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Abstract

In a random-matching risk-sharing model, the role of public mes-

sages is explored when in each pairwise meeting, risk-sharing actions

are only monitored by the pair in the meeting (partial monitoring). A

risk-sharing outcome and the message on the outcome are determined

simultaneously, allowing the message and outcome to be traded with

each other (message trading). If agents can commit to not renegotiate

a Pareto-dominated trade, then the folk theorem can be established. If

there is no such commitment, then the folk theorem can only be estab-

lished in a special case and, in general, the loss due to renegotitation

does not vanish as agents become more patient.
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1 Introduction

The literature on repeated games shows that cooperation can be sustained

when people are patient provided that there is suitable monitoring, a renowned

result established by various folk theorems.1 A strand in this literature intro-

duces public messages (about actions) under imperfect private monitoring,

∗Hong Kong University of Science and Technology, taozhu@ust.hk
†Federal Communications Commission, Eliot.Maenner@fcc.gov
1There is no room to make a complete survey. Mailath and Samuelson [18] provide an

excellent reference to this literature. Here we simply note that there are general results for

games with perfect public monitoring (c.f. Fudenburg and Levine [6]), and with imperfect

public monitoring (c.f. Green and Porter [9], Abreu, Pearce, and Stacchetti [2], and

Fudenburg, Levine and Maskin [7]). The results for private monitoring are limited; see

Sekiguchi [22] for such a result, and see Kandori [13] for a detailed discussion.
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i.e., each agent observes his own imperfect signal resulting from the actions

of all agents, and under partial monitoring, i.e., an agent’s action is observed

by only a subset of the agents. Specifically, after each stage game each agent

communicates to the others his signal or observation about actions in the

stage game (which creates public messages). The folk theorems are estab-

lished for some classes of such repeated games; c.f. Compte [4] and Kandori

and Matsushima [14] for imperfect monitoring, and Ben-Porath and Kahne-

man [3] for partial monitoring.

In this paper, we investigate public messages under partial monitoring

when people are able to exchange messages with other transferable objects

of value in spot trades–message trading. Message trading is a concern for

an elementary reason. Whenever the messages are used to detect and deter

defections, agents’ future payoffs depend on these messages. With this de-

pendence, defectors have incentives to seek more favorable messages by trans-

ferring valuable objects to those who are monitoring their actions. When the

creation of public messages is public (as in the example in [3] with centralized

meetings and public incrimination), there seems to be no room for message

trading. But when the creation of public messages is not public, incentives

can naturally lead to trades whose effects should not be overlooked.

As an illustrating example, consider a cake-sharing game between two

players (a one-shot event) followed by a reward allocated by an arbitrator.

The arbitrator randomly gives the cake to one player, player A say, and

announces a reward scheme designed to yield an even split based on each

player’s message about the shares consumed. The arbitrator does not ob-

serve the players share and consume the cake. When the creation of messages

is public each player writes down his message in front of each other and the

arbitrator. When it is not public each player writes down his own message

in front of each other but not the arbitrator, and then forwards his message

to the arbitrator. Under the public creation of messages, if the reward to

player B is a constant, then B does not have an incentive to lie; and given B

is telling the truth, if the reward to A suitably varies with B’s message, then

A will transfer half the cake to B. Under the non-public creation of messages,

message trading is problematic for such a scheme, even if the cake is the only

valuable object that A can transfer to B. For instance, after A eats two-thirds

of the cake but still holds the remaining third, he can offer the remaining

third in exchange for a message of B that gives him the highest reward. With

the non-public creation of public messages, such a mutually-beneficial trade

is difficult to deter, thereby creating a problem for the arbitrator.
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We formalize this example into a random-matching risk-sharing model

with a large number of agents in which the two agents in a pairwise meeting

resemble the players in that example–one is randomly chosen (by nature)

to receive some cake, and the rewards derive from future plays. The non-

public creation of messages is plausible in large communities in which people’s

activities are decentralized and people rarely meet in large groups. Matching

in pairs is a class approach to partial monitoring–one’s action is monitored

only by his meeting partner. Moreover, randommatching and a large number

of agents make messages potentially useful for eliciting cooperation.2

In the pairwise meeting, the size of the cake can be a random variable

whose realization is observed by the pair (this size is deterministic in the

illustrating example ). Also, there is a device called a report, in which each

agent can input his own message on the risk-sharing outcome and the size of

the cake; messages in the report become public to all agents after the meeting

is over.3 One can regard this model as a version of Green [8] in which the

endowment realization is not private (it is observed by the pair), the redis-

tribution of resources is decentralized (all transfers are pairwise) and is not

public (it is only observed by the pair) but is reported the public. Abstracting

from private information helps us concentrate on message trading.

The message-trading process is a game form called a trading mechanism

that has trading outcomes and an autarky outcome. A trade consists of a

transfer of the cake and messages from the two parties; in autarky each agent

inputs his message independently and there is no transfer. We focus on equi-

libria that are coalition proof or renegotiation proof, where the restriction

is only applied to the plays of the two agents in the trading mechanism in

each pairwise meeting. Coalition proof requires that the plays in the mech-

anism must reach the pairwise Pareto frontier, whereas renegotiation proof

effectively restricts how two agents split the surplus along the Pareto frontier.

When an equilibrium is coalition proof, the message of the partner must

be valuable to both agents to induce an agent to make a transfer, in par-

ticular, the partner must be rewarded if his message reveals that a smaller

transfer has occurred. The folk theorem holds with the coalition proof equi-

2Messages are redundant if two agents stay together forever. Also, with a large number

of agents, contagious equilibria (see Kandori [12] and Ellison [5]) are ruled out and some

message about the meeting to outsiders is necessary for any positive transfer to occur.
3Reports differ from labels in Kandori [12] and status in Okuno-Fujiwara and Postle-

waite [21]. A label or a status is a statistic that is updated from with-in meeting actions

by an exogenous rule.
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librium. When an equilibrium is renegotiation proof, the potential for coop-

eration depends on whether the size of the cake is public information. When

the size of the cake in the meeting is public information, the folk theorem

holds, but for some preferences it may require a lower bound on the discount

factor that is higher than the one with coalition proof equilibrium. When

the size of the cake is not public (but subject to pairwise partial monitoring),

the folk theorem does not hold and the (welfare) loss does not vanish as the

discount factor approaches one. However, the loss vanishes as the size of

the cake approaches public information. Moreover, a fairly mild condition

ensures that some transfers occur in some meetings.

While our study deals with public messages, it can also be useful for the

study of messages created in real-life situations where actions are partially

monitored and messages are not public. For instance, a receipt issued by a

seller to a buyer, a receipt issued by a creditor to a debtor for a payment,

monetary payments in cash, and an individual’s credit scores may not freely

become public information. In the context of our model, we relate reports to

money. In fact, our model shares all the essential ingredients with random

matching models of money (e.g., Kiyotaki andWright [15], Trejos andWright

[24], and Shi [23]). Following convention in those models, we assume each

agent’s money holdings are only observed by his meeting partner. As it turns

out, money is a special report that has a restricted message space. It follows

that if an allocation is supported by an equilibrium only with money, then

it is supported by an equilibrium only with reports. Hence our results for

reports provide a bound on what money can achieve.

Our model has a special structure, but some of the results suggest general

findings. Clearly, it is necessary to reward an agent for the agent to reveal

another’s defection. Also, although the ability to renegotiate may diminish

the effectiveness of messages, messages are still useful when the set of trades

depends on an action whose outcome is included with the message.

2 The basic model

Time is discrete, dated  ≥ 0. There is a nonatomic measure of ex-ante

identical infinitely lived agents index by . Each date agents are randomly

matched in pairs. The matching realization, i.e., the identity of each agent

in each meeting, is public information. As is standard, information revealed

to all agents is referred to as public information.

The sequence of events within a meeting is as follows. At the start of the
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meeting, by flipping a fair coin, one agent becomes a buyer and the other

becomes a seller. This type realization is public information. After the type

realization, the buyer is endowed with 0 units of a perishable good; the seller’s

endowment is determined by an i.i.d. shock: he obtains 1 unit of the good

with probability  ∈ (0 1] and 0 with probability 1 − . When   1 the

seller’s endowment realization is pairwise public information, i.e., meeting-

specific information only observed by the pair of agents in the meeting. After

the endowment realization, the meeting consists of two consecutive stages,

stages 1 and 2; the good perishes at the end of stage 2.

Stage 1. The seller chooses to consume part of his endowment.

Stage 2. The buyer and seller trade a report for a transfer of the remaining

good (from the seller to buyer) by a given trading mechanism. Details of the

report and trading mechanism are described below.

At these two stages, the transfer and consumption of the good are pairwise

public information, and they are never revealed to the public. After the

meeting, the report becomes public information. Then the date is over.

Preferences of agents are as follows. The buyer’s period utility from

consuming  at stage 2 is (), where (0) = 0, 0  0, and 00 ≤ 0. The
seller’s period utility from consuming 1 at stage 1 and 2 at stage 2 is 1 +

2; such linearity is without loss of generality. Each agent maximizes the

expected discounted utility normalized by 1 − , where  ∈ (0 1) is the
discount factor. To make a positive transfer ex-ante more desirable than

zero transfer, we assume

∗ = argmax()−   0 (1)

Details of a report are as follows. A report, denoted  = (1  
2
  

1
  

2
),

is an element of the set {0 1} × [0 1] × {0 1} × [0 1], where 1 and 2 (
1


and 2 , respectively) are the messages of the buyer (the seller, respectively)

regarding the seller’s endowment realization and the transfer of the good,

respectively.

Details of a trading mechanism at stage 2 are as follows. A trading mecha-

nism, denoted by  , is an extensive game form which assigns to each terminal

node an outcome, which is either a trade or autarky. A trade, denoted ( ),

consists of a feasible transfer of  units of the good and a report ; and au-

tarky means zero transfer of the good and each agent sending any feasible

message. Actions the pair of agents play in  are observed by the pair.

Our definition of trading mechanism follows closely the one in Kocher-

lakota [16]. Also, following [16], we restrict attention to finite-horizon and
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Figure 1: Sequence of Events.

no-commitment mechanisms. Finite-horizon means that the game between

two agents is over before the next matching process starts.4 No-commitment

means that each agent has a sequence of actions leading to autarky, in-

dependent of any sequence of actions chosen by his meeting partner (e.g.,

simultaneous move voting games and ultimatum games).

