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Abstract

We model situations in which a principal o¤ers a set of contracts to
a group of agents to participate in a project (such as a social event or a
commercial activity). Agents� bene�ts from participation depend on the
identity of other participating agents. We assume multilateral externalities
and characterize the optimal contracting scheme. We show that the optimal
contracts�payo¤ relies on a ranking of the agents, which can be described
as arising from a tournament among the agents (similar to ones carried out
by sports associations). Rather than simply ranking agents according to a
measure of popularity, the optimal contracting scheme makes use of a more
re�ned two-way comparison between the agents. Using the structure of the
optimal contracts we derive results on the principal�s revenue extraction and
the role of the level of externalities�asymmetry.
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1 Introduction

The success of economic ventures often depends on the participation of a group

of agents among which externalities prevail. Very often these externalities are

heterogeneous in the sense that when agents are making their participation choices

they are considering not only how many agents are expected to participate but,

more importantly, who is expected to participate. The focus of this paper is the

implications of heterogeneous externalities in a bilateral contracting environment.

This emphasis on heterogeneous externalities allows capturing a realistic ingredient

of bilateral contracts, which are a¤ected by the complex relationships between the

agents.

Consider �rst a few bilateral contracting examples. An owner of a mall needs

to convince store owners to lease stores. Standardization agency succeeds in in-

troducing a new standard if it manages to attract a group of �rms to adopt the

new standard. A raider makes tender o¤ers to major shareholders in a target �rm.

The raider�s success hinges on gathering enough shares to gain control. Throwing

a party or organizing a conference are yet other examples; their success depends

on the participation of the invited guests.

Such contracting environments generate externalities that are rarely symmet-

ric. In a mall, a small store substantially gains from the presence of an anchor

store (such as a national brand name), while the opposite externality, induced

by the small store, has hardly any e¤ect. The recruitment of a senior star to an

academic department can easily attract a young assistant professor to apply to

that department, but not the other way around. The adoption of a new standard

proposed by a standardization agency induces externalities among the adopting

�rms but the level of bene�ts for a given �rm crucially depends on the identity of

the other adopting �rms.

We explore a project initiated by a certain party (henceforth a principal), whose
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success depends on the participation of other agents. The principal provides in-

centive contracts to convince them to participate (incentives could be discounts,

gifts, or other bene�ts). The goal is to design these contracts optimally in view of

the prevailing heterogeneous externalities between the agents. Any set of partici-

pating agents generates some revenue for the principal, and the principal attempts

to maximize his revenue net of the cost of the optimal contracting scheme.

The pro�t maximization problem can be separated into two stages: the se-

lection stage, in which the principal selects the target audience for the venture,

and the participation stage, in which the principal introduces a set of contracts

to induce the participation of the selected group. Clearly, these two stages are

related. To work out the overall solution we solve backward by �rst characterizing

the optimal contracts that induce the participation of a given group, which in turn

will enable solving optimally the selection part of the problem. Our focus in the

paper is on the second stage, the characterization of the optimal contracts for a

general set of agents.

The heterogeneous externalities among agents are described in our model by a

matrix whose entry wi(j) represents the extent to which agent i bene�ts from joint

participation with agent j. A contracting scheme is a vector of rewards (o¤ered by

the principal) that sustains agents�participation at minimal cost (or maximal total

extraction) to the principal. In characterizing the optimal contracts we will focus

on the following questions: 1. What is the hierarchy of incentives across agents as a

function of the externalities; i.e., who should be getting higher-powered incentives

for participation? 2. How does the structure of externalities a¤ect the principal�s

cost of sustaining the group�s participation?

We show that the optimal contracts are determined by a virtual popularity

tournament among the agents. In this tournament, we say that agent i beats

agent j if agent j�s bene�t from i�s participation is greater than i�s bene�t from
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j�s participation. This binary relation is described by a directed graph. We use

basic graph theory arguments to characterize the optimal contracts and show that

success in the virtual tournament ranks agents according to the payo¤s they receive

in the optimal contracting scheme.

The idea that agents who induce relatively stronger positive externalities re-

ceive higher payo¤s is supported by an empirical paper by Gould et al. (2005).

They demonstrate how externalities between stores in malls a¤ect contracts o¤ered

by the mall�s owners. As in our model, stores are heterogeneous in the externalities

they induce on each other. Anchor stores generate large positive externalities by

attracting most of the customer tra¢ c to the mall, and therefore increase the sales

of non-anchor stores. The most noticeable characteristic of mall contracts is that

most anchor stores either do not pay any rent or pay only trivial amounts. On

average, anchor stores occupy over 58% of the total leasable space in the mall and

yet pay only 10% of the total rent collected by the mall�s owner.

We point out that since our optimal contracts are derived by means of a virtual

tournament our results are surprisingly connected to the literature on two quite

distinct topics: 1. ranking sports teams based on tournament results, which has

been discussed in the Operations Research literature, and 2. ranking candidates

based on the outcome of binary elections. It turns out that Condorcet�s (1785)

solution to the voting problem as well as the methods proposed by the Operations

Research literature to the �rst problem are closely related to our solution of the

participation problem.

A key characteristic of the structure of externalities in a certain group of agents

is the level of asymmetry between the pairs of agents, which we show to reduce the

principal�s cost. Put di¤erently, the principal gains whenever the bilateral bene�ts

between any two agents are distributed more asymmetrically (less mutually). Such

greater asymmetry allows the principal more leverage in exploiting the externalities
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to lower costs. This observation has an important implication on the principal�s

choice of group for the initiative in the selection stage.

This work is part of an extensive literature on multi-agent contracting in which

externalities arise between the agents and is akin to various applications introduced

in the literature1. Most of the literature assumes that externalities depend on the

volume of aggregate trade, and not on the identity of the agents. Our emphasis on

heterogeneous externalities allows us to capture a more realistic ingredient of the

contracting environment, which is a¤ected by the complex relationships between

the agents. Heterogeneous externalities were used in Jehiel and Moldovanu (1996)

and Jehiel, Moldovanu, and Stachetti (1996), which consider the sale of a single

indivisible object by the principal to multiple heterogeneous agents using auctions,

when the utilities of the agents depend on which agent ultimately receives the

good. Jehiel and Moldovanu (1999) introduce resale markets and consider the

implications of the identity of the initial owner of the good on the �nal consumer.

Our general approach is closely related to the seminal papers by Segal (1999,

2003) on contracting with externalities. These papers present a generalized model

for the applications mentioned above as well as others. We add to these paper

by considering the implications of heterogeneous externalities. Our paper is also

related to the incentive schemes investigated by Winter (2004) in the context of

organizations. While we provide a solution for partial implementation, in which

agents� participation is achieved in a Nash equilibrium, we follow Segal (2003)

1To give a few examples, these applications include vertical contracting models (Katz and
Shapiro 1986a; Kamien, Oren, and Tauman 1992) in which the principal supplies an intermediate
good to N identical downstream �rms (agents), which then produce substitute consumer goods;
employment models (Levin 2002) in which a principal provides wages to induce e¤ort in a joint
production of a group of workers; exclusive dealing models (Rasmusen, Ramseyer, and Wiley
1991; Segal and Whinston 2000) in which the principal is an incumbent monopolist who o¤ers
exclusive dealing contracts to N identical buyers (agents) in order to deter the entry of a rival;
acquisition for monopoly models (Lewis 1983; Kamien and Zang 1990; Krishna 1993) in which
the principal makes acquisition o¤ers to N capacity owners (agents); and network externalities
models (Katz and Shapiro 1986b).
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and Winter (2004) in that we concentrate on situations in which the principal

cannot coordinate agents on his preferred equilibrium. That is, we mainly consider

contracts that sustain agents� participation as a unique Nash equilibrium; i.e.,

full implementation is achieved. Indeed, recent experimental papers (see Brandt

and Cooper 2005) indicate that in an environment of positive externalities agents

typically are trapped in the bad equilibrium of no-participation.

We demonstrate that our analysis is valid in more general settings. We consider

situations in which agents�choices are sequential and show that our solution is

important when the principal is interested in a dominant strategies solution.2 We

show that the analysis remains valid when we allow the externalities to a¤ect

agents�outside options, as well as with more complicated contingent contracts.

Finally, we consider more general externality structures. In particular, we allow

externalities to be both negative and positive, and provide the conditions under

which the solution for the mixed externalities participation problem is a simple

joint solution of the separated negative and positive participation problems. Also,

we consider the case of a non-additive externality structure.

The rest of the paper is organized as follows. In Section 2 we provide a simple

two-agent example to illustrate some of the key results in the paper. We introduce

the general model in Section 3 and Section 4 provides the solution for a partici-

pation problem with positive externalities between the agents. In particular, we

derive the ranking of incentives in the optimal contracting scheme by forming a

virtual popularity tournament between the agents and explore how the externality

structure a¤ects the principal�s costs. In Section 5 we consider several extensions

of the model, in which we demonstrate that our results apply in more general set-

tings. In Section 6 we demonstrate how this model can be used to solve selection

problems. Section 7 concludes. Proofs are presented in the Appendix.

