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ABSTRACT 
This article utilizes the multiplicative error model to analyze and compare the volatility 
spillover effect based on two volatility measures, namely, the volatility index and the price 
range. We find that the lead-lag relationships are similar based on these two volatility 
measures, and that there exists a structural break when the subprime mortgage crisis 
occurred. The results based on both the volatility index and price range measures indicate 
that there are dual relationships between the U.S. and Europe. Furthermore, we measure 
the economic value of  the volatility spillover effect and find that a maximum benefit of  
20.06 annualized basis points is yielded in terms of the out-of-sample results. An investor 
with higher risk aversion will give rise to a lower performance fee. In addition, the 
volatility forecasts based on the price range are found to perform better than those based 
on the volatility index. 
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1. Introduction 

Over the last few decades, many financial and economic crises have occurred, such 

as the Mexican economic crisis in 1994, the Asian financial crisis in 1997, the Russian 

financial crisis in 1998, the Argentine economic crisis in 2001 and the U.S. subprime 

mortgage crisis in 2007 and so on. Because of  financial globalization, these crises have 

not only affected the local economy, but have also affected other related economies. 

Financial globalization causes the transmission of  information to play an important role 

in financial studies. Hence, if  investors can understand the information transmission 

between international financial markets before making their decisions, this can help them 

with their plans for asset diversification and dynamic hedging strategies, i.e., asset 

allocation decisions and risk management. 

Many studies have indicated that not only return but also volatility can be used to 

examine the transmission of  information across different markets, since volatility is 

regarded as a measure of  risk. The topics, which are relevant to risk, are still important in 

financial studies. Hamao et al. (1990) found volatility spillover from the U.S. and the U.K. 

markets to the Japanese market, but they did not find any significant spillover from the 

Japanese market to the other markets. Martens and Poon (2001) found volatility spillover 

from the U.S. to the U.K, and from the U.K. to the U.S, i.e., their relationships were dual. 

Baele (2005) and Christiansen (2007) investigated the volatility spillover effects between 

the U.S. and individual local European markets (as global effects), and between the 

aggregate European market and these individual local European markets (as regional 

effects). These two studies focused on stock markets and bond markets, respectively. 

They found evidence of  volatility spillover from the aggregate European and U.S. 

markets to local European markets. There also exist many studies on volatility spillover 

such as Bekaert and Harvey (1997), Ng (2000), Miyakoshi (2003), Worthington and Higgs 

(2004), Skintzi and Refenes (2006), and more recently Badshah (2009), Diebold and 

Yilmaz (2009), McMillian and Speight (2010), Singh, Kumar and Pandey (2010), and so 

on. In fact, financial volatility is difficult to observe, and can only be estimated using a 

certain known market price process. In addition, the U.S. and Europe are the major 

economies of  the world, and the subprime mortgage crisis that occurred in the U.S. 

would first have attacked the U.S. and European economies. This causes us to be 

particularly interested in the lead-lag relationships between these two regions. 

In previous studies, different measures for volatility, such as return-based volatility, 

implied volatility, and the high-low price range have been used. Here, we focus on the 
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implied volatility and price range measures, which can be regarded as ex-ante and ex-post 

volatility indicators, respectively. Implied volatility employs the forward-looking concept 

which consists of  both historical information and market expectations, and hence it can 

be thought of  as an ex-ante volatility measure. In 1993, the volatility index was 

introduced by the Chicago Board Options Exchange (CBOE). The CBOE volatility 

index, VIX, which is based on the Black-Scholes model, is used to calculate the implied 

volatility of  the S&P 100 index. In fact, VIX is used to measure the market’s expectation 

regarding the next 30 days’ volatility. If  the VIX is higher, then it indicates that the 

investors expect the stock index to exhibit higher volatility in the future. Therefore, the 

volatility index can be thought of  as the “investor fear gauge”. In 2003, the CBOE 

proposed a new method to compute the volatility index without any of  the assumptions 

of  the option-pricing model. That is, the new VIX is a model-free implied volatility. 

Besides, the new VIX measures the implied volatility of  the S&P 500 index, which is 

more closed to the U.S. market than the S&P 100 index1. Other markets have followed 

the U.S. market to issue their own volatility index. 

In addition, a number of  studies have confirmed that implied volatility has better 

forecasting ability than the return-based volatility measure. Christensen and Prabhala 

(1998) explained that the reason why the implied volatility is biased and inefficient 

relative to the return-based volatility measure in previous studies is due to the 

overlapping data problem. Hence they used the non-overlapping (monthly) data of  the 

S&P 100 index option and proved that the implied volatility outperforms the 

return-based volatility. Fleming (1998) also used the S&P 100 index option to confirm 

that implied volatility has better forecasting ability than historical volatility, i.e., the 

range-based model of  Parkinson (1980). Blair et al. (2001) used the S&P100 and VIX 

indices to compare the incremental information using historical volatility, low- and 

high-frequency return-based volatility, and implied volatility. They showed that the VIX 

index provides more accurate forecasts than the other indices. Li and Yang (2009) further 

used the S&P/ASX 200 index options, which are traded infrequently and with a long 

maturity cycle, and found that implied volatility outperforms historical volatility. 

On the other hand, the price range is defined as the difference between the highest 

price and lowest price at a fixed time interval, for instance, daily, weekly or monthly. Since 

the price range is calculated using the realized data, it can be thought as an ex-post 

volatility measure. Because the return-based volatility is only computed by the 

                                                 
1 The S&P 100 index is a subset of  the S&P 500. In addition, the old VIX is renamed the VXO index. 
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close-to-close price return, it may ignore the information regarding price changes and 

thus generate inappropriate volatility estimators. Parkinson (1980) was the first to use the 

price range as a proxy variable for measuring volatility, and confirmed that the price 

range is a more efficient proxy variable of  volatility than the return-based volatility 

estimator. Chou (2005) proposed a conditional autoregressive range (CARR) model 

which is a range-based volatility model. The CARR model is more efficient in analyzing 

the volatility structure than the GARCH model. Moreover, many studies, such as Brandt 

and Jones (2006), Martens and Dijk (2007), and Chou et al. (2009), confirmed that the 

range-based volatility model is more powerful for forecasting than the return-based 

volatility model. According to the above studies, we think that the range-based volatility 

estimator may be more accurate than the return-based volatility estimator. 

In this paper, we utilize the multiplicative error model (MEM) to examine and 

compare the relationships between the U.S. and European stock volatilities based on 

ex-ante and ex-post volatility measures, and whether there were breaks in the 

relationships when the subprime mortgage crisis occurred. This model has the property 

of  satisfying the non-negative process which is the main difference with the other models. 

Another advantage is that this model provides unbiased predictions without transforming 

forecasts. Although early models such as the ARCH/GARCH model can deal with the 

autocorrelation and volatility clustering properties, these models cannot satisfy the 

positive process. We use the volatility index and price range data, and find that the 

relationships between the two measures are similar. The results of  the two volatility 

measures show that the U.S. and European indices are characterized by dual relationships. 

For the volatility index, the VXD and VXN are the major indices which affect the 

European indices, and the VFTSE is the major European index which affects the U.S. 

indices. The results for the price range show that the DJIA and FTSE 100 are the major 

indices which affect the European and U.S. indices, respectively. 

In addition, the structural change phenomenon is significant except for France based 

on the price range measure. In the pre-crisis period, the spillover effects of  the volatility 

indices from the U.S. to the European indices are those of  the VIX and VXN, and none 

of  the European indices affects the U.S. indices. However, in the post-crisis period, the 

VXD becomes the main index which affects the European indices, and the European 

VFTSE index is found to have a significant influence on the U.S. indices. However, the 

results of  the price range are the opposite of  the results of  the volatility index for the 

two sub-periods. Before the crisis, dual relationships are found to exist for the U.S. and 
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Europe. Following the subprime mortgage crisis, the relationships between the U.S. and 

Europe become one-way, i.e., the volatility spillovers were found to exist from the U.S. to 

Europe. The France indices, i.e., VCAC and CAC 40, became independent of  other 

indices in the post-crisis period. 

