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1 Introduction

Covariance and correlation matrices are of great importance in many fields. In finance, they
are a key element in portfolio choice and risk management. In psychology, scholars have long
been assuming that the observed variables are related to the unobserved traits such that factor
models for the covariance matrix of the observed variables are appropriate. Anderson (1984)
is a classic reference on multivariate analysis that treats estimation of covariance matrices and
hypotheses testing on them.

More recently empirical work has considered the case where the dimension of the covariance
matrix, n, relative to the sample size T , is large. This is because, in the era of big data,
many datasets now used are large. For instance, as finance theory suggests that one should
choose a well-diversified portfolio that perforce includes a large number of assets with non-
zero weights, investors now consider many securities when forming a portfolio. The listed
company Knight Capital Group claims to make markets in thousands of securities worldwide,
and is constantly updating its inventories/portfolio weights to optimize its positions. If n/T is
not negligible, we call this the large dimensional case.1 The correct theoretical framework to
study the large dimensional case is to use the joint asymptotics (i.e., both n and T diverge to
infinity simultaneously albeit subject to some restriction on their relative growth rate), not the
usual asymptotics (i.e., n fixed, T tends to infinity). Thus, standard statistical methods under
the usual asymptotic framework, such as principal component analysis (PCA) and canonical-
correlation analysis (CCA), do not directly generalise to the large dimension case; applications
to, say, portfolio choice, face considerable difficulties (see Wang and Fan (2016)).

There are many new methodological approaches for the large dimensional case, for example
Ledoit and Wolf (2003), Bickel and Levina (2008), Onatski (2009), Fan, Fan, and Lv (2008),
Ledoit and Wolf (2012) Fan, Liao, and Mincheva (2013), and Ledoit and Wolf (2015). Yao,
Zheng, and Bai (2015) gave an excellent account of the recent developments in the theory and
practice of estimating large dimensional covariance matrices. Generally speaking, the approach
is either to impose some sparsity on the covariance matrix, meaning that many elements of the
covariance matrix are assumed to be zero or small, thereby reducing the number of parameters
of a model for the covariance matrix to be estimated, or to use some device, such as shrinkage
or a factor model, to reduce dimension.

We consider a parametric model for the covariance or correlation matrix - the Kronecker
product model. For a real symmetric positive definite n× n correlation matrix Θ, a Kronecker
product model is a family of n× n matrices {Θ∗}, each of which has the following structure:

Θ∗ = Θ∗1 ⊗Θ∗2 ⊗ · · · ⊗Θ∗v, (1.1)

where Θ∗j is a nj × nj dimensional real symmetric, positive definite sub-matrix such that n =
n1 · n2 · · ·nv. We require nj ∈ Z and nj ≥ 2 for all j; nj need not be distinct. The Kronecker
product model, per se, is not new as it has been previously considered by Swain (1975) and
Verhees and Wansbeek (1990) under the title of multimode analysis. Verhees and Wansbeek
(1990) defined several estimation methods based on the least squares and maximum likelihood
principles, and provided large sample variances under assumptions that the data are normal
and fixed n. There is also a growing Bayesianist and frequentist literature on multiway array
or tensor datasets, where a Kronecker product model is commonly employed. See for example
Akdemir and Gupta (2011), Allen (2012), Browne, MacCallum, Kim, Andersen, and Glaser
(2002), Cohen, Usevich, and Comon (2016), Constantinou, Kokoszka, and Reimherr (2015),
Dobra (2014), Fosdick and Hoff (2014), Gerard and Hoff (2015), Hoff (2011), Hoff (2015), Hoff
(2016), Krijnen (2004), Leiva and Roy (2014), Leng and Tang (2012), Li and Zhang (2016),
Manceura and Dutilleul (2013), Ning and Liu (2013), Ohlson, Ahmada, and von Rosen (2013),
Singull, Ahmad, and von Rosen (2012), Volfovsky and Hoff (2014), Volfovsky and Hoff (2015),

1We reserve the phrase ”the high dimensional case” particularly for n > T .
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and Yin and Li (2012). However, in both these (apparently separate) literatures, (i) n is fixed,
(ii) the number v of sub-matrices of a Kronecker product is fixed and typically small, and (iii)
each nj is also fixed but perhaps of moderate size.

We consider the Kronecker product model in the large dimensional case where v is allowed to
increase with n according to the factorization of n (each nj is fixed though). In this model, the
number of parameters of a Kronecker product model grows logarithmically with n. In particular,
we will show that a Kronecker product model induces a type of sparsity on the covariance or
correlation matrix: The logarithm of a Kronecker product model has many zero elements, so
that sparsity is explicitly imposed on the logarithm of the covariance or correlation matrix - we
call this log sparsity. Our work is among the first dealing with log sparsity; the other is Battey
and Fan (2017), although there are a few differences. First, their log sparsity is an assumption
from the onset, in a similar spirit as Bickel and Levina (2008), whereas our log sparsity is
induced by a Kronecker product model. Second, they work with covariance matrices while we
shall focus on correlation matrices. Although a Kronecker product model could also be applied
to covariance matrices, log sparsity on a correlation matrix does not necessarily imply that its
corresponding covariance matrix has log sparsity. In other words, if a Kronecker product model
is correctly specified for a correlation matrix, its corresponding covariance matrix need not have
a Kronecker product structure. Even if we look at covariance matrices only, for the purpose of
comparison, a Kronecker product model imposes different sparsity restrictions - compared to
those imposed by Battey and Fan (2017) - on the elements of the logarithm of the covariance
matrix. Third and perhaps most important, we are looking at completely different estimators.

What kind of data give rise to a Kronecker product model? In other words, when is a
Kronecker product model correctly specified? This question has been answered by Verhees and
Wansbeek (1990) and Cudeck (1988): When covariance or correlation has some multiplicative
structure. For example, suppose that uj,k are error terms in a panel regression model with
j = 1, . . . , nJ and k = 1, . . . , nK . The interactive effects model of Bai (2009) is that uj,k = γjfk,
which implies that u = γ⊗f, where u is the nJnK×1 vector containing all the elements of uj,k,
γ = (γ1, . . . , γnJ )ᵀ, and f = (f1, . . . , fnK )ᵀ. If we assume that γ, f are random, γ is independent
of f , and both vectors have mean zero, this implies that

var(u) = E[uuᵀ] = E[γγᵀ]⊗ E[ffᵀ].

We hence see that the covariance matrix is a Kronecker product of two sub-matrices.
We can think of our more general model (1.1) arising from multi-index data with v mul-

tiplicative factors. Multiway arrays are one such example as each observation has v different
indices (see Hoff (2015)). Suppose that

ui1,i2,...,iv = ε1,i1ε2,i2 · · · εv,iv , ij = 1, . . . , nj , j = 1, . . . , v,

or in vector form
u = (u1,1,...,1, . . . , un1,n2,...,nv)

ᵀ = ε1 ⊗ ε2 ⊗ · · · ⊗ εv,

where the factor εj = (εj,1, . . . , εj,nj )
ᵀ is a mean zero random vector of length nj with covariance

matrix Σj for j = 1, . . . , v, and in addition the factors ε1, . . . , εv are mutually independent. Then

Σ = E[uuᵀ] = Σ1 ⊗ Σ2 ⊗ · · · ⊗ Σv.

We hence see that the covariance matrix is a Kronecker product of v sub-matrices. Indeed,
such multiplicative effects may be a valid description of a covariance or correlation structure.
In psychometrics, multi-trait multi-method (MTMM) context has this multiplicative structure
(e.g., Campbell and O’Connell (1967) and Cudeck (1988)). In portfolio choice, one might
consider, say, 250 equity portfolios constructed by intersections of 5 size groups (quintiles), 5
book-to-market equity ratio groups (quintiles) and 10 industry groups, in the spirit of Fama
and French (1993). For example, one equity portfolio might consist of stocks which are in the
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smallest size quintile, largest book-to-market equity ratio quintile, and construction industry
simultaneously. Then a Kronecker product model is applicable either directly to the covariance
matrix of returns of these 250 equity portfolios or to the covariance matrix of the residuals after
purging other common risk factors such as momentum.

Often a covariance or correlation matrix might not exactly correspond to a Kronecker prod-
uct; that is, a Kronecker product model is misspecified. The previous literature on Kronecker
product models did not touch this aspect, but we shall demonstrate in this article that a Kro-
necker product model is a very good approximating device to general covariance or correlation
matrices, by trading off variance with bias. Indeed we show that there always exists a member
in a Kronecker product model which is closest to the covariance or correlation matrix in some
sense to be made precise shortly.

The Kronecker product model has a number of intrinsic advantages for applications. The
eigenvalues of a Kronecker product are products of the eigenvalues of its sub-matrices. Its in-
verse, determinant, and other key quantities are easily obtained from the corresponding quan-
tities of its sub-matrices, which facilitates computation and analysis. In addition, a Kronecker
product model could be used as one component of a super model consisting of several models.

For instance, the idea of the decomposition in (1.1) could be applied to components of
dynamic models such as multivariate GARCH, an area in which Luc Bauwens has contributed
significantly over the recent years, see also his highly cited review paper Bauwens, Laurent, and
Rombouts (2006). For example, the dynamic conditional correlation (DCC) model of Engle
(2002), or the BEKK model of Engle and Kroner (1995) both have intercept matrices that are
required to be positive definite and suffer from the curse of dimensionality, for which model
(1.1) would be helpful. Also, parameter matrices associated with the dynamic terms in the
model could be equipped with a Kronecker product, similar to a suggestion by Hoff (2015) for
vector autoregressions.

In this article, we shall focus on correlation matrices rather than covariance matrices. This
is partly because the asymptotic theories of a Kronecker product model for correlation matrices
nest those for covariance matrices, and partly because this will allow us to adopt a more flexible
approach to approximating a general covariance matrix, since we can estimate the variances
consistently by other well-understood methods. In practice, fitting a correlation matrix with a
Kronecker product model tends to perform better than doing so for its corresponding covariance
matrix.

We show that the logarithm of a Kronecker product model is linear in its unknown param-
eters, and use this as a basis to propose a minimum distance (MD) estimator. We establish
a rather ”crude” rate of convergence for the MD estimator under joint asymptotics. So far
endeavours to obtain a better rate have proven to be unfruitful and this question remains open.
There is a large literature on the optimal rates of convergence for estimation of high-dimensional
covariance and inverse (i.e., precision) matrices (see Cai, Zhang, and Zhou (2010) and Cai and
Zhou (2012)). Cai, Ren, and Zhou (2014) gave a nice review on those recent results. However
their optimal rates are not applicable to our setting because here sparsity is not imposed on the
covariance or correlation matrix, but on its logarithm.

Although the MD estimator allows direct theoretical analysis, this method is likely to be
computationally intensive and in practice we recommend to use quasi-maximum likelihood es-
timation. Hence we also discuss a quasi-maximum likelihood estimator (QMLE) and a one-step
estimator, which is an approximate QMLE. Under the joint asymptotics, we provide feasible
central limit theorems (CLT) for the MD and one-step estimators, the latter of which is shown
to achieve the parametric efficiency bound (Cramer-Rao lower bound) in the fixed n case. When
choosing the weighting matrix optimally, we also show that the optimally-weighted MD and one-
step estimators have the same asymptotic distribution. These CLTs are of independent interest
and contribute to the literature on the large dimensional CLTs (see Huber (1973), Yohai and
Maronna (1979), Portnoy (1985), Mammen (1989), Welsh (1989), Bai and Wu (1994), Saikko-

3



nen and Lutkepohl (1996) and He and Shao (2000)). Last, we give a specification test which
allows us to test whether a Kronecker product model is correctly specified.