2In situations of complicated backward induction reasoning, dominant strategies can be useful.
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2 A Simple Two-agent Example

To illustrate some of the key ideas in this paper let�s consider a simple two-agent

example. Suppose a principal would like to attract agents 1 and 2 to take part in

his initiative by o¤ering agent i 2 f1; 2g a contract that pays vi if he participates.

Let�s assume the agents have identical outside options in case they decline the

principal�s o¤er of c > 0: Furthermore, the decision to participate induces an

externality on the other agent. If agent 1 participates, agent 2�s bene�t (loss) is

w2(1): Equivalently, if agent 2 participates agent 1�s bene�t (loss) is w1(2): The

agents will choose to participate if the payo¤from the principal and the bene�t/loss

from other participating agents, taken together, is greater than the outside option.

Suppose �rst that the externalities w1(2) and w2(1) are strictly positive. Sim-

ple contracts that induce the participation of both agents as a Nash equilibrium

are such that agent 1 is o¤ered c�w1(2) and agent 2 is o¤ered c�w2(1): However,

these contracts are not satisfactory as an additional equilibrium exits in which

neither agent participates. We refer to such contracts as partial implementation

contracts, as additional equilibria exist in addition to full participation. In order

to sustain the participation of both agents in a unique equilibrium, it is neces-

sary to provide at least one agent, say agent 1, with his entire outside option c.

In this case, agent 1 will participate even if agent 2 declines. Given agent 1�s

participation, it is su¢ cient to o¤er agent 2 only c � w2(1) to induce his partic-

ipation, as w2(1) > 0. Hence the contracts (c; c � w2(1)), while more expensive

than the partial implementation, induce participation in a unique equilibrium. We

refer to such contracts as full implementation contracts, and we will consider full

implementation contracts for the rest of the example.

Let�s assume further that externalities are symmetric, hence w1(2) = w2(1) > 0:

In this case, the decision of which agent is to receive a higher payo¤ is arbitrary,

as the cost of both contract sets (c; c � w2(1)) and (c � w1(2); c) is identical.
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Suppose now that externalities are asymmetric, say, w01(2) = w1(2)+" and w
0
2(1) =

w2(1) � ", when " > 0; so that w01(2) > w02(1): Note that the sum of externalities

remains unchanged. In this case, clearly, the principal would prefer to o¤er agent 2

a higher payo¤ as the payments in (c�w01(2); c) are lower than the alternative full

implementation contracts (c; c � w02(1)): To get the cheaper full implementation

contracts, the principal exploits the fact that agent 1 favors 2 more than agent 2

favors 1, and thus gives preferential treatment to agent 2 by providing him with a

higher incentive. We will later provide a general result, and demonstrate that the

set of full implementation contracts that minimize the principal�s cost is based on

these bilateral relationships between the agents.

This simple example also demonstrates that the principal bene�ts from higher

asymmetry between agents� externalities (i.e., lower mutuality). Note that the

principal�s optimal cost in the full implementation is 2c�w01(2) = 2c�w1(2)� ":

This observation is extended later in the paper. Moreover, we show that the cost

di¤erence between the more expensive full implementation contracting scheme

and the partial implementation is decreasing with the level of asymmetry. In this

example, the di¤erence between the two types of contracting schemes is simply

w2(1)� ": Therefore, the level of asymmetry is a signi�cant consideration both at

the agents�selection stage and at the decision of whether to use a partial or full

implementation contracting scheme.

3 The Model

A participation problem is given by a triple (N;w; c) where N is a set of n agents.

The agents�decision is binary: participate in the initiative or not. The structure

of externalities w is an n� n matrix specifying the bilateral externalities between

the agents. An entry wi(j) represents the added value from participation in the
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initiative of agent i when agent j participates. Agents gain no additional bene�t

from their own participation, so wi(i) = 0: Agents� preferences are additively

separable; i.e., agent i�s utility from participating jointly with a group of agents

M is
P

j2M wi(j) for every M � N . In one of the extensions we consider a model

in which agents�preferences are non-additive; i.e., externalities are de�ned over all

subsets of agents in group N:

We assume that the externality structure w is �xed and exogenous. Also, c is

the vector of the outside options of the agents. For simplicity, and with a slight

abuse of notation, we assume that outside option is constant and equals to c for all

agents. In the extensions section we demonstrate that our results hold also when

the outside options are a¤ected by the participation choices of the agents.

We assume that contracts o¤ered by the principal are simple and descriptive

in the sense that the principal cannot provide payo¤s that are contingent on the

participation behavior of other agents. Many of the examples discussed above

seem to share this feature. Based on the data used by Gould et al. (2005) which

includes contractual provisions of over 2,500 stores in 35 large shopping malls in

the US, there is no evidence that contracts make use of such contingencies. The

theoretical foundation for the absence of such contracts is beyond the scope of this

paper. One possible explanation is the complexity of such contracts. In Section 5

we demonstrate that our analysis remains valid even if we allow contingencies to

be added to the contracts.

The set of contracts o¤ered by the principal can be described as an incentives

vector v = (v1; v2; :::; vn) by which agent i receives a payo¤ of vi if he decides to

participate and zero otherwise. vi is not constrained in sign and the principal can

either pay or charge the agents but he cannot punish agents for not participating

(limited liability). Given a contracting scheme v; agents face a normal form game
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G(v):34Each agent has two strategies in the game: participation or abstention. For

a given set M of participating agents, each agent i 2 M earns
P

j2M wi(j) + vi

and each agent j =2M earns c;his outside option.

4 Contracting with Positive Externalities

Positive externalities are likely to arise in many contracting situations. Network

goods, opening stores in a mall and attracting customers, contributing to public

goods, are a few such examples. In this section we consider situations in which

agents bene�t in various degrees from the participation of the other agents in

the group. Suppose that wi(j) > 0 for all i; j 2 N , such that i 6= j: In this

case, agents are more attracted to the initiative as the set of participants grows.

We demonstrate how an agent�s payment is a¤ected by the externalities that she

induces on others as well as by the externalities that others induce on her. We

will also refer to how changes in the structure of externalities a¤ect the principal�s

welfare.

As a �rst step toward characterizing the optimal full implementation contracts,

we show in Proposition 1 that an optimal contracting scheme is part of a general

set of contracts characterized by the divide-and-conquer5 property. This set of

contracts is constructed by ranking agents in an arbitrary fashion, and by o¤ering

each agent a reward that would induce him to participate under the belief that all

3We view the participation problem as a reduced form of the global optimization problem
faced by the principal, which involves both the selection of the optimal group for the initiative
and the design of incentives. Speci�cally, let U be a (�nite) universe of potential participants.
For each N � U let v�(N) be the total payment made in an optimal mechanism that sustains the
participation of the set of agents N . The principal will maximize the level of net bene�t she can
guarantee herself which is given by the following optimization problem: maxN�U [u(N)�v�(N)],
where u(N) is the principal�s gross bene�t from the participation of the set N of agents and is
assumed to be strictly monotonic with respect to inclusion; i.e., if T  S, then u(T ) < u(S).

4In the extensions section we also consider the case of a sequential o¤ers game.
5See Segal (2003) and Winter (2004) for a similarly structured optimal incentive mechanism

in a setting of homogeneous externalities.
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the agents who precede him in the ranking participate and all subsequent agents

abstain. Due to positive externalities, �later� agents are induced to participate

(implicitly) by the participation of others and thus can be o¤ered smaller (ex-

plicit) incentives. More formally, the divide-and-conquer (DAC) contracts have

the following structure:

v = (c; c� wi2(i1); c� wi3(i1)� wi3(i2); :::; c�
X
k

win(ik))

where ' = (i1; i2; :::; in) is an arbitrary order of agents. We say that v is a DAC

contracting scheme with respect to the ranking '. The following proposition, which

is similar to the analysis in Segal (2003, subsection 4.1.1) provides a necessary

condition for the optimal contracts.

Proposition 1 If v is an optimal full implementation contracting scheme then

it is a divide-and-conquer contracting scheme.

Note that given contracting scheme v; agent i1 has a dominant strategy in the

game G(v) to participate.6 Given the strategy of agent i1, agent i2 has a dominant

strategy to participate as well. Agent ik has a dominant strategy to participate

provided that agents i1 to ik�1 participate as well. Therefore, contracting scheme v

sustains full participation through an iterative elimination of dominated strategies.