Furthermore, in order to explore whether the volatility spillover effect can benefit an 

investor, we evaluate the economic value of  the volatility spillover effect by means of  an 

asset allocation strategy. We find that the volatility spillover effect is economically 

significant in most cases and can yield a maximum fee of  6.02 basis points based on the 

volatility index measure and that of  20.06 basis points based on the price range measure. 

An investor with a higher relative risk level will give rise to a lower performance fee. In 

addition, the volatility forecasts based on the price range measure perform better than 

those based on the volatility index measure. 

The remainder of  this paper is organized as follows. In Section 2, we introduce the 

multiplicative error model and its properties. Section 3 describes the data set and the 

empirical estimation results. Section 4 presents an economic evaluation methodology to 

value the volatility spillover effect. Finally, Section 5 summarizes our conclusions.  

2. The Multiplicative Error Model 

The multiplicative error model is extended from the ARCH/GARCH model (Engle 

(1982) and Bollerslev (1986)) and is designed to satisfy a non-negative value process. 

Furthermore, contrary to taking logarithms for dealing with the data, the MEM provides 

unbiased predictions without transforming forecasts. In previous studies, we know that 

the financial time series, such as the stock return, trading volume, interest rate and so on, 

has the leptokurtic and volatility clustering properties. By means of  time series plots of  

stock returns (e.g., Figure 3), we can simply observe that the results of  large changes 

generally follow large changes, and small changes generally follow small changes. The 

ARCH/GARCH model can almost explain these two properties. In fact, we know that 

some financial series are positive processes, but the ARCH/GARCH model does not 

take the positive property into consideration. Therefore, Engel (2002) modified the 

GARCH model and proposed the MEM, and Engle and Gallo (2006) further extended 

the MEM model by using a Gamma distribution. The MEM(p,q) based on the Gamma 

distribution can be expressed as 

 1| μ ε− =t t t ty I  (1) 

 ( )1| ~  . .  ,1t tI i i d Gammaε φ φ−  (2) 
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where 1tI −  is the information set at time 1t − , tμ  is the conditional expectation of  

ty , i.e., ( )1|t t tE y Iμ −= , which depends on a vector of  unknown parameters θ , that is 

 ( )
1 1

μ μ θ α β μ− −
= =

= = + +∑ ∑
q p

t t i k t k s t s
k s

w y  (3) 

and tε  is an i.i.d. innovation term with ( )1| 1t tE Iε − =  and ( )1| 1t tV Iε φ− = . Based 

on the expression in Equations (1) and (2), we have 

 ( )1| ~ ,t t ty I Gamma φ μ φ−  (4) 

with ( )1|t t tE y I μ− =  and ( ) 2
1|t t tV y I μ φ− = .  

Here we consider two cases of  the conditional mean equation based on MEM(1,1). 

The difference between the two cases concerns whether we take the volatility spillover 

effects into consideration. The MEM model can be extended for the analysis of  more 

than one index. This can help us to examine the relationships between different assets. In 

addition, we consider the leverage effects, and the conditional mean equation of  the 

extended MEM(1,1) is written as 

 ( ), , , 1 , 1 , , 1 , 1 , 10μ ω α β μ α− − − − −
≠

= + + + + <∑i t i i i i t i i t i j j t i i t i t
j i

y y d I r y  (5) 

where , 1−i tr is the return of  stock index i at time t-1, and ( ), 1 0− <i tI r , a dummy variable 

to test the leverage effect, is defined as  

( ) , 1
, 1

, 1

1,   if  0
0

0,  if  0
−

−
−

<⎧⎪< = ⎨ ≥⎪⎩

i t
i t

i t

r
I r

r
. (6) 

The extended MEM(1,1) reduces to the base MEM(1,1) when all parameters 

, 0i jα =  for all i j≠ . Hence, we can test the null hypothesis: , 0i jα =  for i j≠ . If  the 

result rejects null hypothesis, then we know that there exists a spillover effect between 

assets i and j. 

From Equation (4), the log-likelihood function can be written as 

 ( ) ( ) ( ) ( ) ( )1 1

ln ln ln 1 ln lnφ φ φ φ φ μ θ
μ θ= =

⎛ ⎞
Θ = − Γ + − − +⎜ ⎟⎜ ⎟

⎝ ⎠
∑ ∑
T T

t
t t t

t t t

yL T T y  (7) 

Thus, we can get the ML estimators θ  and φ . The details of  the discussions and 

extensions regarding the properties of  MEM can be found in Engle (2002), Engel and 

Gallo (2006), and Cipollini et al. (2006).   

3. Empirical Results 
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In this section, we present our data and the results of  the volatility spillover 

examination based on two types of  volatility measures, the volatility index and the price 

range. 

3.1 Data and Preliminary Statistics 

The data set contains six stock indices, which are three U.S. and three European 

indices, six volatility indices corresponding to the stock indices, and two risk-free rates 

based on the U.S. and European markets. The stock indices are the S&P 500 index (the 

U.S.), DJIA index (the U.S.), NASDAQ 100 index (the U.S.), DAX 30 index (Germany), 

FTSE 100 index (U.K.), and CAC 40 index (France). In addition, the corresponding 

volatility indices 2  are the VIX, VXD, VXN, VDAXNEW, VFTSE and VCAC, 

respectively. The six volatility indices are computed using a similar algorithm to that for 

VIX3. All of  these series are downloaded from the Datastream database. The price range 

is calculated by the difference between the highest price and the lowest price, 

( ) ( )( ), ,100 ln lnt high t lowP P× − . Although the low frequency (weekly or monthly) data have 

less noise, the markets’ efficiency indicates that the information is quickly and efficiently 

incorporated into the stock markets. Therefore, the low frequency data ignore some 

information compared with the high frequency data. In addition, the convenience 

brought about by communications technology, such as the Internet and cell phones, 

enables the information to be transmitted everywhere more rapidly. As a result, we adopt 

the daily data to examine our questions. Each series has 2,197 daily frequency 

observations in the sample period from February 2001 to January 2010, and these time 

series are shown in Figures 1 to 4. In addition, in order to evaluate the economic value of  

the volatility spillover effect, we use the USD Libor and Euribor 3-month interbank 

interest rates as the U.S. and European risk-free rates. 

Table 1 reports the descriptive statistics for the stock returns. In terms of  the 

Jarque-Bera4 statistic, we can test whether the series is normally distributed. We find that 

none of  the index returns follow a normal distribution. In addition, we know that these 

series have the property of  leptokurtosis from the kurtosis coefficient. From the 

                                                 
2 See Appendix B for the information regarding the volatility index. 
3 See the CBOE website for the white paper: http://www.cboe.com/micro/vix/vixwhite.pdf 
4 2 2 21Jarque-Bera ( ( 3) ) ~ (2)

6 4
T S K χ= + − , where T denotes the size of  the sample, S denotes the skewness 

of  the series and K denotes the kurtosis of  the series. 
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Ljung-Box Q5 statistic, we observe that not all of  the series are random. This indicates 

that these series exhibit autocorrelation in their lagged terms. In particular, from the 

Ljung-Box Q statistic for the squared return series, we know that each return series has 

the heteroskedasticity property. That is, the variance for each return is time-varying and 

exhibits clustering behavior. 

【Insert Table 1】 

Tables 2 and 3 show the descriptive statistics for the volatility indices and high-low 

price ranges of  the stock indices, respectively. From the kurtosis, Jarque-Bera and 

Ljung-Box Q statistics, we know that the indices are not normally distributed and they 

also exhibit autocorrelation. Because of  the autocorrelation and non-negativity 

properties of  the series, we adopt the MEM model to analyze the spillover effects. 