We provide some evidence that the Kronecker product model works well numerically. We
also apply the Kronecker product model to portfolio selection and compare the model with the
sample covariance matrix and a linear shrinkage estimator (Ledoit and Wolf (2004)).

The rest of the paper is structured as follows. In Section 2 we lay out the Kronecker product
model in detail. Section 3 introduces the MD estimator, gives its asymptotic properties, and
includes a specification test, while Section 4 discusses the QMLE and one-step estimator, and
provides the asymptotic properties of the one-step estimator. Section 5 examines the issue of
model selection. Section 6 provides numerical evidence for the performance of the Kronecker
product model in a simulation study and an empirical application. Section 7 concludes. Primary
proofs are to be found in Appendix; the remaining proofs are put in Supplementary Material
(SM in what follows).

2 The Kronecker Product Model

2.1 Notation

Let A be an m × n matrix. vecA is a vector obtained by stacking the columns of A one
underneath the other. The commutation matrix Km,n is an mn×mn orthogonal matrix which
translates vecA to vec(Aᵀ), i.e., vec(Aᵀ) = Km,n vec(A). If A is a symmetric n× n matrix, its
n(n − 1)/2 superdiagonal elements are redundant in the sense that they can be deduced from
symmetry. If we eliminate these redundant elements from vecA, we obtain a new n(n+1)/2×1
vector, denoted vechA. They are related by the full-column-rank, n2 × n(n+ 1)/2 duplication
matrix Dn: vecA = Dn vechA. Conversely, vechA = D+

n vecA, where D+
n is n(n + 1)/2 × n2

and the Moore-Penrose generalised inverse of Dn. In particular, D+
n = (DᵀnDn)−1Dᵀn because

Dn is full-column rank.

For x ∈ Rn, let ‖x‖2 :=
√∑n

i=1 x
2
i and ‖x‖∞ := max1≤i≤n |xi| denote the Euclidean norm

and the element-wise maximum norm, respectively. diag(x) gives an n × n diagonal matrix
with the diagonal being the elements of x. Let maxeval(·) and mineval(·) denote the max-
imum and minimum eigenvalues of some real symmetric matrix, respectively. For any real
m × n matrix A = (ai,j)1≤i≤m,1≤j≤n, let ‖A‖F := [tr(AᵀA)]1/2 ≡ [tr(AAᵀ)]1/2 ≡ ‖ vecA‖2,
‖A‖`2 := max‖x‖2=1 ‖Ax‖2 ≡

√
maxeval(AᵀA), and ‖A‖`∞ := max1≤i≤m

∑n
j=1 |ai,j | denote the

Frobenius norm, spectral norm (`2 operator norm) and maximum row sum matrix norm (`∞
operator norm) of A, respectively. Note that ‖ · ‖∞ can also be applied to matrix A, i.e.,
‖A‖∞ = max1≤i≤m,1≤j≤n |ai,j |; however ‖ · ‖∞ is not a matrix norm so it does not have the
submultiplicative property of a matrix norm.

Consider two sequences of real random matrices XT and YT . XT = Op(‖YT ‖), where ‖ · ‖
is some matrix norm, means that for every real ε > 0, there exist Mε > 0 and Tε > 0 such that
for all T > Tε, P(‖XT ‖/‖YT ‖ > Mε) < ε. XT = op(‖YT ‖), where ‖ · ‖ is some matrix norm,

means that ‖XT ‖/‖YT ‖
p−→ 0 as T →∞.

Let a ∨ b and a ∧ b denote max(a, b) and min(a, b), respectively. For two real sequences aT
and bT , aT . bT means that aT ≤ CbT for some positive real number C for all T ≥ 1. aT ∼ bT
means that aT and bT are asymptotically equivalent, i.e., aT /bT → 1 as T →∞. For x ∈ R, let
bxc denote the greatest integer strictly less than x and dxe denote the smallest integer greater
than or equal to x.

For matrix calculus, what we adopt is called the numerator layout or Jacobian formulation;
that is, the derivative of a scalar with respect to a column vector is a row vector.
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2.2 The Model and Identification

In this section we provide more details on the specific model we consider for the large correlation
matrix. We first give a definition of the principal matrix logarithm for real symmetric, positive
definite matrices. More generally, the principal matrix logarithm could be defined for any square
complex matrix having no eigenvalues lying on the closed real axis (−∞, 0], but we do not need
this level of generality in this article. We shall drop the qualifier ”principal” for simplicity.

Definition 2.1 (Matrix logarithm). Suppose that a real, positive definite matrix A (n×n) has
the orthogonal diagonalization A = Uᵀdiag(λ1, . . . , λn)U . Then its matrix logarithm, denoted
logA, is defined as

logA := Uᵀdiag(log λ1, . . . , log λn)U.

Consider an n-dimensional vector time series {xt}Tt=1 that is i.i.d. with µ := Ext and
covariance matrix Σ := E[(xt − µ)(xt − µ)ᵀ]. Let D be the diagonal matrix containing diagonal
entries of Σ. Its correlation matrix Θ is

Θ := D−1/2ΣD−1/2.

A Kronecker product model for Θ is given by (1.1).23 That Θ is a correlation matrix implies
that the diagonal entries of Θ∗j must be the same, although this diagonal entry could differ as
j varies. Without loss of generality, we shall impose a normalisation constraint that all these v
diagonal entries of {Θ∗j}vj=1 are 1.

A Kronecker product model substantially reduces the number of parameters to estimate for a
correlation matrix. In an unrestricted correlation matrix, there are n(n−1)/2 parameters, while
a Kronecker product model has only

∑v
j=1 nj(nj−1)/2 parameters. As an extreme illustration,

when n = 256, the unrestricted correlation matrix has 32,640 parameters while a Kronecker
product model of factorization 256 = 28 has only 8 parameters! Although Θ∗ is not sparse,
log Θ∗ is sparse. This is due to a property of Kronecker products (see Proposition 8.1 in SM
8.1 for derivation):

log Θ∗ = log Θ∗1⊗ In2 ⊗ · · · ⊗ Inv + In1 ⊗ log Θ∗2⊗ In3 ⊗ · · · ⊗ Inv + · · ·+ In1 ⊗ In2 ⊗ · · · ⊗ log Θ∗v,

whence we see that log Θ∗ has many zero elements, generated by identity sub-matrices.
After the normalisation of diagonal entries of Θj to be 1 for all j, parameters in Θ∗j still

warrants some discussion. As an illustration, suppose

Θ∗1 =

 1 0.8 0.5
0.8 1 0.2
0.5 0.2 1

 ,

and then one can compute that

log Θ∗1 =

 −0.75 1.18 0.64
1.18 −0.55 −0.07
0.64 −0.07 −0.17

 .

2Note that if n is not composite, one can add a vector of pseudo variables to the system until the final
dimension is composite. It is recommended to add a vector of independent variables ut ∼ N (0, Ik) such that
zt := (xᵀ

t , u
ᵀ
t )

ᵀ is an n× 1 random vector with n× n correlation matrix

Θ =

[
Θx 0
0 Ik

]
.

3The Kronecker product model is invariant under the Lie group of transformations G generated by A1⊗A2⊗
· · · ⊗ Av, where Aj are nj × nj nonsingular matrices (see Browne and Shapiro (1991)). This structure can be
used to characterise the tangent space T of G and to define a relevant equivariance concept for restricting the
class of estimators for optimality considerations.
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Thus there are nj(nj + 1)/2 parameters in log Θ∗j for j = 1, . . . , v; we call these log parameters.
On the other hand, there are only nj(nj − 1)/2 parameters in Θ∗j for j = 1, . . . , v; we call
these original parameters. These nj(nj − 1)/2 original parameters completely pin down those
nj(nj+1)/2 log parameters. In other words, there exists a function f : Rnj(nj−1)/2 → Rnj(nj+1)/2

which maps original parameters to log parameters. However, when nj > 4, f does not have
a closed form because when nj > 4 the continuous functions which map elements of a matrix
to its eigenvalues have no closed form. When nj = 2, we can solve f by hand (see Example
2.1). When nj = 3, one could use, say, Matlab, to perform symbolic computation, but the
expressions will be extremely complicated.

Example 2.1. Suppose

Θ∗1 =

(
1 ρ∗1
ρ∗1 1

)
.

The eigenvalues of Θ∗1 are 1 + ρ∗1 and 1 − ρ∗1, respectively. The corresponding eigenvectors are
(1, 1)ᵀ/

√
2 and (1,−1)ᵀ/

√
2, respectively. Therefore

log Θ∗1 =

(
1 1
1 −1

)(
log(1 + ρ∗1) 0

0 log(1− ρ∗1)

)(
1 1
1 −1

)
1

2

=

 1
2 log(1− [ρ∗1]2) 1

2 log
(

1+ρ∗1
1−ρ∗1

)
1
2 log

(
1+ρ∗1
1−ρ∗1

)
1
2 log(1− [ρ∗1]2)

 .

Thus

f(ρ) =

(
1

2
log(1− ρ2),

1

2
log
(1 + ρ

1− ρ

)
,
1

2
log(1− ρ2)

)ᵀ
.

To separately identify log parameters in Θ∗1, . . . ,Θ
∗
v from the onset, we need to set the first

diagonal entry of log Θ∗j to be 0 for j = 1, . . . , v − 1. In total there are

s :=
v∑
j=1

nj(nj + 1)

2
− (v − 1) = O(log n)

(identifiable) log parameters in Θ∗1, . . . ,Θ
∗
v; let θ∗ ∈ Rs denote these. On the other hand, to

separately identify original parameters in Θ∗1, . . . ,Θ
∗
v from the onset, no additional identification

restriction is needed.
To estimate a Kronecker product model, there are two approaches. First, one can estimate

original parameters directly using Gaussian quasi-maximum likelihood estimation (see Section
4.1). Second, one can estimate log parameters θ∗ using the principle of minimum distance or
Gaussian quasi-maximum likelihood estimation (see Section 3 and Section 4.1); then recover
the estimates of original parameters via the matrix exponential. When one adopts the second
approach, the diagonal of the estimated Θ∗j cannot have exact ones. In this case, one can replace
these diagonal estimates with 1. To study the theoretical properties of a Kronecker product
model, we feel that the second approach is more appealing as log parameters are additive in
nature while original parameters are multiplicative in nature; additive objects are easier to
analyse theoretically than multiplicative objects. To use Kronecker product models in practice,
the first approach is far easier to implement.

3 The Minimum Distance Estimator

In this section, we study how to estimate log parameters θ∗ of the Kronecker product model
(1.1).
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3.1 Estimation

We first give the main useful model property that delivers a simple estimation strategy. Proposi-
tion A.1 in Appendix A.1 proves that there exists an n(n+1)/2×s full column rank, deterministic
matrix E such that

vech(log Θ∗) = Eθ∗.

(The R code for computing this matrix E is available.) Given a factorization n = n1 · n2 · · ·nv,
if there exists an Θ† ∈ {Θ∗} such that Θ = Θ†, we say that the Kronecker product model {Θ∗}
is correctly specified (i.e., vech(log Θ) = Eθ). Otherwise the Kronecker product model {Θ∗} is
misspecified.

