for the both single-unit and multi-unit cases,
and a new theoretical performance guarantee B+k−1

B for the uniform multi-copy case. Note that
the latter is independent of r and is not dominated by the current best bound [29].

The Consistent Labeling Problem. This class of problems in metric spaces includes
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Table 1: Approximation factors of two rounding methods and the current best bounds. Ratios
provided with unspecified resources are proved in this paper.

Probelm Geometric Rounding Kleinberg-Tardos Rounding Current Best Bound

Metric labeling; FHSAP O(log k) O(log k) [19] O(log k) [19]

Metric Labeling; FHSAP: Equilateral 2 2 [19] 2 [19]

Hub Location O(ln n) O(ln n) O(ln n)

Winner Determination r r 2
3 r [16]

Uniform MU Winner Determination min{r + 1, B+k−1
B

} 2r [21] O( B√r) [29]

Separating Decomposition 2 2 [21] 2 [21]

Padded Decomposition ? O(1) [21] O(1) [21]

computing separating and padded decompositions, sparse covers, and metric triangulations.
Recently Krauthgamer and Roughgarden [21] find the new applications of the Kleinberg-Tardos
rounding in the study of this class of problems. Computing separating and padded decompo-
sitions, two fundamental variants of the metric clustering problem, play an important role in
metric embedding. Computing sparse covers and metric triangulations can be considered as
a second genre of metric clustering problems with the goal to minimize the overlap between
clusters subject to covering constraints.

The previous literature on these metric space problems has focused exclusively on abso-
lute (worst-case) bounds which seek guarantees for every possible metric space. By contrast,
Krauthgamer and Roughgarden’s work emphasizes relative guarantees that compare the pro-
duced solutions to the given input and provides significantly better relative guarantees. In this
paper we apply our geometric rounding to a subset of metric clustering problems and show that
it provides similar relative guarantees.

The results of our geometric rounding, the results based on the Kleinberg-Tardos rounding
by different researchers, as well as the best results on approximating aforementioned problems
are summarized in Table 1. It seems that the geometric rounding achieves the same quality
approximation ratio as the Kleinberg-Tardos rounding on most studied problems. Given the
fact that these problems arise from different fields of research, the geometric rounding provides
a simple and intuitive alternative for rounding various optimization problems with cardinality
constraints.

The outline of the paper is as follows. In Section 2, we present our geometric rounding
and general analyses of the method. In Section 3, 4 and 5, we prove the specific approximation
ratios for the hub location, winner determination and consistent labeling problems, respectively.
Computational experiments and simulation results to compare our geometric rounding and the
Kleinberg-Tardos rounding are also performed. Final remarks and open questions are presented
in Section 6.

2. The Geometric Rounding Algorithm

In this section we describe our geometric rounding algorithm and some of its general properties.
We illustrate the rounding with a generic integer programming system.

Let the input include a set C of n objects and a set H of k labels. The following constrained
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Figure 1: By the geometric rounding, x̂ = (1, 0, 0), ŷ = (0, 0, 1) as the graph indicates.

system encodes that each object is required to be labeled (or assigned) once.∑
s∈H xi,s = 1 ∀i ∈ C, (1)

xi,s ∈ {0, 1}. (2)

In other words, given an optimal solution x∗ to its LP relaxation, for each object i, its assignment
vector x∗

i = (x∗
i,1, . . . , x

∗
i,k) is in a standard (k − 1) dimensional simplex:

{w ∈ Rk|w ≥ 0,
k∑

i=1

wi = 1}.

We denote this simplex by Δk.
Therefore, a fractional assignment vector on object i corresponds to a non-vertex point in

the Simplex Δk. Our goal is to round a fractional vector to a vertex point of Simplex Δk, which
is of the form:

(w ∈ Rk|wi ∈ {0, 1},
k∑

i=1

wi = 1).

It is clear that Δk has exactly k vertices. We denote the vertices of Δk by v1, v2, · · · , vk, where
the ith coordinate of vi is 1.

For a fractional point x ∈ Δk, connect x with all vertices v1, . . . , vk of Δk. Denote the
polyhedron which exactly has vertices {x, v1, . . . , vi−1, vi+1, . . . , vk} by Ax,i. Thus Simplex Δk

can be partitioned into k polyhedrons Ax,1, . . . , Ax,k, and any two of these k polyhedrons do
not interiorly intersect.
Algorithm: the Geometric Rounding Algorithm (GRA):

1. Solve an LP relaxation of the problem, and get an optimal solution x∗.

2. Generate a random vector u, which follows a uniform distribution in Δk.

3. For each x∗
i = (x∗

i,1, . . . , x
∗
i,k), if u falls into Ax∗

i ,s, let x̂i,s = 1; other components x̂i,t = 0.

Remark: There are several direct methods to generate a uniform random vector u from the
standard simplex Δk. We choose the following method: generate k independent unit-exponential
random numbers a1, ..., ak, i.e., ai ∼ exp(1). Then vector u, whose ith coordinate is defined as

ui =
ai∑k
i=1 ai

,
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is uniformly distributed in Δk.
Deciding which polyhedron the generated point falls into can be done in linear time by using

the following lemma.

Lemma 1. Given w = (w1, w2, . . . , wk) ∈ Δk, vector u in Δk is in the interior of polyhedron
Aw,s if and only if {s} = arg min

1≤l≤k
{ ul

wl
}.

Proof. By symmetry we only need to discuss the case s = 1.
If vector u falls into polyhedron Aw,1, vector u can be written as a convex combination

of vertices of Aw,1. i.e., there exist nonnegative αi’s, such that
∑k

i=1 αi = 1 and u = α1w +∑k
i=2 αivi. It follows that

u1 = α1w1, ui = α1wi + αi,∀i ≥ 2.

Then, for each i ≥ 2,
ui

wi
=

α1wi + αi

wi
≥ α1 =

u1

w1
.

If vector u is in the interior of polyhedron Aw,s, then the index set arg min
1≤l≤k

{ ul

wl
} is a singleton.

On the other hand, if vector u is in the interior of another polyhedron Aw,t, then it is easy
to see t ∈ arg min

1≤l≤k
{ ul

wl
}. This completes the proof.

Thus the rounding process is “deterministic” once vector u is generated and can be done in
2nk operations. The KT rounding can be proved to stop after O(k lnn) iterations with high
probability. So theoretically its time complexity is O(nk lnn).