【Insert Tables 2&3】 

【Insert Figures 1&2&3&4】 

3.2 Results of  the MEM Estimation 

In this section, our main purpose is to examine whether volatility spillover effects 

exist between different stock markets and whether a structural break exists between the 

pre- and the post-subprime mortgage crisis. We separately use the volatility index and 

price range as a stock volatility proxy to test the above questions. 

Tables 4 and 5 show the base and extended MEM results for the volatility index and 

price range over the entire period. From the base MEM(1,1), we know that both the 

volatility index and the price range depend on their past values. This is consistent with 

the results of  the Ljung-Box portmanteau test in Tables 2 and 3. We then use the 

likelihood ratio (LR) test6 statistics to examine the volatility transmission across different 

markets and find that the volatility index is significantly associated with other indices 

except for VIX and VXN. Furthermore, the volatility spillover effects based on the price 

range are all significant. 

In order to facilitate observation, the spillover effects of  the extended MEM(1,1) 

are marshaled in Panel A of  Figures 5 and 6. First, if  we only focus on the relationship 

between the U.S. and Europe, we can find that the results of  the two volatility measures 

are similar, i.e., these two regions are interdependent. Second, if  we observe the 

                                                 
5 2

2

1

( )( ) ( 2) ~ ( )
p

i

iQ p T T p
T i
ρ χ

=

= +
−∑ , where ( )iρ  denotes the ith autocorrelation. 

6 ( )22(ln ln ) ~ 5Base ExtendedLR L L nχ= − − = , where n denotes the difference in the number of  parameter estimates 
between the base and extended model. 
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relationships among these stock indices, we can find that the lead-lag relationships are a 

little different for the two volatility measures. The results of  the volatility index show that 

the VXD and VXN, and VFTSE are the major indices which affect the European and 

U.S. indices, respectively. The volatility spillover effects exist from VIX and VXN to 

VXD, from VXD to VDAXNEW and VCAC, from VDAXNEW to VCAC, and from 

VFTSE to VIX, VDAXNEW and VCAC. The VXN and VFTSE, and VXD and VFTSE 

are interdependent relationships. Now, we shall look at the other volatility measure, 

namely, the high-low price range. The DJIA and FTSE 100 are also the major indices 

which affect the European and U.S. indices, respectively, but some relationships between 

indices are different from the relationships based on the volatility index. The volatility 

spillover effect exists from the S&P 500 to the NASDAQ 100, from the DJIA to the 

DAX 30 and CAC 40, from the DAX 30 to the CAC 40, and from the FTSE 100 to the 

DJIA, S&P 500 and CAC 40. The interdependent relationships between the indices 

disappear. The relationships between the three European indices are similar to the 

relationships among the volatility indices. The only difference is that the volatility 

spillover from the U.K. to Germany disappears. The dissimilar results between the 

volatility measures may result from the various properties of  the two proxies, i.e., the 

volatility index is the expected volatility of  the stock index in the future, but the price 

range uses the historical data. In addition, the results for the leverage effects are 

dissimilar to those for the two volatility measures. The leverage effects based on the price 

range are all significant, but the effects based on the volatility indices are not significant 

except for the VCAC. This may be due to the volatility indices computed by the option 

prices being thought of  as the average of  future one-month volatility, and hence the 

short-run impulse does not have an apparently asymmetric impact on this average future 

volatility.  

【Insert Tables 4&5】 

Tables 6 and 7 also report the base and extended MEM(1,1) results for the two 

volatility measures. However, the major purpose of  the two tables is to examine whether 

there exists a structural break between the pre- and the post-subprime mortgage crisis for 

these indices. We choose July 2007 as the break-point. The pre-subprime period extends 

from February 2001 to June 2007 and the post-subprime from July 2007 to January 2010. 

We use the LR test statistics based on the method of  Dias and Embrechts (2004)7 to 

                                                 
7 The Dias and Embrechts (2004) LR test statistics can be derived as a generalized LR test. After we 
choose the break-point t*, the LR test can be expressed as [ ] ( )2

1 22 ln ln ln ~totalLR L L L nχ= + − , where 
1L , 

2L  
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examine our question. From the LR test statistics, we know that there exist structural 

breaks between the pre- and post-subprime crisis periods based on the volatility index. 

For the other volatility measure, the price range, the structural breaks exist over time 

except for the CAC40 index. 

【Insert Tables 6&7】 

【Insert Figures 5-6】 

The results of  the extended MEM(1,1) are marshaled in Panels B and C of  Figures 

5 and 6. First, if  we focus on relationships between the two regions (the U.S. and 

Europe), we can find that the relationships are different based on various volatility 

measures and sub-periods. For the volatility index, the results show that the U.S. is the 

leader compared with Europe in the pre-subprime period. The dual relationships exist in 

the post-subprime period. The results of  the price range are opposite to the results of  

the volatility index. Second, we can find that the relationships between various indices are 

almost all different between the entire, pre- and post-subprime periods without regard to 

the volatility index or the price range. The differences between the pre- and the 

post-crisis period based on the volatility index are that, in the pre-crisis period, the VIX 

and VXN are the major indices which affect the European indices, and none of  the 

European indices affect the U.S indices. The spillover effects exist from VXN to VIX, 

VXD and VCAC, from VIX to VXD, VCAC and VFTSE, and from VDAXNEW and 

VFTSE to VCAC. However, in the post-crisis period, VXD becomes the major index 

which affects the European indices, and the European VFTSE index significantly affects 

the U.S. indices, and VCAC becomes independent. The spillover effects exist from VIX 

to VXN, from VXD to VXN, VDAXNEW and VFTSE, and from VFTSE to VIX and 

VXN. The VFTSE and VDAXNEW are interdependent. 

Based on the price range measure, the differences between the pre- and post-crisis 

periods are that, in the pre-crisis period, the S&P 500 and DJIA are the major indices 

which affect the European indices, and the DAX 30 is the major index which affects the 

U.S. indices. The DJIA and DAX 30, NASDAQ 100 and DJIA are interdependent, 

respectively. The spillover effects exist from the S&P 500 to the NASDAQ 100 and 

FTSE 100, from the DJIA to the CAC 40 and FTSE 100, and from the DAX 30 and 

FTSE 100 to the CAC 40. In the post-crisis period, the spillover effects exist from the 

                                                                                                                                            
and 

totalL  denote the likelihood for the first t* observations, the remnant observations from t*+1 to T and 
for all observations, respectively. Furthermore, the LR test statistics follow the 2χ  distribution with the 
number of  degrees of  freedom equal to the number of  parameter estimates in the model. Here n=9. 
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DJIA to the NASDAQ 100 and DAX 30. The DAX30 and FTSE 100 are interdependent. 

In addition, the S&P 500 and CAC 40 become independent of  other indices.  

4. An Economic Evaluation of  Volatility Spillover 

We have used statistical methods to examine the volatility relationship among 

different stock markets, but this does not determine whether investors can gain a 

substantial benefit by understanding the volatility spillover effect. In this section, we 

implement an asset allocation exercise and use a quadratic utility function to evaluate the 

economic value of  the volatility spillover effect based on the two volatility measures, 

respectively.  