3 Equilibrium

The matching process, endowment process, the seller’s action in stage 1,

mechanism in stage 2 of pairwise meetings, and preferences define a game.

We restrict our attention to what we call quasi public strategies, which is con-

sistent with the ones adopted by Kocherlakota [16], and the resulting perfect

equilibrium is consistent with the class of sequential equilibria constructed

by Ben-Porath and Kahneman [3].

To be specific, we first introduce some notation. For  ≥ 0 and  ∈ ,

let  be agent ’s meeting partner at ; let  = 0 if  is a buyer at  and

 = 1 if a seller; let  be the seller’s endowment realization in the meeting

between  and ; and let  = (
1
 

2
 

1
 

2
) be the report in that

meeting. For  ∈ {   }, let −1 =  and −1 = (−1  −1).5

Definition 1 A strategy  of agent  is a quasi public strategy if in each

4Finiteness can be achieved if  is in a multistage form and consists of a finite number

of stages. Even if  has an infinite number of stages, there is a formulation to end the

game before the date is over. The key is to let the duration of a stage shrink, and our

results seem to apply to such a setup.
5By including −1 =  in −1 , we effectively associate ’s index with any date  ≥ 0

information  in −1 . Also, notice that it is public information which part in  ,

(1  
2
 ) or (

1
  

2
 ) is the message made by .
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date- meeting when  moves at an information set,  only conditions on

the public information, namely, {}∈ with  ≡ (  −1 ), the meeting-

specific pairwise public information, namely, , and actions already taken

by agents  and  during the meeting.

By Definition 1, if agent  has two information sets in the meeting which

differ only in the pairwise public information pertaining to his previous meet-

ings, then a public strategy  specifies the same action on those two sets.

Our equilibrium concept is perfect equilibrium.

Definition 2 Given a trading mechanism  , a profile of strategies  =

{}∈ is an equilibrium if {}∈ are quasi public strategies and  eval-

uated at any history of the game determines a Nash equilibrium.

As is shown in the next section, one may embed some threat in  to

induce an equilibrium with transfers of goods on the equilibrium path. The

basic idea is that  only admits autarky in off-equilibrium path meetings,

and, in particular, it does not admit any pairwise efficient trades. For us,

this finding identifies a weakness of Definition-1 equilibrium. After all, for

the purpose of examining the effect of message trading on the effectiveness

of reports, it is not desirable to circumvent message trading by designing a

 that rules out mutually desirable trades.

Therefore, we consider two refinements, both having counterparts in the

literature on labor and monetary matching and search models, in which how

a trade is reached in a pairwise meeting is a critical issue. These two refine-

ments require that, when restricted to stage 2 of a meeting, an equilibrium 

be coalition proof or renegotiation proof, respectively, regardless of whether

some agent in the meeting has deviated from  in the previous meetings, or

whether some agent has deviated from  in stage 1 of the present meeting.6

The coalition-proof restriction is simply the Coase Theorem in our con-

text: when the buyer and seller enter into a pairwise trading process, they

reach a pairwise Pareto efficient outcome of the mechanism  . An outcome

of  is pairwise efficient if it is not pairwise Pareto dominated by any lottery

6For the counterpart of the coalition-proof refinement in the literature on labor and

monetary matching and search models, see, e.g., Hall [10], Hu et al. [11], and Zhu and

Wallace [25].; the counterpart of the renegotiation-proof refinenment can be found in

papers with generalized Nash bargaining.
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over the set of autarky and feasible deterministic trades,7 and a lottery is

pairwise efficient if it is not pairwise Pareto dominated by any other lottery.

Definition 3 Given a trading mechanism  , an equilibrium  is a CP equi-

librium if in each meeting, following each feasible stage-1 action, any outcome

of  implied by  is pairwise Pareto efficient (i.e., not dominated by any lot-

tery over the set of autarky and feasible deterministic trades).

The renegotiation-proof restriction starts from the idea that following any

feasible stage-1 actions, on any (stage-2) path in which the buyer and seller

reach an outcome of the trading mechanism that is Pareto dominated, they

will renegotiate to a pairwise efficient outcome;8 this is the same idea that

motivates renegotiation in models in the Nash-implementation literature.

Following a standard treatment in that literature (e.g., Maskin and Moore

[20]), we model a renegotiation process as a mapping whose domain consists

of all lotteries over the set of autarky and deterministic trades feasible at

the stage from which the inefficient outcome of  was reached, and whose

range is the subset of all pairwise efficient lotteries in the domain. Following

widespread convention, we further restrict attention to a special mapping: it

selects a lottery from the domain to maximize the Nash product (with equal

weighs on the buyer and seller).

Definition 4 Given a trading mechanism  , a CP equilibrium  is a RP

equilibrium if in each meeting, following each feasible stage-1 action(s), no

agent can improve from any outcome implied by  and  by any deviation

which results in renegotiation (that splits surplus-from-trade by Nash bargain-

ing).

Some results below use the following notion of equilibrium allocation.

Definition 5 An allocation, denoted { :  ∈   ≥ 0}, is a collection
of mappings {(  

)}∈ ≡  7→ () ∈ [0 ] such that given ,

() is the transfer of goods from the buyer to the seller in the meeting

between agents  and .

7Recall that in our formulation an outcome of  is a deterministic trade or autarky.

Allowing an outcome of  to be a lottery does not change anything in substance. The

current presentation simplifies exposition.
8In a CP equilibrium, the pair of agents could end up at a Pareto dominated outcome

due to some off-equilibrium play in stage 2.
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An allocation {} is an equilibrium allocation or supported by an equi-

librium if there exists an equilibrium such that for all   and , ()

coincides with the transfer of goods specified by on-the-path plays.

In Definition 5, the transfer () is completely determined by the his-

tory of the physical environment, i.e., the realizations of the matching out-

comes, the agents’ types, and the sellers’ endowments of the whole economy

from date 0 to . (Notice that by definition, () = (),  = .)

In our models, actions in the meeting are taken before  and  know

the reported  for  6=  . Hence the dependence of an equilibrium

allocation () on {
}∈ is only on {−1

 }∈ and . Formally, we have

the following.

Observation 1 If {} is an equilibrium allocation, then () = (̄)

for  = {(  
)}∈ and ̄ = {(  ̄

)∈} with  = ̄ and

{−1
 }∈ = {̄−1

 }∈.

4 Perfect-monitoring benchmark

To examine the message-trading effect, we begin with the following variant

of the basic model as the benchmark.

Perfect-monitoring benchmark. Stage 1 is unchanged. In stage 2 there

are no reports, but the good can still be transferred. The seller’s endowment

realization and the transfer of the good become public information after the

meeting.

The equilibrium concept is the one in Definition 2 (with  being redun-

dant). At a date- meeting when agent  moves, his public strategy only con-

ditions on {(  −1
  −1 )}∈ , , and actions already taken by agents

 and  during the meeting, where  is the transfer of the good in the

meeting between  and  and 
−1
 = (−1  −1) with −1 = . (Notice

that Observation 1 applies here.)

The following result compares the set of equilibrium allocations in the

basic model with the set of equilibrium allocations in the benchmark.

Proposition 1 An allocation is an equilibrium allocation in the basic model

if and only if it is an equilibrium allocation in the perfect-monitoring bench-

mark.
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Proof. See the appendix.

The “only-if” part of Proposition 1 resembles the money-is-memory re-

sult in Kocherlakota [16]. Both of these results concern messages about the

actions and the true observations of the actions. Messages about actions

are facilitated by money in [16] and reports here, and true observations are

facilitated by memory in [16] and perfect monitoring here.

The proofs of both of these results use the following observation. Let

an allocation be an equilibrium allocation given the messages of the actions.

Given the true observations of the actions, an agent who should surrender

some of his own goods is willing to do so because his subsequent continuation

value is determined by the allocation, and his continuation value following

a deviation is no greater than his continuation value in the corresponding

equilibrium for the messages about the actions.

Two remarks about the differences between our result and proof and

Kocherlakota’s are in order. First, in our proof we do not use any device

analogous to the imaginary balance sheet in [16] as an intermediate step.

This is because our allocation depends only on the history of the physical

environment, but not on the messages (or the method to carry messages)

about the actions.

Second, memory in [16] is actually partial monitoring, where the set of

agents monitoring an action is a superset of the agents monitoring that action

with money. Partial instead of perfect monitoring is necessary for the money-

is-memory result only because the agent’s knowledge of the matching history

with money is different than with memory. As implied by the logic of the

proofs discussed above, if agents have the same knowledge of the history of

the physical environment under different monitoring assumptions, then an

equilibrium allocation given the messages about the actions should also be

an equilibrium given the true observations of the actions.

The “if” part of Proposition 1 resembles the converse of the money-is-

memory result in Kocherlakota [17]. The proofs of both of these results use

the same trick. That is, in some meetings the trading mechanism does not

admit any pairwise efficient outcomes. This trick illustrates the weakness of

the Definition-1 equilibrium concept indicated in the last section.

To see how the trick works, we sketch our proof as follows. Let {}
be an equilibrium allocation in the model with perfect monitoring. Consider

the basic model with the following mechanism  : At the start of stage 2, 

and  =  simultaneously announce a number in {1 0}. If both say 1, and
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if () is available, then  = () and  = ( 1  1); otherwise

autarky occurs. In the candidate equilibrium,  and  say 1 if both are non-

defectors, and say 0 if either is a defector. In autarky an agent always sends

the message (1 0). When  as a seller, consumes 1  1− () at stage

1, at stage 2 a trade with some   0 and some  with (1  
2
 ) = (1 1) Pareto

dominates autarky, but it is not admitted by  .9

To summarize, the significance of Proposition 1 and its proof is that

perfect monitoring sets an upper bound on what reports can achieve, and

the refinements in Definitions 3 and 4 should be incorporated into a study of

the effects of message trading.

Propositions 1 implies another benchmark result for the basic model, i.e.,

the folk theorem in our context.

Proposition 2 Let ̄ = 05[(∗) + (1 − ∗)] (see (1)) and  = 05. Fix

 ∈ ( ̄]. Let the allocation {} be such that () = , for all   

and  = 1, where 05[()+(1−)] = . Let  satisfy (−) = (1−).
Then {} can be supported by an equilibrium (Definition 2) in the basic

model if and only if  ≥ .

