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Abstract

This paper extends the standard consumption-based asset pricing model to a

heterogeneous-agents framework. The key assumption is that agents are subject to

both aggregate and uninsurable idiosyncratic risks. This leads to a pricing kernel

that depends not only on aggregate per capita consumption growth and in�ation,

as in a conventional representative agent model, but also on the cross-sectional

variance of individual consumption growth. The dynamics of the pricing kernel is

modeled in a state-space representation that allows for maximal correlations among

pricing factors. Under linearity and normality, the model falls within the broad

class of essentially a¢ ne term structure models with a closed form solution of the

yield curve. The maximum-likelihood estimation of the model using quarterly data

on aggregate consumption growth, in�ation and two nominal yields shows that the

model can account for many salient features of the yield curve in the U.S.
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1 Introduction

The US postwar data on zero coupon bond yields show some stylized facts: the average

yield curve is upward sloping - the longer the maturity, the higher the yield; yields are

highly autocorrelated, with increasing autocorrelations at longer maturities; yields of

di¤erent maturities move together, especially for yields of near maturities.

This paper proposes a heterogeneous-agents consumption-based asset pricing model

that accounts for all these key aspects. Two ingredients enable the model to capture these

�ndings. The �rst is that agents are heterogeneous and heterogeneity lies in the fact that

they are subject to uninsurable, persistent, idiosyncratic consumption risk.

The standard representative agent models assume complete market and full consump-

tion insurance, therefore the corresponding empirical work focuses on aggregate per capita

consumption and abstracts from idiosyncratic variations. However, realistically the com-

plete market assumption is suspect since certain types of risks are largely uninsurable,

such as, will I lose my job or not? will I be laid o¤ or not?1 Therefore, the real risk that

agents face are a lot more than is re�ected in the variations of aggregate consumption.

This greater level of consumption risk makes agents more cautious about consuming to-

day and increases their desire for precautionary saving. Thus agents who must bear both

aggregate and idiosyncratic risks are willing to pay a higher price for transferring one unit

of consumption from today to tomorrow, which makes bond prices increase and yields

decrease.

Identifying idiosyncratic risk is key to matching the level of yields observed in the

data, since yields predicted in a representative agent model with aggregate consumption

alone are usually too high. For example, Piazzesi and Schneider (2006) have to use a

large subjective discount factor (� = 1:005) to reduce yields predicted by a representative

agent model with Epstein-Zin recursive preferences. Within the same representative agent

framework but using power utility and robustness concern to model uncertainty, Xu (2008)

�nds that average nominal yields are on the order of 7.8 percent, while the data show,

1Tests by, for example, Cochrane (1991), Mace (1991) and Nelson (1994) also reject the full consump-

tion insurance hypothesis.
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for example, 5.15 percent for the yield on a 3-month nominal bond. With the presence

of idiosyncratic risk, this paper successfully generates nominal yields that are close to the

data level. The model also predicts reasonable yields for real bonds. For example, the

3-month real rate is around 1.4 percent.

In modeling idiosyncratic risk, I build on the framework of Constantinides and Du¢ e

(1996). Their main result �no trade theorem � shows that if idiosyncratic shocks are

persistent (follow a certain martingale process), agents will not �nd it useful to trade

in assets to insure against such shocks. Therefore, idiosyncratic income shocks translate

into idiosyncratic consumption risk, and the Euler equation of consumption in a repre-

sentative agent framework is replaced by an Euler equation that depends not only on

the aggregate per capita consumption growth but also on the cross-sectional variance of

individual consumption growth. This gives rise to the relevant no-arbitrage pricing kernel

in the economy. More speci�cally, it is composed of three factors: aggregate consumption

growth, cross-sectional variance of individual consumption growth, and in�ation when the

empirical �ndings are usually in nominal terms.

Idiosyncratic consumption risk is clearly not enough. To capture the positive slope

of the yield curve, we also need the second ingredient: a model describing agents�beliefs

about the stochastic process for the pricing factors. I consider a speci�cation where the

dynamics of these three factors are modeled jointly in a state-space representation. Quar-

terly data on aggregate per-capita consumption growth, in�ation and yields (speci�cally,

the 3-month and the 5-year nominal yields) are used to estimate the model. Di¤erent

from other papers examining idiosyncratic risk and its e¤ect on asset pricing (e.g., see

Cogley (2002), Brav, Constantinides and Geczy (2002)), this paper didn�t use household

consumption data to construct the cross-sectional variance. Instead, I model the cross-

sectional variance in the state vector and use yields to reverse engineer it. As warned in

Cogley (2002), the presence of measurement error is a serious problem when using house-

hold consumption data, such as the consumer Expenditure Survey (CEX). Furthermore,

CEX has only been available since 1980, which is too short a time to match other quarterly
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data I have on growth, in�ation and yields, which start from 1952.2 Since cross-sectional

variance is among the three factors in the pricing kernel that prices bonds, using observed

yields of multi-period bonds would help to identify the cross-sectional variation that gives

rise to them.

The estimated model shows that these three factors capture a number of features

of observed yields. In particular, it implies that both real and nominal yield curves

are upward sloping. This can be intuitively explained from a decomposition of the risk

premium on long-term bonds into individual conditional covariances among three pricing

factors and their expected future values.

For example, as in Piazzesi and Schneider (2006), the conditional covariance between

in�ation and expected future consumption growth is negative; that is, in�ation is "bad

news" for future consumption growth. Positive in�ation surprises not only make nominal

bonds have low real returns, but also forecast low future consumption growth. With

the presence of idiosyncratic risk, this "bad news" e¤ect of in�ation is even ampli�ed,

because in�ation is also positively correlated with expected future idiosyncratic variation,

meaning that high in�ation also forecasts high future idiosyncratic variation. The fact

that nominal bonds pay o¤ little precisely when the outlook of future worsens makes them

unattractive assets to hold. Since long bonds pay o¤ even less than short bonds when

in�ation - and hence bad news - arrives, agents require a term spread, or high yields, to

hold them. This explains why nominal bonds command an in�ation risk premium over

real bonds, and more importantly, why the nominal yield curve is upward sloping.

Besides, the conditional covariance between consumption growth and expected future

idiosyncratic risk is positive. This is important in understanding why the real yield curve

is upward sloping. A high expected idiosyncratic risk in the future increases agents�

desire for precautionary saving and thus raises the price of bonds today. This means

bondholders�wealth increases in good times (marginal utility is low), and decreases in

2The PSID data, on the other hand, has a relatively longer sample, starting from 1968. However,

one shortcoming of PSID is that data are available only for food consumption, and there are legitimate

concerns about whether this is adequate for studying problems related to intertemporal substitution and

self-insurance.
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bad times (marginal utility is high). So they require a premium to o¤set this risk.