Define the sample covariance matrix and sample correlation matrix

Σ̂T :=
1

T

T∑
t=1

(xt − x̄)(xt − x̄)ᵀ, Θ̂T := D̂
−1/2
T Σ̂T D̂

−1/2
T ,

where x̄ := (1/T )
∑T

t=1 xt and D̂T is a diagonal matrix whose diagonal elements are diagonal

elements of Σ̂T .
We show in Appendix A.2 that in the Kronecker product model {Θ∗} there exists a unique

member, denoted Θ0, which is closest to the correlation matrix Θ in the following sense:

θ0 = θ0(W ) := arg min
θ∗∈Rs

[vech(log Θ)− Eθ∗]ᵀW [vech(log Θ)− Eθ∗], (3.1)

where W is a n(n+ 1)/2×n(n+ 1)/2 positive definite weighting matrix which is free to choose.
Clearly, θ0 has the closed form solution θ0 = (EᵀWE)−1EᵀW vech(log Θ). The population
objective function (3.1) allows us to define a minimum distance (MD) estimator:

θ̂T = θ̂T (W ) := arg min
b∈Rs

[vech(log Θ̂T )− Eb]ᵀW [vech(log Θ̂T )− Eb], (3.2)

whence we can solve
θ̂T = (EᵀWE)−1EᵀW vech(log Θ̂T ). (3.3)

Thus we have
θ̂T − θ0 = (EᵀWE)−1EᵀW vech(log Θ̂T − log Θ).

Note that θ0 is the quantity which one should expect θ̂T to converge to in some probabilistic
sense regardless of whether the Kronecker product model {Θ∗} is correctly specified or not.
When {Θ∗} is correctly specified, i.e., there exists a θ such that vech(log Θ) = Eθ, we have θ0 =
(E

ᵀ
WE)−1EᵀW vech(log Θ) = (E

ᵀ
WE)−1EᵀWEθ = θ. In this case, θ̂T is indeed estimating

the elements of the correlation matrix Θ.

3.2 Rate of Convergence

We shall now introduce some assumptions for our theoretical analysis.

Assumption 3.1.

(i) {xt}Tt=1 are subgaussian random vectors. That is, for all t, for every a ∈ Rn with ‖a‖2 = 1,
and every ε > 0

P(|aᵀxt| ≥ ε) ≤ Ke−Cε
2
,

for positive absolute constants K and C.

(ii) {xt}Tt=1 are normally distributed.

Assumption 3.2.
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(i) n, T →∞ simultaneously, and n/T → 0.

(ii) n, T →∞ simultaneously, and

n2κ3(W )$2 log2 n

T

(
T 2/γ log2 n ∨ n2κ3(W )$2 log2 n · log5 n4

)
= o(1), for some γ > 2,

where κ(W ) is the condition number of W for matrix inversion with respect to the spectral
norm, i.e., κ(W ) := ‖W−1‖`2‖W‖`2 and $ is defined in Assumption 3.3(ii).

(iii) n, T →∞ simultaneously, and

(a) for some γ > 2,
n2$2 log3 n

T

(
n$κ(W ) ∨ T

2
γ log n

)
= o(1),

(b)
$2 log n

n
= o(1).

Assumption 3.3.

(i) The minimum eigenvalue of Σ is bounded away from zero by an absolute constant.

(ii)

mineval

(
1

n
EᵀE

)
≥ 1

$
> 0.

(At most $ = o(n).)

Assumption 3.1(i) is standard in high-dimensional theoretical work. In essence it assumes
that a random vector has exponential tail probabilities, which allows us to invoke some concen-
tration inequality such as the Bernstein’s inequality in Appendix A.5. Note that Assumption
3.1(i) could be replaced by a finite moment assumption and this will only result a rate slightly
worse than

√
n/T in Proposition 3.1(i) (c.f. Vershynin (2012)). Assumption 3.1(ii), which

will only be used in Section 4 for quasi-maximum likelihood or one-step estimation, implies
Assumption 3.1(i); we stress that Assumption 3.1(ii) is not needed for the minimum distance
estimation (Theorem 3.1 or 3.2).

Assumption 3.2(i) is for the derivation of the rate of convergence of spectral norm of Θ̂T −Θ.
To establish the same rate of convergence of spectral norm of Σ̂T − Σ, one only needs n/T →
c ∈ [0, 1]. However for correlation matrices, we need n/T → 0. This is because a correlation
matrix involves inverses of standard deviations. Assumptions 3.2(ii) and (iii) are sufficient
conditions for the asymptotic normality of the minimum distance estimators (Theorems 3.1 and
3.2) and of the one-step estimator (Theorem 4.1), respectively. If Assumption 3.1(i) holds, γ in
Assumption 3.2(ii) and (iii) could be made arbitrarily large, which makes Assumptions 3.2(ii)
and (iii) much less restrictive. Assumption 3.2(ii) necessarily requires n4/T → 0. At first glance,
it looks restrictive, but we would like to remark that this is only a sufficient condition. More
importantly, we are trying to establish a CLT for elements of the second moment of xt in the
large dimensional case. If one is familiar with the literature on the large-dimensional CLT (e.g.,
Lewis and Reinsel (1985), Saikkonen and Lutkepohl (1996), Chang, Chen, and Chen (2015)),
they usually require n3/T → 0 for establishment of CLTs for elements of the first moment of
the data, so our assumption is nothing bold. The same reasoning applies to Assumption 3.2(iii).

Assumption 3.3(i) is also standard. This ensures that Θ is positive definite with the minimum
eigenvalue bounded away from 0 by an absolute positive constant (see Proposition A.5(i) in
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Appendix A.4) and its logarithm is well-defined. Assumption 3.3(ii) postulates a lower bound
for the minimum eigenvalue of EᵀE/n; that is

1√
mineval

(
1
nE
ᵀE
) = O(

√
$).

We divide EᵀE by n because all the non-zero elements of EᵀE are a multiple of n (see Propo-
sition A.2 in Appendix A.1). In words, Assumption 3.3(ii) says that the minimum eigenvalue
of EᵀE/n slowly drifts to zero.

Proposition 3.1.

(i) Suppose Assumptions 3.1(i), 3.2(i) and 3.3(i) hold. Then

‖Θ̂T −Θ‖`2 = Op

(√
n

T

)
.

(ii) Suppose that ‖Θ̂T − Θ‖`2 < a with probability approaching 1 for some absolute constant
a > 1, then we have

‖ log Θ̂T − log Θ‖`2 = Op(‖Θ̂T −Θ‖`2).

(iii) Suppose Assumptions 3.1(i), 3.2(i) and 3.3 hold. Then

‖θ̂T − θ0‖2 = Op

(√
n$κ(W )

T

)
,

where ‖·‖2 is the Euclidean norm, κ(W ) is the condition number of W for matrix inversion
with respect to the spectral norm, i.e., κ(W ) := ‖W−1‖`2‖W‖`2, and $ is defined in
Assumption 3.3(ii).

Proof. See Appendix A.3.

Proposition 3.1(i) provides the rate of convergence of the spectral norm of Θ̂T − Θ, which
is a stepping stone for the rest of theoretical results. Strictly speaking, the rate should be
n/T ∨

√
n/T , which collapses to

√
n/T under Assumption 3.2(i). This rate is the same as that

of ‖Σ̂T −Σ‖`2 . Proposition 3.1(ii) is also of independent interest as it relates ‖ log Θ̂T − log Θ‖`2
to ‖Θ̂T −Θ‖`2 .

Proposition 3.1(iii) gives the rate of convergence of the minimum distance estimator θ̂T .
θ0 are log parameters of the member in the Kronecker product model, which is closest to Θ
in the sense discussed earlier. For sample correlation matrix Θ̂T , the rate of convergence of
‖ vec(Θ̂T − Θ)‖2 is

√
n2/T (square root of summing up O(n2) terms each of which has a rate

1/T ). Thus the minimum distance estimator θ̂T of the Kronecker product model converges
faster provided $κ(W ) is not too large, in line with principle of dimension reduction. However,
given that the dimension of θ0 is s = O(log n), one would conjecture that the optimal rate of
convergence should be

√
log n/T . In this sense, Proposition 3.1(iii) does not demonstrate the

full advantages of a Kronecker product model. Because of the severe non-linearity introduced
by matrix logarithm as it is defined through spectrum, it is beyond the scope of this article to
prove a faster rate of convergence of ‖θ̂T − θ0‖2.
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3.3 Asymptotic Normality

To derive the asymptotic normality of the minimum distance estimator, we consider two cases

(i) µ is unknown but D is known;

(ii) both µ and D are unknown.

We will derive the asymptotic normality of the minimum distance estimator for both cases.
Define the following n2 × n2 dimensional matrix H:

H :=

∫ 1

0
[t(Θ− I) + I]−1 ⊗ [t(Θ− I) + I]−1dt. (3.4)

Define also the n× n and n2 × n2 matrices:

Σ̃T :=
1

T

T∑
t=1

(xt − µ)(xt − µ)ᵀ V := var(
√
T vec(Σ̃T − Σ)).

Since x 7→ (dxne, x − b
x
ncn) is a bijection from {1, . . . , n2} to {1, . . . , n} × {1, . . . , n}, it is easy

to show that the (x, y)th entry of V is

Vx,y ≡ Vi,j,k,` = E[(xt,i−µi)(xt,j−µj)(xt,k−µk)(xt,`−µ`)]−E[(xt,i−µi)(xt,j−µj)]E[(xt,k−µk)(xt,`−µ`)],

where µi = Ext,i (similarly for µj , µk, µ`), x, y ∈ {1, . . . , n2} and i, j, k, ` ∈ {1, . . . , n}. In the
special case of normality, V = 2DnD

+
n (Σ⊗ Σ) (Magnus and Neudecker (1986) Lemma 9).

Assumption 3.4. V is positive definite for all n, with its minimum eigenvalue bounded away
from zero by an absolute constant and maximum eigenvalue bounded from above by an absolute
constant.

Assumption 3.4 is also a standard regularity condition. It is automatically satisfied under
normality given Assumptions 3.2(i) and 3.3(i) (via Proposition A.3(vi) in Appendix A.3). As-
sumption 3.4 could be relaxed to the case where the minimum (maximum) eigenvalue of V is
slowly drifting towards zero (infinity) at certain rate. The proofs for Theorem 3.1 and Theorem
3.2 remain unchanged, but this rate will need to be incorporated in Assumption 3.2(ii).

3.3.1 When µ Is Unknown But D Is Known

In this case, Θ̂T simplifies into Θ̂T,D := D−1/2Σ̂TD
−1/2. Similarly, the minimum distance

estimator θ̂T simplifies into θ̂T,D := (EᵀWE)−1EᵀW vech(log Θ̂T,D). Let ĤT,D denote the
n2 × n2 matrix

ĤT,D :=

∫ 1

0
[t(Θ̂T,D − I) + I]−1 ⊗ [t(Θ̂T,D − I) + I]−1dt.

Define V ’s sample analogue V̂T whose (x, y)th entry is

V̂T,x,y ≡ V̂T,i,j,k,` :=
1

T

T∑
t=1

(xt,i − x̄i)(xt,j − x̄j)(xt,k − x̄k)(xt,` − x̄`)

−
( 1

T

T∑
t=1

(xt,i − x̄i)(xt,j − x̄j)
)( 1

T

T∑
t=1

(xt,k − x̄k)(xt,` − x̄`)
)
,

where x̄i := 1
T

∑T
t=1 xt,i (similarly for x̄j , x̄k and x̄`), x, y ∈ {1, . . . , n2} and i, j, k, ` ∈ {1, . . . , n}.
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For any c ∈ Rs define the scalar

GD := cᵀJDc := cᵀ(EᵀWE)−1EᵀWD+
nH(D−1/2⊗D−1/2)V (D−1/2⊗D−1/2)HD+ᵀ

n WE(EᵀWE)−1c.

In the special case of normality, GD could be simplified into (see Example 8.1 in SM 8.6 for
details): 2cᵀ(EᵀWE)−1EᵀWD+

nH(Θ⊗Θ)HD+ᵀ

n WE(EᵀWE)−1c. We also define the estimate
ĜT,D:

ĜT,D := cᵀĴT,Dc := cᵀ(EᵀWE)−1EᵀWD+
n ĤT,D(D−1/2⊗D−1/2)V̂T (D−1/2⊗D−1/2)ĤT,DD

+ᵀ

n WE(EᵀWE)−1c.