2.1 Analysis of the Geometric Rounding

We now present several properties of the geometric rounding. These properties are established
from few well known facts of the exponential distribution:

Lemma 2. The following statements hold.

• Assume that a1, a2, · · · , ak are k independent random variables with ai ∼ exp(λi). Then
for any 1 ≤ j ≤ k,

Pr(aj = min
1≤i≤k

ai) =
λj∑k
i=1 λi

.

• If two random variables Z ∼ exp(μ) and W ∼ exp(λ) are independent, then for any α
and β with 0 ≤ α ≤ β,

Pr(αZ < W < βZ) = μ(
1

μ + λα
− 1

μ + λβ
).

The next theorem shows that the geometrically rounded linear cost is optimal in expectation,
which is also a fundamental feature of the Kleinberg-Tardos rounding (The sequential rounding
by Calinescu et al. does not seem to guarantee this property).

Theorem 3. For any given i ∈ C, l ∈ H, E[x̂i,l] = x∗
i,l.
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Proof. For any x̂i,l, according to lemma 1,

E[x̂i,l] = Pr(x̂i,l = 1) = Pr(u falls into Ax∗
i ,l) = Pr(

ul

x∗
i,l

= min
1≤t≤k

{ ut

x∗
i,t

})

Recall that ui = ai∑k
j=1 aj

and ai ∼ exp(1) for any 1 ≤ i ≤ k. This fact implies that
al
x∗

i,l
∼ exp(x∗

i,l). By Lemma 2, we have

Pr(
ul

x∗
i,l

= min
1≤t≤k

{ ut

x∗
i,t

}) = Pr(
al

x∗
i,l

= min
1≤t≤k

{ at

x∗
i,t

}) =
x∗

i,l∑k
t=1 x∗

i,t

= x∗
i,l.

This completes the proof.

Theorem 3 can also be derived from its geometric structure: the probability that vector u
falls into polyhedron Ax∗

i ,l is equivalent to the volume ratio of polyhedron Ax∗
i ,l to Simplex Δk.

Given a set S of points and a fixed vertex t, the geometric rounding rounds all points in
set S to vertex t if random vector u falls into the intersection of Axi,t for all i ∈ S. The next
lemma claims that the polyhedron generated by the intersection of Axi,t for all i ∈ S, has a
single vertex in the interior of Simplex Δk. It also constructs an explicit form of the vertex
coordinates. Figure 2 depicts such an example of two points.

Lemma 4. For a fixed t, 1 ≤ t ≤ k, define vs = maxi∈S{x∗
i,s

x∗
i,t
}, and zs = vs∑k

l=1 vl
for any s,

1 ≤ s ≤ k. We have ⋂
i∈S

Ax∗
i ,t = Az,t.

Proof. If a point q ∈ ⋂
i∈S Ax∗

i ,t, according to Lemma 1, we have

qs

qt
≥ x∗

i,s

x∗
i,t

, ∀i ∈ S, 1 ≤ s ≤ k.

Thus,
qs

qt
≥ vs =

vs

vt
=

zs

zt
.

So, q ∈ Az,t.
The converse can be easily proved from that q ∈ Az,t implies q ∈ ⋂

i∈S Ax∗
i ,t.

The next theorem estimates the expected distance of two rounded points. For any x and y,
define d(x, y) :=

∑
s |xs − ys|.

Theorem 5. For any x, y ∈ Δk, if we randomly round x and y to vertices x̂ and ŷ in Δk by
the geometric rounding, then we have the following observations:

1. Assume x and y are collinear with a vertex, then E[d(x̂, ŷ)] = d(x, y).

2. In general, E[d(x̂, ŷ)] ≤ 2d(x, y).
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Figure 2: x1 and x2 are rounded to V1 if u falls into Az,1.

Proof. (1). Without loss of generality, assume y = x(s) = (sx1, sx2, . . . , sxk−1, sxk + (1 − s)),
0 < s < 1; see Figure 3. We need to prove

E[d(x̂, x̂(s))] = d(x, x(s)).

By definition, d(x, x(s)) = 2(1 − s)(1 − xk). And

E[d(x̂, x̂(s))] = 2 ∗ Pr(d(x̂, x̂(s)) 	= 0).

Notice that for any i, 1 ≤ i ≤ k − 1, ui
xi

≤ ui
x(s)i

. Then, Lemma 1 implies that, given vector u, if
x(s) is rounded to vertex vi, 1 ≤ i ≤ k − 1, x must be rounded to the same vertex. It follows
that the case where x(s) and x are rounded to two different vertices happens only when x(s) is
rounded to vk and x is rounded to a different vertex. In view of Lemma 1, we have

Pr(d(x̂, x̂(s)) 	= 0)

= Pr(
uk

x(s)k
≤ min

1≤i≤k−1
{ ui

x(s)i
} and

uk

xk
> min

1≤i≤k−1
{ui

xi
})

= Pr(
ak

x(s)k
≤ min

1≤i≤k−1
{ ai

x(s)i
} and

ak

xk
> min

1≤i≤k−1
{ai

xi
}),

where the last equality holds because ui = ai∑k
j=1 aj

for any 1 ≤ i ≤ k. If we define Z =

min
1≤i≤k−1

{ai

xi
} and W = ak

x(s)k
, then it follows that

Pr(d(x̂, x̂(s)) 	= 0) = Pr(αZ < W ≤ βZ)

with α = xk
sxk+(1−s) and β = 1

s . Recall that ai ∼ exp(1) for any 1 ≤ i ≤ k. Therefore,

Z ∼ exp(x1 + x2 + . . . + xk−1) = exp(1 − xk) and W ∼ exp(sxk + (1 − s)).

By Lemma 2, we obtain that Pr(αZ < W ≤ βZ) = (1 − s)(1 − xk). Thus, E[d(x̂, x̂(s))] =
2(1 − s)(1 − xk).

(2). The claim is a special case of forthcoming Theorem 15 in which each set S has cardinality
2.
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Figure 3: vk, x(s), x are collinear.

Remark. The bound proved in Theorem 5 is essentially tight. The following observation
shows that even rounding two points different only by 2 coordinates may lead to an integrality
gap of 2. Define two points x, y in Δk−1. They only differ on coordinates i and j. Assume
yi − xi = xj − yj = d > 0. Then a simple calculation indicates that

E[d(x̂, ŷ)] =
2d

1 + d
(2 − xi − yj) =

2 − xi − yj

1 + d
d(x, y).