Proof. For the “if” part, by Proposition 1, it suffices to show that {}
can be supported by an equilibrium (Definition 2) in the model with perfect

monitoring. But that is standard. (For a seller, if he transfers  then his

(on-path) payoff is (1− )(1− ) + . A defector is punished by permanent

autarky; that is, the payoff of a deviation is bounded above by (1−)·1+.)
The “only-if” part is obvious.

Given Proposition 2 and the importance of refinements just emphasized,

our study below is centered around the folk theorems in CP and RP equilibria.

5 The folk theorem in CP equilibrium

We begin with a general property about CP equilibrium.

9In [17], an agent with in-equilibrium money holdings does not trade with an agent

with off-equilibrium holdings. As a result, after a meeting the former has off-equilibrium

holdings. But when the former is a seller, he desires to trade goods for money with the

buyer so that his post-meeting holdings are in path. Such a trade obviously makes both

parties better off, but it is not admitted by the trading mechanism.
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Lemma 1 Let  be a CP equilibrium. Fix  and  and let  = 0. Suppose

that when  = 1, on-path plays lead to the transfer   0 and the report ,

and that  specifies (̂ ̂) as the stage-2 outcome following the seller’s stage-1

consumption 1  1− . Denote by  and ̂ agent ’s values at the start of

 + 1 implied by  and ̂, respectively,  ∈ {  = }. Then   ̂ and

  ̂.

Proof. Notice that 1  1− implies that   0 and ̂  . First suppose

 ≤ ̂. But then  can improve his payoff by consuming 1 at stage 1 and

trading (̂ ̂) at stage-2, a contradiction. Next suppose  ≥ ̂. But then

given   ̂, (̂ ̂) is Pareto dominated by (̂ ), a contradiction.

In Lemma 1, the part about  and ̂ is simply the seller’s participa-

tion constraint; that is, it is necessary to give the seller some incentive to

make the purported transfer. The part about  and ̂ says that when

the seller deviates to a less transfer, it is necessary to give the buyer an in-

centive to truthfully report that deviation. Therefore, a rise in the buyer’s

off-equilibrium continuation value from the in-equilibrium level is associated

with a fall in the seller’s from the in-equilibrium level.

It is immediate from Lemma 1 that the equilibrium in the proof of the “if”

part of Proposition 1 is not a CP equilibrium, and that if the allocation {}
in Proposition 2 is supported by a CP equilibrium, then that equilibrium

cannot be a global-autarky trigger strategy equilibrium (i.e., if one agent

sends a message to reveal his meeting partner’s deviation, then no seller

makes any transfer in any future meeting).

To support {} in Proposition 2, we consider a CP equilibrium  with

the following features. The set of the continuation values is [0 2] with

0  1 ≡   2: if we set  =  =  in Lemma 1 and let ̂ be the

report following that the seller consumes 1 at stage 1 when  = 1, then

̂ ∈ [0 1) and ̂ ∈ (1 2].10 Because when   1, ̂ and the on-

path report following  = 0 imply different continuation values,
11  must

10Lemma 1 alone requires that the set of the continuation values in , denoted  ,

consists of {̂ 1 ̂}. If  = {̂ 1 ̂}, then in some meeting following the seller
stage-1 consumption which is sufficiently close to 1, the stage-2 trade specified by  is

Pareto dominated by a lottery, so that  cannot be a CP equilibrium.
11For  and , ̃ implies the value , but by the lemma   ̂ and   ̂ . In fact,

̂ cannot be the autarky report when   1 either. For, otherwise, the latter gives  the

value ̂  ; but then, when  = 0,  is better off by choosing autarky than transfering

zero and making the on-path report.
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depends on . The critical issue is to fulfill a general continuation value

 ∈ [0 2]. Let (), () and ̄() satisfy

 = 05[(1− )((1)) + (1)] + 05(1− ) (2)

+05[(1− )(1− (1 )) + ̄(1 )] + 05(1− )

For (2), consider agent ’s with the continuation value  at the start of .

With probability one his meeting partner  is with 1. If the seller in the

meeting is not endowed, then  is ’s start-of-+1continuation value. If the

seller is endowed, then given the buyer and seller’s the start-of- continua-

tion values ( ), ( ) is the transfer of the good and ( ) and

̄( ) are the buyer and seller’s start-of-+1 continuation value, respec-

tively. (If  = 1 then (1) =  and (1) = ̄(1 ) = 1 and,

hence, the right side of (2) equals 1.)

The candidate ̄(), () and () are given by

̄(1 ) =  ̄(1) = 1; (3)

(1 ) = 1 (1) =

½
1  ≥ 1
  1

¾
; (4)

and

(1 ) =

(
 − (−1)[1−05−(1−)]

05(1−)   ≥ 1

0   1

)
; (5)

(1) =

½
  ≥ 1

−1[()−  − (1 − )(05)−1]   1

¾
 (6)

That is, when   1, if  is the seller then he transfers 0 and his start-of-

+1 value is ; if  is the buyer, then his consumption is less than  and his

start-of-+1 value is . When   1, if  is the seller then he transfers less

than  and his start-of-+1 value is ; if  is the buyer, then his consumption

is  and his start-of-+1 value is 1.

By Lemma 1, for ( ) to be the equilibrium outcome, there should

be some ̄( )  ( ) and ( )  ̄( ) such that fol-

lowing the seller’s stage-1 consumption 1 = 1, ̄( ) and ( ) are

the buyer and seller’s start-of-+1 continuation values at the start of  + 1,

respectively. As it appears, the magnitudes of ̄ −  and ̄ −  depend

on the way that surplus-from-trade is split. Because our purpose is to assure

13



that ,  and ̄ are in the meeting-specific Pareto frontier, we can let

( ) = ̄( )− −1(1− )( ) (7)

̄( ) = ( ) + [̄( )− ( )] (8)

If the set of reports can be identified with [0 1] (by some way) and the value

functions on reports can be expressed as

( ) = ( )− [̄( )− ( )] (9)

( ) = ( ) + [̄( )− ( )] (10)

with  ∈ [0 1], then the Pareto efficiency is implied by the following.

Lemma 2 Let 1 = , and let 1 and 0 satisfy (2 −1) = 05(1− )

and (1−0) ≥ (1− ). Let ̄(), (), (), ̄(), (), (), and ()

be given by (3)-(10). Fix   ∈ [0 2] with  = 1 or  = 1. For

0 ∈ [0 1], let

( (0  )(
0  )) = argmax(   ) (11)

s.t. ( ) ∈ [0 0]× [0 1] and (  
0  ) ≥ (0 0 

0  ), where

(   ) = (1− )() + ( )

(  
0  ) = (1− )(0 − ) + ( )

Then  (( )  ) = ( ) and (( )  ) = 1. Also

(0) = (1 − ) + ( ), all 
0, where (0) = (1 − )(1 − 0) +

( (
0  )(

0  )).

Proof. See the appendix.

Thus far we have not yet discussed how reports affect agents’ continuation

values and, in particular, how the value functions on reports in (9)-(10) are

possible. This is to be addressed below.

Proposition 3 Let  and  and {} and  be the same as in Proposition

2. Then {} can be supported by a CP equilibrium if and only if  ≥ .

14



Proof. The “only-if” part is obvious. For the “if” part, let 1 =  and

0 = , and let 2, ̄(), (), (), ̄(), (), (), and () be given by

Lemma 2. The proof proceeds by two steps. In step 1, we define a mapping

 which maps the individual report history −1 , together with all agents’

public history −1, into an element in [0 2]. In step 2, we describe the
trading mechanism  and , and verify that  is an CP equilibrium.

Step 1. Set 0(
0
  

0) = 1, all . Then  with   0 is defined by

induction. Fix −1. Fix  and let  = −1(
−2
  −2),  ∈ {  = −1},

and  = −1. Set  = (  ) if  = 0, and set  = (  )

if  = 1, where ( ) = (( ) ( )) is defined by

( ) =

⎧⎪⎪⎨⎪⎪⎩
 ∆ = 0

 ∆ 6= 0 &  = ∅
(0 0) ∆ 6= 0 &  6= ∅ & 1

1
 = 0

((
2
  ) (

2
  )) ∆ 6= 0 & 1

1
 = 1

⎫⎪⎪⎬⎪⎪⎭  (12)

with  = ( ), ∆ = ( − 1)( − 1) and ∅ = (0 0 0 0).
Now (

−1
  −1) is determined according to the set  = { ∈  :  

1} as follows.
(i)# ≤ 1. (There is at most one reported defector.) Set (−1  −1) =

, all .

(ii) # = 2,  = {1 2}, 1 = 1, and 2  1. (There are a new

defector, 1, and an old defector, 2.) Set (

  

) = 1 if  = 2, and

(
−1
  −1) =  if  6= 2.

(iii) # = 2,  = {1 2}, 1 = 1, and 2 = 1; or # ≥ 3. (There
are at least two new reported defectors.) Set (

−1
  −1) = 1, all .

Step 2. The trading mechanism  is the following. The buyer and seller

simultaneously announce a trade or autarky: if both announce a trade and

the two trades are identical then the outcome of  is that trade; otherwise

the outcome of  is autarky.

To describe , fix {  −1 }∈ ,  and . Let  = (
−1
  −1) for

 ∈ {  = −1}. Let  = ( ) if  = 0, and  = ( ) if  = 1.

Let 1 be the seller’s stage-1 consumption. Then  specifies the following

actions for .

Stage 1. If  = 1 then 1 = min{ 1− }.
Stage 2. If  = 0 then announce (0∅). If  = 1 then announce

( (1− 1 ) (1− 1 )) = argmax
()

(  )− (0 ̂ ) (13)

15



subject to 0 ≤  ≤ 1−1 and (1+  ) ≥ (1 ̂ ), where ̂ = (1 0 1 0)

and (  ) = (1−)()+( ) and (  ) = (1−)(1−)+( ).
If autarky is reached then send the message (0 1).

To verify that  is a CP equilibrium, fix  and let (
−1
  −1) = .

First we consider ’s expected payoff when he meets  with the start-of-

value 1, provided that all agents follow .