Theorem 3.1. Let Assumptions 3.1(i), 3.2(ii), 3.3 and 3.4 be satisfied. Then

√
Tcᵀ(θ̂T,D − θ0)√

ĜT,D

d−→ N(0, 1),

for any s× 1 non-zero vector c with ‖c‖2 = 1.

Proof. See Appendix A.4.

Theorem 3.1 is a version of the large-dimensional CLT, whose proof is mathematically non-
trivial. Because the dimension of θ0 is growing with the sample size, for a CLT to make sense,
we need to transform θ̂T,D− θ0 to a univariate quantity by pre-multiplying cᵀ. The magnitudes
of the elements of c are not important, so we normalize it to have unit Euclidean norm. What
is important is whether the elements of c are zero or not. The components of θ̂T,D − θ0 whose
positions correspond to the non-zero elements of c are effectively entering the CLT.

We contribute to the literature on the large-dimensional CLT (see Huber (1973), Yohai and
Maronna (1979), Portnoy (1985), Mammen (1989), Welsh (1989), Bai and Wu (1994), Saikkonen
and Lutkepohl (1996) and He and Shao (2000)). In this strand of literature, a distinct feature
is that the dimension of parameter, say, θ0, is growing with the sample size, and at the same
time we do not impose sparsity on θ0. As a result, the rate of growth of dimension of parameter
has to be restricted by an assumption like Assumption 3.2(ii); in particular, the dimension of
parameter cannot exceed the sample size. This approach is different from the recent literature
on high-dimensional statistics such as Lasso, where one imposes sparsity on parameter to allow
its dimension to exceed the sample size.

We also give a corollary which allows us to test multiple hypotheses like H0 : Aᵀθ0 = a.

Corollary 3.1. Let Assumptions 3.1(i), 3.2(ii), 3.3 and 3.4 be satisfied. Given a full-column-
rank s× k matrix A where k is finite with ‖A‖`2 = Op(

√
log n · nκ(W )), we have

√
T (AᵀĴT,DA)−1/2Aᵀ(θ̂T,D − θ0)

d−→ N
(
0, Ik

)
.

Proof. See SM 8.6.

Note that the condition ‖A‖`2 = Op(
√

log n · nκ(W )) is trivial because the dimension of A is
only of order O(log n)×O(1). Moreover we can always rescale A when carrying out hypothesis
testing.

If one chooses the weighting matrix W optimally, albeit infeasibly,

Wop =
[
D+
nH(D−1/2 ⊗D−1/2)V (D−1/2 ⊗D−1/2)HD+ᵀ

n

]−1
,

the scalar GD reduces to

cᵀ
(
Eᵀ
[
D+
nH(D−1/2 ⊗D−1/2)V (D−1/2 ⊗D−1/2)HD+ᵀ

n

]−1
E
)−1

c.
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Under a further assumption of normality (i.e., V = 2DnD
+
n (Σ ⊗ Σ)), the preceding display

further simplifies to

cᵀ
(

1

2
EᵀDᵀnH

−1(Θ−1 ⊗Θ−1)H−1DnE

)−1

c,

by Lemma 14 of Magnus and Neudecker (1986). We shall compare the preceding display with
the variance of the asymptotic distribution of the one-step estimator in Section 4.

3.3.2 When Both µ and D Are Unknown

The case where both µ and D are unknown is considerably more difficult. If one simply recycles
the proof for the case where only µ is unknown and replaces D with its plug-in estimator D̂T ,
it will not work.

Let ĤT denote the n2 × n2 matrix

ĤT :=

∫ 1

0
[t(Θ̂T − I) + I]−1 ⊗ [t(Θ̂T − I) + I]−1dt.

Define the n2 × n2 matrix P :

P := In2 −DnD
+
n (In ⊗Θ)Md, Md :=

n∑
i=1

(Fii ⊗ Fii),

where Fii is an n×n matrix with one in its (i, i)th position and zeros elsewhere. Md is a n2×n2

diagonal matrix with diagonal elements equal to 0 or 1; the positions of 1 in the diagonal of
Md correspond to the positions of diagonal entries of an arbitrary matrix A in vecA. Note that
matrix P is an idempotent matrix of rank n2 − n and first appeared in (4.6) of Neudecker and
Wesselman (1990). In particular, given any correlation matrix Θ, P has n2 − n rows of zeros.
Neudecker and Wesselman (1990) proved that

∂ vec Θ

∂ vec Σ
= P (D−1/2 ⊗D−1/2);

the derivative is a function of Σ.
For any c ∈ Rs define the scalar G and its estimate ĜT :

G := cᵀJc := cᵀ(EᵀWE)−1EᵀWD+
nHP (D−1/2⊗D−1/2)V (D−1/2⊗D−1/2)P ᵀHD+ᵀ

n WE(EᵀWE)−1c.

ĜT := cᵀĴT c := cᵀ(EᵀWE)−1EᵀWD+
n ĤT P̂T (D̂

−1/2
T ⊗D̂−1/2

T )V̂T (D̂
−1/2
T ⊗D̂−1/2

T )P̂ ᵀT ĤTD
+ᵀ

n WE(EᵀWE)−1c,

where P̂T := In2 −DnD
+
n (In ⊗ Θ̂T )Md.

Assumption 3.5.

(i) For every positive constant C

sup

Σ∗:‖Σ∗−Σ‖F≤C
√
n2

T

∥∥∥∥∥ ∂ vec Θ

∂ vec Σ

∣∣∣∣
Σ=Σ∗

− P (D−1/2 ⊗D−1/2)

∥∥∥∥∥
`2

= O

(√
n

T

)
,

where ·|Σ=Σ∗ means ”evaluate the argument Σ at Σ∗”.

(ii) The s× s matrix

EᵀWD+
nHP (D−1/2 ⊗D−1/2)V (D−1/2 ⊗D−1/2)P ᵀHD+ᵀ

n WE

has full rank s (i.e, being positive definite). Moreover,

mineval
(
EᵀWD+

nHP (D−1/2 ⊗D−1/2)V (D−1/2 ⊗D−1/2)P ᵀHD+ᵀ

n WE
)
≥ n

$
mineval2(W ).
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Assumption 3.5(i) characterises some sort of uniform rate of convergence in terms of spectral
norm of the Jacobian matrix ∂ vec Θ

∂ vec Σ . This type of assumption is usually needed when one wants

to stop Taylor expansion, say, of vec Θ̂T , at first order. If one goes into the second-order
expansion (a tedious route), Assumption 3.5(i) can be completely dropped at some expense
of further restricting the relative growth rate between n and T . The radius of the shrinking
neighbourhood

√
n2/T is determined by the rate of convergence in terms of the Frobenius norm

of the sample covariance matrix Σ̂T . The rate on the right side of Assumption 3.5(i) is chosen
to be

√
n/T because it is the rate of convergence of∥∥∥∥∥ ∂ vec Θ

∂ vec Σ

∣∣∣∣
Σ=Σ̂T

− P (D−1/2 ⊗D−1/2)

∥∥∥∥∥
`2

which could be easily deduced from the proof of Theorem 3.2. This rate
√
n/T could even be

relaxed to
√
n2/T as the part of the proof of Theorem 3.2 which requires Assumption 3.5(i) is

not the ”binding” part of the whole proof.
We now examine Assumption 3.5(ii). The s× s matrix

EᵀWD+
nHP (D−1/2 ⊗D−1/2)V (D−1/2 ⊗D−1/2)P ᵀHD+ᵀ

n WE

is symmetric and positive semidefinite. By Observation 7.1.8 of Horn and Johnson (2013), its
rank is equal to rank(EᵀWD+

nHP ), if (D−1/2 ⊗D−1/2)V (D−1/2 ⊗D−1/2) is positive definite.
In other words, Assumption 3.5(ii) is assuming rank(EᵀWD+

nHP ) = s, provided (D−1/2 ⊗
D−1/2)V (D−1/2 ⊗D−1/2) is positive definite. Even though P has only rank n2 − n, in general
the rank condition does hold except in a special case. The special case is Θ = In&W = In(n+1)/2.
In this special case

rank(EᵀWD+
nHP ) = rank(EᵀD+

n P ) =
v∑
j=1

nj(nj − 1)

2
< s.

The second part of Assumption 3.5(ii) postulates a lower bound for its minimum eigenvalue.
The rate mineval2(W )n/$ is specified as such because of Assumption 3.3(ii). Other magnitudes
of the rate are also possible as long as the proof of Theorem 3.2 goes through.

Theorem 3.2. Let Assumptions 3.1(i), 3.2(ii), 3.3, 3.4 and 3.5 be satisfied. Then

√
Tcᵀ(θ̂T − θ0)√

ĜT

d−→ N(0, 1),

for any s× 1 non-zero vector c with ‖c‖2 = 1.

Proof. See SM 8.3.

Again Theorem 3.2 is a version of the large-dimensional CLT, whose proof is mathematically
non-trivial. It has the same structure as that of Theorem 3.1. However ĜT differs from ĜT,D
reflecting the difference betweenG andGD. That is, the asymptotic distribution of the minimum
distance estimator depends on whether D is known or not.

We also give a corollary which allows us to test multiple hypotheses like H0 : Aᵀθ0 = a.

Corollary 3.2. Let Assumptions 3.1(i), 3.2(ii), 3.3, 3.4 and 3.5 be satisfied. Given a full-

column-rank s× k matrix A where k is finite with ‖A‖`2 = Op(
√

log2 n · nκ2(W )$), we have

√
T (AᵀĴTA)−1/2Aᵀ(θ̂T − θ0)

d−→ N
(
0, Ik

)
.
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Proof. Essentially the same as that of Corollary 3.1.

The condition ‖A‖`2 = Op(
√

log2 n · nκ2(W )$) is trivial because the dimension of A is only

of order O(log n) × O(1). Moreover we can always rescale A when carrying out hypothesis
testing.

3.4 A Specification Test

We give a specification test (also known as an over-identification test) based on the minimum
distance objective function in (3.2). Suppose we want to test whether the Kronecker product
model {Θ∗} is correctly specified given the factorization n = n1 · n2 · · ·nv. That is,

H0 : Θ ∈ {Θ∗} (i.e., vech(log Θ) = Eθ), H1 : Θ /∈ {Θ∗}.

We first fix n (and hence v and s). Recall (3.2):

θ̂T = θ̂T (W ) := arg min
b∈Rs

[vech(log Θ̂T )− Eb]ᵀW [vech(log Θ̂T )− Eb] =: arg min
b∈Rs

gT (b)ᵀWgT (b).

Proposition 3.2. Fix n (and hence v and s).

(i) Suppose µ is unknown but D is known. Let Assumptions 3.1(i), 3.3, and 3.4 be satisfied.
Thus, under H0,

TgT,D(θ̂T,D)ᵀŜ−1
T,DgT,D(θ̂T,D)

d−→ χ2
n(n+1)/2−s, (3.5)

where

gT,D(b) := vech(log Θ̂T,D)− Eb
ŜT,D := D+

n ĤT,D(D−1/2 ⊗D−1/2)V̂T (D−1/2 ⊗D−1/2)ĤT,DD
+ᵀ
n .

(ii) Suppose both µ and D are unknown. Let Assumptions 3.1(i), 3.3, 3.4 and 3.5 be satisfied.
Thus, under H0,

TgT (θ̂T )ᵀŜ−1
T gT (θ̂T )

d−→ χ2
n(n+1)/2−s,

where
ŜT := D+

n ĤT P̂T (D̂
−1/2
T ⊗ D̂−1/2

T )V̂T (D̂
−1/2
T ⊗ D̂−1/2

T )P̂ ᵀT ĤTD
+ᵀ

n .