3. The Hub Location and Metric Labeling Problems

In this section we first discuss the performance of the geometric rounding on the FHSAP and
the metric labeling problem, then extend our discussion to the hub location problem. The
discussion illustrates the differences of two rounding methods by a special case and simulation
results. The methods we present also provide dependent rounding approaches to the set covering
and nonmetric facility location problems.

We first state a quadratic programming formulation for the hub location problem adapted
from O’kelly’s model [23]. We define a set of potential hubs H = {1, 2, . . . , k} and a set of cities
C = {1, 2, . . . , n}. Demand dij to be routed from city i to city j is given. Denote by cis the
distance from city i to hub s; by cst the distance from hub s to hub t; and by cs the cost of
opening hub s. xi,s is the assignment variable; and ys is the decision variable indicating whether
hub s is used or not. The formulation is given as follows.

Minimize
∑

i,j∈C

dij

⎛
⎝∑

s∈H

cisxi,s +
∑
t∈H

cjtxj,t + α
∑

s,t∈H

cstxi,sxj,t

⎞
⎠ +

∑
s∈H

csys

Subject to
∑

s∈H xi,s = 1, ∀i ∈ C,

xi,s ≤ ys, ∀i ∈ C, s ∈ H,

xi,s, ys ∈ {0, 1} , ∀i ∈ C, s ∈ H.

The first constraints indicate that each city must be assigned to exactly one hub. All
coefficients dij , cis, cjt, cst ≥ 0, and cst = cts, css = 0, ∀i, j ∈ C,∀s, t ∈ H. α is the discount
factor and 0 ≤ α ≤ 1. Without loss of generality, α can be assumed to be one.
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3.1 The Fixed-Hub Single Allocation Problem

In the FHSAP, hubs are open and can be used freely, i.e., cs = 0 for every hub s. Consider
a special case of the FHSAP in which distances between hubs are uniform. We call it the
equilateral-hubs case. Similar to the model in [19], an LP relaxation of the problem can be
written as follows.

Minimize
∑

i,j∈C

∑
s∈H

cis(dij + dji)xi,s +
∑

i,j∈C

dijyi,j

Subject to
∑
s∈H

xi,s = 1, ∀i ∈ C,

yi,j =
1
2

∑
s∈H

yi,j,s, ∀i, j ∈ C, s ∈ H,

xi,s − xj,s ≤ yi,j,s, ∀i, j ∈ C, s ∈ H,

xj,s − xi,s ≤ yi,j,s, ∀i, j ∈ C, s ∈ H,

xi,s, yi,j , yi,j,s ≥ 0, ∀i ∈ C, s, t ∈ H.

(3)

This model shows that the FHSAP is mathematically identical to the metric labeling problem
defined by Kleinberg and Tardos [19]. In order to solve the original problem, we apply the
geometric rounding to the LP relaxation and decide ŷi,j accordingly.

Theorem 6. The Geometric rounding provides a 2-approximation randomized algorithm for
the equilateral-hubs case of the FHSAP.

Proof. Theorem 3 implies that E[x̂i,l] = x∗
i,l for any city i.

Noticing that variable yi,j is actually the half of d(i, j), Theorem 5 implies that E[ŷij ] ≤
2y∗i,j .

The geometric rounding bounds the linear cost optimally and the interhub cost by a factor
2 in expectation, which is the same as the Kleinberg-Tardos rounding. Analogous to Kleinberg
and Tardos’ idea, we can also handle the general FHSAP by probabilistically embedding the
graph into the tree topology and applying the geometric rounding. Naturally it provides a
O(log k)-approximation algorithm for the general FHSAP [2, 19].

The next example shows that two rounding methods are essentially different although they
provide the same theoretical performance for the FHSAP and the metric labeling problem.

Example 1: Consider a 3-hub case. There are two points inside Simplex Δ3: x =
(1/3, 1/3, 1/3) and y = (0, 1/2, 1/2). Lemma 3 implies that E[d(x̂, ŷ)] = 2/3 = d(x, y) if apply-
ing the geometric rounding. A simple calculation indicates that E[d(x̂, ŷ)] = 5/6 > 2/3 = d(x, y)
with the Kleinberg-Tardos rounding applied.

3.2 The Hub Location problem

In this section we mainly focus on the equilateral-hubs case of the hub location problem. An
LP relaxation of this case can be derived from system (3) by adding the opening-hub costs
and the corresponding constraints. The hub location problem is significantly harder than the
FHSAP due to the addition of the opening costs. The nonmetric facility location problem is a
special case of the hub location problem in which the interhub costs are removed. And the set
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Figure 4: Hub 1 is opened when u falls into the shadow area.

covering problem can be also formulated as a special case with only the opening hub costs as its
penalty function. Therefore, even the equilateral-hubs case of the hub location problem cannot
be approximated in polynomial time with a factor smaller than O(log n) unless P = NP .

We analyze the performance of the geometric rounding on the opening cost. There always
exists an optimal solution to the LP relaxation of the hub location problem satisfying y∗s =
maxi∈C{x∗

i,s} for all i ∈ C and s ∈ H. Assume (x∗
i,s, y

∗
s) is such an optimal solution. Let Cs

be the index set including cities who have a positive portion assigned to hub i in the optimal
solution above. Thus, Cs = {i : i ∈ C, xi,s > 0}.

We estimate the expected opening cost for each hub separately.

Theorem 7. For each hub s in H, E[ŷs] ≤ ln |Cs| · y∗s .
Proof. Without loss of generality, we consider hub 1 and C1 = {1, 2, · · · , r}. Suppose |C1| = r.

Recall the process of generating a uniformly distributed point in the geometric rounding.
The algorithm first generates k independent exponentially distributed random variables with
parameter 1. Denote them by ui, 1 ≤ u ≤ k.

If hub 1 is opened, equivalently ŷ1 = 1. It means that at least one city in C1 is rounded to
vertex 1 in Δk (See Figure 4 for an illustration). This case happens if and only if there exists
some i ∈ C1, such that u1

us
≤ x∗

i,1

x∗
i,s

, ∀s ∈ H.
Equivalently,

u1 ≤ max
i∈C1

min
s≥2,s∈H

us

x∗
i,1

x∗
i,s

.