4.1 Optimal Portfolio Weight 

We consider that an investor with constant relative risk aversion can dynamically 

allocate his wealth between a risky asset and a risk-free asset. The investor can choose the 

optimal portfolio weight by maximizing an expected quadratic utility function at each 

time t, with the optimization problem being given by 

 

( )

( ) ( )

1

2
1 , 1 , 1

2 2
, 1 , 1 , 1

max
2(1 )

2 1

t
t t t t p t p tw

t p t p t p t

E U E W r r

W

γ
γ

γμ μ σ
γ

+
+ + +

+ + +

⎛ ⎞⎛ ⎞
= −⎜ ⎟⎜ ⎟+⎝ ⎠⎝ ⎠

⎛ ⎞
= − +⎜ ⎟⎜ ⎟+⎝ ⎠

 (8) 

where tW  denotes the investor’s wealth at time t and γ  denotes the coefficient of  

relative risk aversion, ( ), 1 1 1 1 , 11p t t t t f tr w r w r+ + + + += + −  is the portfolio return at time t+1, 

and , 1p tμ +  and 2
, 1p tσ +  are the conditional mean and variance of  , 1p tr + , respectively. 

By solving the optimization problem, the optimal risky asset weight is given as 

follows: 

 
( )

( )( )
1 , 1 , 1

*
1 22

1 1 , 1

1
1

1

t f t f t

t

t t f t

r r
w

r

γμ
γ

γ σ μ
γ

+ + +

+

+ + +

⎛ ⎞
− −⎜ ⎟+⎝ ⎠=

+ −
+

 (9) 

In order to match the realized market, we consider two constraints. By assuming 

that short selling and borrowing at the risk-free asset rate are disallowed, the optimal 

weight should lie in the interval [ ]0, 1  as 

 

*
1

** *
1 1

*
1

0, if 0
1, if 1

, if otherwise

t

t t

t

w
w w

w

+

+ +

+

⎧ ≤
⎪= ≥⎨
⎪
⎩

 (10) 
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4.2 Modeling Returns and Volatilities 

In this section, we describe our forecast model whose estimates can be used to 

evaluate the economic value of  the volatility spillover effect. Here, we use the AR(1) 

model to capture the autocorrelation behavior of  stock returns and follow Brownlees 

and Gallo (2010) by assuming that the return volatility is a linear function of  the volatility 

measures. Assuming that ty  denotes the volatility measures, volatility index or price 

range, then the return and volatility processes can be expressed as 

 ( )0 1 1 ,  ,  ~ | ,t t t t t t t tr r z z skewed t zϖ ϖ ε ε σ λ ϕ−= + + = −  (11) 

0 1 0 11 ˆt tt tyσ δ δ δ δ μ−= + = +   (12) 

where 1 ˆtt ty μ− =  is the one-step-ahead forecast at time t and ty  follows the base or 

extended MEM(1,1) based on the volatility measures, which are the volatility index or 

price range in this study. The innovation term tz  follows Hansen’s skewed-t distribution, 

whose density function is defined as:   
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 (13) 

where 2 λ< < ∞ and 1 1ϕ− < < are, respectively, the kurtosis and asymmetric 

coefficients, respectively, and the values of  a, b, and c are defined as 

24
1

a c λϕ
λ
−

≡
−

, 2 21 3b aϕ≡ + − , and ( )1 2
2 2

c λ λπ λ+ ⎛ ⎞⎛ ⎞ ⎛ ⎞≡ Γ − ⋅Γ⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠
. 

4.3 Performance Evaluation 

When the above assumption holds, we follow West et al. (1993) to use the average 

realized utility, ( )U ⋅ , to consistently estimate the expected utility with a given initial 

wealth, 0W , 

 ( ) ( )
1

2
0 , 1 , 1

0 2 1

T

p t p t
t

U W r rγ
γ

−

+ +
=

⎛ ⎞
⋅ = −⎜ ⎟⎜ ⎟+⎝ ⎠

∑  (14) 

Then, by following Fleming et al. (2001), we can compare the performance of  the 

two volatility forecasts by estimating a maximum performance fee, Δ , which an investor 

would be willing to pay to switch from one strategy to another strategy. Assuming that 

the initial wealth is equal to one, we can estimate the performance fee by equating the 
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average utilities of  two alternative strategies, which may be expressed as 

 ( ) ( ) ( ) ( ) ( )
1 12 2

, 1 , 1 , 1 , 1
0 02 1 2 1

T T
A A B B
p t p t p t p t

t t

r r r rγ γ
γ γ

− −

+ + + +
= =

⎡ ⎤ ⎡ ⎤
− Δ − −Δ = −⎢ ⎥ ⎢ ⎥+ +⎣ ⎦ ⎣ ⎦

∑ ∑  (15) 

where , 1
A
p tr +  and , 1

B
p tr +  are the portfolio returns of  strategy A and strategy B, 

respectively. If  the fee, Δ , is positive, this means that the strategy A is better than 

strategy B. Finally, we calculate the annualized performance fees for a different relative 

risk aversion level, γ . 

4.4 Economic Evaluation Results 

In this section, we compare the economic values for switching between different 

volatility models, namely, the base MEM(1,1) and extended MEM(1,1), based on the two 

volatility measures. A rolling window method with a fixed window size, equal to 1,443 

observations, is used to forecast the one-step-ahead mean and variance. Hence the 

sample period can be separated into in- and out-of-sample forecasts. The in-sample 

sub-period extends from February 2001 to December 2006 (1,443 observations), and the 

out-of-sample sub-period from January 2007 to January 2010 (754 observations).  

Figure 7 shows the out-of-sample one-step-ahead forecasts of  volatility for four 

different models, namely, the base MEM(1,1) based on the volatility index and the price 

range, and the extended MEM(1,1) based on the volatility index and the price range. We 

can find that the trends of  the volatility estimates are similar, but there also exist some 

differences. First, the volatility forecasts based on the price range are higher than those 

based on the volatility index when the stock market is turbulent, especially during the 

period from September 2008 to February 2009. On the contrary, we can find that the 

volatility forecasts based on both measures are overlapping, or that the volatility forecasts 

based on the volatility index are higher than those based on the price range during the 

calm periods. In addition, the differences in volatility forecasts between these two 

measures are only slight before October 2008, while they become large after October 

2008. Second, when we take the volatility spillover effects into consideration, we find that 

the results are different for the two volatility proxies. The base MEM and extended MEM 

are almost overlapping based on the volatility index. However, the volatility forecasts 

based on the price range differ between the base and extended MEM. Larger volatility 

forecasts are generated when the volatility spillover effect is considered, especially during 

the turbulent periods.  

【Insert Figure 7】 
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In addition, in order to assess the economic value of  the volatility spillover effect, 

we implement an asset allocation problem under the mean-variance framework. Table 8 

shows the out-of-sample average utility and annualized performance fees, Δ , which an 

investor would be willing to pay for switching from the volatility model without a 

spillover effect to that with a spillover effect, i.e., switching from the base MEM(1,1) to 

the extended MEM(1,1). The performance fees are calculated for three different relative 

risk aversion levels, equal to 1, 5 and 10, based on two volatility measures, namely, the 

volatility index and price range. Panels A and B report the results of  the forecasts 

without and with short sale constraints, respectively.  

【Insert Table 8】 

The results for the performance fees without constraints (Panel A) show that the 

extended MEM (1,1) is superior to the base MEM(1,1) based on two volatility measures, 

with the exception of  the NASDAQ 100. By taking the volatility spillover effect into 

account, we can gain a maximum extra benefit of  6.02 basis points (bps) based on the 

volatility index measure and of  20.06 bps based on the price range measure. That is, no 

matter which kinds of  volatility measure are used, the volatility spillover effect is valuable 

in the asset allocation strategy. Panel B also shows similar results to Panel A, suggesting 

that the volatility spillover effect is economically profitable, even if  short sales are not 

allowed. Maximum performance fees of  10.52 bps and 16.35 bps are yielded by the 

volatility spillover effect based on the volatility index and price range measures, 

respectively. In addition, we can find that the volatility forecasts based on the price range 

perform better than those based on the volatility index. Even if  we consider the 

constraints in order to match the real market, the results are robust. Moreover, an 

investor with a more risk-averse level will lead to a lower performance fee to switch his 

dynamic strategy from the volatility model without a spillover effect to that with a 

spillover effect. 