Proof. See SM 8.6.

From Proposition 3.2, we can easily get the following result of the diagonal path asymptotics,
which is more general than the sequential asymptotics but less general than the joint asymptotics
(see Phillips and Moon (1999)).

Corollary 3.3.

(i) Suppose µ is unknown but D is known. Let Assumptions 3.1(i), 3.3, and 3.4 be satisfied.
Under H0,

TgT,n,D(θ̂T,n,D)ᵀŜ−1
T,n,DgT,n,D(θ̂T,n,D)−

[n(n+1)
2 − s

][
n(n+ 1)− 2s

]1/2 d−→ N(0, 1),

where n = nT as T →∞.
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(ii) Suppose both µ and D are unknown. Let Assumptions 3.1(i), 3.3, 3.4 and 3.5 be satisfied.
Under H0, as T →∞,

TgT,n(θ̂T,n)ᵀŜ−1
T,ngT,n(θ̂T,n)−

[n(n+1)
2 − s

][
n(n+ 1)− 2s

]1/2 d−→ N(0, 1),

where n = nT as T →∞.

Proof. See SM 8.6.

4 The QMLE and One-Step Estimator

4.1 The QMLE

In the context of Gaussian quasi-maximum likelihood estimation (QMLE), given a factorization
n = n1 · n2 · · ·nv, we shall additionally assume that the Kronecker product model {Θ∗} is
correctly specified (i.e. vech(log Θ) = Eθ). Let ρ ∈ [−1, 1]sρ be original parameters of the
Kronecker product model; we have mentioned that

sρ =
v∑
j=1

nj(nj − 1)/2.

The log likelihood function in terms of original parameters ρ for a sample {x1, x2, . . . , xT } is
given by

`T (µ,D, ρ) = −Tn
2

log(2π)− T

2
log
∣∣∣D1/2Θ(ρ)D1/2

∣∣∣− 1

2

T∑
t=1

(xt − µ)ᵀD−1/2Θ(ρ)−1D−1/2(xt − µ).

Write Ω = Ω(θ) := log Θ = log Θ(ρ). The log likelihood function in terms of log parameters θ
for a sample {x1, x2, . . . , xT } is given by

`T (µ,D, θ)

= −Tn
2

log(2π)− T

2
log
∣∣∣D1/2 exp(Ω(θ))D1/2

∣∣∣− 1

2

T∑
t=1

(xt − µ)ᵀD−1/2[exp(Ω(θ))]−1D−1/2(xt − µ).

(4.1)

In practice, conditional on some estimates of µ and D, we use an iterative algorithm based
on the derivatives of `T with respect to either ρ or θ to compute the QMLE of either ρ or
θ. Proposition 4.1 below provides formulas for the derivatives of `T with respect to θ. The
computations required are typically not too onerous, since for example the Hessian matrix is of
an order log n by log n. See Singull et al. (2012) and Ohlson et al. (2013) for a discussion of
estimation algorithms in the case where the data are multiway array and v is of low dimension.
Nevertheless since there is quite complicated non-linearity involved in the definition of the
QMLE, it is not so easy to directly analyse QMLE.

Instead we shall consider a one-step estimator that uses the minimum distance estimator in
Section 3 to provide a starting value and then takes a Newton-Raphson step towards the QMLE
of θ. In the fixed n it is known that the one-step estimator is equivalent to the QMLE in the
sense that it shares its asymptotic distribution (Bickel (1975)).

Below, for slightly abuse of notation, we shall use µ,D, θ to denote the true parameter (i.e.,
characterising the data generating process) as well as the generic parameter of the likelihood
function; we will be more specific whenever any confusion is likely to arise.
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4.2 The One-Step Estimator

Here we only examine the one-step estimator when µ is unknown but D is known. When neither
µ nor D is known, one has to differentiate (4.1) with respect to both θ and D. The analysis
becomes considerably more involved and we leave it for future work. Suppose D is known, the
likelihood function (4.1) reduces to

`T,D(θ, µ) =

− Tn

2
log(2π)− T

2
log
∣∣∣D1/2 exp(Ω(θ))D1/2

∣∣∣− 1

2

T∑
t=1

(xt − µ)ᵀD−1/2[exp(Ω(θ))]−1D−1/2(xt − µ).

(4.2)

It is a well-known result that for any choice of Σ (i.e., D and θ), the QMLE for µ is x̄. Hence
we may define

θ̂QMLE,D = arg max
θ
`T,D(θ, x̄).

Proposition 4.1. The s× 1 score function of (4.2) with respect to θ takes the following form

∂`T,D(θ, µ)

∂θᵀ
=
T

2
EᵀDᵀn

∫ 1

0
etΩ ⊗ e(1−t)Ωdt

[
vec
(
e−ΩD−1/2Σ̃TD

−1/2e−Ω − e−Ω
)]
.

The s× s block corresponding to θ of the Hessian matrix of (4.2) takes the following form

∂2`T,D(θ, µ)

∂θ∂θᵀ
=

− T

2
EᵀDᵀnΨ1

(
e−ΩD−1/2Σ̃TD

−1/2 ⊗ In + In ⊗ e−ΩD−1/2Σ̃TD
−1/2 − In2

) (
e−Ω ⊗ e−Ω

)
Ψ1DnE

+
T

2
(Ψᵀ2 ⊗ E

ᵀDᵀn)

∫ 1

0
PK
(
In2 ⊗ vec e(1−t)Ω) ∫ 1

0
estΩ ⊗ e(1−s)tΩds · tdtDnE

+
T

2
(Ψᵀ2 ⊗ E

ᵀDᵀn)

∫ 1

0
PK
(
vec etΩ ⊗ In2

) ∫ 1

0
es(1−t)Ω ⊗ e(1−s)(1−t)Ωds · (1− t)dtDnE,

where PK := In ⊗Kn,n ⊗ In and

Ψ1 = Ψ1(θ) :=

∫ 1

0
etΩ(θ) ⊗ e(1−t)Ω(θ)dt,

Ψ2 = Ψ2(θ) := vec
(
e−Ω(θ)D−1/2Σ̃TD

−1/2e−Ω(θ) − e−Ω(θ)
)
.

Proof. See SM 8.4.

Since EΨ2(θ) = 0, where θ denotes the true parameter, so the negative normalized expected
Hessian matrix evaluated at the true parameter θ takes the following form

ΥD := E
[
− 1

T

∂2`T,D(θ, µ)

∂θ∂θᵀ

]
=

1

2
EᵀDᵀnΨ1(θ)

(
e−Ω(θ) ⊗ e−Ω(θ)

)
Ψ1(θ)DnE

=
1

2
EᵀDᵀn

∫ 1

0

∫ 1

0
e(t+s−1)Ω ⊗ e(1−t−s)ΩdtdsDnE

=
1

2
EᵀDᵀn

[∫ 1

0

∫ 1

0
Θt+s−1 ⊗Θ1−t−sdtds

]
DnE =:

1

2
EᵀDᵀnΞDnE.
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Under normality (i.e., V = 2DnD
+
n (Σ⊗Σ)), one can verify that ΥD = E

[
1
T
∂`T,D(θ,µ)

∂θᵀ
∂`T,D(θ,µ)

∂θ

]
.

We then propose the following one-step estimator in the spirit of van der Vaart (1998) p72 or
Newey and McFadden (1994) p2150:

θ̃T,D := θ̂T,D − Υ̂−1
T,D

∂`T,D(θ̂T,D, x̄)

∂θᵀ
/T, (4.3)

where Υ̂T,D := 1
2E
ᵀDᵀn

[∫ 1
0

∫ 1
0 Θ̂t+s−1

T ⊗ Θ̂1−t−s
T dtds

]
DnE =: 1

2E
ᵀDᵀnΞ̂TDnE. (We show in SM

8.5 that Υ̂T,D is invertible with probability approaching 1.) We did not use the plain vanilla

one-step estimator because the Hessian matrix
∂2`T,D(θ,µ)
∂θ∂θᵀ is rather complicated to analyse.

4.3 Large Sample Properties

Assumption 4.1. For every positive constant M and uniformly in b ∈ Rs with ‖b‖2 = 1,

sup

θ∗:‖θ∗−θ‖2≤M
√
n$κ(W )

T

∣∣∣∣∣√Tbᵀ
[

1

T

∂`T,D(θ∗, x̄)

∂θᵀ
− 1

T

∂`T,D(θ, x̄)

∂θᵀ
−ΥD(θ∗ − θ)

]∣∣∣∣∣ = op(1).

Assumption 4.1 is one of the sufficient conditions needed for the asymptotic normality of θ̃T,D
(Theorem 4.1). This kind of assumption is standard in the asymptotics of one-step estimators
(see (5.44) of van der Vaart (1998) p71) or of M-estimation (see (C3) of He and Shao (2000)).

Assumption 4.1 implies that 1
T
∂`T,D(θ,x̄)

∂θᵀ is differentiable at the true parameter θ, with derivative

tending to ΥD in probability. The radius of the shrinking neighbourhood
√
n$κ(W )/T is

determined by the rate of convergence of any preliminary estimator, say, θ̂T,D in our case.
It is possible to relax the op(1) on the right side of Assumption 4.1 to op(

√
n/($2 log n)) by

examining the proof of Theorem 4.1.
We next provide the large sample theory for θ̃T,D.

Theorem 4.1. Suppose that the Kronecker product model {Θ∗} is correctly specified. Let As-
sumptions 3.1(ii), 3.2(iii), 3.3, and 4.1 be satisfied. Then

√
Tbᵀ(θ̃T,D − θ)√

bᵀΥ̂−1
T,Db

d−→ N(0, 1)

for any s× 1 vector b with ‖b‖2 = 1.

Proof. See SM 8.5.

Theorem 4.1 is a version of the large-dimensional CLT, which is difficult to derive. It has
the same structure as that of Theorem 3.1 or Theorem 3.2. Note that if we replace normality
(Assumption 3.1(ii)) with the subgaussian assumption (Assumption 3.1(i)) - that is Gaussian
likelihood is not correctly specified - although the norm consistency of θ̃T,D should still hold, the
asymptotic variance in Theorem 4.1 needs to be changed to have a sandwich formula. Theorem

4.1 says that
√
Tbᵀ(θ̃T,D − θ)

d−→ N
(
0, bᵀ

(
E
[
− 1
T
∂2`T,D(θ,µ)
∂θ∂θᵀ

])−1
b
)
. In the fixed n case, this

estimator achieves the parametric efficiency bound by a well-known result
∂2`T,D(θ,µ)
∂µ∂θᵀ = 0. This

shows that our one-step estimator θ̃T,D is efficient when D (the variances) is known.

By recognising that H−1 =
∫ 1

0 e
t log Θ⊗e(1−t) log Θdt = Ψ1, (see Proposition 8.6 in SM 8.6), we

see that, when D is known, under normality and correct specification of the Kronecker product
model, θ̃T,D and the optimal minimum distance estimator θ̂T,D(Wop) have the same asymptotic

variance, i.e.,
(

1
2E
ᵀDᵀnH−1(Θ−1 ⊗Θ−1)H−1DnE

)−1
.

We also give the following corollary which allows us to test multiple hypotheses like H0 :

Aᵀθ = a.
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Corollary 4.1. Suppose the Kronecker product model {Θ∗} is correctly specified. Let Assump-
tions 3.1(ii), 3.2(iii), 3.3, and 4.1 be satisfied. Given a full-column-rank s× k matrix A where
k is finite with ‖A‖`2 = Op(

√
log n · n), we have

√
T (AᵀΥ̂−1

T,DA)−1/2Aᵀ(θ̃T,D − θ)
d−→ N

(
0, Ik

)
.