11



We also know us ∼ exp(1), ∀s ∈ H. Thus,

E[ŷ1] =
∫

Rk
+

I
(u1≤maxi∈C1

mins≥2,s∈H us

x∗
i,1

x∗
i,s

)
dF (u1, u2, . . . , uk)

= 1 −
∫

Rk
+

I
(u1>maxi∈C1

mins≥2,s∈H us

x∗
i,1

x∗
i,s

)
dF (u1, u2, ..., uk)

= 1 −
∫

Rk
+

I
(u1>mins≥2,s∈H us

x∗
i,1

x∗
i,s

,∀i∈C1)
dF (u1, u2, ..., uk)

= 1 −
∫

R+

Pr(u1 > min
s≥2,s∈H

us

x∗
i,1

x∗
i,s

,∀i ∈ C1)dF (u1)

= 1 −
∫

R+

Pr(u1 > min
s≥2,s∈H

us

1 − x∗
i,1

x∗
i,s

· x∗
i,1

1 − x∗
i,1

, ∀i ∈ C1)dF (u1)

≤ 1 −
∫

R+

Pr(vi < αu1,∀i ∈ C1)dF (u1)

≤ 1 −
∫

R+

(Pr(v1 < αu1) · Pr(v2 < αu1)...P r(vr < αu1))dF (u1)

= 1 −
∫

R+

e−u1(1 − e−αu1)rdu1

where

α =
1 − maxi∈C1 x∗

i,1

maxi∈C1 x∗
i,1

, vi = min
s≥2,s∈H

us

1 − x∗
i,1

x∗
i,s

∼ exp(1).

The first inequality comes from the fact that α ≤ 1−x∗
i,1

x∗
i,1

for any i. The second inequality is
proved by Lemma 8 below. Also, because vi is independent to u1, we have that

Pr(vi < αu1) = 1 − e−αu1 .

Then, the approximation ratio satisfies

E[ŷ1]
y∗1

= (α + 1)E[ŷ1] ≤
∫

R+

(α + 1)e−u1
(
1 − (1 − e−αu1)r

)
du1.

By changing variables y = 1−e−αu1 , β = 1/α, the right side of the above inequality becomes
∫

0≤y≤1
(1 + α)(1 − y)β(1 − yr)β(1 − y)−1dy

=
∫

0≤y≤1
[yr−1 + . . . + 1](1 + β)(1 − y)βdy.

Let z = (1 − y)1+β , and γ = 1/(1 + β), the above value is equal to
∫

0≤z≤1
[(1 − zγ)r−1 + . . . + 1]dz.

12



Noticing that this integral is increasing on γ, and the max value is reached at γ = 1, the
bound is ∫

0≤z≤1
[(1 − z)r−1 + . . . + 1]dz =

r∑
i=1

1/i ≈ ln r.

Lemma 8. For each fixed value u1,

Pr(vi ≤ αu1,∀i ∈ C1) ≥
∏
i∈C1

Pr(vi ≤ αu1).

Proof. The lemma can be derived from the following recursion:

Pr(v1 ≤ αu1, max
i≥2,i∈C1

vi ≤ αu1) ≥ Pr(v1 ≤ αu1)Pr(maxi≥2,i∈C1 vi ≤ αu1).

Notice that for any event A1, A2 in a probability space, the inequality

Pr(A1 ∩ A2) ≥ Pr(A1)Pr(A2)

is equivalent to

1 − Pr(A1) − Pr(A2) + Pr(A1 ∩ A2) ≥ 1 − Pr(A1) − Pr(A2) + Pr(A1)Pr(A2).

While the second inequality is equivalent to

Pr(Ac
1 ∩ Ac

2) ≥ Pr(Ac
1)Pr(Ac

2).

Thus it suffices to prove the inequality:

Pr(v1 ≥ αu1, max
i≥2,i∈C1

vi ≥ αu1) ≥ Pr(v1 ≥ αu1)Pr( max
i≥2,i∈C1

vi ≥ αu1).

The above inequality is equivalent to:

Pr( max
i≥2,i∈C1

vi ≥ αu1| v1 ≥ αu1) ≥ Pr( max
i≥2,i∈C1

vi ≥ αu1).

We prove this inequality by induction. Recall the definition of vi, we first consider the
probability conditioning on one variable us for any s ∈ H.

For arbitrary positive reals a, b, we want to prove:

Pr( max
i≥2,i∈C1

vi ≥ a| us ≥ b) ≥ Pr( max
i≥2,i∈C1

vi ≥ a).

By the memoryless property of exponential distribution, the distribution of vector u condi-
tioning on us ≥ b is the same as u+bes, where es is a zero vector except that the sth coordinate
is 1. If we view v as function of u, for each j we have that vi(u + bes) ≥ vi(u), therefore

Pr( max
i≥2,i∈C1

vi ≥ a| us ≥ b) = Pr( max
i≥2,i∈C1

vi(u + bes) ≥ a) ≥ Pr( max
i≥2,i∈C1

vi ≥ a).

The inequality above can be easily generalized to prove:

Pr( max
i≥2,i∈C1

vi ≥ αu1| v1 ≥ αu1) ≥ Pr( max
i≥2,i∈C1

vi ≥ αu1).

13
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Figure 5: The frequency distribution graph of the rounded solutions for two rounding schemes
on the FHSAP and hub location problems.

The allocation and interhub costs of the objective function are up bounded by a factor of
2. So the geometric rounding is actually an lnn-approximation algorithm for equilateral-hubs
case. Theorem 7 shows that it is particularly effective for the instances whose LP relaxations
have sparse optimal solutions.

We are also interested in the performance of the Kleinberg-Tardos rounding on the hub loca-
tion problem. The next theorem shows that with high probability it is a O(lnn)-approximation
algorithm.

Theorem 9. Assume that ŷs is in a rounded feasible solution by the Kleinberg-Tardos rounding.
With high probability, the rounding procedure stops after O(k lnn) rounds, and E[ŷs] ≤ O(lnn) ·
y∗s .

Proof. For any city i ∈ C, the probability that it is allocated to some hub in a round is at most
(xi,1 + · · ·+ xi,n)/k = 1/k. So the probability that it is not allocated after ck lnn rounded is at
most (1 − 1

k )ck ln n ≤ (1
e )c ln n = 1

nc for any positive constant c.
Similarly, the probability that hub s is opened in a round is at most ys/k. So

E[ŷs] = Pr(ŷs = 1) = 1 − Pr(ŷs = 0) ≤ 1 − (1 − y∗s
k

)ck ln n

≤ 1 − (1 − y∗s · c lnn) = c lnn · y∗s .