4.1 Optimal Ranking

The optimal contracting scheme satis�es the divide-and-conquer property with

the ranking that minimizes the principal�s payment. The optimal ranking is de-

termined by a virtual popularity tournament among the agents, in which each

agent is �challenged�by all other agents. The results of the matches between all
6Since rewards take continuous values we assume that if an agent is indi¤erent then he chooses

to participate.
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pairs of agents are described by a simple and complete7 directed graph G(N;A),

when N is the set of nodes and A is the set of arcs. N represents the agents, and

A � N � N represents the results of the matches, which is a binary relation on

N . We refer to such graphs as tournaments.8 More precisely, the set of arcs in

tournament G(N;A) is as follows:

(1) wi(j) < wj(i) () (i; j ) 2 A

(2) wi(j) = wj(i) () (i; j) 2 A and (j; i) 2 A
The interpretation of a directed arc (i; j) in the tournament G is that agent j

values mutual participation with agent imore than agent i values mutual participa-

tion with agent j. We simply say that agent i beats agent j whenever wi(j) < wj(i).

In the case of a two-sided arc, i.e., wi(j) = wj(i); we say that agent i is even with

agent j and the match ends in a tie.

In characterizing the optimal contracts we distinguish between the case in

which the tournament is cyclic and acyclic. We say that a tournament is cyclic

if there exists at least one node v for which there is a directed path starting and

ending at v; and acyclic if no such path exists for all nodes:9 The solution for cyclic

tournaments relies on the acyclic solution, and therefore the acyclic tournament is

a natural �rst step.

4.2 Optimal Ranking for Acyclic Tournaments

A ranking ' is said to be consistent with tournament G(N;A) if for every pair

i; j 2 N if i is ranked before j in '; then i beats j. In other words, if agent i is

ranked higher than agent j in a consistent ranking, then agent j values agent i

more than agent i values j. We start with the following graph theory lemma:

7A directed graph G(N;A) is simple if (i; i) =2 A for every i 2 N and complete if for every
i; j 2 N at least (i; j) 2 A or (j; i) 2 A.

8We allow that (i; j) and (j; i) are both in A.
9By de�nition, if (i; j) 2 A and (j; i) 2 A; then the tournament is cyclic.
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Lemma 1 If tournament G(N;A) is acyclic, then there exists a unique ranking

that is consistent with G(N;A).

We refer to the unique consistent ranking proposed in Lemma 1 as the tourna-

ment ranking.10 In the tournament ranking, each agent�s location in the tourna-

ment ranking is determined by the number of his wins. Hence, the agent ranked

�rst is the agent who won all matches and the agent ranked last lost all matches. As

we demonstrate later, there may be multiple solutions when tournamentG(N;A) is

cyclic. Proposition 2 provides the solution for participation problems with acyclic

tournaments, and shows that the solution is unique.

Proposition 2 Let (N;w; c) be a participation problem for which the cor-

responding tournament G(N;A) is acyclic. Let ' be the tournament ranking of

G(N;A): The optimal full implementation contracting scheme is given by the DAC

with respect to ':

The intuition behind Proposition 2 is based on the notion that if agents i; j 2 N

satisfy wi(j) < wj(i) then the principal is able to reduce the cost of incentives by

wj(i); rather than by only wi(j); by giving preferential treatment to i and placing

him higher in the ranking: Applying this notion to all pairs of agents minimizes

the principal�s total payment to the agents, since it maximizes the inherent value

of the participants from the participation of the other agents.

The optimal contracting scheme can be viewed as follows. First the principal

pays the outside option c for each one of his agents. The winner of each match in

the virtual tournament is the agent who imposes a higher externality on his com-

petitor. The loser of each match pays the principal an amount equal to the bene�t

that he gets from mutually participating with his competitor. The total amount

10The tournament ranking is actually the ordering of the nodes in the unique hamiltonian path
of tournament G(N;A):
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paid depends on the size of bilateral externalities and not merely on the number

of winning matches. However, the higher agent i is located in the tournament, the

lower is the total amount paid to the principal.

An intuitive solution for the participation problem is to reward agents according

to their level of popularity in the group, such that the most popular agents would

be the most rewarded. A possible interpretation of popularity in our context would

be the sum of externalities imposed on others by participation, i.e.,
Pn

j=1wj(i).

However, as we have seen, agents�ranking in the optimal contracting scheme is

determined by something more re�ned than this standard de�nition of popularity.

Agent i�s position in the ranking depends on the set of peers that value agent i�s

participation more than i values theirs. This two-way comparison may result in

a di¤erent ranking than the one imposed by a standard de�nition of popularity.

This can be illustrated in the following example in which agent 3 is ranked �rst in

the optimal contracting scheme despite being less �popular�than agent 1.

Example 1 Consider a group of four agents with an identical outside option c =

20. The externality structure of the agents is given by matrix w; as shown in Figure

1. The tournament G is acyclic and the tournament ranking is ' = (3; 1; 2; 4).

Consequently, the optimal contracts set is v = (20; 17; 14; 10), which is the divide-

and-conquer contracting scheme with respect to the tournament ranking. Note that

agent 3 who is ranked �rst is not the agent who has the maximal
Pn

j=1wj(i):

Figure 1
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The derivation of the optimal contracting scheme requires the rather elaborate

step of constructing the virtual tournament. However, it turns out that a sub-

stantially simpler formula can derive the cost of the optimal contracts. Two terms

play a role in this formula: the �rst measures the aggregate level of externalities,

i.e., Kagg =
P

i j wi(j); the second measures the bilateral asymmetry between the

agents, i.e., Kasym =
P

i<j jwi(j)� wj(i)j. Hence, Kasym stands for the extent to

which agents induce mutual externalities on each other. The smaller the value of

Kasym the higher the degree of mutuality of the agents. Proposition 3 shows that

the cost of the optimal contracting scheme is additive and declining in these two

measures.

Proposition 3 Let (N;w; c) be a participation problem and Vfull be the prin-

cipal�s cost of the optimal full implementation contracts. If the corresponding tour-

nament G(N;A) is acyclic then Vfull = n � c� 1
2
(Kagg +Kasym) :

An interesting consequence of Proposition 3 is that for a given level of ag-

gregate externalities, the principal�s payment is decreasing with a greater level of

asymmetry among the agents, as stated in Corollary 3.1.

Corollary 3.1 Let (N;w; c) be a participation problem with an acyclic tour-

nament. Let Vfull be the principal�s cost of the optimal full implementation con-

tracts. For a given level of aggregate externalities, Vfull is strictly decreasing with

the asymmetry level of the externalities within the group of agents.

The intuition behind this result is related to the virtual tournament discussed

above. In each match the principal extracts ��nes� from the losing agents. It

is clear that these �nes are increasing with the level of asymmetry (assuming

wi(j) + wj(i) is kept constant). Hence, a higher level of asymmetry allows the

principal more leverage in exploiting the externalities. This observation has im-

portant implications for the principal�s selection stage.
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Consider the comparison between the optimal full and partial implementation

contracts, where in the latter the principal su¢ ces with the existence of a full

participation equilibrium, not necessarily unique. With partial implementation,

the cost for the principal in the optimal contracting scheme is substantially lower.

More speci�cally, in the least costly contracting scheme that induces full partici-

pation, each agent i receives vi = c �
P

j wi(j). However, these contracts entail

a no-participation equilibrium as well; hence coordination is required. The total

cost of the partial implementation contracts is Vpartial = n � c�
P

i j wi(j) and the

principal can extract the full revenue generated by the externalities.

Our emphasis on full implementation is motivated by the fact that under most

circumstances the principal cannot coordinate the agent to play his most-preferred

equilibrium. Brandts and Cooper (2005) report experimental results that speak to

this e¤ect. Agents�skepticism about the prospects of the participation of others

trap the group in the worst possible equilibrium even when the group is small.

Nevertheless, one might be interested in evaluating the cost of moving from partial

to full implementation. The following corollary points out that for a given level

of aggregate externalities, the premium is decreasing with the level of asymmetry.

Hence, the asymmetry level is an important factor in the choice between partial

and full implementation contracting schemes.

Corollary 3.2 Let (N;w; c) be a participation problem with a corresponding

acyclic tournament. Let Vfull be the principal�s cost of the optimal full implemen-

tation contracts and let Vpartial be the equivalent partial implementation contracts.

For a given level of aggregate externalities, Vfull�Vpartial is strictly decreasing with

the level of asymmetry.

We say that a participation problem is symmetric if the asymmetry level is

Kasym = 0 (when wi(j) = wj(i) for all pairs); then the cost of moving from
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partial to full implementation is the most expensive. The other extreme case is

when the externalities are always one-sided; i.e., for each pair of agents i; j 2 N

satis�es that either wi(j) = 0 or wj(i) = 0:11 In this case, the additional cost is

zero and full implementation is as expensive as partial implementation.

It is worth noting that increasing the aggregate level of externalities will not

necessarily increase the principal extraction of revenue in the optimal contracting

scheme. For example, in an asymmetric two-person problem raising slightly the

externality that the less attractive agent induces on the other one will not change

the principal revenue.12 From the perspective of the agents, their reward is not

a continuous increasing function of the externalities they impose on the others.