Proof. Essentially the same as that of Corollary 3.1.

The condition ‖A‖`2 = Op(
√

log n · n) is trivial because the dimension of A is only of order
O(log n)×O(1). Moreover we can always rescale A when carrying out hypothesis testing.

5 Model Selection

We briefly discuss the issue of model selection here. One shall not worry about this if the data
are in the multi-index format with v multiplicative factors. This is because in this setting the
Kronecker product model is pinned down by the structure of multiway arrays - there is no model
uncertainty. This issue will pop up when one uses a Kronecker product model to approximate
a general covariance or correlation matrix.

First, note that for a given Kronecker product model, if one permutes the data, the per-
formance of this Kronecker product model is likely to vary. Thus in practice one needs to
investigate sensitivity of performance of a Kronecker product model when permuting the data.

Second, if one fixes the ordering of the data as well as factorization n = n1 · · ·nv, but simply
permutes Θ∗j s, one obtains a different Θ∗ (i.e., a different Kronecker product model). Although
the eigenvalues of these two Kronecker product models are the same, the eigenvectors of them
are not.

Third, if one fixes the ordering of the data, but uses a different factorization of n, one
then obtains a completely different Kronecker product model. Suppose that n has the prime
factorization n = p1p2 · · · pv for some positive integer v (v ≥ 2) and primes pj for j = 1, . . . , v.
Then there exist several different Kronecker product models, each of which is indexed by the
dimensions of the sub-matrices. The base model has dimensions (p1, p2, . . . , pv), but there are
many possible aggregations of this, for example,

(
(p1 + p2), . . . , (pv−1 + pv)

)
.

To address the second and third issues, we might choose between those Kronecker product
models using some model selection criterion that penalizes the larger models. For example,

BIC(ρ) = −2`T (µ,D, ρ) + sρ log T,

where `T (·, ·, ·) is the log likelihood function defined in Section 4, ρ is original parameters
associated with a Kronecker product model, and sρ is dimension of ρ. Typically there are not
so many factorizations to consider, so this is not too computationally burdensome.

6 Numerical Studies and an Application

6.1 Numerical Studies

We first provide a small simulation study that evaluates the performance of the QMLE, and
then apply our model to daily stock returns.

We simulate T random vectors xt of dimension n according to

xt = Σ1/2zt, zt ∼ N(0, In) Σ = Σ1 ⊗ Σ2 ⊗ · · · ⊗ Σv,

where n = 2v and v ∈ N. The sub-matrices Σj are 2× 2. These sub-matrices Σj are generated
with unit variances and off-diagonal elements drawn from a uniform distribution on (0, 1). This
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ensures positive definiteness of Σ. Due to the unit variances, Σ is both the covariance and
correlation matrix of xt, but the econometrician is unaware of this and applies a Kronecker
product model to the covariance matrix of xt. We shall consider the correctly specified case,
i.e., the Kronecker product model has a factorization n = 2v. The sample size is set to T = 300.
We shall adopt the first approach of estimation to estimate original parameters directly. For
identification, the upper diagonal elements of Σj , j ≥ 2, are set to 1; altogether, there are 2v+1
original parameters to estimate by quasi-maximum likelihood.

As in Ledoit and Wolf (2004), we use a percentage relative improvement in average loss
(PRIAL) criterion, to measure the performance of the Kronecker product model Σ̂Kron with
respect to the sample covariance estimator Σ̂T . It is defined as

PRIAL1 = 1−
E‖Σ̂Kron − Σ‖2F
E‖Σ̂T − Σ‖2F

.

Often the estimator of the precision matrix, Σ−1, is more important than that of Σ itself, so we
also compute the PRIAL for the inverse covariance matrix, i.e.,

PRIAL2 = 1−
E‖Σ̂−1

Kron − Σ−1‖2F
E‖Σ̂−1

T − Σ−1‖2F
.

Note that this requires invertibility of the sample covariance matrix Σ̂T and therefore can only
be calculated for n < T .

Our final criterion is the minimum variance portfolio (MVP) constructed from an estimator
of the covariance matrix. For example, the weights of the minimum variance portfolio are given
by

wMV =
Σ−1ιn
ιᵀnΣ−1ιn

,

where ιn = (1, 1, . . . , 1)
ᵀ

of dimension n, see e.g., Ledoit and Wolf (2003) and Chan, Karceski,
and Lakonishok (1999). The inverse of a Kronecker product model is easily found by inverting
the sub-matrices Σ∗j , which can be done analytically, since

(Σ∗)−1 = (Σ∗1)−1 ⊗ (Σ∗2)−1 ⊗ · · · ⊗ (Σ∗v)
−1.

In fact, because ιn = ιn1 ⊗ ιn2 ⊗ · · · ⊗ ιnv , we can write

wMV =

(
(Σ∗1)−1 ⊗ (Σ∗2)−1 ⊗ · · · ⊗ (Σ∗v)

−1
)
ιn

ιᵀn
(
(Σ∗1)−1 ⊗ (Σ∗2)−1 ⊗ · · · ⊗ (Σ∗v)

−1
)
ιn

=
(Σ∗1)−1ιn1

ιᵀn1(Σ∗1)−1ιn1

⊗ (Σ∗2)−1ιn2

ιᵀn2(Σ∗2)−1ιn2

⊗ · · · ⊗ (Σ∗v)
−1ιnv

ιᵀnv(Σ
∗
v)
−1ιnv

,

var(w
ᵀ

MV xt) =
1

ιᵀn1(Σ∗1)−1ιn1 × · · · × ι
ᵀ
nv(Σ

∗
v)
−1ιnv

.

In cases where n is large, this structure is very convenient computationally. The first portfolio
weights are constructed using the sample covariance matrix Σ̂T and the second portfolio weights
are constructed using the Kronecker product model Σ̂Kron. These two portfolios are then eval-
uated (by calculating the variance) using the out-of-sample returns generated using the same
data generating mechanism. The ratio of the variance of the latter portfolio over that of the
former (VR) is recorded. See Fan, Liao, and Shi (2015) for a discussion of risk estimation for
large dimensional portfolio choice problems.

We repeat the simulation 1000 times and obtain for each simulation PRIAL1, PRIAL2
and VR. Table 1 reports the median of the obtained PRIALs and VR for various dimensions.
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n 4 8 16 32 64 128 256

PRIAL1 0.33 0.69 0.86 0.94 0.98 0.99 0.99
PRIAL2 0.34 0.70 0.89 0.97 0.99 1.00 1.00

VR 0.997 0.991 0.975 0.944 0.889 0.768 0.386

Table 1: PRIAL1 and PRIAL2 are the medians of the PRIAL1 and PRIAL2 criteria, respectively,

for the Kronecker product model with respect to the sample covariance estimator in the case of correct

specification. VR is the median of the ratio of the variance of the MVP using the Kronecker product

model to that using the sample covariance estimator. The sample size is fixed at T = 300.

Clearly, as the dimension increases, the Kronecker product model rapidly outperforms the sam-
ple covariance estimator. The relative performance of the precision matrix estimator (PRIAL2)
is very similar. In terms of the ratio of MVP variances, the Kronecker product model yields a
23.2 percent smaller variance for n = 128 and 61.4 percent for n = 256. The reduction becomes
clear as n approaches T .

6.2 An Application

We now apply the model to a set of n = 441 daily stock returns xt of the S&P 500 index,
observed from January 3, 2005, to November 6, 2015. The number of trading days is T = 2732.

Kronecker product models are fitted to the correlation matrix Θ = D−1/2ΣD−1/2, where D
is the diagonal matrix containing the variances of xt. The first Kronecker model (M1) uses the
factorization 29 = 512 and assumes that

Θ∗ = Θ∗1 ⊗Θ∗2 ⊗ · · · ⊗Θ∗9,

where Θ∗j are 2 × 2 correlation matrices. We add a vector of 71 independent pseudo variables

ut ∼ N (0, I71) such that n + 71 = 29, and then extract the upper left (n × n) block of Θ∗ to
obtain the correlation matrix of xt.

Again we adopt the first approach of estimation to estimate original parameters directly.
The estimation is done in two steps: First, D is estimated using the sample variances, and then
the original parameters of Θ∗ are estimated by quasi-maximum likelihood estimation using
the standardized returns D̂−1/2xt and pseudo variables ut. Re-ordering the data xt according
to variance in a descending way prior to adding the pseudo variables ut did not improve the
final outcomes, so we keep the original order of the data. We experiment with more generous
decompositions by looking at all factorizations of numbers from 441 to 512, and selecting some
yielding not more than 30 parameters. Table 2 gives a summary of these models.

Next, we follow the approach of Fan et al. (2013) and estimate the Kronecker product
model on windows of size 504 days (equal to two years’ trading days) that are shifted from
the beginning to the end of the sample. The estimated Kronecker product model yields an
estimator of the covariance matrix that is used to construct the minimum variance portfolio
(MVP) weights. The same is done for two competing devices: the sample covariance matrix and
the linear shrinkage estimator of Ledoit and Wolf (2004). After each estimation, the minimum
variance portfolios constructed by these three models are compared in terms of standard error
using the next 21 days (equal to one month’s trading days) out-of-sample. Then the estimation
window of 504 days is shifted by 21 days, etc. The total number of out-of-sample evaluations
is 106.

The last four columns of Table 2 summarize the relative performance of the Kronecker
MVP with respect to those of the sample covariance matrix and the linear shrinkage estimator
of Ledoit and Wolf (2004). We consider two criteria: Impr and Prop. Impr is the average
of standard error improvements (in percentage) and Prop is the proportion of the times (out
of 106) that the Kronecker MVP outperforms a competing MVP. All models outperform the
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Sample Cov Ledoit-Wolf

Model p Decomp Impr Prop Impr Prop

M1 9 512 = 29 30% 0.92 8% 0.84
M2 16 486 = 2× 35 32% 0.92 0% 0.50
M3 17 512 = 25 × 42 32% 0.92 11% 0.94
M4 18 480 = 25 × 3× 5 33% 0.92 -2% 0.39
M5 25 512 = 44 × 2 34% 0.92 13% 0.94
M6 27 448 = 26 × 7 35% 0.92 -30% 0.09

Table 2: Summary of Kronecker product models for the correlation matrix of (xᵀt , u
ᵀ
t )ᵀ. p is the number

of original parameters in a Kronecker product model. Decomp is the factorization used for the full

system including the additional pseudo variables. Prop is the proportion of the times that the Kronecker

MVP outperforms a competing MVP (generated by the sample covariance matrix, or the Ledoit-Wolf

estimator), and Impr is the average of standard error improvements (in percentage).

sample covariance matrix, while models with smaller dimensional sub-matrices (i.e., M1, M3 and
M5) tend to outperform the shrinkage estimator. The reason could be that it is more difficult
to ensure positive definiteness of a bigger sub-matrix in the constrained maximum likelihood
optimisation.

7 Conclusions

We have established the large sample properties of our estimation methods of Kronecker product
models in the large dimensional case. In particular, we obtained norm consistency and the large
dimensional CLTs. The Kronecker product model outperforms the sample covariance matrix
theoretically, in a simulation study, and in an application to portfolio choice. It is possible to
extend the framework in various directions to improve performance. One may also consider the
case where both nj and v increase with the sample size.