3.3 Simulation Results

Computational experiments are conducted to compare the time efficiency and solution quality
of the geometric rounding and the Kleinberg-Tardos rounding. In the experiment we randomly
generate 8 medium-sized instances for the FHSAP and hub location problems. The results are
presented in Table 2. We test problems of two different sizes: 50 cities and 10 hubs; 30 cities
and 30 hubs. The ratio of the shortest edge to the longest edge between hubs is presented in the

14



Table 2: A comparison of two rounding schemes on the FHSAP and hub location problems.

Geometric Kleinberg-Tardos
Type Size Ratio LB

Best Avg Time Best Avg Time
HLP (50,10) 0.1 1.059 1.151 1.259 4.09 1.156 1.263 5.66
HLP (50,10) 0.5 1.273 1.372 1.478 4.07 1.380 1.487 5.44
HLP (30,30) 0.1 2.670 3.378 3.854 1.78 3.423 3.851 2.09
HLP (30,30) 0.5 3.665 3.790 4.608 1.77 3.783 4.612 2.12

FHSAP (50,10) 0.1 7.772 9.209 9.704 1.12 9.209 9.749 1.09
FHSAP (50,10) 0.5 1.163 1.254 1.319 1.14 1.258 1.331 1.10
FHSAP (30,30) 0.1 2.072 2.589 2.914 0.92 2.603 2.924 1.44
FHSAP (30,30) 0.5 3.570 4.035 4.340 0.94 4.041 4.384 1.47

table as “Ratio”. For each instance, we run 2000 times of the rounding procedures on the same
LP relaxation. Table 2 records the minimum value, the average value of these 2000 rounded
solutions and the total running time of the rounding procedure. The lower bound is the optimal
solution of the LP relaxation. Table 2 shows that both rounding methods have a very similar
performance on all tested instances. The geometric rounding gains a marginal advantage over
the Kleinberg-Tardos rounding on both the running time and solution quality on most instances.
Figure 5 lists the frequency distribution of the values of 2000 rounded solutions for an instance
of the FHSAP and an instance of the hub location problem separately. It can be observed that
the solutions generated by the geometric rounding are slightly more concentrated on the “less
cost” side.

4. The Winner Determination Problem

In this section we discuss the winner determination problem. Two technical methods are de-
veloped to adapt the geometric rounding to the multi-assignment constraints. Particularly, we
prove that the geometric rounding for the uniform multi-unit winner determination problem
generates a new theoretical performance guarantee that is not dominated by the current best
bound [29].

We start the winner determination problem in a single-minded combinatorial auction. In
the auction a set of players, P = {1, 2, · · · , k} and a set of items, I = {1, 2, · · · , m}, are given.
Each player is interested in precisely one subset of items. Each item has only one copy. A
feasible assignment allocates each item to at most one player. The problem can be described
by a well-known integer program [27].

maximize
∑
j∈P

v(Sj)xSj

subject to
∑

∀j:i∈Sj
xSj ≤ 1, ∀i ∈ I,

xSj ∈ {0, 1} , ∀j ∈ P.

By introducing assignment variable xi,j that indicates whether item i is assigned to player
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j or not, we derive a new IP formulation:

maximize
∑
j∈P

v(Sj)xSj

subject to
∑
j∈P

xi,j = 1, ∀i ∈ I,

xSj ≤ xi,j , ∀i ∈ Sj , j ∈ P,

xSj , xi,j ∈ {0, 1} , ∀i ∈ I, j ∈ P.

In general, player j gets his preferred bundle Sj if and only if vector u generated in the
rounding falls into the intersection of all Ax∗

i ,j ’s for every item i in Sj . Thus, the probability of
this event turns out to be the volume of a specific polyhedron in a high dimensional space.

Define r to be the maximal cardinality of Sj , j ∈ P . We have the following theorem.

Theorem 10. The geometric rounding provides a feasible allocation to the winner determina-
tion problem in a single-minded combinatorial auction. Additionally, the solution achieves at
least max{1

r , 1
k−1} of the optimal value.

Proof. It suffices to prove E[x̂Sj ] ≥ max{1
r , 1

k−1}x∗
Sj

.
Without loss of generality, consider player 1. The event that x̂S1 = 1 means that for every

i ∈ S1, vector x∗
i is rounded to vertex 1. So for the geometric rounding algorithm, it is the

probability that vector u falls into the intersected polyhedron of all Ax∗
i ,1 for i ∈ S1.

Lemma 4 shows that this polyhedron only has one vertex z in the interior of Simplex Δk.
Suppose vector z is the point. We only need to prove

z1 ≥ max{ 1
k − 1

,
1
r
}min

i∈S1

x∗
i,1.

Let a = mini∈S1 x∗
i,1. The inequality becomes

v1∑n
j=1 vj

≥ max{ a

k − 1
,
a

r
}.

It is equivalent to
n∑

j=1

vj ≤ min{k − 1
a

,
r

a
}.

For all j ≥ 2, x∗
i,1 ≥ a, so

x∗
i,j

x∗
i,1

≤ 1−a
a . It implies vj ≤ 1−a

a .
Recall that v1 = 1, we have

∑
1≤j≤n

vj ≤ 1 + (k − 1)
1 − a

a
=

k − 1
a

− (k − 2) ≤ k − 1
a

.

Also, noticing that vj ≤
∑

i∈S1

x∗
i,j

x∗
i,1

, we have

∑
1≤j≤n

vj ≤
∑

1≤j≤n

∑
i∈S1

x∗
i,j

x∗
i,1

=
∑
i∈S1

1
x∗

i,1

≤ r

a
.
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The best known approximation ratio for this case is 2
3r according to [3, 16]. Our rounding

provides an LP-based algorithm and a quick effective approach according to the simulation
result. We will also need to use this result to tackle the uniform multi-copy case.

Interestingly, we can prove that the Kleinberg-Tardos rounding also provides a solution with
a similar performance guarantee.

Theorem 11. The solution generated by Kleinberg-Tardos rounding also achieves at least
max{1

r , 1
k} of the optimal value.

Proof. We need to prove that E[x̂Sj ] ≥ max{1
r , 1

k}x∗
Sj

.
First, the probability that all points i in S are rounded to vertex j at the first step by the

Kleinberg-Tardos rounding is at least ≥ 1
k mini∈S x∗

i,j . So E[x̂Sj ] ≥ 1
kx∗

Sj
.