In calculating yields at all maturities, I use the technique of a¢ ne bond pricing. Under

linearity and normality, the state space model leads to reduced solutions for bond yields;

that is, yields of all maturities are a¢ ne functions of the pricing factors. Introducing

a¢ ne bond pricing techniques improves the e¢ ciency of the calculation and provides

insight into the model. More speci�cally, the model produces over 97% of the volatility

in quarterly nominal yields observed in the data, suggesting that changes in expected

consumption growth, in�ation and idiosyncratic risk are able to account for a vast part

of yield dynamics.

The model contributes to the growing literature that examines the joint behavior of

the yield curve and the macroeconomy. It incorporates the advantages of both the a¢ ne

term structure factor models in �nance and the consumption-based asset pricing models

in macroeconomics.

The factor models in �nance usually describe the yield curve dynamics using no-

arbitrage conditions and then summarize the yield curve with a number of latent factors.3

While being successful in matching the key features of the yield curve observed in the

data, the factor models are generally lacking direct connections to the macroeconomic

environment, without a characterization of the equilibrium in the economy.4

On the other hand, the consumption-based asset pricing model derives yields directly

from the �rst order conditions of the agent�s intertemporal optimization problem and has

an intuitive characterization for the economy and hence the asset risk associated with

it. However, the standard representative agent framework has not found much empirical

support, with a hard time matching the stylized yields data.5

3For example, for the literature on latent or unobservable factor models, see Litterman and Scheinkman

(1991), Du¢ e and Kan (1996), Dai and Singleton (2000); for later work on including macroeconomic

variables as factors, see Ang and Piazzesi (2003).
4In Ang and Piazzesi (2003), macro variables are incorporated through a factor representation for the

pricing kernel. There is no equilibrium characterization of the economy.
5For example, Backus, Gregory, and Zin (1989) examine a dynamic exchange economy with complete

markets and �nd that the model can account for neither the sign nor the magnitude of the average term

premium in the data. Similar results appear in Salyer (1990), Donaldson, Johsen, and Mehra (1990),
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By relaxing the representative agent assumption and taking into account both ag-

gregate and idiosyncratic risks, our analysis not only illuminates the latent factors in

�nance with an economic interpretation, but also improves the empirical performance of

the consumption-based models.

There are also other papers along this line of combination. Most of them are within

the representative agent framework but using non-standard preferences. Besides the 2006

paper of Piazzesi and Schneider mentioned above, Gallmeyer et al (2007) also use the

Epstein-Zin recursive preference. More speci�cally, they combine recursive preferences

with a stochastic volatility model for consumption growth and in�ation. They �nd that

when in�ation is endogenous �related to growth and short rate through a Taylor rule,

the model can provide a good �t for the yield curve. Within the same representative

agent framework, Wachter (2006) uses a habit-persistence preference as in Campbell and

Cochrane (1999) and �nds that the negative correlation between surplus consumption and

the short real rate leads to positive risk premium and an upward sloping yield curve.

The remainder of paper is organized as follows. Section 2 introduces the heterogenous

agents setup and derives the implied asset pricing kernel in the presence of idiosyncratic

risk. Section 3 models the dynamics of the pricing kernel. Section 4 estimates the model.

Section 5 evaluates the model�s implications for bond yields. Section 6 concludes.

2 Idiosyncratic Risk and the Pricing Kernel

I begin the analsysis of the yield curve by solving for equilibrium yields in an endown-

ment economy with heterogenous agents. Following Constantinide and Du¢ e (1996),

agents�preferences are identical. Heterogeneity lies in the fact that they are subject to

uninsurable, persistent, idiosyncratic consumption shocks.

Each agent i has logarithmic expected utility:

E0

1X
t=0

�t lnCit (1)

Boudoukh (1993).
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where � is a subjective disoucnt factor:

Individual consumption, Cit , is determined by the product of an aggregate and an

idiosyncratic stochastic process

Cit = �itCt (2)

where �it = exp[
tX
s=1

(�isxs �
1

2
x2s)]

where Ct is aggregate consumption, �
i
t is idiosyncratic component, and f�isgts=1 are idio-

syncratic shocks, assumed to be standard normal N(0; 1) for all i and t.

The variable xt is, by construction since it multiplies the shock �it, the standard devia-

tion of cross-sectional distribution of individual consumption growth relative to aggregate

growth. To see this, note that

ln(
Cit+1=Ct+1
Cit=Ct

) = ln(
�it+1
�it
)

= �it+1xt+1 �
x2t+1
2

� N(�
x2t+1
2
; x2t+1)

Given this structure, Constantinides and Du¢ e (1996) prove that the individual con-

sumption process in (2) is indeed an equilibrium consumption process, that is, the agent

is exactly happy to consume fCitg without further trading in assets. Note that persis-

tence of the idiosyncratic shocks is necessary for overcoming self-insurance6. Otherwise,

the agent could smooth over idiosyncratic shocks by borrowing and lending. In that case

the resulting equilibrium would closely approximate a complete market allocation. That�s

why early idiosyncratic risk papers found quickly how clever the consumers could be in

getting rid of the idiosyncratic risks by trading the existing set of assets7. Constanti-

nides and Du¢ e get around this problem by making the idiosyncratic risk permanent.

6The process for idiosyncratic consumption shocks �it is a martingale.
7For example, Telmer (1993) and Lucas (1994) calibrate economies in which agents face transitory but

uninsurable income shocks. They conclude that agents are able to come close to the complete markets

rule of complete risk sharing by borrowing and lending or by building up a stock of savings, even though

they are allowed to trade in just one security in a frictionless market.
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Under their no-trade theorem, the agent�s private �rst-order condition for an optimal

consumption-portfolio decison

1 = Et[�(
Cit+1
Cit

)�1Rt+1] (3)

holds exactly.