A Appendix

A.1

Proposition A.1. Suppose that

Θ∗ = Θ∗1 ⊗Θ∗2 ⊗ · · · ⊗Θ∗v,

where Θ∗j is nj ×nj dimensional such that n = n1 ·n2 · · ·nv. Taking the logarithm on both sides
gives

log Θ∗ = log Θ∗1 ⊗ In2 ⊗ · · · ⊗ Inv + In1 ⊗ log Θ∗2 ⊗ In3 ⊗ · · · ⊗ Inv + · · ·
+ In1 ⊗ In2 ⊗ · · · ⊗ log Θ∗v.

For identification we set the first diagonal entry of log Θ∗j to be 0 for j = 1, . . . , v − 1. In total
there are

s :=
n∑
j=1

nj(nj + 1)

2
− (v − 1)

(identifiable) parameters in log Θ∗1, . . . , log Θ∗v; let θ∗ denote these. Then there exists a n(n +
1)/2× s full column rank matrix E such that

vech(log Θ∗) = Eθ∗.
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Proof. Note that

log Θ∗ = log Θ∗1 ⊗ In2 ⊗ · · · ⊗ Inv + In1 ⊗ log Θ∗2 ⊗ In3 ⊗ · · · ⊗ Inv + · · ·
+ In1 ⊗ In2 ⊗ · · · ⊗ log Θ∗v.

Then

vech(log Θ∗) =
[
E1 E2 · · · Ev

]


vech(log Θ∗1)
vech(log Θ∗2)

...
vech(log Θ∗v)

 ,
where for i = 1, . . . , v

Ei := D+
n

[
In1·n2···ni ⊗Kn/(n1·n2···ni),n1·n2···ni ⊗ In/(n1·n2···ni)

] [
I(n1·n2···ni)2 ⊗ vec In/(n1·n2···ni)

]
·

(In1·n2···ni−1 ⊗Kni,n1·n2···ni−1 ⊗ Ini)(vec In1·n2···ni−1 ⊗ In2
i
)Dni , (A.1)

where D+
n is the Moore-Penrose generalised inverse of Dn, i.e. D+

n = (DᵀnDn)−1Dᵀn, Dn

and Dni are the n2 × n(n + 1)/2 and n2
i × ni(ni + 1)/2 duplication matrices, respectively,

and Kn/(n1·n2···ni),n1·n2···ni and Kni,n1·n2···ni−1 are commutation matrices of various dimensions.
When i = 1, the term (In1·n2···ni−1 ⊗Kni,n1·n2···ni−1 ⊗ Ini)(vec In1·n2···ni−1 ⊗ In2

i
) in (A.1) is set

to be 1. To see this, we first consider vec(log Θ∗1 ⊗ In2 ⊗ · · · ⊗ Inv).

vec(log Θ∗1 ⊗ In2 ⊗ · · · ⊗ Inv) = vec(log Θ∗1 ⊗ In/n1
)

=
(
In1 ⊗Kn/n1,n1

⊗ In/n1

) (
vec(log Θ∗1)⊗ vec In/n1

)
=
(
In1 ⊗Kn/n1,n1

⊗ In/n1

) (
In2

1
vec(log Θ∗1)⊗ vec In/n1

· 1
)

=
(
In1 ⊗Kn/n1,n1

⊗ In/n1

) (
In2

1
⊗ vec In/n1

)
vec(log Θ∗1),

where the second equality is due to Magnus and Neudecker (2007) Theorem 3.10 p55. Thus,

vech(log Θ∗1⊗ In2 ⊗ · · ·⊗ Inv) = D+
n

(
In1 ⊗Kn/n1,n1

⊗ In/n1

) (
In2

1
⊗ vec In/n1

)
Dn1 vech(log Θ∗1).

(A.2)
We now consider vec(In1 ⊗ log Θ∗2 ⊗ · · · ⊗ Inv).

vec(In1 ⊗ log Θ∗2 ⊗ · · · ⊗ Inv) = vec(In1 ⊗ log Θ∗2 ⊗ In/(n1·n2))

= (In1·n2 ⊗Kn/(n1·n2),n1·n2
⊗ In/(n1·n2))

(
vec(In1 ⊗ log Θ∗2)⊗ vec In/(n1·n2)

)
= (In1·n2 ⊗Kn/(n1·n2),n1·n2

⊗ In/(n1·n2))
(
I(n1·n2)2 ⊗ vec In/(n1·n2)

)
vec(In1 ⊗ log Θ∗2)

= (In1·n2 ⊗Kn/(n1·n2),n1·n2
⊗ In/(n1·n2))

(
I(n1·n2)2 ⊗ vec In/(n1·n2)

)
·

(In1 ⊗Kn2,n1 ⊗ In2)(vec In1 ⊗ vec log(Θ∗2))

= (In1·n2 ⊗Kn/(n1·n2),n1·n2
⊗ In/(n1·n2))

(
I(n1·n2)2 ⊗ vec In/(n1·n2)

)
·

(In1 ⊗Kn2,n1 ⊗ In2)(vec In1 ⊗ In2
2
) vec log(Θ∗2).

Thus

vech(In1 ⊗ log Θ∗2 ⊗ · · · ⊗ Inv)
= D+

n (In1·n2 ⊗Kn/(n1·n2),n1·n2
⊗ In/(n1·n2))

(
I(n1·n2)2 ⊗ vec In/(n1·n2)

)
·

(In1 ⊗Kn2,n1 ⊗ In2)(vec In1 ⊗ In2
2
)Dn2 vech log(Θ∗2). (A.3)
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Next we consider vec(In1 ⊗ In2 ⊗ log Θ∗3 ⊗ · · · ⊗ Inv).

vec(In1 ⊗ In2 ⊗ log Θ∗3 ⊗ · · · ⊗ Inv) = vec(In1·n2 ⊗ log Θ∗3 ⊗ In/(n1·n2·n3))

= (In1·n2·n3 ⊗Kn/(n1·n2·n3),n1·n2·n3
⊗ In/(n1·n2·n3))

(
vec(In1·n2 ⊗ log Θ∗3)⊗ vec In/(n1·n2·n3)

)
= (In1·n2·n3 ⊗Kn/(n1·n2·n3),n1·n2·n3

⊗ In/(n1·n2·n3))
(
I(n1·n2·n3)2 ⊗ vec In/(n1·n2·n3)

)
vec(In1·n2 ⊗ log Θ∗3)

= (In1·n2·n3 ⊗Kn/(n1·n2·n3),n1·n2·n3
⊗ In/(n1·n2·n3))

(
I(n1·n2·n3)2 ⊗ vec In/(n1·n2·n3)

)
·

(In1·n2 ⊗Kn3,n1·n2 ⊗ In3)(vec In1·n2 ⊗ vec(log Θ∗3))

= (In1·n2·n3 ⊗Kn/(n1·n2·n3),n1·n2·n3
⊗ In/(n1·n2·n3))

(
I(n1·n2·n3)2 ⊗ vec In/(n1·n2·n3)

)
·

(In1·n2 ⊗Kn3,n1·n2 ⊗ In3)(vec In1·n2 ⊗ In2
3
) vec(log Θ∗3).

Thus

vech(In1 ⊗ In2 ⊗ log Θ∗3 ⊗ · · · ⊗ Inv)
= D+

n (In1·n2·n3 ⊗Kn/(n1·n2·n3),n1·n2·n3
⊗ In/(n1·n2·n3))

(
I(n1·n2·n3)2 ⊗ vec In/(n1·n2·n3)

)
·

(In1·n2 ⊗Kn3,n1·n2 ⊗ In3)(vec In1·n2 ⊗ In2
3
)Dn3 vech(log Θ∗3). (A.4)

By observing (A.2), (A.3) and (A.4), we deduce the following general formula: for i = 1, 2, . . . , v

vech(In1 ⊗ · · · ⊗ log Θ∗i ⊗ · · · ⊗ Inv)
= D+

n

[
In1·n2···ni ⊗Kn/(n1·n2···ni),n1·n2···ni ⊗ In/(n1·n2···ni)

] [
I(n1·n2···ni)2 ⊗ vec In/(n1·n2···ni)

]
·

(In1·n2···ni−1 ⊗Kni,n1·n2···ni−1 ⊗ Ini)(vec In1·n2···ni−1 ⊗ In2
i
)Dni vech(log Θ∗i )

=: Ei vech(log Θ∗i ), (A.5)

where Ei is a n(n + 1)/2 × ni(ni + 1)/2 matrix. When i = 1, the term (In1·n2···ni−1 ⊗
Kni,n1·n2···ni−1 ⊗ Ini)(vec In1·n2···ni−1 ⊗ In2

i
) in Ei is set to be 1. Using (A.5), we have

vech(log Θ∗) = E1 vech(log Θ∗1) + E2 vech(log Θ∗2) + · · ·+ Ev vech(log Θ∗v)

=
[
E1 E2 · · · Ev

]


vech(log Θ∗1)
vech(log Θ∗2)

...
vech(log Θ∗v)


For identification we set the first diagonal entry of log Θ∗j to be 0 for j = 1, . . . , v − 1. In total
there are

s :=
n∑
j=1

nj(nj + 1)

2
− (v − 1)

(identifiable) parameters in log Θ∗1, . . . , log Θ∗v; let θ∗ denote these. Then there exists a n(n +
1)/2× s full column rank matrix E such that

vech(log Θ∗) = Eθ∗,

where
E =

[
E1,(−1) E2,(−1) · · · Ev−1,(−1) Ev

]
and Ei,(−1) stands for matrix Ei with its first column removed.

Proposition A.2. Given that n = n1 ·n2 · · ·nv, the s×s matrix EᵀE takes the following form:
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(i) For i = 1, . . . , s, the ith diagonal entry of EᵀE records how many times the ith parameter
in θ0 has appeared in vech(log Θ0). The value depends on to which log Θ0

j the ith parameter

in θ0, θ0
i , belongs to. For instance, suppose θ0

i is a parameter belonging to log Θ0
3, then

(EᵀE)i,i = n/n3.

(ii) For i, k = 1, . . . , s (i 6= k), the (i, k) entry of EᵀE (or the (k, i) entry of EᵀE by symmetry)
records how many times the ith parameter in θ0, θ0

i , and kth parameter in θ0, θ0
k, have

appeared together (as summands) in an entry of vech(log Θ0). The value depends on to
which log Θ0

j the ith parameter in θ0, θ0
i , and kth parameter in θ0, θ0

k, belong to. For

instance, suppose θ0
i is a parameter belonging to log Θ0

3 and θ0
k is a parameter belonging to

log Θ0
5, then

(EᵀE)i,k = (EᵀE)k,i = n/(n3 · n5).

Note that if both θ0
i and θ0

k belong to the same log Θ0
j , then (EᵀE)i,k = (EᵀE)k,i = 0. Also

note that when θ0
i is an off-diagonal entry of some log Θ0

j , then

(EᵀE)i,k = (EᵀE)k,i = 0

for any k = 1, . . . , s (i 6= k).

Proof. Proof by spotting the pattern.

We here give a concrete example to illustrate Proposition A.2.

Example A.1. Suppose that n1 = 3, n2 = 2, n3 = 2. We have

log Θ0
1 =

 0 a1,2 a1,3

a1,2 a2,2 a2,3

a1,3 a2,3 a3,3

 log Θ0
2 =

(
0 b1,2
b1,2 b2,2

)
log Θ0

3 =

(
c1,1 c1,2

c1,2 c2,2

)

The leading diagonals of log Θ0
1 and log Θ0

2 are set to zero for identification as explained before.
Thus

θ0 = (a1,2, a1,3, a2,2, a2,3, a3,3, b1,2, b2,2, c1,1, c1,2, c2,2)ᵀ.