Second, we know that E[x̂Sj ] is equal to the probability that all points in set S are rounded
to vertex j by the Kleinberg-Tardos rounding. So

E[x̂Sj ] ≥
1
k

min
i∈Sj

x∗
i,j +

∑
l∈P

1
k
(1 − max

i∈Sj

x∗
i,l)Pj =

1
k
xSj + (1 − 1

k

∑
l∈P

max
i∈Sj

x∗
i,l)E[x̂Sj ].

It is easy to observe that ∑
l∈P

max
i∈Sj

x∗
i,l ≤ r.

Therefore,

E[x̂Sj ] ≥
1
r
x∗

Sj
.

Remark: Although both rounding methods present the similar theoretical bounds again,
they may differ in some cases. Still, consider the example we give for the FHSAP. There are
two points inside Δ3: x = (1/3, 1/3, 1/3) and y = (0, 1/2, 1/2). Assume S3 = {x, y}. Then
E[x̂S3 ] = 1/3 by the geometric rounding. If we apply the Kleinberg-Tardos rounding, it is easy
to prove that E[x̂S3 ] = 7/24 < 1/3.

Next we examine the multi-unit case. In this case each item may have multiple copies,
that is, Bi ≥ 1 for each i in I. And these copy numbers may be different. Each player needs
at most one copy of an item. We show how to combine the bin-packing technique to handle
the multi-assignment problem though the theoretical bound it gains is weaker than the one by
Srinivasan [29].

This problem can be formulated as follows.

maximize
∑
j∈P

v(Sj)xSj

subject to
∑
j∈P

xi,j = Bi, ∀i ∈ I,

xSj ≤ xi,j , ∀i ∈ Sj , j ∈ P,

xi,j ≤ 1, ∀i ∈ I, j ∈ P,

xSj , xi,j ∈ {0, 1} , ∀i ∈ I, j ∈ P.

If Bi > 1, the multi-assignment constraint,
∑

j∈P x∗
i,j = Bi, restricts the implementation

of the geometric rounding. In order to work around this issue, we revise the rounding by
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integrating the bin packing technique. The basic idea is to pack all x∗
i,j ’s into Bi unit-volume

bins. Each unit-volume bin corresponds to a point in Δk whose jth coordinate is x∗
i,j if x∗

i,j is
in this bin and is 0 if not. Next, run the geometric rounding to allocate items to players by
rounding these newly created points in Δk.

The bin packing idea may not be feasible for some i if x∗
i,j ’s are indivisible. One remedy is

to shrink each x∗
i,j by half. Denote this shrinked x∗

i,j by x′
i,j . A simple greedy algorithm will

guarantee that these x′
i,j ’s can be encapsulated into at most Bi unit-volume bins. Thus we can

make a partition of P , P = Pi1 ∪ Pi2 ∪ . . . ∪ PiBi , such that

1. Pik’s are mutually disjoint.

2.
∑

j∈Pik
x′

i,j ≤ 1, ∀1 ≤ k ≤ Bi.

If
∑

j∈Pik
x′

i,j < 1, we can stretch any nonzero x∗
i,j in Pik to increase the sum to 1. It is

easy to see that this modification only increases the quality of the rounded solution. Thus this
partition generates Bi points in simplex Δk for item i.

Now we apply the geometric rounding to the multi-assignment case with the bin packing idea.

Algorithm: The multi-assignment GRA.

1. Solve the LP relaxation of the multi-assignment case to get an optimal fractional solution
x∗.

2. For item i, make the bin packing partition and map Pi1, Pi2, · · · , PiBi to Bi points in Δk

as described above.

3. Generate a random vector u, which follows a uniform distribution on Δk.

4. Run the rounding in the same fashion as the Geometric rounding for all newly created
points in Δk.

This algorithm provides a general approach to allocation problems with multi-assignment
constraints. By following a similar proof of Theorem 10, we have the following theorem.

Theorem 12. The multi-assignment geometric rounding algorithm yields a feasible assignment
to the multi-unit case of the winner determination problem. Moreover, the solution recovers at
least max 1

2{1
r , 1

k−1} of the optimal value.

Factor 1
2 comes from the fact we shrink the size of each x∗

i,j by half during the bin packing
and it is not hard to improve. Theorem 10 and 12 show that the geometric rounding generates
a quality performance guarantee for the sparse combinatorial allocation problem in which each
player is only interested in a small set of items. The analysis for maximum consistent labeling
in Lemma 3.1 in Krauthgamer and Roughgarden’s work [21] also implies that Kleinberg-Tardos
rounding has the same theoretical performance for the multi-unit case.

4.1 The Uniform Multi-Unit Winner Determination Problem

In this section we present a sequential geometric rounding scheme to solve the uniform multi-
unit winner determination problem. The solution that our algorithm generates recovers at least
a max{ B

B+k−1 , 1
1+r} fraction of the optimal value.
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In a uniform multi-unit case,
∑

j∈P x∗
i,j = B implies (x∗

i,1/B, x∗
i,2/B, . . . , x∗

i,k/B) ∈ Δk, ∀i ∈
I. Our algorithm sequentially run B rounds of the geometric rounding to allocate items to play-
ers. The allocation is decided by rounding x∗/B with a new generated threshold in each round.
The algorithm is stated as follows.
Algorithm: The uniform multi-assignment GRA

1. Solve the LP relaxation of the uniform multi-unit winner determination problem to get
an optimal fractional solution x∗. Define x′ = x∗/B.

2. Choose a sequence of independent random vectors u1, u2, . . . , uB, each of which is uni-
formly distributed on Δk. Run B rounds of the geometric rounding for x′ by using ul at
round l.

Intuitively, when B gets large, the possibility that a player gets his preferred bundle will
increase in our algorithm. Define binary variable x̂l

i,j to indicate whether the ith item is allocated
to player j in round l. Naturally the assignment variable x̂i,j = 1 if and only if there exists
some l, 1 ≤ l ≤ B, such that x̂l

i,j = 1. Let x̂Sj = mini∈Sj x̂i,j . The following lemma gives the
estimation of the approximation ratio for each round.

Lemma 13.
Pr(min

i∈Sj

x̂l
i,j = 1) ≥ max{ 1

rB
,

1
k − 1

}min
i∈Sj

x∗
i,j

Proof. Theorem 10 directly implies that Pr(mini∈Sj x̂l
i,j = 1) ≥ 1

rmini∈Sj{
x∗

i,j

B }.
For the other part of the bound, we use the same concepts in Theorem 10. Noticing that vj ≤

1−a
a for any j ≥ 2 and v1 = 1, the proof is essentially the same as the one for Theorem 10.