Furthermore, plugging the individual consumption process into the �rst-order condi-

tion, we can transform the individual Euler equation into an Euler equation that depends

not only on the aggregate consumption growth but also on the cross-sectional variance of

individual consumption growth:

1 = Et[�(
Ct+1
Ct

)�1 exp(x2t+1)Rt+1] (4)

To derive this, �rst substitute Cit with �
i
tCt,

1 = Et[�(
Ct+1
Ct

)�1(
�it+1
�it
)�1Rt+1]

1 = Et[�(
Ct+1
Ct

)�1 exp(�(�it+1xt+1 �
x2t+1
2
))Rt+1]

Then use the law of iterated expectations E[f(�x)] = E[E(f(�x)jx)]: With �it normal

(0; 1);

E[exp(�(�it+1xt+1 �
x2t+1
2
)jxt+1] = exp(x2t+1)

Therefore, we have

1 = Et[�(
Ct+1
Ct

)�1 exp(x2t+1)Rt+1]

This leads to the real pricing kernel (or Stochastic Discount Factor, SDF) that prices

all real assets under consideration

Mt+1 � �(
Ct+1
Ct

)�1 exp(x2t+1) (5)

The random variableMt+1 represents essentially the date t prices of contigent claims that

pay o¤ one unit of consumption at t+1. In particular, a claim is expensive when the state

it is contigent on is "bad". In a representative agent model, the bad state is the one in

which future consumption growth is low. This e¤ect is represented by the �rst term in the
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pricing kernel. Heterogenous agents with uninsurable idiosyncratic risk introduces a new

term - the state is also bad when the cross-sectional variance of individual consumption

growth is high.

In order to speak to the empirical �ndings where we have returns in nominal terms,

it is necessary to model nominal pricing kernel. Denote the nominal price index at time

t as Pt, the Euler equation must hold for the real returns on nominal assets, therefore8

1$

Pt
= Et[Mt+1

R$t+1
Pt+1

]

Rearranging terms and denoting the gross rate of in�ation as �t+1 = Pt+1=Pt, the Euler

equation is reduced to

1$ = Et[
Mt+1

�t+1
R$t+1] = Et[M

$
t+1R

$
t+1]

Therefore, we have the nominal pricing kernel as

M$
t+1 �Mt+1=�t+1 = �(

Ct+1
Ct

)�1(�t+1)
�1 exp(x2t+1) (6)

It represents the date t prices of contigent claims that pay o¤ one dollar at t+ 1.

Taking logarithms, the log nominal pricing kernel is

m$
t+1 = ln � �4ct+1 � �t+1 + x2t+1 (7)

where 4ct+1 = ln(Ct+1) � ln(Ct) represents consumption growth, �t+1 is the rate of

in�ation, and x2t+1 is the cross-sectional variance of individual consumption growth.

The price of a bond that pays one dollar n periods later, denoted as P $nt, is therefore

determined as the expected value of its payo¤ tomorrow weighted by the pricing kernel.

Solving it forward suggests that it is determined by the expected values of future pricing

kernel:

P $nt = Et(P
$
n�1;t+1M

$
t+1) = Et(

nY
i=1

M$
t+i) (8)

8Throughout the paper, I use superscript �$�to denote nominal terms - payo¤s denominated in dollars.

9



Assuming that the log pricing kernel is normally distributed, then by the property of

log-normal distribution, we get log price

p$nt = Et(p
$
n�1;t+1 +m

$
t+1) +

1

2
vart(p

$
n�1;t+1 +m

$
t+1) (9)

= Et(
nP
i=1

m$
t+i) +

1

2
vart(

nP
i=1

m$
t+i)

The yield for a continuously compounded n-period bond is then de�ned from the

relation

y$nt = �
1

n
lnP $nt = �

1

n
Et(

nP
i=1

m$
t+i)�

1

2n
vart(

nP
i=1

m$
t+i) (10)

For a �xed date t, the (nominal) yield curve maps the maturity n of a bond to its yield

y$nt:

Equations (9) and (10) show that log prices and yields of bonds are determined by

expected future consumption growth, in�ation and idiosyncratic variation. Take the short

rate for example

y$1t = � ln � + Et(4ct+1 + �t+1 � x2t+1)�
1

2
V art(4ct+1 + �t+1 � x2t+1) (11)

The e¤ects of expected consumption growth and in�ation are the same as that in a

representative agent model �a high consumption growth in the future makes the agent

save less today, thus interest rate increases; a high in�ation in the future makes the agent

prefer to consume today rather than tomorrow hence raises interest rate. Now with the

presence of idiosyncratic consumption risk, a new term enters and a¤ects yields in the

opposite direction �an increase in expected future idiosyncratic risk leads to a decrease in

yields. This is because an expected high idiosyncratic risk makes the agent more cautious

about consuming today, that is, it increases his desire for precautionary savings. Thus

bond prices increase and yields are reduced.

The variances of consumption growth, in�ation and idiosyncratic risk have the same

e¤ect on yields �as the economy becomes more volatile, the agent saves more. The co-

varainces among three fundamental variables are also crucial. For example, the conditional

covariance between consumption growth and in�ation show that a negative covariance of

consumption growth and in�ation would lead to an increase in nominal rates. The reason
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is, in that case, nominal bonds have low real payo¤s exactly in bad times, which means

that they can not provide a hedge against bad states, therefore, agents would demand

higher nominal yeilds as compensation for holding them.

Therefore, a model of the term structure of interest rates is essentially a model de-

scribing the agents�beliefs about the time-series process of pricing kernel. That�s exactly

what the next section is about.

3 Model of the Fundamental Dynamics

This section outlines the time-series model for consumption growth (4ct+1), in�ation

(�t+1) and idiosyncratic risk (x2t+1). Under linearity and normality, the model leads to

reduced solutions for bond prices and yields, that is, bond prices of all maturities are

exponential-a¢ ne functions of a small set of common state variables (or factors). In-

troducing a¢ ne bond pricing techniques improves the e¢ ciency of the calculation and

provides insight into the model.

3.1 The State-Space Representation

I model the dynamics of consumption growth, in�ation and idiosyncratic risk in a

state space representation, which has the following two main features.

First, consumption growth, in�ation and idiosyncratic risk are correlated, and the

correlation is imposed to allow for the maximal �exibility while still keep the model iden-

ti�able. The importance of the correlation among fundamentals can be seen from the

covariance term in equations (8) and (11): This is consistent with Piazzesi and Schnei-

der (2006), where they model consumption growth and in�ation jointly in a state space

model and �nd that the correlation between growth and in�ation is critical; if in�ation

and consumption growth were independent, the nominal average yield curve would slope

downward even with a recursive preference. Similarly, Gallmeyer et al (2007) examine

the properties of the yield curve when in�ation is exogenous � independent of growth,

and when in�ation is endogenous �related to growth and short rate through a Taylor
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rule. They �nd that when in�ation is exogenous, it is di¢ cult to capture the slope of the

historical average yield curve. In addition to growth and in�ation, in this paper, idiosyn-

cratic risk and its correlation with the other two fundamentals also play important roles.

As for how the correlation is imposed, I follow Dai and Singleton (2000). They provide

a complete speci�cation analysis for a¢ ne term structure models. The parameterization

here is similar to their Gaussian speci�cation.