However, it is possible that a slight change in these externalities may increase

rewards signi�cantly, since a minor change in externalities may change the optimal

ranking and thus a¤ect agents�payo¤s.

The asymmetric case nicely contrasts with the symmetric case, where the prin-

cipal�s surplus increases with any slight increase of the externalities. With partial

implementation, which allows the principal full extraction of surplus, the principal

revenue is sensitive to the values of externalities whether the problem is symmetric

or asymmetric.

4.3 Optimal Ranking of Cyclic Tournaments

In the previous section we demonstrated that the optimal full implementation con-

tracts are derived from a virtual tournament among the agents in which agent i

beats agent j if wi(j) < wj(i). However, the discussion was based on the tour-

nament being acyclic. If the tournament is cyclic, the choice of the optimal DAC

11Since this section deals with positive externalities, assume that wi(j) = " or wj(i) = " when
" is very small.
12It can be shown that in an n-person asymmetric problem one can raise the externalities

in half of the matrix�s entries (excluding the diagonal) without a¤ecting the principal surplus
extraction.
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contracting scheme (i.e., the optimal ranking) is more delicate since Lemma 1 does

not hold. Any ranking is prone to inconsistencies in the sense that there must be

a pair i; j such that i is ranked above j although j beats i in the tournament. To

illustrate this point, consider a three-agent example where agent i beats j, agent

j beats k; and agent k beats i. The tournament is cyclic and any ranking of these

agents necessarily yields inconsistencies. For example, take the ranking fi; j; kg ;

which yields an inconsistency involving the pair (k; i) since k beats i and i is ranked

above agent k. This applies to all possible rankings of the three agents.

The inconsistent ranking problem is similar to problems in sports tournaments,

which involve bilateral matches that may turn out to yield cyclic outcomes. Various

sports organizations (such as the National Collegiate Athletic Association - NCAA)

nevertheless provide rankings of teams/players based on the cyclic tournament

outcome. Extensive literature in Operations Research suggests solution procedures

for determining the �minimum violation ranking� (e.g., Kendall 1955, Ali et al.

1986, Cook and Kress 1990, and Coleman 2005) that selects the ranking for which

the number of inconsistencies is minimized. It can be shown that this ranking is

obtained as follows. Take the cyclic (directed) graph obtained by the tournament

and �nd the smallest set of arcs such that reversing the direction of these arcs

results in an acyclic graph. The desired ranking is taken to be the consistent

ranking (per Lemma 1) with respect to the resulting acyclic graph.13

One may argue that this procedure can be improved by assigning weights to

arcs in the tournament depending on the score by which team i beats team j and

then look for the acyclic graph that minimizes the total weighted inconsistencies.

In fact this approach goes back to Condorcet�s (1785) classical voting paper in

which he proposed a method for ranking multiple candidates. In the voting game,

the set of nodes is the group of candidates, the arcs�directions are the results of

13Multiple rankings may result from this method.
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pairwise votings, and the weights are the plurality in the votings. The solution to

our problem follows the same path. In our framework arcs are not homogeneous

and so they will be assigned weights determined by the di¤erence in the bilateral

externalities. As in Condorcet�s voting paper, we will look for the set of arcs such

that their reversal turns the graph into an acyclic one. While Young (1988) charac-

terized Condorcet�s method axiomatically, our solution results from a completely

di¤erent approach, i.e., the design of optimal incentives to maximize revenues.

Formally, we de�ne the weight of each arc (i; j) 2 A by t(i; j) = wj(i)�wi(j).

Note that weights are always non-negative as an arc (i; j) refers to a situation in

which j favors i more than i favors j: Hence t(i; j) refers to the extent of the one-

sidedness of the externalities between the pairs of agents. If an inconsistency in

the ranking arises due to an arc (i; j), then this implies that agent j precedes agent

i despite the fact that i beats j. Relative to consistent rankings, inconsistencies

generate additional costs for the principal. More precisely, the principal has to

pay an additional t(i; j) when inconsistency is due to arc (i; j) 2 A. To illustrate

this point, consider a two-agent example in which agent 1 beats agent 2. In

the consistent ranking �1 = f1; 2g the payment vector is v1 = fc; c� w2(1)g :

If an inconsistency arises, i.e., the ranking is �2 = f2; 1g then the payment is

v2 = fc; c� w1(2)g and the principal has to pay an additional cost of w2(1)�w1(2)

since w1(2) < w2(1). In other words, the fact that inconsistencies arise in a

ranking prevents the principal from fully exploiting the externalities between the

agents, as inconsistencies increase the payment relative to the consistent ranking.

Therefore the principal�s goal would be to select a ranking with the least costly

inconsistencies.

For each subset of arcs S = f(i1; j1); (i2; j2); :::; (ik; jk)g we de�ne t(S) =P
(i;j)2S t(i; j); which is the total weight of the arcs in S. For each graph G and

subset of arcs S we denote by G�S the graph obtained from G by reversing the
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arcs in the subset S. Consider a cyclic graph G and let S� be a subset of arcs that

satis�es the following:

(1) G�S� is acyclic.

(2) t(S�) � t(S) for all S such that G�S� is acyclic.

Then, G�S� is the acyclic graph obtained from G by reversing the set of arcs

with the minimal total weight, and S� is the set of pairs of agents that satis�es

inconsistencies in the tournament ranking of G�S�. Proposition 4 shows that the

optimal ranking of G is the tournament ranking of G�S� since the additional cost

from inconsistencies, t(S�); is the lowest.

Proposition 4 Let (N;w; c) be a participation problem with a cyclic tour-

nament G. Let ' be the tournament ranking of G�S�. Then, the optimal full

implementation contracts are the DAC with respect to ':

In the following example we demonstrate how the optimal contracts are ob-

tained in the case of cyclic tournaments with positive externalities.

Example 2 Consider a group of four agents each having identical outside op-

tion c = 20. The externality structure and the equivalent cyclic tournament are

demonstrated in Figure 2. The reversal of the arcs of both subsets S�1 = f(2; 4)g;

S�2 = f(1; 2); (3; 4)g provide acyclic graphs G�S�1 and G�S�2 with minimal weights.

The corresponding tournament rankings are '1 = (4; 3; 1; 2) and '2 = (3; 2; 4; 1).

Hence, the optimal contracts are v1 = (20; 13; 13; 12) and v2 = (20; 16; 10; 12):

Note that the total cost for the principal, 58, is identical in these two contracting

schemes.
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Figure 2

In the symmetric case, the principal cannot exploit the externalities among the

agents, as Kasym = 0; and the total payment made by the principal is identical for

all rankings. This can be seen to follow from Proposition 4 as well by noting that

the tournament has two-way arcs connecting all pairs of agents, and t(i; j) = 0 for

all i; j and t(S) is uniformly zero. An intriguing feature of the symmetric case is

that all optimal contracting schemes are discriminative in spite of the fact that all

agents are identical.

Corollary 4.1 When the externality structure w is symmetric then all DAC

contracts are optimal.

We can now provide the analogue version of Proposition 3 for the cyclic case. In

this case, the optimal ranking has an additional term Kcyclic = t(S
�) representing

the cost of making the tournament acyclic, i.e., the cost the principal needs to

bear due to the inconsistencies.

Proposition 5 Let (N;w; c) be a participation problem. Let Vfull be the prin-

cipal�s optimal cost of a full implementation contract. Then Vfull = n �c� 1
2
(Kagg+

Kasym) +Kcyclic:

Corollary 3.1 still holds for pairs of agents that are not in S�. More speci�cally,

if we increase the level of asymmetry between pairs of agents that are outside of S�;
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we reduce the total expenses that the principal incurs in the optimal contracting

scheme.

5 Extensions

In this section we discuss the implications of the assumptions we made so far. We

demonstrate that the optimal contracts remain optimal if we assume sequential

participation choices when the principal desires to implement participation in a

subgame perfect equilibrium with the property that each player has a dominant

strategy on the subgame that he/she plays. In addition, we show that even when

outside option is a¤ected by the agents�participation choices, the construction of

the optimal contracts remains unchanged. We demonstrate that when contracts

can be contingent on the participation of a subset of the agents, then the optimal

contracts are closely related to the analysis above. Finally, we show that our

analysis is valid in more general setups in which externalities can be either negative

or positive. Moreover, the solution is also relevant to non-additive externality

structures.