If  is the seller (i.e.,  = 1) and endowed, then the actions specified by

 lead to transferring  ((1) ) and reporting ((1) ). By Lemma

2,  ((1) ) = (1) and in ((1) ), 
1

1
 = 1 and 2 = 1; that

is, ’s payoff is (1− )((1)) + (1).

Similarly, if  is the seller (i.e.,  = 1) and endowed, then the ac-

tions specified by  lead to  ((1 ) ) = (1 ) and ((1 ) ) with

1
1
 = 1 and 2 = 1; that is, ’s payoff is (1− )(1− (1 )) + ̄(1 ).

If  is the seller and not endowed or if  is the seller and not endowed,

then following the actions specified by , ’s payoff is . It follows from (2)

that  is ’s expected payoff before meeting .

It remains to verify that that  does not gain by deviating in the date-

 meeting provided that  does not deviate. First, when autarky occurs,

any message sent by  gives him 0, so that there is no gain by deviation.

Second, when  = 0, or when  = 1 and  = 0, any deviation gives

him 0, so that there is no gain by deviation. Third, when  = 1 and

 = 1, we need to verify that (a) given any 1,  does not deviate to a

trade different from ( (1− 1 ) (1− 1 )), and (b)  does not deviate to

1 6= 1 − (1 ). For (a), a deviation gives him 0, which is no greater

than (1 ), the payoff from the trade. For (b), no gain by a deviation

follows from the constant value of (0) in Lemma 2.

In the above proof, also in the proof of Proposition 4 below, our use of the

continuum is that when there is a reported defector, the continuation values

for all but two agents (the defector and the partner who reports defection),

say, , are still . If there are only a finite number of agents, we can adapt

our proofs by adjusting  to capture the effect of the positive probability to

meet the defector and his partner.

In the above proof, the magnitude of 2−1 does not have any significant
role. Indeed, the proof goes through with an arbitrarily small 2 − 1  0.

This is not the case in RP equilibrium, which is discussed below.
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6 The folk theorem in RP equilibrium:  = 1

In RP equilibrium, it turns out that whether the seller’s endowment realiza-

tion is truly random makes a big difference. In this section we consider that

the seller’s endowment is always 1, i.e.,  = 1.

Our first result, applied to both  = 1 and   1, gives a sufficient and

necessary condition for some   0 to be transferred in a meeting.

Lemma 3 Fix  ∈ (0 1],   0 and   0 with   (1 − ). Let

 : [0 1] → R be weakly decreasing and concave with (0) = 0 and (1) =

−. Let  : [0 1]→ R be weakly increasing and concave with (0) = 0 and
(1) = . For 

0 ∈ [0 1], let
( (0)(0)) = argmax[( )]

12[( )]
12 (14)

s.t. ( ) ∈ [0 0]×[0 1], where( ) = (1−)()+() and( ) =

−(1− ) + ().

(i) If () = , then 0() ≥( 1)( 1) ≡ .

(ii) If () =

½
0  ≤ 1− ()

−   1− ()

¾
and () =  and

0() ≥ , then  () =  and  ∈ argmax( (
0) (0)).

Proof. See the appendix.

The key point of Lemma 3 (ii) is that if 0() ≥  holds, the value

functions of reports can be chose to prevent the seller from consuming more

than 1−  at stage 1. This is critical for Propositions 4 and 7 below.

Lemma 3 (i), while simple, suggests that the magnitude to reward the

buyer may be critical in RP equilibrium. As indicated above, that magnitude

is not important in the the proof of Proposition 3. To see the point, identify

2−1 and 1−0 in the proof of Proposition 3 with  and  in Lemma

3, respectively. Set  = 1 − 0 (i.e.  − ) and then for the given , from

0()[−(1− ) + (1 − 0)] = [(1− )()− ] (15)

we obtain the minimal  to support {} in RP equilibrium. If the maximal
 in RP equilibrium to support {} decreases in , then we obtain the

greatest lower bound to support {}.
To see what may restrict on , let

 = 05[(1− )() + 1] + 05[(1− ) · 1 + ] (16)
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Significance of  is in that to fulfill a value   , in-equilibrium sellers must

reward more to a buyer with  (as his start-of-date continuation value) than

to in-equilibrium buyers with 1 = 05[(1−)()+1]+05[(1−)·(1−)+
1], which, in turn, requires more incentive to the sellers and hence restricts

on . The next lemma partially addresses the effect of this restriction.

Lemma 4 Suppose  = 1. Let  and  and {} be the same as in Propo-
sition 2. Suppose {} is supported by some RP equilibrium . Let  be

the set of continuation values admitted by . If sup ≥  (see (16)), then

sup ≤ ̄() = max (0 1) subject to 0 ≤ 0 ≤ 1,  ≤ 1 ≤ 05[(0)+1],
and

0(0)[−(1− )0 + ((0 1)− )] ≥ (1− )(0)− ((0 1)− 1) (17)

where

(0 1) = 05(1− 05)−1[(1− )(0) + 1 + (1− )] (18)

Moreover, ̄() is weakly increasing in .

Proof. See the appendix.

To see a critical feature of (17), suppose ̄() is attained in . In the

meeting between buyer  with ̄() and seller  with 1,  (in term of

Lemma 3) can be as large as ̄()−. In contrast, in a meeting between two
agents with 1,  can only be  − . The possibility to use a larger  (i.e.,

a larger incentive to an in-equilibrium seller) in an off-equilibrium meeting is

the key to fulfill a continuation value greater than  in (16)

Now we are ready to establish the main result of this section.

Proposition 4 Suppose  = 1. Let  and  and {} and  be the same as
in Proposition 2. Let () be the  satisfying (15) and let ̄ ∈ ( 1) satisfy
(̄) = 0. There exists a unique ̂ ∈ [ ̄) such that {} can be supported
by a RP equilibrium if and only if (a)   ̂, (b)  = ̂ and ̄() = (0 1)

with 1  05[(0) + 1], or (c)  = ̂ =  and ̄()  ().

Proof. First we define ̂. If ̄() ≥ −1(1− )() + , then let ̂ = . If

̄()  −1(1− )() + , then let ̂ be defined by (̂) +  = ̄(̂). This

is well defined because () is decreasing in , and by Lemma 4 ̄()   is

weakly increasing in .
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Next we turn to the “only-if” part of the proposition. First set   ̂.

By Lemmas 3 (i) and 4, {} cannot be supported by a RP equilibrium.
Next set  = ̂, and suppose either   , or  =  and ̄() = (),

and ̄() = (0 1) with 1 = 05[(0) + 1]. Suppose by contrary that

{} is supported by a RP equilibrium . Then by Lemmas 3 (i) and 4,

̄() is the maximal continuation value in . Now 1 = 05[(0)+1] implies

1 = ̄(). That is, for a buyer with ̄() as his start-of- continuation value,

in meeting a seller with , he consumes 0 and his start-of-+1 value is ̄().

By ̄()  , we have 0  0, which by Lemma 1 implies that there exists a

continuation value   ̄() in , a contradiction.

Next we turn to the “if” part. Let 1 = , 0 =  and 2 = ̄(). As

in the proof of Proposition 3, we now introduce the objects ̄(), (), (),

̄(), (), () and ().

For ̄(), () and (), if    then maintain the definitions in (3)-(7).

If  ≥  then let

̄(1 ) =  (1 ) = 1 (1 ) = 0; (19)

also let ̄(1) ≥ 0 (1) ≥ 1 and (1) satisfy

(1− 05) = 05[(1− )((1)) + (1) + (1− )] (20)

and

0((1))[−(1−)(1)+(2−0)] ≥ (1−)()−(2−1) (21)
Existence of of ̄(), () and () satisfying (20)-(21) is verified in the

appendix.

For ̄() and (), let  = ( ) and we require

0(())[−(1− )() + (̄()− ())]

≥ (1− )(())− (̄()− ())

Existence of ̄() and () is ensured by the above construction of ̄(),

() and ().

For () and (), let  = ( ) and we have

( ) = ̄() + (), ( ) = () + () (22)

where () and () are those in Lemma 3 (ii) with  = ̄()− () and

 = ̄()− ().
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Now we apply the two-step proof of Proposition 3 with the following

modifications. In step 1, redefine () = (() ()) by

( ) =

½
  and  6= 1

(
2
  ) (

2
  ))  or  = 1

¾


That is, if  or  = 1 then the values of a report for the buyer and seller

depend only on the buyer’s message of the transfer. In step 2, remove the

part related  = 0 and redefine

( (1− 1 ) (1− 1 )) (23)

= argmax
()

[(  )− (0 ̂ )]
12[(  )− (0 ̂ )]

12

with the same constraints as those in the problem in (13). Moreover, in

autarky let  send the message (1 0) (instead of (0 1)). In verifying that 

does not gain by deviating in the date- meeting when he is the seller, we

apply Lemma 3.

Proposition 4 is of less interest if ̂ =  for any ( ). Also, the distinct

between 1 = 05[(0) + 1] and 1  05[(0) + 1] is redundant if only one

relationship actually holds for any ( ). Neither is the case by the following

observation.

Observation 2 Let () =  with   1.

(i) If 2−3++1  0,   2 and  = 1, then ̂ =  and ̄(̂) = (0 1)

with 1  05[(0) + 1].

(ii) If 2  2 and  = 1, then ̂   and ̄(̂) = (0 1) with 1 =

05[(0) + 1].

Proof. First notice that −1 = 05( + 1). For part (i), check that at

 = , 0 = 1 and 1 = 05[(0) + 1] satisfy (17) and (0 1)  −1(1 −
)() + 05. For part (ii), to see ̂  , check that 05[(1) + 1]  −1(1−
)() + 05 at  = . Then at  = ̂, it follows from () +  = ̄() and

  1 that if (0 1) = ̄(), then the inequality in (17) is strict. But then

1 = 05[(0) + 1]; otherwise 1 can be increased and so can ̄().

Thus far we consider symmetric Nash bargaining. With a general bar-

gaining power of buyers  ∈ (0 1], replace [( )]
12[( )]

12 in (14)

with [( )]
[( )]

1−. Then Lemma 3 is valid if ( 1)( 1) is
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replaced with [(1−)( 1)][( 1)] if   1 and with 0 if  = 1. This

leads to the generalizations of (15) and (17) as

0()[−(1− ) + ( − )] = (1− )[(1− )()− ] (24)

and

0(0)[−(1−)0+((0 1)−)] ≥ (1−)[(1−)(0)−((0 1)−1)]
(25)

Let ( ) be the  satisfying (24) if   1, and let ( ) = 05(1−) if
 = 1. Let ̄() ∈ ( 1) satisfy (̄ ) = 0. Also, let ̄( ) = max (0 1)
(see (18)) subject to 0 ≤ 0 ≤ 1,  ≤ 1 ≤ 05[(0) + 1] and (25). By

straightforward adaptation of the proof of Proposition 4 (e.g. replace the

power terms in (23) with  and 1− ), we have the following.