Second, idiosyncratic risk is directly modeled as a latent variable in the state equa-

tion, and is reverse engineered using the observation of yields. Unlike aggregate con-

sumption growth and in�ation, the data of which are handy, calculating idiosyncratic risk

(cross-sectional variance of individual consumption growth) requires the use of household

consumption data. The literature on using household data, e.g. Consumer Expenditure

Survey data (CEX), suggests that measurement error is a serious problem (e.g., see Cog-

ley, 2002). Besides, CEX has a short sample, starting from 1980, which is not long enough

to match other quarterly data on growth, in�ation and yields. Putting idiosyncratic risk

in the state equation, the plan is to use observed yields to uncover the idiosyncratic risk

that gives rise to them. For the yields used in estimation, I choose the short rate (3-month

rate) and the 5-year rate, which are respectively the short end and the long end of the

yield curve. Including long rate, which contains more forward information, would help to

pin down the agent�s long term forecasts.

The state space model is as follows:

St+1 = �s + A(St � �s) + C"t+1 (12)

Zt+1 = �z +DSt+1 +G�t+1

where Zt+1 � [ 4ct+1 �t+1 y1t+1 y20t+1 ]
0 is the observable vector containing consump-

tion growth, in�ation, 1-quarter yield and 20-quarter yield9. St+1 � [ sct+1 s�t+1 x2t+1 ]
0

is the state vector, with the �rst two elements governing expected consumption growth

and expected in�ation; and the third element as the cross-sectional variance of individual

consumption growth. "t+1and �t+1 are uncorrelated standard normal i:i:d innovations:

9The data are in quarters. Section 4 (estimation) describes the data in details.
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A;C;D;G; �s and �z are parameter matrices and vectors speci�ed as follows

�s =

26664
0

0

�x2

37775 ; A =
26664
a11 0 0

a21 a22 0

a31 a32 a33

37775 ; C =
26664
c11 0 0

c21 c22 0

c31 c32 c33

37775 ;

�z =

26666664
�c

��

�1

�20

37777775 ; D =
26666664
1 0 0

0 1 0

�01

�020

37777775 ; G =
26666664
g11 0

0 g22

0 0

0 0

37777775
The unconditional mean of the state vector is �s, with �x2 being the unconditional mean

of cross-sectional variance (x2t+1) that needs to be estimated. Specifying the �rst two

elements of �s as zero makes the unconditional mean of consumption growth and in�ation

in the measurement equation simply �c and ��: The companion matrix A and the cholesky

decomposition of covariance matrix C are speci�ed to allow for the maximal �exibility in

the correlations of state variables, while still keep the model identi�able. The speci�cation

is similar to the canonical Gaussian representation in Dai and Singleton (2000). However,

with their covariance matrix being diagonal, the conditional correlation between in�ation

and future consumption growth and the conditional correlation between idiosyncratic risk

and future consumption growth or in�ation are pre-assumed to be zero. I relax this by

allowing a full covariance matrix. Yields in the measurement equation are a¢ ne functions

of the state variables, with the intercept coe¢ cients �1; �20(scalars) and slope coe¢ cients

�1; �20 (3� 1 vectors) that I�m going to describe below.

3.2 A¢ ne Bond Pricing

Under normality and linearity of the state space model (12); bond prices de�ned in

equation (8) can be reduced to exponential-a¢ ne functions of the state variables, which

fall within the a¢ ne term structure framework. More precisely, bond prices are given by

P $nt = exp(�n + �
0
nSt) (13)
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where �n and �
0
n can be found through the recursion

�n+1 = �n + ln � � �c � �� + (�
0
n + �x)(I � A)�s +

1

2
(�c + ��)GG

0(�c + ��)
0

+
1

2
[�
0
n + �x � (�c + ��)D]CC 0[�

0
n + �x � (�c + ��)D]0

�
0
n+1 = (�

0
n + �x � (�c + ��)D)A (14)

starting with �0 = 0 and �
0
0 = 01�3. �c =

h
1 0 0 0

i
; �� =

h
0 1 0 0

i
; and

�x = [ 0 0 1 ] are the selecting vectors for 4c, � and x2. These di¤erence equations

are derived by induction. Details are provided in the Appendix.

The n-period yield is therefore

y$nt = �
1

n
lnP $nt = �

1

n
(�n + �

0
nSt) = �n + �

0
nSt (15)

where �n � � 1
n
�nand �

0
n � � 1

n
�
0
n:

This gives the functional forms of �1; �
0
1 for the 1-quarter yield and �20; �

0
20 for the

20-quarter yield in the measurement equation. Since yields are exact a¢ ne functions of

the state variables, there are no pricing errors speci�ed in matrix G:

Introducing a¢ ne bond pricing techniques improves the e¢ ciency of calculation. Yields

of all maturities can be calculated directly from equation (15): It also provides insight into

the model. �n is the intercept coe¢ cient. �n is the slope coe¤cient, which we often refer

to as "yields-factor loadings", since it loads the time-varying state variables into yields

determination. For any �xed date t; the slope of the yield curve �yield spreads between

n-period (n > 1) yield and short rate, y$nt � y$1t; is determined by both �n and �n: For

any �xed maturity n, the time-series dynamics of the yield, however, is determined by �n

wieghted state variables: Therefore, �n a¤ects the level but not the dynamics of yields,

while �n a¤ects both.

4 Estimation

The results of the previous section suggest that the process assumed for expected

consumption growth, in�ation and idiosyncratic risk is an important determinant of yields.

In this section, I focus on estimating the state space model.
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To estimate the state space model, I �rst apply the Kalman Filter algorithm to se-

quentially update the optimal forecasts of the state variables

bSt+1jt = (I � A)�s + AbStjt�1 + APtjt�1D0(DPtjt�1D
0 +GG0)�1(Zt � �z �DbStjt�1)

Pt+1jt = APtjt�1A
0 � APtjt�1D0(DPtjt�1D

0 +GG0)�1DPtjt�1A
0 + CC 0

where bSt+1jt = E[St+1jZt] is the conditional estimates of state variables based on infor-

mation up till date t ; Pt+1jt = E[(St+1 � bSt+1jt)(St+1 � bSt+1jt)0] is the corresponding

MSE of the estimates. The Kalman recursion is intialized by bS1j0, which denotes an es-
timate based on no observation, and its associated MSE P1j0: It�s reasonable to believe

that the process for St is stationary, therefore, I set bS1j0 and P1j0 at its uncondtional
mean and variance. More precisely, bS1j0 = �s and P1j0 = AP1j0A

0 + CC 0,which implies

vec(P1j0) = [I4 � A
 A]�1vec(CC 0).