5. Conclusions 

This article utilizes the multiplicative error model to analyze the volatility 

transmission mechanisms between the U.S. and European stock markets over the period 

from February 2001 to January 2010 based on two volatility measures, namely, the 

volatility index and the price range. We then examine whether the subprime mortgage 

crisis causes the relationships between the different indices to break. In addition, an asset 

allocation strategy is implemented to assess the economic value of  the volatility spillover 

effect. The main findings can be summarized as follows:   
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First, if  we simply think of  these indices as two regions, namely, the U.S. and Europe, 

we find that the results of  the two volatility proxies are similar. The U.S and Europe are 

interdependent. Second, both volatility measures indicate that similar relationships exist 

between European indices. The volatility spillovers exist from Germany and the U.K. to 

France. The only difference is that the volatility spillover exists from the U.K. to 

Germany based on the volatility index measure. The reasons for the different 

relationships based on two volatility measures may be due to the properties of  two 

volatility measures. The volatility index can be viewed as an ex-ante volatility measure, 

but the price range can be viewed as an ex-post volatility measure. We further find that a 

structural break really exists between the pre- and the post-subprime crisis periods except 

for France based on the price range measure. One deserves to be mentioned. After the 

crisis, France becomes independent of  other countries based on both the volatility index 

and price range measures. 

Finally, a maximum benefit of  6.02 bps and 20.06 bps is yielded by the volatility 

spillover effect based on the volatility index and price range measures, respectively, 

suggesting that the volatility spillover effect is economically significant. Furthermore, the 

volatility forecasts based on the price range measure exhibit superior performance to 

those based on the volatility index measure. 
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Table 1 Descriptive Statistics for the Stock Index Return 
 S&P500 DJIA NAS100 DAX30 FTSE100 CAC40

 Mean -0.013 -0.006 -0.016 -0.005 -0.009 -0.017 
 Median 0.056 0.037 0.081 0.062 0.026 0.003 
 Maximum 10.957 10.508 11.849 10.797 9.384 10.595 
 Minimum -9.470 -8.201 -11.115 -7.336 -9.266 -9.472 
 Std. Dev. 1.409 1.327 1.967 1.694 1.359 1.587 
 Skewness -0.123 0.055 0.063 0.172 -0.066 0.155 
 Kurtosis 11.312 11.122 6.791 7.212 9.499 8.212 

Jarque-Bera 6329.915 6040.237 1316.994 1634.739 3868.141 2495.890 
 Q(12)  59.437 58.594 43.437 32.790 81.968 65.252 
 Q2(12) 2533.121 2212.606 1722.827 1578.223 1911.558 1685.060 
Note: The table reports the descriptive statistics for the stock index returns, including the S&P500, DJIA, 
NAS100, DAX30, FTSE100 and CAC40 indices for the sample period from February 2001 to January 
2010. The sample size is 2197. Q(12) and Q2(12) report the Ljung-Box portmanteau test statistics with 12 
lags for the return and square return, respectively. The critical values of  the Jarque-Bera and the Ljung-Box 
statistics at the 5% level are 5.991 and 21.026, respectively. 
 
 
Table 2 Descriptive Statistics for the Volatility Index 

 VIX VXD VXN VDAXNEW VFTSE VCAC
 Mean 21.950 20.590 30.359 26.352 21.807 24.443 
 Median 19.890 18.940 25.680 23.200 19.503 22.100 
 Maximum 80.860 74.600 80.640 83.230 75.540 78.050 
 Minimum 9.890 9.280 12.610 11.650 9.099 9.240 
 Std. Dev. 10.429 9.652 14.075 11.793 10.335 10.768 
 Skewness 1.855 1.719 0.955 1.388 1.550 1.449 
 Kurtosis 7.857 7.126 2.952 4.792 6.035 5.269 
 Jarque-Bera 3419.171 2639.524 334.057 998.938 1723.297 1239.677 
 Q(12) 23603.406 23781.503 24384.138 23484.341 22841.017 23088.376 
Note: The table reports the descriptive statistics for the volatility indices, including VIX, VXD, VXN, 
VDAXNEW, VFTSE and VCAC for the sample period from February 2001 to January 2010. The sample 
size is 2197. Q(12) reports the Ljung-Box portmanteau test statistics with 12 lags for the volatility index 
series. The critical values of  the Jarque-Bera and the Ljung-Box statistics at the 5% level are 5.991 and 
21.026, respectively. 
 
 
Table 3 Descriptive Statistics for the Price Range 

 S&P500 DJIA NAS100 DAX30 FTSE100 CAC40
 Mean 24.339 24.139 34.423 31.994 25.449 27.362 
 Median 19.159 19.334 28.088 25.623 20.334 22.032 
 Maximum 173.098 192.953 177.160 176.863 170.705 147.009 
 Minimum 3.928 3.130 6.959 4.065 3.687 4.720 
 Std. Dev. 18.661 18.208 22.636 22.720 18.411 18.756 
 Skewness 3.084 3.218 1.883 1.975 2.537 2.034 
 Kurtosis 17.858 19.669 7.956 8.370 13.069 8.876 
 Jarque-Bera 23690.769 29225.099 3546.558 4068.616 11639.258 4674.825 
 Q(12) 10783.828 10410.741 10992.559 11611.930 10159.710 10174.375 
Note: The table reports the descriptive statistics for the annualized high-low price range of  stock indices, 
including the S&P500, DJIA, NAS100, DAX30, FTSE100 and CAC40 for the sample period from 
February 2001 to January 2010. The sample size is 2197. Q(12) reports the Ljung-Box portmanteau test 
statistics with 12 lags for the price range series. The critical values of  the Jarque-Bera and the Ljung-Box 
statistics at the 5% level are 5.991 and 21.026, respectively. 
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Table 4 MEM Estimation Results for the Volatility Index – Entire Period 
VIX VXD VXN VDAXNEW VFTSE VCACParameters 

Base Extended Base Extended Base Extended Base Extended Base Extended Base Extended 
0.009** 0.010** 0.009*** 0.008** 0.011*** 0.013*** 0.011** 0.006 0.008** 0.001 0.010*** 0.015*** w  
(0.004) (0.004) (0.003) (0.004) (0.004) (0.004) (0.004) (0.005) (0.003) (0.004) (0.004) (0.004) 
0.096*** 0.087*** 0.125*** 0.100*** 0.091*** 0.100*** 0.001 0.038 0.102*** 0.053** 0.161*** 0.044 

1tμ −  
(0.027) (0.029) (0.026) (0.030) (0.025) (0.027) (0.031) (0.026) (0.032) (0.026) (0.024) (0.033) 
0.900*** 0.895***  0.101***  -0.047  -0.004  0.033  -0.045 

1tVIX −  
(0.028) (0.031)  (0.028)  (0.107)  (0.032)  (0.031)  (0.028) 
 -0.012 0.867*** 0.737***  0.031  0.093**  0.076**  0.138*** 

1tVXD −  
 (0.030) (0.027) (0.038)  (0.139)  (0.037)  (0.039)  (0.033) 
 0.006  0.009*** 0.902*** 0.895***  -0.003  -0.007*  -0.006 

1tVXN −  
 (0.004)  (0.003) (0.026) (0.027)  (0.004)  (0.003)  (0.004) 
 -0.010  0.004  -0.003 0.994*** 0.927***  -0.012  0.116*** 

1tVDAXNEW −  (0.013)  (0.012)  (0.021) (0.032) (0.028)  (0.014)  (0.015) 
 0.032**  0.035***  0.051***  -0.046** 0.892*** 0.851***  0.072*** 

1tVFTSE −  
 (0.014)  (0.014)  (0.017)  (0.018) (0.033) (0.025)  (0.016) 
 -0.002  -0.006  -0.032  0.006  0.014 0.829*** 0.689*** 