5.1 Sequential Participation Decisions

We �rst point out that our analysis applies to any sequential game except for the

one of perfect information, i.e., when each player is fully informed about all the

participation decisions of his predecessors. Indeed, this extreme case of perfect

information is a strong assumption as agents rarely possess the participation deci-

sions of all their predecessors. Any partial information environment implies that

some actions are taken simultaneously, and therefore the divide-and-conquer con-

tracting scheme and the virtual tournament apply. Nevertheless, it is interesting

to point out that our analysis is also relevant to the extreme case of perfect infor-
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mation. Consider a game in which players have to decide sequentially about their

participation based on a given order. Suppose that the principal wishes to imple-

ment the full participation in a subgame perfect equilibrium with the additional

requirement that each player has a dominant strategy on the subgame in which

he/she has to play.14 It is easily veri�ed that the optimal contracting scheme in

this framework is the DAC applied to the order of moves; i.e., the �rst moving

player is paid c and the last player is paid c �
P

j2N wi(j). Under this contract-

ing scheme each player has a dominant strategy on each subgame. Assume now

that the principal can control the order of moves (which he can do by making the

o¤ers sequentially and setting a deadline on agents�decisions). Then the optimal

sequential contracting scheme is exactly identical to the one provided in previ-

ous sections for the simultaneous case. If the principal su¢ ces with a standard

subgame perfect equilibrium (without the strategy dominance condition), then

the optimal contracting scheme will allow him to extract more and he will pay

c�
P

j2N wi(j) to all agents.

5.2 Participation-dependent Outside Options

In many situations non-participating agents are a¤ected by the participation choices

of other agents. Consider the case of a corporate raider who needs to acquire the

shares of N identical shareholders to gain control (similar to Grossman and Hart

1980). If the raider is enhancing the value of the �rm when he holds a larger

stake in the �rm, then selling shareholders impose positive externalities on non-

participating agents. If the raider gains private bene�ts from the �rm which will

decrease its value, then selling shareholders induce negative externalities on the

non-participating agents.

14Such a requirement may re�ect the principal�s concern that a player will fail to apply complex
backward induction reasoning
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In this section we consider the case in which the agents� outside option is

partly determined by the agents who choose to participate. For a given group of

agents P � N who participate, we de�ne the outside option of non-participants

as c + �
P

j2P wi(j): In the former analysis we assumed � = 0:15 Segal (2003)

de�nes externalities as increasing (decreasing) when an agent is more (less) eager to

participate when more agents participate. In our setup, eagerness to participate is

identity-dependent. When � � 1; we say that agents are more eager to participate

when highly valued agents are choosing to participate. If � > 1; the bene�ts

of non-participation outweigh the bene�ts of participation when highly valued

agents choose to participate; hence agents are less eager to participate. In Segal�s

terminology, the former case is equivalent to increasing externalities, while the

latter is equivalent to decreasing externalities.

Following the analysis of Proposition 1, if v is an optimal full implementation

contracting scheme then it is easy to verify that under the current setup, v is a

DAC of the form:

v = (c; c� (1� �)wi2(i1); :::; c� (1� �)
X
k

win(ik))

where ' = (i1; i2; :::; in) is an arbitrary ranking. In this setup, the only change

relative to Proposition 1 is the existence �: This leads to the following proposition:

Proposition 6 Let (N;w; c�) be a participation problem where c�i = c +

�
P

j2P wi(j) and P � N is a group of participating agents. Let G(N;A) be

the equivalent tournament. The optimal full implementation contracts are given

as follows:

15The following analysis can be generalized by specifying an externalities matrix q that de�nes
agents�bene�ts from participating agents, when they do not participate. It can be shown that in
such a case our analysis remains unchanged. However, for similicity we choose to use the simpler
and more intuitive outside option form of c+ �

P
j2C wi(j):
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(1) for � < 1; DAC contracts with respect to the optimal ranking.16

(2) for � = 1; DAC contracts with respect to any ranking.

(3) for � > 1; DAC contracts with respect to the optimal ranking of G�N .

A few interesting observations arise. First, when � = 1; the bene�t from

participation is identical to the bene�t of non-participation and thus incentives

do not rely on externalities. Second, when � < 1; the bene�ts of participation

outweigh the bene�ts of staying out; the optimal ranking is identical to the one

outlined in Proposition 4. The contracting scheme provides lower incentives for the

agents who are more eager to participate when other agents participate. When � >

1, agents bene�t more from non-participation. The optimal ranking is determined

with respect to G�N , the graph obtained from G by reversing all the arcs. Agents

who bene�t more from joint participation should be ranked higher. The lower

they are ranked, the more costly will be the rewards necessary to induce their

participation, as their value from non-participation is increasing when valuable

agents choose to participate.

5.3 Contingent Contracts

Our model assumes that the principal cannot write contracts that make a payo¤

to an agent contingent on the participation of other agents. With such contracts

the principal can extract the total surplus from positive externalities among the

agents.17 We �nd such contracts not very descriptive. Based on the data used

by Gould et al. (2005) which consists of contractual provisions of over 2,500

16As described in Section 4.
17One possible contracting scheme is to o¤er agent i a participation reward of vi = c �P
j2N wi(j) if each of the other agents participates, and a reward of vi = c if the any of the con-

tingencies is violated. Such contracts will sustain full participation as a unique Nash equilibrium,
and the principal extracts the entire surplus.
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stores in 35 large shopping malls in the US, there is no evidence that contracts

make use of such contingencies. Shopping malls are a natural environment for

contingent contracting; the fact that these contracts are still not used makes it

likely that in other, more complicated settings, such contracts are exceptional as

well. The theoretical foundation for the absence of such contracts is beyond the

scope of this paper. However, one possible reason for this absence is the complexity

of such contracts, especially in environments where participation involves long-

term engagement and may be carried out by di¤erent agents at di¤erent points

in time. We point out that if partial contingencies are used, i.e., participation is

contingent upon a subset of the group, our model and its analysis remain valid.

Speci�cally, for each player i; let Ti � N be the contingency set, i.e., the set

of agents whose participation choice can appear in the contract with agent i.

Let T = (T1; T2; :::; Tn) summarize the contingency sets in the contracts. The

optimal contracts under the contingency sets are closely related to the original

optimal contract (when contingencies are not allowed). More precisely, Let w

be the original matrix of externalities: Denote by wT the matrix of externalities

obtained from w by replacing wi(j) with zero whenever j 2 Ti. Lemma 6.1 in

the Appendix shows that the optimal full implementation contracting scheme is

as follows: agent i gets c if one of the agents j 2 Ti is not participating; i.e., the

contingency requirement is violated.18 If all agents in Ti participate, then agent i

gets the payo¤ vi(N;wT ; c)�
P

j2Ti wi(j), where vi(N;w
T ; c) is the payo¤ for agent

i for the participation problem (N;wT ; c) under no-contingencies (as developed in

Section 4).

18In fact, the principal can o¤er lower payments to the agents in case of contingencies�viola-
tions, by exploiting the participation of other agents. However, these o¤-equilibrium payments
do not a¤ect the principal�s payment in the full participation equilibrium.
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5.4 Mixed Externalities Structure

So far we have limited our discussion to environments in which agents�participa-

tion positively a¤ects the willingness of other agents to participate. However, in

many situations this is not the case, such as in environments of congestion. Traf-

�c, market entry, and competition among applicants all share the property that

the larger the number of agents who participate, the lower the utility of each par-

ticipant is. The heterogenous property in our framework seems quite descriptive

in some of these examples. In the context of competition it is clear that a more

quali�ed candidate/�rm induces a larger negative externality. It is also reasonable

to assume, at least for some of these environments, that the principal desires a

large number of participants in spite of the negative externalities that they induce

on each other.

In Proposition 7 we demonstrate that in order to sustain full participation as

a unique Nash equilibrium under negative externalities the principal has to fully

compensate all agents for the participation of the others.

Proposition 7 Let (N;w; c) be a participation problem with negative exter-

nalities. Then optimal full implementation contracts v are given by vi = c +P
i6=j jwi(j)j ; and v is unique.

Naturally, real-world multi-agent contracting problems may capture both pos-

itive and negative types of externalities. In social events, individuals may highly

bene�t from some of the invited guests, while preferring to avoid others. In a mall,

the entry of a new store will bene�t some stores as it attracts more customers, but

impose negative externalities on its competitors.

Our analysis of the mixed externalities case is based on the following binary

relation. We say that an agent i is non-averse to agent j if wi(j) � 0; and we

write it as i � j:We will assume that � is symmetric and transitive, i.e., i � j =)
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j � i and if i � j and j � k then i � k: Note that this assumption does not imply

any constraint on the magnitude of the externalities, but just on their sign. While

the symmetry and transitivity of the non-averse relation seem rather intuitive

assumptions, not all strategic environments satisfy them. These assumptions are

particularly relevant to environments where the selected population is partitioned

into social, ethnic, or political groups with animosity potentially occurring only

between groups but not within groups. We analyze a speci�c example of this sort

of environment in Section 6.

It turns out that the optimal solution of participation problems with symmetry

and transitivity of the non-averse relation is derived by a decomposition of the

participation problem into two separate participation problems: one that involves

only positive externalities, and the other that involves only negative externalities.