The state space model can then be estimated using maximum likelihood based on

the assumption that the conditional density of Zt+1 on St+1 is Gaussian with mean and

variance as follows

Zt+1jSt+1; Zt � N(�z + bSt+1jt; DPt+1jtD0 +GG0)

Quarterly data on consumption growth, in�ation and yields are used in estimation.

The data are from Piazzesi and Schneider (2006). More speci�cally, aggregate consump-

tion growth is measured using quarterly NIPA data on nondurables and services; in�ation

is measured using the corresponding price index; bond yields with maturities one year

and longer are from CRSP Fama-Bliss discount data �le; and the 1-quarter short rate is

from CRSP Fama riskfree rate �le.10 The sample period is from the second quarter of

1952 to the last quarter of 2005.

The resulting maximum likelihood estimates, along with their estimated standard er-

rors are displayed in Table 1. To reduce the dimension of free parameters, the uncondtional

means for consumption growth and in�ation are obtained from the sample means directly,

10CRSP: Center for Reseach in Security Prices. The actual bonds outstanding are usually with coupons,

they construct the discount bonds data after extracting the term structure from a �ltered subset of the

available bonds.
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that�s why there is no standard errors reported. And the preference parameter � is set at

a conventional value: 0:98: The data are in percent, for example, �c = 0:823 represents a

mean of 0:823 percent quarterly, that is an annualized mean of 0:823� 4 = 3:292 percent

for consumption growth.

To better understand the estimated dynamics, especially the process for idiosyncratic

variation, I recover the smoothed estimates of the state variables from Kalman recursion.

The Kalman smoother delivers a best estimate of the state conditional on all the data

available. Speci�cally, it is obtained through the recursion

bStjT = bStjt + PtjtA0P�1t+1jt(bSt+1jT � bSt+1jt)
with the corresponding MSE

PtjT = Ptjt + PtjtA
0P�1t+1jt(Pt+1jT � Pt+1jt)(PtjtA

0P�1t+1jt)
0

Figure 1 plots the expected consumption growth implied by the model and the actual

consumption growth data. The expected consumption growth is constructed using the

smoothed estimates of the sate variables, speci�cally, c4ctjT = �c + [ 1 0 0 ]bStjT : The
red dotted lines are 2�standard error bounds from the corresponding MSE PtjT : Figure 1

shows that the expected consumption growth series captures mainly the lower-frequency

�uctuations in actual consumption growth. It explains around 33% of the standard devi-

ation of actual consumption growth.

Similarly, Figure 2 plots the series for in�ation. The expected in�ation captures the

�uctuations of actual in�ation perfectly well. Indeed, the expected in�ation explains 92%

of the standard deviation of actual in�ation, and almost all parts of the actual in�ation

series fall within the 2� standard error bands of expected in�ation.

Next, Figure 3 plots the expected cross-sectional variation of individual consump-

tion growth reverse engineered by the model. It shows two important features. First,

the cross-sectional variation is highly persistent, with a �rst-order autocorrelation of 0:89.

This con�rms that idiosyncratic shocks must be persistent to have an e¤ect on pricing im-

plication. Second, the cross-sectional variation is large. The average of the cross-sectional

variance is around 2:52%, which means that the cross-sectional standard deviation of
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idiosyncratic risk is about
p
0:0252 = 0:1587 or 15:87%; suggesting that we need high

spread out of idisyncratic variation to account for asset pricing facts, especially in the

case where the agent has a low risk aversion (
 = 1 in the logarithmic preference).11 In

fact, it is believed that there is a tradeo¤ between risk aversion and cross-sectional varia-

tion of idiosyncratic risk. For example, Cochrane (2005, chapter 21) shows that with high

risk aversion, we do not need to specify highly volatile individual consumption growth,

or dramatic sensitivity of the cross-sectional variance to the market return to explain

the equity premium puzzle. But the risk aversion he probably needs are 
 = 25 or even

more. Therefore, in this paper, I didn�t exploit this tradeo¤ and focus on the simple

log-preference case. It would be an interesting exercise later to examine this trade-o¤ by

using a general power utility and higher risk aversion.

5 Implications for Yields

Based on model estimation, this section describes the model�s implications for bond

returns. I simulate model predicted yields by evaluating the a¢ ne pricing formula of

section 3 at the Kalman smoother estimates of the state variables in section 4. The

nominal yields at di¤erent maturities implied by the model are shown in Figure 4. The

model produces a tremendous amount of the movements that we observe in the data and

the di¤erence between the two series is almost negligible. By this �t criterion, our reverse

engineering exercise is a success. The rest of the section compares and explains the key

moments in details.
11The literature on estimating/calculating cross-sectional variance of individual consumption growth

gives various answers. For example, Deaton and Paxson (1994) report that the cross-sectional variance

of log consumption within an age cohort rises from about 0.2 at age 20 to 0.6 at age 60, which means a

standard deviation rises from 45% at age 20 to 77% at age 60, and that�s a standard deviation of 1% per

year. Using PSID data, Carroll (1992) estimates a value of 10% per year for permanent income shocks

in his study of precautionary savings. Using CEX data, Cogley (2002) �nds values for the quarterly

cross-sectional standard deviation on the order of 35� 40% in the sample period 1980Q2 to 1994Q4.
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5.1 Average Nominal Yields and the Bond Risk Premium

Table 2 reports the means of nominal yields. First, the model recovers the 3-month

and 5-year yields that are used in estimation perfectly well. Second, the model predicts

intermediate yields very close to the data. For example, the average yield on the 1-year

bond in the model is equal to 5.48%, similar to the data average of 5.56%; the average

yield on the 4-year bond is 6.064% in the model, approximately the same as 6.059% in

the data.

Note that a standard representative agent CCAPM can not match the level of yields

observed in the data. Instead, it predicts much higher yields. For example, Piazzesi and

Schneider (2006) use a large subjective discount factor (� = 1:005) to reduce yields level

predicted by a representative agent model with recursive preference; Xu (2008) �nds that

yields are on the order of 7.8% even after relaxing the rational-expectation assumption

and taking into account the agent�s robustness concern to model uncertainty. The key

reason is that the representative agent framework focuses only on variation in aggregagte

consumption and abstracts from idiosyncratic variation, and aggregate risk alone isn�t big

enough to make the agent save more, hence bond prices are too low and yields are too

high.