Corollary 1 Suppose  = 1. Let  and  and {} and  be the same as in
Proposition 2. Suppose the bargaining power of buyers in renegotiation is  ∈
(0 1]. There exists a unique ̂() ∈ [ ̄()) such that {} can be supported
by a RP equilibrium if and only if (a)   ̂(), (b)  = ̂() and ̄() =

(0 1) with 1  05[(0) + 1], or (c)  = ̂ =  and ̄( )  ( ).

Moreover, ̂() is weakly decreasing in , ̂(1) = , and lim→0̂() = 1.

7 The folk theorem in RP equilibrium:   1

Our first result here is a general property about RP equilibrium when   1,

which is due to Lemma 1 and renegotiation.

Lemma 5 Suppose   1. Let  be a RP equilibrium. Fix  and  and let

 = 0. Suppose that when  = 1 on-path plays lead to the transfer   0

and the report 1, and that when  = 0 on-path plays lead to the report 0.

Denote by  agent ’s end-of- continuation values implied by ,  ∈ {0 1}
and  ∈ {  = }. Then 1 − 0  0 and 1 − 0 ≥ −1(1− ).

Proof. Let ̂ be the report specified by  when  = 1 but  consumes

1 = 1 at stage 1, and let ̂ be ’s end-of- continuation values implied by ̂,

 ∈ { }. Because both outcomes (0 0) and (0 ̂) survive renegotiation if
renegotiation is triggered by a stage-2 action (e.g., one agent takes an action

that leads to autarky), it follows that {0 1} ∈ argmax∈[01][0 + (1 −
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)̂][0 + (1 − )̂]. Hence 0 = ̂ and then by Pareto efficiency of

(0 0) and (0 ̂), 0 = ̂. By Lemma 1, 1  ̂ and 1  ̂, and,

moreover, if (1 − ̂)  (1− ) then  is better off by consuming 1 = 1

at stage 1 when  = 1. Now the two inequalities in the lemma follow as

desired.

Lemma 5 makes a simple point: To prevent the seller from deviation when

endowed, the seller is punished (and also the buyer is rewarded) when not

endowed. This need not be the case in CP equilibrium. Indeed, in the CP

equilibrium in Proposition 3 , 1 and 0 imply the same continuation values.

This lemma implies the following negative results in RP equilibrium.

Proposition 5 Suppose   1. Let  be a CP equilibrium.

(i) The {} in Proposition 2 (associated with  there) cannot be sup-

ported by .

(ii) The average start-of-0 continuation value in  is bounded above by

some ̄  ̄, where ̄ is the ̄ in Proposition 2.

Proof. For part (i), suppose by converse that {} is supported by .

Then in Lemma 5, let −1 be generated by on-path plays,  ∈ { }. But
then 1 = 0 = 1 = 0 = , a contradiction. For part (ii), we obtain

the bound ̄ by considering a program which takes (part of) the second

inequality in Lemma 5 as a constraint. The program is as follows: (i) At each

 maximize the mass  of meetings, constrained by that 1 − is no less

than the mass of agents in the −1 mass of meetings at -1 who are sellers
but not endowed; (ii) In the mass  of meetings, maximize each agent’s

unconstrained pre-meeting period payoff, denoted 1, which apparently is

(1− )̄ (i.e., the transfer is 
∗ if the seller in the meeting is endowed); (iii)

In the mass 1 − of meetings, maximize each agent’s pre-meeting period

payoff, denoted 0, constrained by that 0 ≤ 1−(1−)−1∗. The sequence
of {} is determined by  = 1−05(1−)−1 with 0 = 1 and for   0.

Now let ̄ =
P∞

=0 
(1 − )[(̄ − −1∗)(1 −) + ̄]. Because {}

is strictly decreasing, ̄ − ̄ = −1∗[1− (1− )
P∞

=0 
]  ∗(1−1).

Then we can set ̄ = ̄ − ∗(1−1).

With reference to Proposition 3, Proposition 5 says that when   1

there is a loss due to renegotiation, and the loss does not vanish as  → 1. In

the proof, with our choice of ̄, ̄ − ̄ only serves the purpose of showing

this latter point. Evidently, ̄ is above the least upper bound of the average
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start-of-0 continuation values in RP equilibria. While it is of great interest to

find this upper bound, we have not been able to do so. As implied by Lemma

5, in any non-autarky RP equilibrium for any , the end-of- distribution of

the individual continuation values is not degenerate, which makes analysis

much more difficult.

One way to deal with the distribution is to make it simple. As an ap-

plication, we construct an equilibrium to show that positive transfers can

occur in some meetings under a fairly mild condition. In that equilibrium,

the distribution has a two-point support {0 2} with equal mass. where
0  2 satisfies

0 = 025(1− ) + (1− 025)0 + 025[(1− )(1− ) + 2](26)

2 = 05(1− ) + (1− 025)2 + 025[(1− )() + 0] (27)

for some   0. That is, when two agents meet at  and their start-of-

continuations values are in the support, there is a positive transfer if and

only if the buyer’s start-of- value is 2, the seller’s is 0, and the seller is

endowed. With the transfer, each agent’s start-of-+1 value is the same as his

meeting partner’s start-of- value. With no transfer, each agent’s start-of-+1

value is the same as his start-of- value.

Proposition 6 Suppose  ≤ 1 and assume

lim
→0

[1 + 0()][()− 1]
0() + ()


1− 

025
 (28)

Then there exists an RP equilibrium in which in each period in the 025

proportion of meetings the transfer is some   0 that satisfies (26)-(29).

Proof. By Lemma 3,  and 0 and 2 must satisfy

0()[−(1− ) + (2 − 0)] ≥ [(1− )()− (2 − 0)] (29)

Given (28), there exist (0 2) and   0 that satisfies (26)-(29). Then we

apply the proof of the “if” part of Proposition 4 with the following modifi-

cations.

First, we reconstruct the objects ̄(), (), (), ̄(), (), () and

(). Because there are two mass points in the distribution of the continu-

ation values, those objects should be defined for a generic  = ( ) with
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either  or  ∈ {0 2}. In addition, an extra issue is that now ̄() and

() not just provide incentives for () to be transferred, but also may di-

rectly be a component of one’s continuation value. Details of the construction

are in the appendix.

Next, we only need to redefine  as follows. Set 0(
0
  

0) = , all

 ∈ 0, where  = 00 ∪ 02 and the measure of 0 is 05. Then de-

fine (
−1
  −1) with   0 by induction. Fix −1. Fix  and set  =

−1(
−2
  −2) for  ∈ {  = −1}, and  = −1. Set  = (  )

if  = 0, and set  = (  ) if  = 1, where ( ) is defined

( ) =

½
( )  and  ∈ {0 2}

(
2
  ) (

2
  ))  or  ∈ {0 2}

¾
with  = ( ).

Now (
−1
  −1) is determined according to the sets  = { : 0 

0  1} and  = { : 0 = },  = 0 2, as follows.
(i) # ≤ 1 and the measure of  is , all . Set (

−1
  −1) = 0,

all .

(ii) # = 2,  = { ∗}, ∗ = 1,   1, and the measure of  is

, all . Set (

  

) = 1 if  = ∗, and (
−1
  −1) = 0 if  6= ∗.

(iii) # = 2,  = { ∗}, ∗ = 1, and  = 1; or # ≥ 3; or the
measure of  is not , some . Set (

−1
  −1) = 1, all .

In the proof of Proposition 6, our use of a continumm of agents is sub-

stantial. For our analysis depends on the explicit relationships of (0 2)

given in (26)-(27), which are built on that the masses of 0 and 2 are equal.

But the equal masses, in turn, appeal to the law of the large number implied

by the continuum of agents.

A remaining question is whether the welfare loss due to renegotiation

given in Proposition 5 vanishes as  → 1. For this question, the nondegen-

erate distributions impose a bigger challenge. We manage to construct an

equilibrium for  close to 1 when agents are patient, and this equilibrium

shows that the welfare loss in discussion vanishes as  → 1. In this equilib-

rium, there is a mass of   0 agents whose continuation values are  at the

start of each ,  ∈ {0 1 2}. The masses (0 1 2) satisfy 0+1+ 2 = 1

and

051(1 + 2)(1− ) = 0 (30)

051(1 + 2)(1− ) = 2 (31)
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where  ∈ (0 1] is a parameter explained below.
Letting  = ∗, the values (0 1 2) satisfy 0  0  1  2 and

0 = 05(1− ) · 1 + 1 + (1− )0 (32)

1 = 0{05(1− ) · 1 + 1} (33)

+1{05(1− )[() + 1− ] + 051 + 05(1− )(2 + 0)}
+2{05(1− )(1− ) + 051 + 05(1− )(1 + 0)}

2 = 0{05(1− ) · 1 + 1} (34)

+1{05(1− )[() + 1] + 051 + (1− )05(1 + 0)}
+2{05(1− ) · 1 + 051 + (1− )1}

To understand this equilibrium, consider agent ’s with the continuation

value  at the start of . Equation (33) pertains to  = 1. When meeting

a buyer with 1 or 2, if endowed then  stays in 1 (by transferring ) at

 + 1, and if not endowed the he switches to 0 at  + 1. When meeting a

seller with 1, if the seller is endow then  stays in 1 (and receiving ), and

if the seller is not endowed  then  switches to 2. When meeting a seller

with 2,  stays in 1 (and there is no transfer). When meeting an agent

with 0,  stays in 1 (and there is no transfer).

Equation (32) pertains to  = 0. Agent  is punished (compared to

one with 1) by autarky at . With probability  he switches to 1 at + 1

while with probability 1− , he stays in 0 at +1. More about this switch

probability is addressed later.

Equation (34) pertains to  = 2. Agent  is rewarded (compared to

one with 1) in that when he is the seller, he switches to 1 but there is

no transfer. When meeting a seller with 1, if the seller is endowed then 

receives  and switches to 1, and if the seller is not endowed  stays in 2.