This is done by simply decomposing the externalities matrix into a negative and

a positive matrix. In the following proposition we show that the decomposition

contracting scheme, a contract set which is the sum of the two optimal contracts

of the two decomposed participation problems, is the optimal contracting scheme

for the mixed externalities participation problem.

Proposition 8 Consider a participation problem (N;w; c) . Let (N;w+; c) be

a participation problem such that w+i (j) = wi(j) if wi(j) � 0 and w+i (j) = 0 if

wi(j) < 0, and let u+ be the optimal full implementation contracts of (N;w+; c).

Let (N;w�; 0) be a participation problem such that w�i (j) = wi(j) if wi(j) < 0 and

w�i (j) = 0 if wi(j) � 0, and let u� be the optimal full implementation contracts

of (N;w�; 0). Then, the decomposition contracting scheme v = u+ + u� induces

a unique full participation equilibrium. Moreover, if agents satisfy symmetry and

transitivity with respect to the non-averse relation, v is the optimal contracting

scheme.
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Proposition 8 shows that the virtual popularity tournament discussed in earlier

sections plays a central role also in the mixed externalities case as it determines

payo¤s for the positive component of the problem. When symmetry and transi-

tivity hold, the principal can exploit the positive externalities to reduce payments.

In this tournament i beats j whenever (1) wj(i) � 0 and wj(i) � 0, and (2)

wj(i) > wi(j). Note that under the non-averse assumptions, the principal pro-

vides complete compensation for the agents who su¤er from negative externalities,

as with the negative externalities case. Finally, it is easy to show that equivalently

to Proposition 5, the principal�s cost of achieving full implementation in a mixed

externalities setting is equivalent to the positive externalities setup, except that

now the principal has to add the compensation for the negative externalities.

5.5 Non-additive Preferences

We propose here an extension of the model in which agents�preferences are non-

additive. A participation problem is described by a group of agents N; and their

outside option is equal to c as noted previously. We assume a general externality

structure, which is given by non-additive preferences of the agents over all subsets

of agents in the group N: More speci�cally, for each i, ui : 2Nnfig �! R: The

function ui(S) stands for the bene�t of agent i from the participation with the

subset S � N : We normalize u(;) = 0: The condition of positive externalities

reads now: for each i and subsets S; T such that T � S we have ui(S) � ui(T ):

Arguments similar to those used in Proposition 1 show that the optimal con-

tracting scheme that sustains full participation as a unique equilibrium also satis-

�es the divide-and-conquer property. Hence, to construct the optimal contracts it

is necessary to construct the optimal ranking of the agents.

Consider a three-agent example, with the following order � = fi1; i2; i3g: The

payo¤ vector in a DAC contracting scheme with ranking � is fc; c � ui2(i1); c �
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ui3(i1; i2)g: Hence, the optimal order would maximize the intrinsic value of par-

ticipation of other agents, ui2(i1) + ui3(i1; i2): More generally, the principal has to

choose � to solve the following optimization problem:

max
�

nX
j=2

uij(i1; :::; ij�1)

We say that agent i beats j if for all S � N such that i; j =2 S we have

ui(S
S
j) � ui(S) < uj(S

S
i) � uj(S):19 Intuitively, i beats j if i�s marginal con-

tribution to the utility of j is greater than j�s marginal contribution to the utility

of i; regardless of subset S at which marginal contributions are being calculated.

Assuming this binary relation to be complete (and not necessarily transitive) en-

ables us to construct a complete directed graph G(N;A) when N is the set of

nodes (which represent the agents), and A is the set of arcs that are de�ned in the

following way: if agent i beats j then (i; j) 2 A: The following result is based on

similar arguments to those used in Proposition 2.

Proposition 9 Let (N; c) be a participation problem with non-additive prefer-

ences, for which the corresponding directed graph G(N;A) is complete and acyclic.

Let ' be the tournament ranking of G(N;A): The optimal full implementation

contracts of (N; c) is given by the DAC contracts with respect to ':

The framework presented here is more general than the separable additive

preferences in that the marginal contribution of agent i to the utility of agent j is

not constant as assumed in the additive separable case, but depends on the set of

other agents who participate in the initiative. Nevertheless, the general structure

of the solution remains unchanged.

19With S = ; we get the condition we had with the additively separable preferences.
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6 Group Identity and Selection

In this section we consider special externality structures to demonstrate how the

selection stage can be incorporated, once we have solved the participation prob-

lem. Assume that the externalities take values of 0 or 1. We interpret it as an

environment in which an agent either bene�ts from the participation of his peer

or gains no bene�t. We provide three examples of group identities in which the

society is partitioned into two groups and agents have hedonic preferences over

members in these groups. We demonstrate how the optimal contracting scheme

proposed in previous sections may a¤ect the selection of the agents in the planning

of the initiative.

(1) Segregation - agents bene�t from participating with their own group�s

members and enjoy no bene�t from participating with members from the

other group. More speci�cally, consider the two groups B1 and B2 such that

for each i; j 2 Bk , k = 1; 2; we have wi(j) = 1. Otherwise, wi(j) = 0.

(2) Desegregation20 - agents bene�t from participating with the other group�s

members and enjoy no bene�t from participating with members of their own

group. More speci�cally, consider the two groups B1 and B2 such that for

each i; j 2 Bk , k = 1; 2; we have wi(j) = 0. Otherwise, wi(j) = 1.

(3) Status - the society is partitioned into two status groups, high and low.

Each member of the society bene�ts from participating with each member of

the high-status group and enjoys no bene�t from participating with members

of the low-status group. Formally, let B1 be the high status group and set

wi(j) = 1 if and only if j 2 B1 (otherwise wi(j) = 0).
20An example could be a singles party.
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Proposition 10 Let (N;w; c) be a participation problem. Let n1 and n2 be the

number of agents selected from groups B1 and B2; respectively, such that n1+n2 =

n. Denote by v(n1; n2) the principal cost of incentivizing agents under the optimal

contracts given that the group composition is n1 and n2. The following holds:

1) under Segregation v(n1; n2) is decreasing with j n1 � n2j:

2) under Desegregation v(n1; n2) is increasing with j n1 � n2j.

3) under Status v(n1; n2) is decreasing with n1.

In the case of Segregation, the principal�s cost of incentives is increasing with

the mixture of groups; hence in the selection stage the principal would prefer to give

precedence to one group over the other. In the Desegregation case the principal�s

cost is declining with mixture; hence in the selection stage the principal would like

to balance between members of the groups. In the Status case the cost is declining

with the number of agents recruited from B1, which will be strongly preferred to

members from B2.

7 Conclusion

In this paper we analyzed a bilateral contracting framework in which external-

ities are heterogeneous. Introducing a complicated structure of heterogeneous

externalities allowed us to explore a few aspects of the multi-agent contracting

environments that are not apparent in the homogeneous case. These include the

impact of externalities asymmetry on payments, the implications of externality

structure on the hierarchy of incentives, and the e¤ect of variations in structures

of externalities on the principal�s payments and agents�rewards.

More speci�cally, greater asymmetry between the agents�bene�ts reduced the

principal�s payment in the full implementation problem. This is an important im-
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plication for the selection stage of the initiative. In addition, externalities asym-

metry turns out to play a role also in the selection between partial and full im-

plementation, as it a¤ects the premium required to sustain full participation as a

unique equilibrium. Greater asymmetry decreases this premium, and thus makes

full implementation more likely.

The hierarchy of incentives is determined by a ranking that results from a

virtual popularity tournament. In the simplest case, an agent i is ranked above

agent j if agent i bene�ts less from the joint participation with agent j than agent

j�s bene�t from agent i:We demonstrated that this ranking of incentives is di¤erent

from the standard ranking that is based on agents�popularity.

We provided a few comparative statics of changes in externality structures.

In an asymmetric participation problem increasing the positive externalities that

some players enjoy from the participation of some other players will not necessar-

ily increase the principal extraction of revenue in the optimal contracting scheme.

This is an important consideration also in the stage of forming the group of agents.

In addition, we show that from the agents�perspective a slight change in external-

ities can lead to a substantial impact on the rewards due to changes in ranking.

Hence, there is a discontinuity in the principal�s payment to induce participation.

This discontinuity in rewards may suggest a preliminary game in which agents

invest e¤ort to increase the positive externalities that they induce on others. For

example, agents can invest in their social skills to make themselves more attractive

guests at social events. A �rm may invest to increase its market share in order to

improve its ranking position in an acquisition game. Under certain circumstances

such an investment may turn out to be quite attractive as we have seen that a

slight change in externalities may result in a substantial gain, due to a change

in the ranking. Our analysis contributes to the understand how to make such

strategic investment pro�table.
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The preliminary game on externalities can be thought of as a network formation

game similar to the ones discussed in the network formation literature (see Jackson

2003 for a comprehensive survey). Speci�cally, consider a selection21 of an optimal

contracting scheme function that maps each matrix of externalities onto a payo¤

vector � : w ! � (payo¤s for agents include both the transfer from the principal

as well as the intrinsic bene�ts from participation). One can think of the matrix of

externalities as a generalized network in the sense that it speci�es the intensity22

of arcs, in contrast to standard networks which only specify whether a link exists.