Here with idiosyncratic consumption risk, the agent faces a lot more risk than is

re�ected in the variation of aggregate per capita consumption. This greater level of

consumption risk makes the agent more cautious about consuming today; that is, it

increases his desire for precautionary saving just in case bad things happen tomorrow.

Thus individuals who must bear both aggregate and idiosyncratic risk will be willing

to pay a higher price for transferring one unit of consumption from today to tomorrow,

which makes bond prices increase and yields much smaller than one would predict using

a representative agent model. This can also be seen from equation (11): Clearly, high

expected idiosyncratic risk (x2t+1) leads to lower yields; and an increase in the volatility

of idiosyncratic risk decreases yields as well.

Table 2 also demonstrates that the average yield curve on nominal bonds is upward

sloping. For example, the average yield spread between the 3-month bond and the 5-year

18



bond is 0.99%, and the average spread between the 1-year bond and the 4-year bond is

0.58%. Figure 5 depicts the average yield curve predicted the model against the actual

yield curve.

The intuitive explanation behind the positive slope can be understood in the condi-

tional covariances captured by the joint dynamics of consumption growth, in�ation and

idiosyncratic risk.

De�ne rx$n;t+1 = p
$
n�1;t+1�p$nt�y$1t as the holding return on buying a n-period nominal

bond at time t for p$nt and selling it at time t + 1 for p
$
n�1;t+1 in excess of the one-period

short rate. Based on equation (9); the expected excess return can be derived as

Et(rx
$
n;t+1) = �covt(m$

t+1; p
$
n�1;t+1)�

1

2
vart(p

$
n�1;t+1)

or = �covt(m$
t+1; Et+1

n�1P
i=1

mt+1+i)�
1

2
vart(p

$
n�1;t+1)

The covariance term on the right-hand side is the risk premium, while the variance term

is due to Jensen�s inequality. The risk premium on nominal bonds is positive when the

pricing kernel and long bond prices are negatively correlated, or when the autocorrelation

of the pricing kernel is negative. In this case, long bonds are less attractive than short

bonds, because their payo¤s tend to be low when the pricing kernel is high (marginal

utility is high). Over long samples, the average excess return on a n-period bond is

approximately equal to the average spread between the n-period yield and the short

rate12. This means that the yield curve is on average upward sloping if the risk premium

is positive on average.

In this model, the pricing kernel is determined by consumption growth, in�ation and

idiosyncratic risk. Plugging equation (7) into the covariance term, I decompose risk

premium into individual conditional covariances between consumption growth, in�ation,

12To see this, we can write the excess return as

p$n�1;t+1 � p$n;t � y$1;t = ny$nt � (n� 1)y$n�1;t+1 � y$1t

= y$nt � y$1t � (n� 1)(y$n�1;t+1 � y$nt)

For large n and a long sample, the di¤erence between the average (n� 1)-period yield and the average

n-period yield is approximately zero.
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idiosyncratic risk and their expected future values. More speci�cally

Risk Premium = �covt(m$
t+1; Et+1

n�1P
i=1

mt+1+i)

= �covt(4 ct+1 + �t+1 � x2t+1; Et+1
n�1P
i=1

4ct+1+i + �t+1+i � x2t+1+i)

Figure 6 plots the individual terms that determine the risk premium as a function

of maturity. The terms that contribute to a positive risk premium are those with pos-

itive signs. Some of them are familar terms from the representative agent case like in

Piazzesi and Schneider (2006). For example, the minus covariance between in�ation and

expected future consumption growth, �covt(�t+1; Et+1
Pn�1

i=1 4ct+1+i): This term is posi-

tive, because of the minus sign and the fact that positive in�ation surprises forecast lower

future consumption growth. In this case, in�ation is bad news for consumption growth

and nominal bonds have low payo¤s exactly when in�ation, and hence bad news, arrives.

Since the payo¤s of long-term bonds are a¤ected even more than those of short bonds

(note that the covariance term is increasing in maturity), agents require a premium, or

high yields, to hold them.

With the presence of idiosyncratic risk, the "bad news" e¤ect of in�ation is ampli-

�ed. The covariance term between in�ation and expected future idiosyncratic variation,

covt(�t+1; Et+1
Pn�1

i=1 x
2
t+1+i); shows that it is positive and has the biggest magnitude in

all cross-covariance terms. Therefore, in�ation is not only bad news for aggregate con-

sumption growth, but also bad news for idiosyncratic risk. Surprise in�ation lowers the

payo¤ on nominal bonds and forecasts high future idiosyncratic variation. The fact that

nominal bonds pay o¤ little precisely when the outlook of the economy worsens makes

them unattractive assets to hold.

Another important term is the positive conditional covariance between consumption

growth and expected future idiosyncratic variation. This is important in understanding

why the real yield curve is upward sloping. A high expected idiosyncratic risk in the

future increases agents�desire for precautionary saving and thus raises the price of bonds

today. This means bondholders�wealth increases in good times (marginal utility is low),

and decreases in bad times (marginal utility is high). So they require a premium to o¤set

20



this risk.

The last two candidates that contribute a positive risk premium for long-term bonds

are the negative covariance between consumption growth and expected future in�ation,

and the positive covariance between idiosyncratic risk and expected future in�ation. The

idea is similar. When expected future in�ation is high, agents would prefer to consume

today rather than tomorrow, thus bond prices are low, and this happens exactly when

consumption growth is low or idiosyncratic risk is high. Thus long bonds are not good

assets to hedge against bad states and investors require a premium to hold them.

The rest four terms all have negative signs. Especially, both idiosyncratic risk and

in�ation show highly positive autocorrelations.

From the a¢ ne term structure model�s point of view, the upward slope can also be

seen from the factor loadings across the yield curve. Equation (15) shows that yields are

a¢ ne functions of the state variables: [ sc s� x2 ]0. The e¤ect of each state variable

on the yield curve is determined by the loadings �n that the state space model assigns

on each yield of maturity n according to recursion (14). Figure 7 plots these loadings as

a function of yield maturity. The coe¢ cient of the third factor �idiosyncratic risk �is

upward sloping, while the coe¢ cients of Sc and S� are decreasing. However, since the

unconditional mean of the state vector is �s =
h
0 0 �x2

i
, the only loading that a¤ects

the average slope of the yield curve is the loading on x2; and idiosyncratic risk is therefore

corresponding to the "slope" factor in most a¢ ne term structure literature.

One last thing about the average nominal yield curve is that the data show a steep

incline from the 3-month maturity to the 1-year maturity, while the model is hard to

capture that. A potential explanation for the steep incline in the data is liquidity issues

that may depress short Treasury bills relative to others. However, this liquidity premium

is not present in this model.