When meeting a seller with  6= 1, there is no transfer and  stays in 1.

Equations (30) and (31) are implied by the above switching probabilities.

First, in the end of  the outflow of the mass for agents with 0 is 0, while

the inflow is 051(1+2)(1−) (a seller with 1 meets a buyer with 1 or

2 and the seller is not endowed). This gives rise to (30). Next, the outflow

of the mass for agents with 2 is 2, while the inflow is 051(1+2)(1−)

(a buyer with 2 meets a seller with 1 or 2 and the seller is not endowed).

This gives rise to (31).
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To ensure  being transfer when two agents with 1 meet and the seller

is endowed, we can set

0()[−(1− ) + (1 − 0)] = [(1− )()− (2 − 1)] (35)

To proceed, we have to deal with existence of (0 1 2) and (0 1 2).

As is typical, this may not be resolved by a standard fixed-point approach. In

our case, as illustrated in the following lemma, this existence can be simplified

to existence of a number solving a single equation.

Lemma 6 If   1 exceeds a lower bound, then when  is close to 1, there

exist (0 1 2) and (0 1 2) which satisfy 0 + 1 + 2 = 1, 0  0 

1  2, and (30) to (35). Moreover,
P

 = ()→ 05[(∗) + 1− ∗]
as → 1.

Proof. First, observe that (0 1 2) is completely determined by . By

(30) and (31), 0 = 2. Then by 0+ 1+ 2 = 1, 2 = (1− 1)(+1).

This and (30) imply 1 = 1(), where

1() =
−[1 + 05(1− )] +

p
[1 + 05(1− )]22 + 2(1− )

(1− )
 (36)

Notice that 0  1()  1 and hence 0  0 2  1. Also, 1()→ 1 as →
1. Next, observe that 0 in (32) and 2 in (34) can be explicitly expressed

as functions of 1 and 1. Hence 1 in (33) can be explicitly expressed as a

function of , and so are1−0 and2−1. Substituting those functions into
(35), we see that the existence comes down to the existence of  satisfying the

transformed (35). Existence of such  and lim→1() = 05[(∗) + 1− ∗]
are delegated to the appendix, where the role of  and  being close to 1

becomes clear.

Now we address two questions related to the switching probability : why

it is needed and how the switch is carried out. The former is related to exis-

tence. As an alternative to keep punishing an agent with 0 by autarky with

probability 1 − , the agent may be punished by  dates; that is, starting

from the first date the agent is in 0, he stays in autarky for  consec-

utive dates. With this alternative, we can transform existence of suitable

(0 1 2) and (0 1 2) to existence of suitable  . But because  is

an integer, existence becomes a problem. Regarding how the switch can be

carried out, we introduce some public random devices as follows.
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(RD) Before each date’s matching, each agent makes an independent

draw from the uniform distribution over [0 1], whose realization is public

information.

Letting  be agent ’s date- draw, −1 =  and −1 = (−1  −1),
then under (RD),  is a component of 


 (see Definition 1), where  is

agent ’s date- draw, −1 = (−1  −1), and −1 = . Now we are

ready to establish the following.

Proposition 7 Suppose   1 and assume (RD). If   1 exceeds a lower

bound, then for  close to 1 there exists a RP equilibrium. Moreover, the

equilibrium average start-of-0 continuation value converges to 05[(∗)+1−
∗] as  converges to 1.

Proof. See the appendix.

8 Reports and money

In this section, we relate reports to money. To this end, we introduce the

following variant of the basic model.

The model with money. Stage 1 is unchanged. In stage 2 agents trade

the good with a durable and intrinsically useless object called money. Each

agent is assigned some initial money holdings in  ⊂ R+, and the average
holdings are less than max if max exists. The trading mechanism is

the same as in Section 2 except that here a trade ( ) consists of a feasible

transfer of  units of the good and a feasible transfer of  units of money (from

the buyer to seller), and autarky means zero transfer of the good and each

agent being able to dispose of his own money. In each meeting each agent’s

money holdings and the transfer of money are pairwise public information.

For  ≥ 0, the start-of- distribution of money across agents, denoted , is

public information.12

The equilibrium concepts are those in Definitions 2-4. Specifically, let

 be agent ’s money holdings at the start of . Then at a date- meeting

12We can weaken this assumption by assuming that only the initial distribution of money

is public information, and that, as is standard in monetary matching models, at the start

of each date   0, each agent has a belief on the distribution of money that is consistent

with the equilibrium strategy profile  and the initial distribution of money.
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when agent  moves, his public strategy conditions on { }∈ , , 

for  ∈ {  = },  for  ≤ , and actions already taken by agents 

and  during the meeting.

Proposition 8 If {} is an equilibrium allocation in the model with money,
then it is an equilibrium allocation in the basic model.

Proof. Let  :  → [0 1] be strictly increasing. Let  : [0 1] →  be

such that () = −1() if  ∈ {() :  ∈ }, and () = 0 otherwise.

Let 0 be ’s initial money holdings in the model with money. In the basic

model, set 0 = 0, and given {  −1}∈ with   0, define 
for  ∈ {1  } by induction:  = −1 + 1(

2
 ) if  = 1 and

 = −1 + 1(
2
) if  = 0. Suppose {} is supported by an

equilibrium  in the model with money under some  . In the basic model,

consider the following  0 and 0.
Fix {  −1}∈ ,  and . Denote by  the start-of- distribution

of the above-defined statistics  across agents. Under  0,  and  =  have

the same actions as under  given { }∈ ,  =  for  ≤ , = 
for  ∈ { }, and . A sequence of actions that leads to autarky under 

leads to autarky under  0. A sequence of actions that leads to a trade ( )
under  leads to ( ) under  0, where  = ( ()  ()).

The strategy 0 specifies the same actions as  specifies in the model
with money given { }∈   =  for  ≤ ,  =  for  ∈
{ }, and . When autarky is reached, 

0
 specifies that  enters (1 0)

if  = 0, and (1 1) if  = 1. Provided that  is an equilibrium (CP

equilibrium, RP equilibrium, respectively), such a defined 0 is an equilibrium
(CP equilibrium, RP equilibrium, respectively).

By Proposition 8 and its proof, money can be regarded as a special form

of reports, special in that money supports a more restrictive information

content. In the proof, the function  maps the set of the individual money

holdings to a subset of the set of reports. As a result, the information content

 (on an information set) to which  in the model with money responds can

be identified as a component of the information content  0 (on an information
set) to which 0 in the basic model responds. When the response of 0 to  0

is set to be the response of  to , we obtain an equilibrium 0 (given that 
is an equilibrium).
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This proof differs from the proofs of the “only-if ” part of Proposition

1 and the money-is-memory result in Kocherlakota [16]. There is no inclu-

sion relationship between the information contents in the basic model and

the model with perfect monitoring, nor between the information contents

in the model with money and the model with memory in [16]. Indeed, as

discussed above, Proposition 1 and the money-is-memory result concern mes-

sages about the actions and the true observations of the actions. Proposition

8 concern different methods to carry messages about the actions with differ-

ent information content.

Given Proposition 8, a natural question is whether reports, with the more

information content, can support more allocations than money. While a

thorough study on this issue is beyond the scope of this paper, we have a

result pertaining to RP equilibrium when  = 1.

Proposition 9 Suppose  = 1 in the model with money. Let  and  and

{} be the same as in Proposition 2. If buyers have all the bargaining power
in renegotiation and   2(1− )(), then {} cannot be supported by a
RP equilibrium.

Proof. See the appendix.

We suspect that Proposition 9 is valid with a general bargaining power,

but our proof only applies to the extreme bargaining power. Two further

remarks about Proposition 9 are in order.

First, if we do not use any refinement in the model with money, then

{} in Proposition 9 can be supported by an equilibrium when  ≥ . The

argument is essentially the same one for the “only-if” part of Proposition 2.

Let0 = 1, all . Let 0 = 1 and define by induction +1 = +10
−(+1)2

if  = 1 and  = −10−(+1)2 if  = 0. By  , when  meets  at , they
simultaneously announce a number in {1 0}: the outcome is ( 10−(+1)2) if
the seller’s stage-1 consumption 1 = 0 and both say 1, and the outcome is

autarky otherwise. By , at stage 1 of the meeting, 1 = 0; at stage 2, each

agent says 1 if  = , and says 0 otherwise. Given  ≥ , such a defined

 is an equilibrium.

Second, that an agent’s money holdings are not public information is

essential for Proposition 9. To see this, assume instead each agent’s money

holdings at the start of a date is public information, so that at a date-

meeting when agent  moves, his public strategy conditions on { 
}∈ ,
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, and actions already taken by agents  and  =  during the meeting,

where 
 = (0 ). In the proof of Proposition 4, only the component

2 in  is relevant. Given { }∈ , we can map the relevant information
in −1 one-to-one into 

 as follows. Let 0(
−1
 ) = 1 and for   0,

define by induction (
−1
 ) = −1(

−2
 ) + 2−110

− if −1 = 1 and
 (

−1
 ) = −1(

−2
 )− 2−110

− if −1 = 0. It follows that there is
a counterpart of Corollary 1 in the model with money.

9 The concluding remarks

We have not characterized the optimal allocation with renegotiation when

the seller’s endowment realization is random and subject only to partial mon-

itoring (even when agents are patient). Such a characterization should re-

veal more about the consequences of decentralization, partial monitoring and

message trading, in particular when compared with characterizations of the

optimal allocations in standard centralized risk-sharing models where private

information is the key problem (e.g. Atkeson and Lucas [1] and Green [8]).

In this paper, we assume that outcomes of actions and the creation of

messages about the outcomes occur simultaneously. Perceivably, there are

situations where outcomes precede message creation. Such a situation can be

represented in the two-player example in the introduction as follows. Players

share and consume the cake in room 1; then they move to room 2 where

each player writes down his own message in front of each other but not the

arbitrator, and then forwards his message to the arbitrator. Because there

is no cake in room 2, player A must use some other valuable object (e.g.,

transferable utility which does not exist in the original example and model)

to exchange with B’s message. For this modified example, we can modify our

original model such that the transfer and consumption of the endowed good

occurs in stage 1 and reporting and message trading occurs in stage 2, and

there seems to be no difficulty to establish the counterpart of Proposition 3.