Theorem 14. The uniform multi-assignment GRA provides a feasible assignment to the uni-
form multi-unit WDP. Additionally, the solution recovers at least max{ B

B+k−1 , 1
1+r} of the op-

timal value.

Proof. At each round one copy of each item is assigned to some player, so the uniform multi-
assignment GRA always makes a feasible assignment after B rounds.

It suffices to show that for every j,

E[x̂Sj ] ≥ max{ B

B + k − 1
,

1
1 + r

}x∗
Sj

.

First,

E[x̂Sj ] = Pr(x̂Sj = 1) = Pr(min
i∈Sj

x̂i,j = 1) = 1 − Pr(min
i∈Sj

x̂i,j = 0)

= 1 −
B∏

l=1

Pr(min
i∈Sj

x̂l
i,j = 0).

The last inequality uses the fact that ul are independent and

min
i∈Sj

x̂i,j = 0 ⇒ min
i∈Sj

x̂l
i,j = 0, ∀1 ≤ l ≤ B.
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Furthermore, we have

B∏
l=1

Pr(min
i∈Sj

x̂l
i,j = 0) =

B∏
l=1

(1 − Pr(min
i∈Sj

x̂l
i,j = 1))

= (1 − Pr(min
i∈Sj

x̂l
i,j = 1))B.

Here again we use the independence of ul.
Define c = max{ 1

rB , 1
k−1}.

Pr(min
i∈Sj

x̂i,j = 1) ≥ 1 − (1 − Pr(mini∈Sj x̂l
i,j = 1))B ≥ 1 − (1 − c · min

i∈Sj

x∗
i,j)

B.

Therefore, for any j,

E[x̂Sj ]
x∗

Sj

≥ 1 − (1 − c · mini∈Sj x∗
i,j)

B

x∗
Sj

≥ 1 − (1 − c · mini∈Sj x∗
i,j)

B

mini∈Sj x∗
i,j

.

However, for any t ∈ [0, 1] (with 0 ≤ c ≤ 1),

1 − (1 − ct)B

t
=

1 − (1 − ct)
t

B−1∑
i=0

(1 − ct)i ≥ c
B−1∑
i=0

(1 − c)i

= 1 − (1 − c)B ≥ cB

1 + cB
,

where the last inequality follows from the fact that

(1 − c)B(1 + cB) ≤ (1 − c)B(1 + c)B ≤ 1.

Recall that c = max{ 1
rB , 1

k−1}, the theorem follows.

4.2 Simulation Results

Figure 6 and Table 3 show the simulated performance for a comparison of the two rounding
methods on the winner determination problem. We test 24 randomly generated instances in
8 groups. Each group of problems have the same size but different unit number B. For each
case, we run 1000 times of the rounding procedures separately for two methods. Table 3
records the maximum and average ratios of the rounded value to the LP relaxation value and
the total running time of the rounding procedure. We can observe from Table 3 that both
rounding methods perform similarly for the single unit case. The Kleinberg-Tardos rounding
seems to outperform the geometric rounding when the unit number B is between 2 and 4, while
the geometric rounding performs better once B is above 5. There is no theory to explain this
interesting scenario yet. We also notice that the geometric rounding outperforms the Kleinberg-
Tardos rounding for large unit number case at the expense of significantly longer running time.
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Figure 6: The frequency distribution graph of the rounded solutions for two rounding schemes
on the winner determination problem.

Table 3: A comparison of two rounding schemes on the winner determination problem.

size B=1 B=3 B=8
(k, m, r) Geometric Kleinberg-Tardos Geometric Kleinberg-Tardos Geometric Kleinberg-Tardos

best avg time best avg time best avg time best avg time best avg time best avg time
(20, 100, 12) 0.7122 0.3397 2.02 0.7122 0.2636 0.76 0.9083 0.3476 9.94 0.9749 0.3852 0.87 0.9719 0.5771 24.17 0.8517 0.4940 0.85
(50, 50, 12) 0.7190 0.3091 1.22 0.7190 0.2978 0.96 0.8993 0.3310 5.57 0.9104 0.4025 0.70 0.7657 0.4150 13.5 0.7850 0.4609 0.59
(100, 20, 12) 0.7258 0.3981 0.69 0.7258 0.3801 0.97 0.8704 0.4414 2.75 0.9201 0.4991 0.72 0.9053 0.5549 8.12 0.7971 0.5189 0.62
(20, 100, 40) 0.8031 0.3720 1.99 0.8031 0.2817 0.78 0.8034 0.3550 9.8 0.8371 0.4010 0.70 0.9405 0.6317 27.5 0.9017 0.5054 0.75
(50, 50, 24) 0.6924 0.2755 1.2 0.6924 0.2551 1.05 0.6943 0.3171 5.56 0.8079 0.4003 0.70 0.7340 0.4491 15.91 0.7605 0.4852 0.59
(100, 20, 12) 0.8861 0.3735 0.69 0.8861 0.3862 1.01 0.8736 0.4906 3.03 0.8604 0.4955 0.76 0.8581 0.6028 8.13 0.7863 0.5307 0.63
(100, 10, 6) 0.9200 0.8112 0.41 0.9200 0.8110 0.73 1 0.72 1.79 0.9163 0.5886 0.54 0.9593 0.7494 4.90 0.7646 0.5643 0.46
(10, 100, 41) 0.9162 0.4379 1.88 0.9162 0.3478 0.43 0.9721 0.5047 9.71 0.9721 0.4883 0.57 1 0.8673 0.2644 1 0.6879 0.93

5. The Consistent Labeling Problem

This section discusses the relative guarantees of the geometric rounding on metric clustering
problems. Krauthgamer and Roughgarden [21] have formulated integer programming models
for these problems as variants of the consistent labeling problem and developed LP-based ap-
proximation algorithms. Our discussion will mainly focus on the performance analysis of the
geometric rounding based on the linear programming relaxations they developed.