5.2 Volatility and Autocorrelation of Nominal Yields

Table 3 reports the standard deviation of nominal yields across maturities. The model

produces a large amount of volatility observed in the data. For example, the model
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implies that the standard deviation for the 1-year yield is 2.84 percent, about 97% of

the 2.92 percent in the data. For the 4-year yield, the standard deviation implied by

the model is 2.77 percent, almost the same as the 2.78 percent in the data. Since yields

are determined by a¢ ne functions of the state variabes, this suggests that changes in

expected consumption growth, in�ation and idiosyncratic variation are able to account

for a vast part of nominal yields volatility. This is in line with the common �nding in

multifactor a¢ ne term structure literature. For example, Litterman and Scheinkman

(1991) use a principal components approach and �nd that three factors �extracted from

yields themselves �can explain well over 95% of the variation in weekly changes to U.S

Treasury bond prices, for maturities up to 18 years.

Another feature of the model is that it does a good job in matching the high auto-

correlaiton of yields at all maturities. Table 4 reports the �rst-order autocorrelation of

yields. The autocorrelation in the 1-year yield is 95.1 percent, and the model produces

94.4 percent. For the 4-year yield, the autocorrelaiton in the model is 96.2 percent and

only slightly below the 96.4 percent in the data. Also, the model captures the feature

that long yields are more persistent than short yields, just as that in the data.

5.3 Predictions for Longer Nominal Yields and Real Yields

Table 5 and 6 report the model�s predictions for nominal yields with longer maturities

and real yields. The reason is to do robust check on the model�s performance for explaining

yields that are not used in estimation. As shown above, the model successfully captures

the key features of nominal yields up to 5 years, although we only use the information on 3-

month and 5-year yields. Here I do more. First, I check the model-implied nominal yields

with much longer maturities �6-year to 10-year. Table 5 shows that all key features are

preserved �the average nominal yield curve keeps upward sloping; yields are still volatile;

yields are highly autocorrelated, with long yields are more persistent than short yields.13

I also check the model-implied real yields and the yield spreads between nominal and

13Note that the CRSP Fama-Bliss Discount Bond File only contains bonds data with maturities up to

5 years. That�s why there is no data reported for direct comparison.
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real bonds. Table 6 reports the results. It shows that the average real yield curve slopes

upward. This can be understood from the risk premium decomposition shown in Figure 6

as well. Abstracting from those terms with either in�ation or expected future in�ation14,

the rest are the terms that consist of the excess holding return on a multi-period real bond.

The term that contributes to a positive risk premium on real bonds is the conditional co-

variance between consumption growth and expected future idiosyncratic variation. It is

positive and outweighs other negative terms that are mainly due to the positive autocor-

relations of consumption growth and idiosyncratic variation. The intuition is that a high

expected idiosyncratic risk in the future increases agents�desire for precautionary saving

and thus raises the price of bonds today. This causes bondholders�wealth to increase in

good times, and decrease in bad times. So they require a premium to o¤set this risk.

Furthermore, the spreads between nominal and real yields are positive. This is mostly

due to the impact of expected in�ation (an average of 3.731 percent annualy). However,

the Fisher relation doesn�t explain all of the spreads. Nominal yields also incorporate

a positive in�ation risk premium. For example, equation (11) shows that the covariance

between in�ation and consumption and the covariance between in�ation and idiosyncratic

risk also determine nominal yields, and this in�ation risk premium is positive because nom-

inal bonds have low payo¤s when consumption growth is low (since covt(4ct+1; �t+1) < 0),

or idiosyncratic risk is high (since covt(x2t+1; �t+1) > 0).

6 Conclusion

This paper extends the standard consumption-based asset pricing model with power

utility to a heterogeneous-agents framework. The key assumption is that agents are

subject to both aggregate and idiosyncratic risks. Following Constantinides and Du¢ e

(1996), this leads to a pricing kernel that depends not only on aggregate per capita

consumption growth and in�ation, but also on the cross-sectional variance of individual

consumption growth. The dynamics of the pricing kernel is modeled in a state-space

14Note that from equation (5); the log real pricing kernel is mt+1 = ln� �4ct+1 + x2t+1:
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representation that allows for the maximal correlations among pricing factors. Under

linearity and normality, the model falls within the a¢ ne term structure framework, that

is, bond yields of all maturities are a¢ ne functions of the state variables. Cross-sectional

variance of individual consumption growth is modeled directly as a state variable in the

state equation, and is reverse engineered using the observation of yields.

The maximum likelihood estimation of the state-space model using quarterly data on

per capita consumption growth, in�ation and 3-month and 5-year nominal yields shows

that the model can account for many features of the nominal term structure of interest

rates in the US. More speci�cally, it captures not only the level, but also the slope and

volatility of the yield curve. The intuitive explanation behind the positive slope of the

nominal yield curve is that in�ation is bad news for both consumption growth and idio-

syncratic variation. A positive surprise in�ation not only lowers the real return on a bond,

but also is associated with lower future consumption growth and higher idiosyncratic risk.

In such a situation, bondholders�wealth decreases just as their marginal utility rises, so

they require a premium to o¤set this risk.

Although the model focuses on examining the behavior of bonds, it can be extended to

a broader class of assets, such as equity or even exchange rate. For example, we can specify

a seperate exogenous process for the dividend growth like that in DeSantis (2007), or we

can follow Wachter (2006) to treat the market portfolio as equivalent to aggregate wealth

and the dividend equal to aggregate consumption15. Under either speci�cation, the price

of an equity is determined by the same pricing kernel as in equation (5): Examining the

implication for exchange rates behavior would also be very interesting. More speci�cally, it

could be related to the most recent a¢ ne term structure models of currency, for example,

see Backus et al. (2001). The idea is that we can specify a process for each of the domestic

pricing kernel and the foreign pricing kernel, and no-arbitrage ensures that these two

kernels can be connected through exactly the change in exchange rate.