The problem is renegotiation. Indeed, with renegotiation, there cannot be

any transfer in stage 1 because the set of trades in stage 2 does not depend

on the stage 1 transfer. How may messages still be useful? This question is

relevant in part because many real-life messages are created after outcomes

of actions are realized (e.g., credit scores). One possibility is that there

also exists hard evidence to confirm a transfer (which is not in the original

example and model) so that the stage 1 transfer can affect the set of trades
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in stage 2. But if there is hard evidence, then why do messages matter in

the first place? This seems interesting enough to be pursued by a separated

study. If messages do matter, then there seems to be no substantial difficulty

to establish counterparts of propositions in Sections 6 and 7.

In the model with money, it is best to interpret money as cash when the

agents’ payment histories are not public. When those histories are public

(see the end of the last section), the cash interpretation is not suitable. In

any case, money creates messages about partially-monitored actions. This

common function of money under different interpretations suggests a com-

mon approach to formulating different payment methods, cash or noncash.

Outside this common function, different payment methods can differ in many

aspects. For example, for checks (or credit cards) to be used, peoples’ pay-

ment histories ought to be made public for some finite cost–otherwise a

payer is not to pay. Hence checks may create richer information content

than cash. Also paying $100,000 by check may incur less physical effort and

time than paying $100,000 in cash; checks require costly clearing systems but

cash does not. Whatever differences among payment methods are, a cashless

economy under this common approach is not frictionless–partial monitoring

is a friction faced by all payment methods.

Appendix

The proof of Proposition 1

Proof. For the “only-if” part, let {} be an equilibrium allocation in

the basic model. Now consider the ideal of perfect monitoring. To describe

the candidate equilibrium , fix  ∪ {(−1 )∈}. First set −1 = 1 and

define  for  ∈ {0  } by induction as follows: when −1 = 1,  =
0 if  = −1 = 1 where  =  and   (), and  = 1

otherwise; when −1 = 0, set  = 0. Let −1 be the measure of the
set { : −1 = 1}. Now fix  and let  = . In the date- meeting, 
specifies the following actions. At stage 1, when  = 1, transfer 1 = 0

to , and consume 1 = 0; when  = 0, consume the transfer from . At

stage 2, when  = 1, transfer 2 = () − 1 to  if −1 = −1 =
−1 = 1 and 1 ≤ () and 1 − 1 ≤ (), and transfer 0 otherwise;

when  = 0, consume the transfer from .

To verify that such a defined {}∈ is an equilibrium, it suffices to show
that in the date- meeting,  does not deviate from  if  does not deviate.

The only nontrivial case is when  = −1 = −1 = −1 = 1, and  does
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not gain by choosing 1 + 2  (). Notice that ’s continuation value

 following 1 + 2 =  () is completely determined by the allocation

{}, and that ’s continuation value 0 following 1 + 2  () is

the stay-in-autarky-forever value. But in the basic model, given the same

public information, by following the equilibrium strategy the seller  transfers

( ) and his continuation value is the one determined by {} (and ),

while after deviating to a transfer less than  () his continuation value

cannot be lower than the stay-in-autarky-forever value. Given that  does

not deviate in the basic model, he does not deviate in the ideal.

For the “if” part, let {} be an equilibrium allocation in the ideal.

Now consider the basic model with the following  and . Fix ()∈ . Set
−1 = 1 and then define  for  ∈ {0  } by induction: when −1 = 1,
 = 0 if  = −1 = 1 where  =  and 2−1 6= 1, and  = 1

otherwise; when −1 = 0, set  = 0. Let −1 be the measure of the set
{ : −1 = 1}. Now fix  and let  =  . By  , in the date- meeting,

 and  simultaneously announce a number in {1 0}. If both say 1 and
there is neither a transfer nor consumption at stage 1, then the outcome is

 =  () and  = ( 1  1); otherwise the outcome is autarky. By

, ’s actions in the meeting are as follows. At stage 1, when  = 1,

transfer 1 = 0 to , and consume 1 = 0; when  = 0, consume 0. At

stage 2, say 1 if −1 = −1 = −1 = 1 and there is neither a transfer nor
consumption at stage 1, and say 0 otherwise. In autarky, send the message

(1 0).

To verify that such a defined {}∈ is an equilibrium, it suffices to show
that in the date- meeting,  does not deviate from  if  does not deviate.

The only nontrivial case is when  =  = −1 = −1 = −1 = 1 and
there is neither a transfer nor consumption at stage 1. In this case,  cannot

not gain by saying 0 at stage 2. For, if he says 1 then his continuation value

 is completely determined by the allocation {}, and if he says 0 then his
continuation value 0 is the stay-in-autarky-forever value. But in the ideal,
given the same public information, by following the equilibrium strategy the

seller  transfers ( ) and his continuation value is the one determined

by {} (and ), while after deviating to a transfer less than ( ) his

continuation value cannot be lower than the stay-in-autarky-forever value.

Given that  does not deviate in the ideal, he does not deviate in the basic

model.

The proof of Lemma 2
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Proof. If 0 ≤ ( ), then by ( ) ≤ , 0() ≥ 1, and ̄( )−
( ) ≤ ̄( )−( ) (implied by 2−1  1−0), the first
order conditions to (11) imply  (0  ) = 0 and(0  )[̄( )−
( )] = (1−)0; in particular  (0  ) = ( ) and(

0  )

= 1 for 0 = ( ). If 
0  ( ), then  (0  ) = ( ) and

(0  ) = 1. It follows that (
0) = (1− ) + ( ), all 

0.

The proof of Lemma 3

Proof. For part (i), 0() ≥ (())(()) ≥ , where the

first inequality is necessary for  () = , and the second follows from the

hypotheses of  and . For part (ii), by 0() ≥  = −0(1)0(1), we
have ( () ()) = ( 1) so that (() ()) = ( 1). For 

0   (in

case   1), it is clear that ( 1)  ( (
0)(0)). For 0  , we

have  (0) = 0 and (0) = (1− )[(0) +0](2)
−1. It follows that

( (
0)(0))−( 1) ≥ 0⇔ [()−0()](−0)−1 ≥ , but the latter

follows from 0() ≥ .

The proof of Lemma 4

Proof. Choose {} in  which converges to ̃ ≡ sup . For each ,

there exist some 0 

0 ∈ [0 1], and 1 


1 ∈ [ ̃] such that

 = 05[(1− )(0) + 1)] + 05[(1− )(1− 0) + 1]

where (0 

1) satisfies

0(0)[−(1− )0 + ( − )] ≥ (1− )(0)− ( − 1)

with some  ∈ ( ̃]∩ and  ∈ (1 ̃]∩ . Assume that (0 1 0 1)
converge to some (0 1 0 1) (if not then pass to some convergent sub-

sequence) so that

̃ = 05[(1− )(0) + 1)] + 05[(1− )(1− 0) + 1]

Notice that (0 1) satisfies

0(0)[−(1− )0 + ( − )] ≥ (1− )(0)− ( − 1) (37)

where  ∈ [ ̃] and  ∈ [1 ̃]. Because (1 − )(1 − 0) + 1 ≤
(1−)+̃, − ≤ ̃−, and −1 ≤ ̃−1, it follows that ̃ ≤ ̃(),

where ̃() = max (0 1) subject to 0 ≤ 0 ≤ 1,  ≤ 1 ≤ 05[(0) + 1],
and (17).
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Comparing ̃() and (16) lead to (1− )(0)+ 1 ≥ (1− )()+ .

When 1  , replacing (0 1) with (
0
0 ) such that (1 − )[(0) −

(00)] = ( − 1) does not affect the constraint (37). Hence ̃ ≤ ̄().

The proof of weak monotonicity of ̄() in the appendix.

Now we show that ̄() is weakly increasing. Fix an arbitrary  and let

(0 1) = ̄(). If 1 = 05[(0) + 1], then because (17) must holds with

0   for (0 1), it follows that ̄(
0) ≥ 05[(0) + 1] = ̄(). So suppose

1  05[(0) + 1]. Now for 
0   in a neighborhood of , we can find

1  01  05[(0) + 1] such that

0(0)[−(1− 0)0 + 0(0 − )] ≥ (1− 0)(0)− 0(0− 1)

and 0 = (1− 0)[(0) + 1] + 001  ̄(). It follows that ̄(0)  ̄().

Completion of the proof of Proposition 4

Proof. For existence of ̄(), () and () satisfying (20)-(21), denote

̄() by 0. By definition, 0 = 05(1−05)−1[(1−)(0)+1+(1−)] for
some (0 1) satisfying 

0(0)[−(1−)0+(0−0)] ≥ (1−)(0)−(0−
1). We proceed by induction in  to generate a sequence {( +1)} until
+1 ≤ . For    and define +1 by  = 05[(1− )(−1) + +1] +

05[(1 − ) + ]. If +1 ≥ 1, then set  = −1 and +1 = +1. If

+1  1, then by the definition of , (1−)[(−1)−()]  (1−+1).
So let +1 = 1 and let  ∈ ( −1) be defined by (1−)(−1)++1 =
(1 − )() + 1. It follows from 0(−1)[−(1 − )−1 + (0 − 0)] ≥
(1 − )(−1) − ( − +1) that 

0()[−(1 − ) + (0 − 0)] ≥ (1 −
)()− ( − 1). Therefore the sequence {( +1)} satisfies

 = 05[(1− )() + +1)] + 05[(1− ) + ] (38)

and

0()[−(1− ) + (0 − 0)] ≥ (1− )()− ( − +1) (39)

Now for   , let  ≥ 0 be such that  ∈ (+1 ]. Then we can choose
(1) ∈ [+1 ] and (1) ∈ [+1 ] and ̄(1 ) ≤ 0 that

satisfy (20)-(21).