If we assume that agents can increase bilateral externalities according to a given

cost function then the externalities become endogenous in the model. The new

game will now have two stages. The �rst stage is a network formation game (which

determines the externalities) and the second stage is the participation game. The

analysis of such a game is beyond the scope of this paper but seems to be a natural

next step.
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Appendix

Proof of Proposition 1 Let v = (vi1 ; vi2 ; :::; vin) be an optimal full implementa-

tion contracting scheme of the participation problem (N;w; c). Hence, v generates

full participation as a unique Nash equilibrium. Since no-participation is not an

equilibrium, at least a single agent, say i1, receives a reward weakly higher than

his outside option c. Otherwise, a no-participation equilibrium exists. Due to

the optimality of v his payo¤ would be exactly c. Agent i1 chooses to participate

under any pro�le of other agents�decisions. Given that agent i1 participates and

an equilibrium of a single participation is not feasible, at least one other agent, say

i2, must receive a reward weakly greater than c � wi2(i1). Since v is the optimal

contracting scheme, i2�s reward cannot exceed c�wi2(i1), and under any pro�le of

decisions i2 will participate. Applying this argument iteratively on the �rst k � 1

agents, at least one other agent, henceforth ik; must get a payo¤ weakly higher

than c�
Pk�1

j=1 wik(j), but again, since v is optimal, the payo¤ for agent k must be

equal to c �
Pk�1

j=1 wik(j). Hence, the optimal contracting scheme v must satisfy

the divide-and-conquer property with respect to a ranking '.

Proof of Lemma 1We will demonstrate that there is a single node with n�1

outgoing arcs. Since the tournament is a complete, directed, and acyclic graph

37



there cannot be two such nodes. If such a node does not exist, then all nodes in

G have both incoming and outgoing arcs. Since the number of nodes is �nite, we

get a contradiction to G being acyclic. We denote this node as i1 and place its

corresponding agent �rst in the ranking (hence this agent beats all other agents).

Now let us consider a subgraph G(N1; A1) which results from the removal of node

i1 and its corresponding arcs. Graph G(N1; A1) is directed, acyclic, and complete

and, therefore, following the previous argument, has a single node that has exactly

n� 2 outgoing arcs. We denote this node as i2, and place its corresponding agent

at the second place in the ranking. Note that agent i1 beats agent i2 and therefore

the ranking is consistent so far. After the removal of node i2 and its arcs we get

subgraph G(N2; A2) and consequently node i3 is the single node that has n � 3

outgoing arcs in subgraph G(N2; A2). Following this construction, we can easily

observe that the ranking ' = (i1; i2; :::; in) is consistent among all pairs of agents

and due to its construction is also unique.

Proof of Proposition 2 According to Proposition 1 the optimal contracting

scheme satis�es the DAC property. Hence the optimal contracting scheme is de-

rived from constructing the optimal ranking and is equivalent to minimizing the

sum of incentives, Vfull :

Vfull = min
(j1;j2;:::;jn)

"
n � c�

(
1X
k=1

wj1(jk) +
2X
k=1

wj2(jk) + :::+
nX
k=1

wjn(jk)

)#

= max
(j1;j2;:::;jn)

"
1X
k=1

wj1(jk) +
2X
k=1

wj2(jk) + :::+
nX
k=1

wjn(jk)

#

Since no externalities are imposed on nonparticipants, the outside options of the

agents have no role in the determination of the optimal contracting scheme. We

will show that the ranking that solves the maximization problem of the principal

is the tournament ranking. Let us assume, without loss of generality, that the
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tournament ranking ' is the identity permutation: hence '(i) = i; and W' =P2
k=1w2(k)+ :::+

Pn
k=1wn(k), when W' is the principal�s revenue extraction. By

contradiction, assume that there exists ' 6= � such that W' � W�. First, assume

that � is obtained from having two adjacent agents i and j in ' trade places such

that i precedes j in ' and j precedes i in �: By Lemma 1, agent i beats agent j;

thus W� = W' � wj(i) + wi(j) and W� < W':

Note that since ' is the tournament ranking, agent 1 beats all agents, agent 2

beats all agents but agent 1, and so on. Now consider unconstrained � = fi1; :::; ing

such that ' 6= �: If agent 1 is not located �rst, by a sequence of adjacent swaps

(1; ij), we move agent 1 to the top of the ranking. In each of the substitutions

agent 1 beats ij. Next, if agent 2 is not located at the second place, by a sequence

of adjacent substitutions (2; ij), we move agent 2 to the second place. Again,

agent 2 beats all agents ij. The process ends in at most n stages and produces the

desired order ': As demonstrated, any adjacent substitution results in a higher

extraction, and therefore W� < W': Therefore, the DAC contracting scheme with

respect to the tournament ranking is unique and optimal.

Proof of Proposition 3 Without loss of generality, assume that the tourna-

ment ranking ' is the identity permutation. Hence, under the optimal contracting

scheme, the principal�s payment is Vfull = n �c�
hP1

j=1w1(j) + :::+
Pn

j=1wn(j)
i
:

Denote si(j) = [wi(j) + wj(i)] and ai(j) = [wi(j) � wj(i)]. We can represent

Kagg and Kasym in the following manner: Kagg =
P
i j

wi(j) =
P
i< j

(wi(j) + wj(i)) =P
i<j

si(j) and Kasym =
P
i<j

jai(j)j. Since wi(j) = 1
2
(si(j) + ai(j)) we can rewrite the

principal�s payment as

Vfull = n � c� 1
2

"
1X
j=1

fs1(j) + a1(j)g+ :::+
nX
j=1

fsn(j) + an(j)g
#

= n � c� 1
2

 X
i>j

si(j) +
X
i>j

ai(j)

!
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Note that si(j) = sj(i) and ai(j) = �aj(i): In addition ai(j) > 0 when i > j

as the tournament is acyclic and ranking is consistent. Therefore, Vfull = n � c �
1
2

�P
i<j si(j)�

P
i<j jai(j)j

�
= n � c� 1

2
(Kagg +Kasym) :

Proof of Corollary 3.2 The result follows immediately from Proposition

3, where we show that Vfull = n � c � 1
2

P
i j wi(j) � 1

2

P
i<j jwi(j)� wj(i)j, and

from Vpartial = n � c �
P

i j wi(j). Taken together, the two yield Vfull � Vpartial =
1
2

P
i j wi(j)� 1

2

P
i<j jwi(j)� wj(i)j = 1

2
(Kagg �Kasym).

Proof of Proposition 4 Let G(N;A) be a cyclic graph. Consider a subset

of arcs S such that G�S is acyclic, and the tournament ranking of G�S is ' =

(j1; j2; :::; jn). The payment of the principal Vfull under the DAC contracting

scheme with respect to ' is

Vfull = n � c�
(

1X
k=1

wj1(jk) +
2X
k=1

wj2(jk) + :::+
nX
k=1

wjn(jk)

)

. Note that each (i; j) 2 S satis�es an inconsistency in tournament ranking '.

More speci�cally, if (i; j) 2 S; then i beats j; and agent j is positioned above

agent i: In addition, wi(j) = wj(i) � t(i; j); where wi(j) < wj(i) and t(i; j) > 0:

Consider the following substitution: if (i; j) 2 S then wi(j) = ŵj(i) � t(i; j);

otherwise wi(j) = ŵi(j): This allows us to rewrite the principal�s payment as

Vfull = n � c �
�P1

k=1 bwj1(jk) + :::+Pn
k=1 bwjn(jk)	 + t(S): Note that ŵi(j) =

max(wi(j); wj(i)). Therefore, di¤erent rankings a¤ect only the level of t(S); as the

�rst two terms in Vfull remain indi¤erent to variations in the ranking: This implies

that the subset S with the lowest t(S) brings Vfull to a minimum. Hence, the

optimal contracting scheme is the DAC with respect to the tournament ranking of

G�S�.