1tVCAC −  
 (0.020)  (0.020)  (0.025)  (0.025)  (0.021) (0.026) (0.032) 
-0.005 -0.005 0.001 -0.000 0.003 0.004 -0.004 -0.003 0.001 -0.002 0.008** 0.000 d 
(0.003) (0.003) (0.003) (0.003) (0.003) (0.003) (0.003) (0.002) (0.003) (0.003) (0.003) (0.003) 
268.620*** 269.120*** 278.671*** 280.514*** 422.085*** 421.575*** 363.880*** 372.824*** 271.181*** 280.864*** 238.170*** 307.880*** φ  
(8.101) (8.117) (8.405) (8.460) (12.732) (12.717) (10.976) (11.199) (8.179) (8.330) (8.541) (9.173) 

Ln-likelihood 2512.831 2516.991 2692.320 2706.386 2312.904 2317.411 2431.191 2457.885 2544.438 2582.963 2314.815 2400.092 
LR-Test 8.32 28.132*** 9.014 53.388*** 77.05*** 170.554*** 

Note: The table shows the maximum likelihood estimates of  the MEM model, which are based on the volatility index for the entire period from February 
2001 to January 2010. The numbers in the parentheses are standard deviations. The model is described as follows: , , ,i t i t i ty μ ε= , , ~ ( ,1 )i t i iGammaε φ φ , and 
the mean equation of  extended MEM(1,1) is: ( ), , 1 1 1 2 1 3 1 4 1 5 1 6 1 , 1 , 10μ αμ β β β β β β− − − − − − − − −= + + + + + + + + <i t i i t t t t t t t i i t i tw VIX VXD VXN VDAXNEW VFTSE VCAC d I r y . If  it is the 
base MEM(1,1), then only the lag term of  the same asset exists in the mean equation. The last row reports the results of  the likelihood ratio test statistics 
from imposing zero constraints on the interaction coefficients. *, ** and *** denote significance at the 10%, 5% and 1% levels for 2-tailed tests, 
respectively. 
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Table 5 MEM Estimation Results for the Price Range of  the Stock Index – Entire Period 
S&P500 DJIA NAS100 DAX30 FTSE100 CAC40Parameters 

Base Extended Base Extended Base Extended Base Extended Base Extended Base Extended 
0.022*** 0.021*** 0.021*** 0.023*** 0.019*** 0.015*** 0.030*** 0.022*** 0.020*** 0.016*** 0.022*** 0.019*** w  
(0.004) (0.004) (0.004) (0.004) (0.004) (0.004) (0.005) (0.005) (0.004) (0.005) (0.004) (0.006) 
0.876*** 0.868*** 0.874*** 0.860*** 0.897*** 0.895*** 0.857*** 0.852*** 0.847*** 0.831*** 0.858*** 0.830*** 

1tμ −  (0.011) (0.013) (0.011) (0.014) (0.010) (0.011) (0.014) (0.015) (0.014) (0.016) (0.013) (0.017) 
0.056*** 0.010  -0.001  -0.061**  -0.034  0.003  -0.024 & t -1S P500
(0.010) (0.021)  (0.020)  (0.025)  (0.027)  (0.023)  (0.028) 
 0.025 0.061*** 0.039*  0.043  0.065**  0.033  0.060** 

1tDJIA −  
 (0.022) (0.010) (0.023)  (0.027)  (0.029)  (0.024)  (0.030) 
 -0.003  0.001 0.057*** 0.054***  -0.000  -0.003  0.002 

1100tNAS −  (0.002)  (0.003) (0.007) (0.011)  (0.003)  (0.003)  (0.004) 
 -0.009  0.002  -0.012 0.076*** 0.070***  -0.014  0.033*** 

130tDAX −  (0.008)  (0.008)  (0.009) (0.013) (0.017)  (0.009)  (0.012) 
 0.024***  0.029***  0.014  0.006 0.092*** 0.075***  0.048*** 

1100 −tFTSE
 (0.011)  (0.011)  (0.013)  (0.015) (0.014) (0.017)  (0.015) 
 0.015  -0.002  0.022  -0.011  0.020 0.078*** 0.000 

140tCAC −  
 (0.015)  (0.015)  (0.019)  (0.022)  (0.017) (0.012) (0.021) 
0.105*** 0.114*** 0.101*** 0.107*** 0.075*** 0.080*** 0.105*** 0.103*** 0.093*** 0.092*** 0.101*** 0.103*** d 
(0.009) (0.009) (0.009) (0.009) (0.007) (0.007) (0.008) (0.009) (0.009) (0.009) (0.009) 0.009 
6.664*** 6.752*** 7.023*** 7.092*** 7.607*** 7.666*** 7.427*** 7.478*** 7.518*** 7.577*** 7.486*** 7.619*** φ  
(0.196) (0.198) (0.198) (0.234) (0.151) (0.225) (0.219) (0.221) (0.222) (0.223) (0.221) (0.225) 

Ln-likelihood -1622.983 -1607.917 -1548.432 -1537.224 -2417.661 -2408.725 -2194.078 -2186.085 -1577.679 -1568.632 -1992.032 -1972.180 
LR-Test 30.132*** 22.416*** 17.872*** 15.986*** 18.094*** 39.704*** 

Note: The table shows the maximum likelihood estimates of  the MEM model, which are based on the price range of  the stock index for the entire period 
from February 2001 to January 2010. The numbers in the parentheses are standard deviations. The model is described as follows: , , ,i t i t i ty μ ε= , 

, ~ ( ,1 )i t i iGammaε φ φ , and the mean equation of  the extended MEM(1,1) is: 
( ), , 1 1 1 2 1 3 1 4 1 5 1 6 1 , 1 , 1100 30 100 40 0μ αμ β β β β β β− − − − − − − − −= + + + + + + + + <i t i i t t t t t t t i i t i tw S &P500 DJIA NAS DAX FTSE CAC d I r y . If  it is the base MEM(1,1), then only the lag term of  the 

same asset exists in the mean equation. The last row reports the results of  the likelihood ratio test statistics from imposing zero constraints on the 
interaction coefficients. *, ** and *** denote significance at the 10%, 5% and 1% levels for 2-tailed tests, respectively. 
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Table 6 MEM Estimation Results for the Volatility Index – Sub-periods 
Pre-subprime Crisis, 2001/02-2007/06  Post-subprime Crisis, 2007/07-2010/01Parameters 

VIX VXD VXN VDAXNEW VFTSE VCAC  VIX VXD VXN VDAXNEW VFTSE VCAC 
0.027*** 0.013** 0.015*** 0.000 0.000 0.000  0.006 0.003 0.030 0.075*** 0.089*** 0.100 w  
(0.006) (0.005) (0.006) (0.007) (0.006) (0.006)  (0.022) (0.019) (0.019) (0.024) (0.020) (0.024) 
0.002 0.017 0.023 0.002 0.068** 0.041  0.050 0.132*** 0.074 0.000 0.033 -0.061 

1tμ −  
(0.036) (0.036) (0.020) (0.044) (0.033) (0.033)  (0.050) (0.049) (0.047) (0.051) (0.043) (0.052) 
0.917*** 0.131*** -0.016 0.042 0.075** 0.093**  0.726*** -0.167 -0.236*** 0.088 0.042 0.030 

1tVIX −  
(0.050) (0.043) (0.058) (0.057) (0.038) (0.039)  (0.115) (0.107) (0.078) (0.115) (0.089) (0.178) 
-0.027 0.752*** -0.010 0.045 0.008 0.013  0.171 0.969*** 0.275*** 0.189* 0.241*** 0.304 

1tVXD −  
(0.049) (0.046) (0.062) (0.066) (0.039) (0.041)  (0.126) (0.137) (0.070) (0.101) (0.093) (0.206) 
0.027*** 0.017*** 0.975*** -0.009 -0.006 -0.019***  0.011 0.018 0.863*** -0.025 0.021 0.038 