15In that case, an equity at period t is an asset that pays the endowment Ct+n in n periods. Therefore

there is no need to introduce an additional variable into the problem.
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A A¢ ne Pricing Recursion

To derive the recursion in equation (14), �rst start with a one-period bond

P $1t = Et(M
$
t+1)

= expfEt(m$
t+1) +

1

2
V art(m

$
t+1)g

= expfEt[ln � �4ct+1 � �t+1 + x2t+1] +
1

2
V art[:]g

= expfEt[ln � � �cZt+1 � ��Zt+1 + �xSt+1] +
1

2
V art[:]g

= expfEt[ln � � (�c + ��)(�z +DSt+1 +G�t+1) + �xSt+1] +
1

2
V art[:]g

= expfEt[ln � � �c � �� + (�x � (�c + ��)D)((I � A)�s + ASt + C"t+1)

�(�c + ��)G�t+1] +
1

2
V art[:]g

= expfln � � �c � �� + �x(I � A)�s

+
1

2
[�x � (�c + ��)D]CC 0[�x � (�c + ��)D]0

+
1

2
(�c + ��)GG

0(�c + ��)
0

+(�x � (�c + ��)D)AStg
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Matching coe¢ cients gives �1 = ln ���c���+�x(I�A)�s+ 1
2
[�x�(�c+��)D]CC 0[�x�

(�c + ��)D]
0 + 1

2
(�c + ��)GG

0(�c + ��)
0 and �

0
1 = (�x� (�c + ��)D)A. Note that the last

equality relies on the assumption that Et("t+1) = 0 and V art("t+1) = I:

Suppose the price of an n-period bond satis�es P $nt = exp(�n + �
0
nSt), next we show

that the exponential form also applies to the price of a n+ 1 period bond

P $n+1;t = Et(P
$
n;t+1M

$
t+1)

= Etfexp(�n + �
0
nSt+1) exp(m

$
t+1)g

= Etfexp[�n + ln � � �c � �� + (�
0
n + �x � (�c + ��)D)St+1

�(�c + ��)G�t+1]g

= Etfexp[�n + ln � � �c � �� + (�
0
n + �x � (�c + ��)D)

((I � A)�s + ASt) + (�
0
n + �x � (�c + ��)D)C"t+1

�(�c + ��)G�t+1]g

= expf�n + ln � � �c � �� + (�
0
n + �x)(I � A)�s

+
1

2
[�
0
n + �x � (�c + ��)D]CC 0[�

0
n + �x � (�c + ��)D]0

+
1

2
(�c + ��)GG

0(�c + ��)
0

+[�
0
n + �x � (�c + ��)D]AStg

Matching coe¢ cients results in the recursion in equation (14).

28



Table 1: Maximum-Likelihood Estimates of the State-Space Model

� A C G

4c 0:823 0:954 - - 0:048 - - 0:446 -

(0:019) (0:01) (0:019)

� 0:927 �0:540 0:796 - �0:172 0:073 - - �0:214

(0:243) (0:04) (0:021) (0:011) (0:018)

x2 1:918 2:247 0:614 0:983 �0:084 �0:158 0:197 - -

(0:718) (2:008) (0:54) (0:011) (0:057) (0:043) (0:024) - -

Note: This table contains the maximum-likelihood estimates for the state-

space model

St+1 = �s + A(St � �s) + C"t+1

Zt+1 = �z +DSt+1 +G�t+1

I estimate the model using quartely data on consumption growth, in�ation, 3-

month short rate and 5-year rate over the sample period 1952Q2-2005Q4. The

numbers in parentheses are maximum-likelihood asymptotic standard errors

computed from the outer-product of the scores of the log-likelihood function.

Table 2 : Average Nominal Yields

Maturity Model Data

1 5.15 5.15

4 5.48 5.56

8 5.77 5.76

12 5.95 5.93

16 6.06 6.06

20 6.14 6.14

Note: This table reports the means of nominal yields from the model and

from the data. Yields are in annual percentages. Maturity is in quarters. The

sample period is 1952Q2-2005Q4.
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Table 3 : Volatility of Nominal Yields

Maturity Model Data

1 2.92 2.92

4 2.84 2.92

8 2.80 2.88

12 2.79 2.81

16 2.77 2.78

20 2.74 2.74

Note: This table reports the standard deviations of nominal yields from the

model and from the data. Numbers are in annual percentages. Maturity is in

quarters. The sample period is 1952Q2-2005Q4.

Table 4 : Autocorrelation of Nominal Yields

Maturity Model Data

1 0.936 0.936

4 0.944 0.951

8 0.953 0.960

12 0.958 0.963

16 0.962 0.964

20 0.965 0.965

Note: This table reports the �rst-order autocorrelations of nominal yields from

the model and from the data over the period 1952Q2-2005Q4.
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Table 5 : Nominal Yields with Longer Maturities

Maturity Mean Standard Deviation Autocorrelation

24 6.190 2.708 0.965

28 6.221 2.671 0.966

32 6.238 2.631 0.966

36 6.244 2.588 0.966

40 6.246 2.543 0.967

Note: This table reports the moments of nominal yields with longer maturities

implied by the model. Numbers are in annual percent. Maturity is in quarters.

The CRSP data contains only yields up to 5-year maturity, that�s why there

is no data reported for direct comparison.

Table 6 : Real Yields

Maturity Mean Standard Deviation Autocorrelation Nominal-Real Spreads

1 1.366 1.950 0.895 3.782

4 1.654 1.964 0.922 3.830

8 1.907 1.990 0.937 3.862

12 2.072 2.006 0.944 3.876

16 2.185 2.013 0.947 3.879

20 2.264 2.012 0.950 3.876

Note: This table reports the moments of real yields implied by the model.

Numbers are in annual percent. Maturity is in quarters.
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Figure 1: Expected consumption growth implied by the model and actual consumption

growth in the data. The expected consumption growth is constructed using the

smoothed estimates of the state vector. That is, c4ctjT = �c + [ 1 0 0 ]bStjT : The red
dotted lines are 2�standard error bounds from the corresponding MSE PtjT :
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Figure 2: Expected in�ation implied by the model and actual in�ation in the data. The

expected in�ation is constructed using the smoothed estimates of the state vector. That

is, b�tjT = �� + [ 0 1 0 ]bStjT : The red dotted lines are 2�standard error bounds from
the corresponding MSE PtjT :
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Figure 3: Expected cross-sectional variance of individual consumption growth implied

by the model. It is constructed using the smoothed estimates of the state vector. That

is, bx2tjT = [ 0 0 1 ]bStjT : The red dotted lines are 2�standard error bounds from the

corresponding MSE PtjT :
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Figure 4: Time series dynamics of nominal yields at di¤erent maturities implied by the

model and in the data. Numbers are in annual percent.
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Figure 5: Average nominal yield curve. Numbers are in annual percent.
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Figure 6: The decomposition of the risk premium on a multi-period bond excess holding

return into individual conditional covariance terms between consumption growth,

in�ation, idiosyncratic risk and their expected future values.
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Figure 7: The slope coe¢ cient �n in the a¢ ne yields formula as a function of maturity

n: The �rst element of �n loads consumption growth into yields determination; the

second element loads in�ation, the third element loads idiosyncratic risk.
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