Proof of Proposition 5 As demonstrated in Proposition 4, the optimal pay-

ment of the principal is the DAC contracting scheme with respect to the tourna-
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ment ranking of G�S� : According to Proposition 4, this can be written as Vfull =

n �c�
�P1

k=1 bwj1(jk) + :::+Pn
k=1 bwjn(jk)	+t(S) when ŵi(j) = max(wi(j); wj(i)) :

Following the argument of Proposition 3, denote si(j) = [ŵi(j)+ŵj(i)] and ai(j) =

[ŵi(j)�ŵj(i)] and the principal�s payment is Vfull = n�c�1
2

�P
i<j si(j) +

P
i<j jai(j)j

�
+

t(S) = n � c� 1
2
(Kagg +Kasym) +Kcyclic:

Proof of Proposition 6 The cost of a full implementation contracting scheme

is simply Vfull = nc � (1 � �)
P

i

P
j<iwi(j): If � = 1; then the cost does not

depend on the externalities. If � < 1; the minimal cost is obtained by selecting

a ranking that maximizes
P

i

P
j<iwi(j). This is equivalent to the tournament

ranking outlined in Proposition 4. If � > 1; the minimal cost is obtained by

selecting a tournament that minimizes
P

i

P
j<iwi(j): Note that

min
X
i

X
j<i

wi(j) = max
X
i

X
j<i

�wi(j) = max
X
i

X
j<i

qi(j)

when matrix q is de�ned by qi(j) = �wi(j): Denote GQ the corresponding tour-

nament of matrix q and GW the corresponding tournament of matrix w: Because

qi(j) = �wi(j), GQ is received from GW by inverting all arcs. Due to Proposi-

tion 4 we can de�ne � as the optimal ranking that maximizes
P

i

P
j<i qi(j): This

ranking minimizes
P

i

P
j<iwi(j): Therefore, the optimal ranking when � > 1 is

the one with respect to G�N ; the graph obtained by reversing the arcs in graph

GW :

Lemma 6.1 Let (N;w; c) be a participation problem and T = (T1; :::; Tn)

de�ne the contingency sets. De�ne wT to be such that wTi (j) = wi(j) if j =2 Ti
and wTi (j) = 0 otherwise. Let ' be the optimal ranking of the participation problem

(N;wT ; c); and v(N;wT ; c) the corresponding DAC payment vector. The optimal

full implementation contracts set of (N;w; c) is such that it provides c for agent

i if contingencies Ti are violated, and vi = vi(N;wT ; c)�
P

j2Ti wi(j) otherwise.
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Proof of Lemma 6.1 Since externalities are positive, contingencies allow

the principal to reduce payments. In particular, when exploiting all contingencies

allowed in T; the contracting scheme that sustains a unique full participation Nash

equilibrium o¤ers each agent i a reward vi = c �
P

j2Ti wi(j) if contingencies are

met, and c if they are violated. If for all agents Ti = N= fig ; then full extraction of

surplus is possible as a unique equilibrium. However, if only partial contingencies

are allowed, i.e., for some agents Ti � N = fig then the principal can perform even

better than in the contracts outlined above.

Let�s de�ne ŵi(j) = wi(j) if j =2 Ti and ŵi(j) = 0 otherwise. Consider an

arbitrary ranking of agents ' = f1; 2; :::; ng in which the �rst agent is o¤ered

v1 = c �
P

j2T1 w1(j) if contingencies are met, and c otherwise. Agent 1 will

choose to participate. Given the participation of agent 1, we can o¤er agent 2

the following payment: v2 = c � ŵ2(1) �
P

j2T2 w2(j) if contingencies are met,

and c otherwise. Hence, agent 2 will agree to participate given the participation

of agent 1. Following the same argument, we could o¤er the last agent in the

ranking vn = c�
Pn�1

i=1 ŵn(i)�
P

j2Tn wn(j): This set of contracts will sustain full

participation as a unique Nash equilibrium.

The optimal full implementation contracting scheme is thus achieved by obtain-

ing the ranking of agents that will maximize
P

i

P
j>i ŵi(j): Given our de�nition

of ŵi(j), this is equivalent to �nding the optimal ranking of agents in the problem

(N;wT ; c) when wTi (j) = wi(j) if =2 Ti and wTi (j) = 0 otherwise. In other words, in

the optimal full implementation contracting scheme, the payment for participation

for each agent will be vi = vi(N;wT ; c)�
P

j2Ti wi(j) if contingencies are met, and

c otherwise.

Proof of Proposition 7 Given contracting scheme v; participation is a dom-

inant strategy for all agents, under the worst-case scenario in which all other

agents participate since ui =
Pn

i=1wi(j) + vi = c for every i 2 N . To show that
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v is optimal, consider a contracting scheme m for which mi < vi for some agents

and mi = vi for the rest. By contradiction, assume full participation equilibrium

holds under contracting scheme m. Consider an agent i for which mi < vi. If

all other agents are participating, then agent i�s best response is to abstain since

ui =
Pn

i=1wi(j) +mi < c: Hence, v is a unique and optimal contracting scheme.

Proof of Proposition 8 See complementary note.

Proof of Proposition 9 Since the optimal contracting scheme is a DAC, it

is a result of the following optimization problem:

max
(j1;j2;:::;jn)

[uj2(j1) + uj3(j1; j2) + :::+ ujn(j1; :::; jn�1)]

Assume, without loss of generality, that the tournament ranking ' is the identity

permutation; hence '(i) = i; and W' = u2(1) + u3(1; 2)+ :::+ un(1; :::; n� 1): W'

is the principal�s revenue extraction. By contradiction, assume that there exists

a di¤erent ranking denoted by � such that W' � W�. First, assume that � is

obtained from having two adjacent agents i and j (j = i + 1) in ' trade places

such that i precedes j in ' (hence i beats j) and j precedes i in �: Therefore,

� = f1; :::; i � 1; j; i; :::; ng: First note that all the agents that appear after j in

order ' earn the same payo¤ in the DAC contracting scheme of both ' and �.

The same holds also for all the agents who appear before i in the order ': So the

cost of the DAC contracting schemes with respect to ' and � di¤ers only in terms

of the payo¤ of agents i and j; and we get that

W� = W' + A

when A = [ui(1; :::; i� 1; j)� ui(1; :::; i� 1)]� [uj(1; :::; i� 1; i)� uj(1; :::; i� 1)] :

The term A compares the marginal contribution of i relative to the marginal

43



contribution of j, given a subset S = f1; :::; i� 1g: Therefore, A < 0; which entails

W� < W':

Note that since ' is the tournament ranking, agent 1 beats all agents, agent 2

beats all agents except agent 1, and so on. Now consider � = fi1; :::; ing such that

' 6= �: If agent 1 is not located �rst, by a sequence of adjacent swaps (1; ij), we

move agent 1 to the top of the ranking. In each of the substitutions agent 1 beats

ij. Next, if agent 2 is not located at the second place, by a sequence of adjacent

substitutions (2; ij), we move agent 2 to the second place. Again, agent 2 beats

all agents ij. The process ends in at most n stages and produces the desired order

': As demonstrated, any adjacent substitution results in a higher extraction, and

therefore W� < W': Therefore, the DAC contracting scheme with respect to the

tournament ranking is unique and optimal.

Proof of Proposition 10 In both segregated and desegregated environments

the externality structure is symmetric and, following Corollary 5.1, all rankings are

optimal. Consider �rst the segregated environment. Since all rankings are optimal,

a possible optimal contracting scheme is v = (c; :::; c� (n1� 1); c; :::; c� (n2� 1)):

Hence, the optimal payment for the principal is v(n1; n2) = n � c�
Pn1�1

l=1 l �Pn2�1
k=1 k = n � c�

n1(n1�1)
2

� (n�n1)(n�n1�1)
2

. Assuming that v(n1; n2) is continuous

with n1 then
@v(n1;n2)
@n1

= n � 2n1 and maximum is achieved at n�1 = n�2 =
n
2
,

and the cost of incentivizing is declining with j n1 � n2j. In the desegregated

example, a possible optimal contracting scheme is v = (c; :::; c; c � n1; :::; c � n1):

Therefore, the principal�s payment is v(n1; n2) = n � c� (n � n1) � n1. Again, let

us assume that v(n1; n2) is continuous with n1; in which case solving
@v(n1;n2)
@n1

=

2n1�n = 0 results in the minimum payment for the principal in the desegregated

environment being received at n�1 = n�2 =
n
2
; and the cost of incentivizing is

increasing with jn1 � n2j. In a status environment, since group B1 is the more

esteemed group, all agents from B1 beat all agents from B2; therefore agents from

44



B1 should precede the agents from B2 in the optimal ranking. A possible optimal

ranking is ' = fi1; :; ; ; in1 ; j1; :::; jn2g when ik 2 B1, jm 2 B2 and 1 � k � n1,

1 � m � n2: Therefore, a possible optimal contracting scheme is v = (c; c �

1:::; c � (n1 � 1); c � n1; :::; c � n1). The principal�s payment is v(n1; n2) = n � c�Pn1�1
l=1 l � n2 � n1 = n � c � n1(n1�1)

2
� (n � n1)n1 = 1

2
n1 � nn1 + 1

2
n21 + cn. Again,

assuming that v(n1; n2) is continuous with n1;
@v(n1;n2)
@n1

= n1 +
1
2
� n = 0 and the

minimal payment is achieved at n�1 = n� 1
2
. Note that V (n1 = n) = V (n1 = n�1).

Therefore, the best scenario for the principal is when n1 = n. Alternatively, the

cost of incentivizing is decreasing with n1:
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