Completion of the proof of Lemma 6
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Proof. Taking the difference between (32) and (33) and the difference

between (34) and (33), we have

1 − 0

1− 
=

1 − 05 · 1
1− (1− )

 (40)

2 − 1

1− 
=

05()1 + 05 · 1
1− 05(1− )1

− 1 (41)

Rewriting (33) and substituting 1−0 and 2−1 from (34) and (33), we

have

1 =

1

1−05(1−)1 − 05(1 + 2) + 05
05(1−)(1+2)

1−(1−)
1 + 2

1−(1−)
 (42)

where

1 = 05()1 + 05

2 = 05(1− )1[1− (1− )] + 05(1− )(1 + 2)

Further substituting (42) into (40) and (41), we have

1 − 0

1− 
=

1

1−05(1−)1 + 05(1 + 2)− 05 · 1 · [1 + 05(1− )]

1− (1− ) +2

2 − 1

1− 
=

12

1−05(1−)1 + 05 − 05 · 1 · 05(1− )(1 + 2)

1− (1− ) +2



and substituting those equations into (35), we have

13 =
1(2 + 2)

1− 05(1− )1
− 05(1 + 2)[(1− ) + 2 − 1] (43)

−05 · 1 · [2 + 05(1− )(21 + 1 + 2)]

where 1 = () + 2 and 2 = 0() and

3 = [1− (1− )][−1 + 05(1− )1] + 05(1− )(1 + 2)

Now choose some 0  0. Then choose 0 and 0 sufficiently close to 1 so

that 3 sufficiently close to 0. Suppose, without loss of generality, that the

left side of (43) is greater than the right side with (  ) = (0 0 0) (and

with s and s defined by (0 0 0) accordingly). Then fix 0, but decrease
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0 and if necessary increase 0. Because for any   0, () → 1 as  → 1,

this process assures that given 0, there is some (0 0) such that (43) holds

with (  ) = (0 0 0).

Fix this triple (0 0 0) and consider two exercises.

(a) Fix 1  0. Then there exists 1  0 such that (43) holds with

(  ) = (1 1 0). By the fact that () → 1 as  → 1, when 1 is

sufficiently close to 1, then (i) 0  1  2, (ii) 
0()[−(1 − ) + (1 −

0)] ≥ [(1 − )() − (2 − 1)], and (iii)
P

 is sufficiently close to

051[() + 1− ].

(b) Fix 1  0. Then there exists 1  0 such that (43) holds with

(  ) = (1 0 1).

Completion of the proof of Proposition 7

Proof. First, we reconstruct the objects ̄(), (), (), ̄(), (),

() and (). To begin with, we define () and () on [0 2] by

() =
2 − 

2 − 0


and

4 = [(1− ) + ] + [(1− )(1− ()) + 2] (44)

+[(1− )(()) + 0] +  + 3(1− )

Next we construct ̄(), (), (), ̄() and () by three exclusive and

exhaustive cases about  = ( ).

Case 1.  = 0 or  = 2. Then () = 0 and () =  and

̄() = . Also, ̄() = () and () = ̄().

Case 2.  = 2 and  ∈ (0 2). Then () = () and () = 

and ̄() = . Also, () =  and ̄() = .

Case 3.  ∈ (0 2) and  = 0. Then () = () and () = 

and ̄() = . Also, () =  and ̄() = .

By construction, for an agent with , his expected payoff before matching

is  (see (44)).

For () and (), we can use the same definition as in (22).

The proof of Proposition 8

Proof. Let (0 1 2) and (0 1 2) satisfy (30)-(34). Then we apply

the proof of the “if” part of Proposition 4 with the modifications similar to

(but more complicate than) those in the proof of Proposition 6.
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First, we reconstruct the objects ̄(), (), (), ̄(), (), () and

(). To begin with, we define some functions on [0 2] or part of the

interval. For  ≥ 0, let 0() be defined by

0() = 05(1− ) + 

For  ∈ (0 1), let ̄() be defined by

̄() = 0 +
 − 0

1 − 0
(1 − 0)

and let 2() be defined by

2() = 05(1− ) + ;

then let () and 1() be defined by

1() = 05(1− )[(()) + 1] +  + (1− )05[̄() + ]

and

 = 00() + 11() + 22();

and then let ̄() satisfy

0(()) ≥ (1− )(()) + [ − ̄()]

−(1− )() + [̄()− 0]


For  ≥ 1, let () and () be defined by

() =
2 − 

2 − 1


() = 0 +
 − 1

2 − 1
(1 − 0);

and then let 1() and 2() be defined by

1() = 05(1− )[() + 1− ()] + 051 + 05(1− )[2 + ()]

2() = 05(1− )[1− ()] + 051 + (1− )[1 + ()]

Next we construct ̄(), (), (), ̄() and () by three cases about

 = (   ). Throughout those cases, set ̄() = () and () =

̄() whenever () = 0.
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Case 1.  = 0 or  = 0. Then () = 0 and

() =

⎧⎨⎩ 0  = 1 &   

1  = 0 &  ≤ 

   0

⎫⎬⎭  ̄() =

⎧⎨⎩ 0  = 1 &   

1  = 0 &  ≤ 

   0

⎫⎬⎭
Case 2.  ∈ {1 2} and  ∈ (0 1), or  ∈ (0 1) and  ∈

{1 2}. Then

() =

⎧⎨⎩ 0  ∈ {1 2}
0  = 2

()  = 1

⎫⎬⎭  () =  ̄() =

⎧⎨⎩   ∈ {1 2}
1  = 2

̄()  = 1

⎫⎬⎭ 

If  = 1, then ̄() = ̄() and () = 0.

Case 3.  ∈ {1 2} and  ≥ 1, or  ≥ 1 and  ∈ {1 2}.
Then

() =

⎧⎨⎩   = 1
0  = 2

()  ∈ {1 2}

⎫⎬⎭  () = 1 ̄() = 1

If  = 1, then ̄() = 2 and () = 0. If  ∈ {1 2}, then
() = () and let ̄() satisfy

0(()) ≥ (1− )(()) + [1 − ̄()]

−(1− )() + [ − ()]


By construction, for an agent with 0, his expected payoff before match-

ing is 0 (case 1). Also, for an agent with   0, his payoffs from meeting

an agent with 0, 1 and 2, respectively, are 0(), 1() and 2(), and

 = 00() + 11() + 22().

For () and (), we can use the same definition as in (22).

Although ( ) are the component of , for  ∈ { }, ̄(), () and
() depend on  if and only if  = 0 (and they never depend on −
with {−} = { }\{}), and () = 0 whenever  = 0. Hence we limit

the use of the public random draw to the purpose stated in the main text.

Now we redefine  as follows. Set 0(
0
  

0) = , all  ∈ 0, where  =

00 ∪ 01 ∪ 02 and the measure of 0 is . Then define (−1  −1) with
  0 by induction. Fix −1. Fix  and set  = −1(

−2
  −2) and  =

−1 for  ∈ {  = −1}, and  = −1. Set  = (    )
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if  = 0, and set  = (    ) if  = 1, where ( ) with

 = (   ) is defined

( ) =

½
( )  and  ∈ {0 1 2}

(
2
  ) (

2
  ))  or  ∈ {0 1 2}

¾


Now (
−1
  −1) is determined according to the sets  = { : 0  0 

1} and  = { : 0 = },  = 0 1 2, as follows.
(i) # ≤ 1 and the measure of  is , all . Set (

−1
  −1) = 0,

all .

(ii) # = 2,  = { ∗}, ∗ = 1,   1, and the measure of  is

, all . Set (

  

) = 1 if  = ∗, and (
−1
  −1) = 0 if  6= ∗.

(iii) # = 2,  = { ∗}, ∗ = 1, and  = 1; or # ≥ 3; or the
measure of  is not , some .

The proof of Proposition 9

Proof. Suppose the contrary and let ̂ be such that

1 + 05[() + 1]
̂P

=1

  (1− ) + 05(1− )−1[() + (1− )] (45)

Fix agent , , and a history of realizations of his endowment and match-

ing. Let  be his in-equilibrium holding at the start of . Conditional

on that he is the seller at , define  =
P̂

=1 + , a statistic depending

on the realization of meetings from  + 1 to  + ̂, where + is ’s the in-

equilibrium spending of money when he is a buyer at + , and as convention

+ = 0 when he is a seller at +  .

Claim (i): If   0 (i.e., agent  is a buyer for at least one meeting

from + 1 to + ̂), then   .

Claim (ii): If   0, then there must exist some 1 ≤  ≤ ̂ such that

+  ̂.

For claim (i), suppose by contrary that  = . Then  is better off

by deviating to autarky in the date- meeting. To see this, notice that from

 + 1 to  + ̂,  can obtain  as a buyer and stay in autarky as a seller.

To obtain  as a buyer, he just needs to pay the seller the same amount he

would pay as a non-defector, for he has all the bargaining power. Because

 = , he can finance his spending with  when he is in autarky as a

seller. Then (45) implies that the deviation is beneficial. Claim (ii) follows

from claim (i) immediately.
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Because claims (i) and (ii) apply for arbitrary  and , it follows that for

any   0, when  is sufficiently large, there is a history such that agent

 has an in-equilibrium holding   . (One such history is as follows.

Agent  is a seller from 0 to . At each  ∈ {1 ̂−1}, ’s partner  is a buyer
from 0 to  − 1, and at each 0 ≤  0   meets a seller who has the same

holding as  at  0. At each  ∈ {̂ + 1 2̂− 1}, ’s partner  is a seller 0 to
̂− 1, is a buyer from ̂ to  − 1, and at each ̂ ≤  0   meets a seller who

has the same holding as  at  0. And so on.)
Now choose a sufficiently large  so that , the measure of agents with

holdings no greater than ̂, is sufficiently close to unity. Let   

and let  be the seller at . The contradiction is drawn by showing that  is

better off by deviating to autarky in a date + meeting when he is supposed

to spend +  ̂.

With the deviation, ’s current loss is (1−)(), but he has at least̂

more units of money at the start of  +  + 1. We claim that following the

deviation, with a probability sufficiently close to unity and with a sufficiently

large ̂ ,  can obtain at least  as a buyer but also 1 as a seller in meetings

from  +  + 1 to  + ̂ (following the deviation). It follows from this claim

that the lower bound on ’s gaining from holdinĝ more units of money

at the start of ++1 can be sufficiently close to 05[1−(1−)]. Therefore,
 is better off because   2(1− )().

It remains to verify the last claim. First, because  has all the bargaining

power as a buyer, he can obtain  as long as he pays the seller the same

amount he would pay as a non-defector. Second, because  is sufficiently

close to 1, the holdings of most buyers are far less than ’s large savings at

 +  . Therefore, he can finance his spending with the savings even if he

always chooses autarky when he is a seller (so that without any inflow of

money) until some + ̂ .
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