1tVXN −  
(0.006) (0.005) (0.020) (0.006) (0.005) (0.006)  (0.056) (0.044) (0.066) (0.057) (0.045) (0.065) 
0.019 0.019 0.010 0.948*** 0.003 0.101***  0.045 0.002 -0.009 0.835*** -0.121*** 0.131 

1tVDAXNEW − (0.018) (0.016) (0.018) (0.039) (0.016) (0.018)  (0.044) (0.038) (0.038) (0.065) (0.035) (0.052) 
-0.002 0.014 0.021 -0.019 0.857*** 0.093***  0.079* 0.026 0.063* -0.184*** 0.678*** 0.022 

1tVFTSE −  
(0.018) (0.017) (0.020) (0.024) (0.032) (0.018)  (0.044) (0.038) (0.035) (0.046) (0.046) (0.050) 
0.016 0.009 -0.020 0.015 -0.001 0.706***  -0.057 0.033 -0.011 0.073 0.075 0.503*** 

1tVCAC −  
(0.024) (0.023) (0.026) (0.031) (0.022) (0.031)  (0.057) (0.050) (0.045) (0.059) (0.050) (0.087) 
-0.003 0.002 0.004* -0.005 0.000 -0.001  -0.019*** -0.012* -0.006 0.000 -0.006 -0.004 d 
(0.003) (0.003) (0.002) (0.003) (0.003) (0.003)  (0.007) (0.006) (0.006) (0.006) (0.006) (0.006) 
327.853*** 347.984*** 561.954*** 408.594*** 319.668*** 406.502***  196.200*** 199.28*** 269.606*** 335.121*** 234.246*** 210.57*** φ  
(11.722) (12.442) (20.096) (14.610) (11.428) (14.535)  (11.019) (11.192) (15.145) (18.828) (13.157) (11.827) 

Ln-likelihood 2151.272 2276.894 1920.687 1925.044 2139.381 2066.022  417.913 483.857 474.877 570.723 488.430 437.894 
LR-Test 104.388*** 108.73*** 156.306*** 75.764*** 89.696*** 207.648***        

Note: The table shows the maximum likelihood estimates of  the MEM model, which are based on the volatility indices for two sub-periods. We divide the 
entire period into two sub-periods, namely, the pre- and the post-subprime financial crisis periods. We choose July 2007 as the break-point. The numbers in 
the parentheses are standard deviations. The model is described as follows: , , ,i t i t i ty μ ε= , , ~ ( ,1 )i t i iGammaε φ φ , and the mean equation of  the extended 
MEM(1,1) is: ( ), , 1 1 1 2 1 3 1 4 1 5 1 6 1 , 1 , 10μ αμ β β β β β β− − − − − − − − −= + + + + + + + + <i t i i t t t t t t t i i t i tw VIX VXD VXN VDAXNEW VFTSE VCAC d I r y . The last row reports the results of  the 
likelihood ratio test statistics to examine the structural breaks between the two sub-periods for each index. *, ** and *** denote significance at the 10%, 
5% and 1% levels for 2-tailed tests, respectively. 
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Table 7 MEM Estimation Results for the Price Range – Sub-periods 
Pre-subprime Crisis, 2001/02-2007/06  Post-subprime Crisis, 2007/07-2010/01Parameters 

S&P500 DJIA NAS100 DAX30 FTSE100 CAC40  SP500 DJIA NAS100 DAX30 FTSE100 CAC40 
0.031*** 0.033*** 0.019*** 0.015** 0.023*** 0.014**  0.056** 0.060*** 0.081*** 0.120*** 0.119*** 0.120*** w  
(0.006) (0.006) (0.005) (0.007) (0.006) (0.007)  (0.022) (0.021) (0.019) (0.029) (0.028) (0.033) 
0.887*** 0.877*** 0.919*** 0.873*** 0.829*** 0.844***  0.807*** 0.822*** 0.856*** 0.806*** 0.764*** 0.758*** 

1tμ −  
(0.017) (0.018) (0.011) (0.016) (0.021) (0.022)  (0.025) (0.025) (0.024) (0.032) (0.039) (0.037) 
0.000 -0.037 -0.119*** -0.058 -0.058* -0.034  0.039 -0.026 -0.065 0.049 0.101 0.030 

-1& 500tS P  
(0.027) (0.027) (0.037) (0.037) (0.031) (0.039)  (0.059) (0.051) (0.055) (0.058) (0.065) (0.070) 
-0.010 0.027 0.071** 0.074** 0.066** 0.059*  0.085 0.140** 0.164*** 0.108* 0.006 0.102 

1tDJIA −  
(0.024) (0.027) (0.034) (0.035) (0.029) (0.034)  (0.065) (0.058) (0.064) (0.065) (0.071) (0.077) 
0.004 0.008** 0.045*** -0.001 0.005 0.004  -0.019 -0.019 0.000 -0.042 0.015 -0.010 

1100tNAS −  
(0.003) (0.003) (0.012) (0.004) (0.004) (0.005)  (0.028) (0.026) (0.031) (0.030) (0.032) (0.035) 
0.009 0.018* -0.002 0.047*** 0.001 0.033**  0.002 0.013 0.009 0.087** -0.056* 0.033 

130tDAX −  
(0.008) (0.009) (0.010) (0.018) (0.011) (0.014)  (0.031) (0.028) (0.028) (0.042) (0.032) (0.037) 
0.005 0.012 0.002 0.019 0.062*** 0.041***  0.012 0.019 -0.010 -0.076* 0.012 0.002 

1100 −tFTSE  
(0.010) (0.011) (0.013) (0.016) (0.020) (0.017)  (0.043) (0.039) (0.040) (0.043) (0.050) (0.048) 
0.013 -0.000 0.026 -0.001 0.019 0.000  -0.008 -0.035 -0.033 -0.030 0.057 0.000 

140tCAC −  
(0.014) (0.015) (0.018) (0.022) (0.018) (0.023)  (0.057) (0.052) (0.053) (0.061) (0.058) (0.065) 
0.110*** 0.110*** 0.071*** 0.098*** 0.096*** 0.101***  0.127*** 0.125*** 0.127*** 0.123*** 0.087*** 0.101*** d 
(0.010) (0.010) (0.008) (0.010) (0.011) (0.011)  (0.022) (0.021) (0.018) (0.019) (0.020) (0.020) 
7.163*** 7.556*** 8.057*** 7.726*** 7.745*** 7.884***  6.119*** 6.303*** 7.179*** 7.182*** 7.557*** 7.152*** φ  
(0.250) (0.263) (0.277) (0.270) (0.269) (0.276)  (0.335) (0.344) (0.394) (0.385) (0.416) (0.393) 

Ln-likelihood -860.874 -838.476 -1621.220 -1424.463 -850.283 -1201.847  -731.428 -686.105 -768.752 -748.525 -701.353 -763.086 
LR-Test 31.23*** 25.286*** 37.506*** 26.194*** 33.992*** 14.494        

Note: The table shows the maximum likelihood estimates of  the MEM model, which are based on the price range of  the stock index for two sub-periods. 
We divide the entire period into two sub-periods, namely, the pre- and the post-subprime financial crisis periods. We choose July 2007 as the break-point. 
The numbers in the parentheses are standard deviations. The model is described as follows: , , ,i t i t i ty μ ε= , , ~ ( ,1 )i t i iGammaε φ φ , and the mean equation of  
the extended MEM(1,1) is: ( ), , 1 1 1 2 1 3 1 4 1 5 1 6 1 , 1 , 1100 30 40 0μ αμ β β β β β β− − − − − − − − −= + + + + + + + + <i t i i t t t t t t t i i t i tw S & P500 DJIA NAS DAX FTSE CAC d I r y . The last row reports the 
results of  the likelihood ratio test statistics to examine the structural breaks between the two sub-periods for each index. *, ** and *** denote significance 
at the 10%, 5% and 1% levels for 2-tailed tests, respectively. 
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Table 8 Out-of-Sample Economic Value of  the Selected Volatility Models 