The formulations presented in this section are introduced in Krauthgamer and Roughgar-
den’s work. We will follow their system exactly for the convenience of readers. First consider a
generic consistent labeling model. Given a set A of objects, a set La of allowable labels for each
object a (drawn from a ground set L), and a collection C of subsets of A. Each set S ∈ C has
a nonnegative weight wS . A feasible labeling is an assignment of each object a to a subset of
La. Two main objects here are to minimize the number of labels assigned to each object, and
to maximize the number (or total weight) of sets that are consistently labeled, meaning that a
common label is assigned to all of the objects in the set. The following constraints are common
to all our relaxations:

1 ≤ ∑
i∈L xai ≤ k, ∀a ∈ A, (4)

yiS ≤ xai, ∀S ∈ C, i ∈ L, a ∈ S, (5)
zs ≤

∑
i∈L yiS , ∀S ∈ C, (6)

zs ≤ 1, ∀S ∈ C, (7)
xai = 0, ∀a ∈ A, i /∈ La. (8)
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5.1 Maximum Consistent Labeling

The maximum consistent labeling (MAX CL) problem looks for a feasible labeling that assigns
at most k labels to every object and maximizes the total weight of the consistently labeled sets.
Its LP relaxation model is

Maximize
∑
S∈C

wSzS (9)

subject to (4)–(8).
Another variant, the Maximum Fair Consistent Labeling problem, maximizes the minimum

weighted probability that a set S is labeled consistently over S ∈ C with the same constraints.
In this case, the LP relaxation maximizes a decision variable α subject to (4)–(8) and

wSzS ≥ α for every set S ∈ C. (10)

Define fmax = maxS∈C |S|. Theorem 3.2 in Krauthgamer and Roughgarden’s work proves
that the Kleinberg-Tardos rounding generates a 1/2fmax-approximation algorithm for MAX
CL and MAX FAIR CL. By an argument similar to Theorem 14, we can easily prove that the
geometric rounding generates the same approximation ratio.

The next problem we consider is minimizing the inconsistency probability using the linear
program below, which is an LP relaxation for computing separating decomposition.

Minimize α

Subject to
∑

i∈L xai = 1, ∀a ∈ A,

yiS ≥ xai − xa′i, ∀S ∈ C, a, a′ ∈ S, i ∈ L,

zS ≥ 1
|S|

∑
i∈L yiS , ∀S ∈ C,

xai = 0, ∀a ∈ A, i /∈ La,

α ≥ wSzS , ∀S ∈ C.

The next theorem encompasses Lemma 3.3 and Theorem 3.4 in Krauthgamer and Rough-
garden’s work, while the analysis based on the geometric rounding is quite different.

Theorem 15. For every set S ∈ C, Pr(S is not consistently labeled) ≤ |S|z∗S . Therefore, the
geometric rounding provides a 2-approximation algorithm for computing a separating decompo-
sition.

Proof. We first define ri = maxa∈Sx∗
ai; si = mina∈Sx∗

ai; and Pi = Pr(all objects in S are
rounded to label i).

The inequality we need to prove is equivalent to

1 −
∑
i∈L

Pi ≤
∑
i∈L

y∗iS =
∑
i∈L

(ri − si).

If uj/rj > ui/si, ∀j 	= i, j ∈ L, then every object in S is rounded to label i.
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This implies

Pi ≥ Pr(uj/rj > ui/si,∀j 	= i) = Pr(min
j∈L

uj

rj
si ≥ ui)

=
∫

R+

e
−ui

∑
j∈L rj
si dui = si/

∑
j∈L

rj .

Thus 1 − ∑
i∈L Pi ≤ 1 −

∑
i∈L si∑
i∈L ri

≤ ∑
i∈L(ri − si).

5.2 Padded Decomposition

Computing a padded decomposition can be modeled as a consistent labeling problem in the same
way as for a separating decomposition. The difference is the collection C of consistency sets is not
all pairs of points, but rather all balls of radius Δ/β. Krauthgamer and Roughgarden design an
LP-based approximation algorithm in which they apply the iterations of the Kleinberg-Tardos
rounding only n times. In order to apply the geometric rounding, one direct approach is to keep
the structure of their algorithm and replace the rounding part by the geometric rounding. It is
straightforward to get an O(n) approximation. In order to improve the approximation ratio, the
algorithm needs to leave some points un-labeled during the rounding. One possible remedy is
to leave some points un-labeled in the rounding process. This needs the geometric rounding to
handle the case where cardinality constraints are inequalities. Check the padded decomposition
algorithm designed by Krauthgamer and Roughgarden. We will keep its structure and replace
the rounding part by the geometric rounding, i.e., we redesign Step 3 − 5 as follows.

1. Define x′
ij , y

′
ij as the half value of the original xij , yij .

2. Consider the geometric rounding in Simplex Δn+2 by adding an artificial node 0. Define
x′

0j = 1 − ∑
i∈X x′

ij (≥ 1/2). Similarly define y′0j = 1 − ∑
i∈X y′ij .

3. Round each j by the geometric rounding on Simplex Δn+2 with probability distribution
(y′0,j , y

′
1,j , · · · , y′n,j). A point is rounded to vertex 0 means that it is not assigned to any

cluster.

The revised algorithm obviously improves the chance a point is un-labeled in the rounding
process. We conjecture that it gives a constant approximation for the padded decomposition
problem.

Krauthgamer and Roughgarden also discuss minimum consistent labeling problems. Those
problems seek solutions that consistently label a prescribed fraction of the sets while using as
few labels as possible. Since the geometric rounding labels each item once in each round while
the Kleinberg-Tardos rounding “consumes” labels in a more efficient way, it seems hard for
the geometric rounding to match the theoretical bounds developed by the Kleinberg-Tardos
rounding.

6. Remarks and Open Questions

In this paper we have developed a non-sequential, intuitive, and computationally efficient ge-
ometric rounding method that simultaneously rounds multiple points in a multi-dimensional
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simplex to its vertices, and established in a systematic way many known as well as new results
for various optimization problems with integral assignment constraints. A comprehensive com-
parison with the well known dependent randomized rounding method developed by Kleinberg
and Tardos [19] and its variants is also conducted, both in theory and in numerical simulation.
The results show that the two methods perform similarly on most studied problems, although
they outperform each other in few different cases. Overall, the geometric rounding provides a
simple and effective alternative for rounding various integer optimization problems.

There are some intriguing and challenging questions left open to explore. One is to prove the
constant-approximation conjecture for the padded decomposition. Another is derandomization
of the geometric rounding. Any derandomization method of the geometric rounding would be
likely linked to computing volumes of high-dimensional polyhedrons, which only admits PTAS
algorithms. Finally, since the geometric rounding method is based on a simple geometry, the
higher moment correlations among assignment variables may be estimable, which may make
the method applicable to approximating optimization problems with high order polynomial
objective functions.
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