 Volatility Index Price Range 
 Utility Utility γ  

 Base Extended Δ  Base Extended Δ  

Panel A: Out-of-sample Comparison of  the Volatility Timing Values without Short Sale Constraints 
S&P500 0.0242 0.0244 3.32 0.0264 0.0271 20.06 

DJIA 0.0209 0.0209 1.56 0.0219 0.0226 17.68 
NAS100 0.0165 0.0165 -0.31 0.0162 0.0161 -0.12 
DAX30 0.0110 0.0112 5.99 0.0112 0.0117 12.32 

FTSE100 0.0135 0.0137 6.02 0.0148 0.0152 11.24 

1 

CAC40 0.0167 0.0169 5.65 0.0182 0.0184 4.71 
SP500 0.0190 0.0191 1.98 0.0203 0.0208 11.95 
DJIA 0.0170 0.0171 0.93 0.0177 0.0181 10.51 

NAS100 0.0144 0.0144 -0.19 0.0142 0.0142 -0.05 
DAX30 0.0118 0.0119 3.57 0.0120 0.0122 7.36 

FTSE100 0.0133 0.0134 3.59 0.0141 0.0143 6.73 

5 

CAC40 0.0152 0.0153 3.37 0.0161 0.0162 2.90 
SP500 0.0184 0.0185 1.81 0.0195 0.0199 10.94 
DJIA 0.0166 0.0166 0.85 0.0171 0.0175 9.62 

NAS100 0.0142 0.0142 -0.17 0.0140 0.0140 -0.04 
DAX30 0.0119 0.0120 3.27 0.0120 0.0123 6.74 

FTSE100 0.0133 0.0134 3.29 0.0140 0.0142 6.16 

10 

CAC40 0.0150 0.0151 3.09 0.0159 0.0160 2.68 
Panel B: Out-of-sample Comparison of  the Volatility Timing Values with Short Sale  Constraints 

S&P500 0.0177 0.0178 1.59 0.0194 0.0193 -2.20 
DJIA 0.0154 0.0154 0.14 0.0166 0.0168 5.66 

NAS100 0.0134 0.0134 0.25 0.0152 0.0150 -4.92 
DAX30 0.0100 0.0104 8.69 0.0101 0.0107 16.35 

FTSE100 0.0069 0.0072 9.02 0.0093 0.0099 15.67 

1 

CAC40 0.0100 0.0105 10.52 0.0114 0.0117 7.99 
SP500 0.0152 0.0152 0.94 0.0162 0.0161 -1.32 
DJIA 0.0138 0.0138 0.08 0.0145 0.0146 3.36 

NAS100 0.0126 0.0126 0.15 0.0137 0.0136 -2.95 
DAX30 0.0112 0.0114 5.18 0.0113 0.0117 9.75 

FTSE100 0.0094 0.0096 5.38 0.0108 0.0112 9.36 

5 

CAC40 0.0113 0.0115 6.27 0.0121 0.0123 4.83 
SP500 0.0148 0.0149 0.86 0.0158 0.0157 -1.21 
DJIA 0.0135 0.0136 0.08 0.0142 0.0144 3.07 

NAS100 0.0125 0.0125 0.13 0.0135 0.0134 -2.70 
DAX30 0.0114 0.0116 4.74 0.0114 0.0118 8.93 

FTSE100 0.0097 0.0099 4.92 0.0110 0.0113 8.57 

10 

CAC40 0.0114 0.0116 5.74 0.0122 0.0123 4.43 
Note: The table reports the out-of-sample average utility of  the selected volatility models and the 
annualized fees (bps), Δ , which are calculated by switching from the base MEM to the extended 
MEM, both without and with restrictions on the portfolio weight. We use the estimates of  
different volatility models to calculate the daily portfolio weights and the utility. By means of
Equation (15), we solve for the performance fee under different relative risk aversion levels, γ , 
which is equal to 1, 5 and 10. Furthermore, we divide the sample period into in-sample and 
out-of-sample sub-periods. The in-sample period extends from February 2001 to December 
2006 (1,443 observations), and the out-of-sample period extends from January 2007 to January 
2010 (754 observations). 
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Figure 1 Time Series Plot – Stock Indices. This figure shows the time series for various 
stock indices, including those for the S&P500, DJIA, NAS100, DAX30, FTSE100 and CAC40, 
from February 2001 to January 2010. 
 
 

 
Figure 2 Time Series Plot – Stock Returns. This figure shows the time series for various 
stock returns, including those for the S&P500, DJIA, NAS100, DAX30, FTSE100 and CAC40, 
from February 2001 to January 2010. 
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Figure 3 Time Series Plots –Volatility Indices. This figure shows the time series of  
various volatility indices, including those for the VIX, VXD, VXN, VDAXNEW, VFTSE and 
VCAC, from February 2001 to January 2010. 
 
 

 
Figure 4 Time Series Plots – Price Ranges of  Stock Indices. This figure shows the 
time series of  various annualized high-low price ranges, including those for the S&P500, DJIA, 
NAS100, DAX30, FTSE100 and CAC40, from February 2001 to January 2010. 
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Panel A: Entire Period Panel B: Pre-subprime Crisis, 2001/02-2007/06 Panel C: Post-subprime Crisis, 2007/07-2010/01 

 
Figure 5 The Relationships between the U.S. and European Volatility Indices. The figure shows the relationships between different volatility indices. 
The dashed lines represent the relationships within the same region. The solid lines represent the relationships between different regions. 
 

Panel A: Entire Period Panel B: Pre-subprime Crisis, 2001/02-2007/06 Panel C: Post-subprime Crisis, 2007/07-2010/01 

 
Figure 6 The Relationships between the U.S. and European Stock Price Ranges. The figure shows the relationships between different volatility 
indices. The dashed lines represent the relationships within the same region. The solid lines represent the relationships between different regions. 
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Panel A: S&P500
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Panel B: DJIA
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Panel C: NAS100
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Panel D: DAX30

2007/1/3 2008/1/2 2009/1/2 2010/1/4

0

1

2

3

4

5

6

7
VIndex-Base MEM
VIndex-Extended MEM
Range-Base MEM
Range-Extended MEM

 
Panel E: FTSE100
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Panel F: CAC40
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Figure 7 Out-of-Sample Volatility Forecasts Based on Selected Model 
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Appendix  
List of  Volatility Indices 
Volatility Index 
(DS Mnemonic) 

Launch Date 
Started Date Market Methodology Underlying Index 

(DS Mnemonic) 
VIX 

(CBOEVIX) 
2003/09/22 
1990/01/02 

United States Model-free S&P 500 
(S&PCOMP) 

VXD 
(CBOEVXD) 

2005/04/25 
1997/10/06 

United States Model-free DJIA 
(DJINDUS) 

VXN 
(CBOEVXN) 

2003/09/22 
2001/02/02 

United States Model-free NASDAQ 100 
(NASA100) 

VDAXNEW 
(VDAXNEW) 

2005/04/20 
1992/01/02 

Germany Model-free DAX30 
(DAXINDX) 

VFTSE 
(VFTSEIX) 

2008/06/23 
2000/01/04 

United 
Kingdom 

Model-free FTSE 100 
(FTSE100) 

VCAC 
(CACVOLI) 

2007/09/03 
2000/01/03 

France Model-free CAC40 
(FRCAC40) 

Note: The table presents the information regarding the volatility index. The DS 
Mnemonic refers to the code for Datastream. 
 

 

 