Then we can invoke Proposition A.2 to write down EᵀE without even using R code to compute
E; that is,

EᵀE =



4 0 0 0 0 0 0 0 0 0
0 4 0 0 0 0 0 0 0 0
0 0 4 0 0 0 2 2 0 2
0 0 0 4 0 0 0 0 0 0
0 0 0 0 4 0 2 2 0 2
0 0 0 0 0 6 0 0 0 0
0 0 2 0 2 0 6 3 0 3
0 0 2 0 2 0 3 6 0 0
0 0 0 0 0 0 0 0 6 0
0 0 2 0 2 0 3 0 0 6
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A.2

In this section of appendix, we show that for any given n× n real symmetric, positive definite
covariance matrix (or correlation matrix), there is a uniquely defined member of the Kronecker
product model that is closest to the covariance matrix (or correlation matrix) in some sense in
terms of the log parameter space, once a factorization n = n1 · · ·nv is determined.

LetMn denote the set of all n×n real symmetric matrices. For any n(n+1)/2×n(n+1)/2
known, deterministic, positive definite matrix W , define a map

〈A,B〉W := (vechA)ᵀW vechB A,B ∈Mn.

It is easy to show that 〈·, ·〉W is an inner product. Mn with inner product 〈·, ·〉W can be
identified by Rn(n+1)/2 with the usual Euclidean inner product. Since Rn(n+1)/2 with the usual
Euclidean inner product is a Hilbert space (for finite n), so is Mn. The inner product 〈·, ·〉W
induces the following norm

‖A‖W :=
√
〈A,A〉W =

√
(vechA)ᵀW vechA.

Let Dn denote the set of matrices of the form

Ω1 ⊗ In1 ⊗ · · · ⊗ Inv + In1 ⊗ Ω2 ⊗ · · · ⊗ Inv + · · ·+ In1 ⊗ · · · ⊗ Ωv,

where Ωj are nj ×nj real symmetric matrices for j = 1, . . . , v. Dn is a (linear) subspace ofMn

as, for α, β ∈ R,

α
(
Ω1 ⊗ In1 ⊗ · · · ⊗ Inv + In1 ⊗ Ω2 ⊗ · · · ⊗ Inv + · · ·+ In1 ⊗ · · · ⊗ Ωv

)
+

β
(
Ξ1 ⊗ In1 ⊗ · · · ⊗ Inv + In1 ⊗ Ξ2 ⊗ · · · ⊗ Inv + · · ·+ In1 ⊗ · · · ⊗ Ξv

)
= (αΩ1 + βΞ1)⊗ In1 ⊗ · · · ⊗ Inv + In1 ⊗ (αΩ2 + βΞ2)⊗ · · · ⊗ Inv + · · ·+ In1 ⊗ · · · ⊗ (αΩv + βΞv)

∈ Dn.

For finite n, Dn is also closed.
Consider a real symmetric, positive definite covariance matrix Σ. log Σ ∈ Mn. By the

projection theorem of the Hilbert space, there exists a unique matrix L0 ∈ Dn such that

‖ log Σ− L0‖W = min
L∈Dn

‖ log Σ− L‖W .

Note also that log Σ−1 = − log Σ, so that −L0 simultaneously approximates the precision matrix
Σ−1 in the same norm.

This says that any real symmetric, positive definite covariance matrix Σ has a closest ap-
proximating matrix Σ0 in a sense that

‖ log Σ− log Σ0‖W = min
L∈Dn

‖ log Σ− L‖W .

That is, log Σ0 = L0. Since L0 ∈ Dn, we can write

L0 = L0
1 ⊗ In1 ⊗ · · · ⊗ Inv + In1 ⊗ L0

2 ⊗ · · · ⊗ Inv + · · ·+ In1 ⊗ · · · ⊗ L0
v,

where L0
j are nj × nj real symmetric matrices for j = 1, . . . , v. Then

Σ0 = expL0

= exp
[
L0

1 ⊗ In1 ⊗ · · · ⊗ Inv + In1 ⊗ L0
2 ⊗ · · · ⊗ Inv + · · ·+ In1 ⊗ · · · ⊗ L0

v

]
= exp

[
L0

1 ⊗ In1 ⊗ · · · ⊗ Inv
]
× exp

[
In1 ⊗ L0

2 ⊗ · · · ⊗ Inv
]
× · · · × exp

[
In1 ⊗ · · · ⊗ L0

v

]
=
[
exp(L0

1)⊗ In1 ⊗ · · · ⊗ Inv
]
×
[
In1 ⊗ exp(L0

2)⊗ · · · ⊗ Inv
]
× · · · ×

[
In1 ⊗ · · · ⊗ exp(L0

v)
]

= exp(L0
1)⊗ exp(L0

2)⊗ · · · ⊗ exp(L0
v)

=: Σ0
1 ⊗ · · · ⊗ Σ0

v,
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where the third equality is due to Theorem 10.2 in Higham (2008) p235 and the fact that
L0

1⊗ In1 ⊗ · · · ⊗ Inv and In1 ⊗L0
2⊗ · · · ⊗ Inv commute, the fourth equality is due to f(A)⊗ I =

f(A⊗I) for any matrix function f (e.g., Theorem 1.13 in Higham (2008) p10), the fifth equality
is due to a property of Kronecker product, and Σ0

j is real symmetric, positive definite nj × nj
matrix for j = 1, . . . , v.

We thus see that Σ0 is of the Kronecker product form, and that its precision matrix Σ−1 has
a closest approximating matrix (Σ0)−1. This reasoning provides a justification (i.e., interpre-
tation) for using Σ0 even when the Kronecker product model is misspecified for the covariance
matrix. The same reasoning applies to any real symmetric, positive definite correlation matrix
Θ.

van Loan (2000) and Pitsianis (1997) also considered this nearest approximation involving
one Kronecker product only and in the original parameter space (not in the log parameter
space). In that simplified problem, they showed that the optimisation problem could be solved
by the singular value decomposition.

A.3

Lemma A.1. Suppose Assumptions 3.1(i) and 3.2(i) hold. Then

‖Σ̂T − Σ‖`2 = Op

(√
n

T

)
.

Proof. Write Σ̂T = 1
T

∑T
t=1 xtx

ᵀ
t − x̄x̄ᵀ. We have

‖Σ̂T − Σ‖`2 ≤
∥∥∥∥ 1

T

T∑
t=1

xtx
ᵀ
t − Extxᵀt

∥∥∥∥
`2

+ ‖x̄x̄ᵀ − µµᵀ‖`2 . (A.6)

We consider the first term on the right hand side of (A.6) first. Invoke Lemma A.4 in Appendix
A.5 with ε = 1/4:∥∥∥∥ 1

T

T∑
t=1

xtx
ᵀ
t − Extxᵀt

∥∥∥∥
`2

≤ 2 max
a∈N1/4

∣∣∣∣aᵀ( 1

T

T∑
t=1

xtx
ᵀ
t − Extxᵀt

)
a

∣∣∣∣
=: 2 max

a∈N1/4

∣∣∣∣ 1

T

T∑
t=1

(z2
a,t − Ez2

a,t)

∣∣∣∣ ,
where za,t := xᵀt a. By Assumption 3.1(i), {za,t}Tt=1 are independent subgaussian random vari-
ables. For ε > 0,

P(|z2
a,t| ≥ ε) = P(|za,t| ≥

√
ε) ≤ Ke−Cε.

We shall use Orlicz norms as defined in van der Vaart and Wellner (1996): Let ψ : R+ → R+

be a non-decreasing, convex function with ψ(0) = 0 and limx→∞ ψ(x) =∞, where R+ denotes
the set of nonnegative real numbers. Then, the Orlicz norm of a random variable X is given by

‖X‖ψ = inf
{
C > 0 : Eψ

(
|X|/C

)
≤ 1
}
,

where inf ∅ =∞. We shall use Orlicz norms for ψ(x) = ψp(x) = ex
p−1 for p = 1, 2 in this paper.

It follows from Lemma 2.2.1 in van der Vaart and Wellner (1996) that ‖z2
a,t‖ψ1 ≤ (1 + K)/C.

Then

‖z2
a,t − Ez2

a,t‖ψ1 ≤ ‖z2
a,t‖ψ1 + E‖z2

a,t‖ψ1 ≤
2(1 +K)

C
.

Then, by the definition of the Orlicz norm, E
[
eC/(2+2K)|z2a,t−Ez2a,t|

]
≤ 2. Use Fubini’s theorem

to expand out the exponential moment. It is easy to see that z2
a,t − Ez2

a,t satisfies the moment
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conditions of Bernstein’s inequality in Appendix A.5 with A = 2(1+K)
C and σ2

0 = 8(1+K)2

C2 . Now
invoke Bernstein’s inequality for all ε > 0

P
(∣∣∣∣ 1

T

T∑
t=1

(z2
a,t − Ez2

a,t)

∣∣∣∣ ≥ σ2
0

[
Aε+

√
2ε
])
≤ 2e−Tσ

2
0ε.

Invoking Proposition A.8 in Appendix A.5, we have

2 max
a∈N1/4

∣∣∣∣ 1

T

T∑
t=1

(z2
a,t − Ez2

a,t)

∣∣∣∣ = Op

(
log |N1/4|

T
∨
√

log |N1/4|
T

)
.

Invoking Lemma A.3 in Appendix A.5, we have |N1/4| ≤ 9n. Thus we have∥∥∥∥ 1

T

T∑
t=1

xtx
ᵀ
t − Extxᵀt

∥∥∥∥
`2

≤ 2 max
a∈N1/4

∣∣∣∣ 1

T

T∑
t=1

(z2
a,t − Ez2

a,t)

∣∣∣∣ = Op

(
n

T
∨
√
n

T

)

= Op

(√
n

T

)
,

where the last equality is due to Assumption 3.2(i). We now consider the second term on the
right hand side of (A.6).

‖x̄x̄ᵀ − µµᵀ‖`2 = ‖x̄x̄ᵀ − µx̄ᵀ + µx̄ᵀ − µµᵀ‖`2 ≤ 2 max
a∈N1/4

∣∣∣∣aᵀ(x̄x̄ᵀ − µx̄ᵀ + µx̄ᵀ − µµᵀ
)
a

∣∣∣∣
= 2 max

a∈N1/4

∣∣∣∣aᵀ((x̄− µ)x̄ᵀ + µ(x̄− µ)ᵀ
)
a

∣∣∣∣ ≤ 2 max
a∈N1/4

∣∣aᵀ(x̄− µ)x̄ᵀa
∣∣+ 2 max

a∈N1/4

∣∣aᵀµ(x̄− µ)ᵀa
∣∣

≤ 2 max
a∈N1/4

∣∣aᵀ(x̄− µ)
∣∣ max
a∈N1/4

∣∣x̄ᵀa∣∣+ 2 max
a∈N1/4

∣∣aᵀµ∣∣ max
a∈N1/4

∣∣(x̄− µ)ᵀa
∣∣ .

We consider maxa∈N1/4

∣∣(x̄− µ)ᵀa
∣∣ first.

max
a∈N1/4

∣∣(x̄− µ)ᵀa
∣∣ = max

a∈N1/4

∣∣∣∣ 1

T

T∑
t=1

(xᵀt a− E[xᵀt a])

∣∣∣∣ =: max
a∈N1/4

∣∣∣∣ 1

T

T∑
t=1

(za,t − Eza,t)
∣∣∣∣ .

By Assumption 3.1(i), {za,t}Tt=1 are independent subgaussian random variables. For ε > 0,

P(|za,t| ≥ ε) ≤ Ke−Cε
2
. It follows from Lemma 2.2.1 in van der Vaart and Wellner (1996) that

‖za,t‖ψ2 ≤ (1 + K)1/2/C1/2. Then ‖za,t − Eza,t‖ψ2 ≤ ‖za,t‖ψ2 + E‖za,t‖ψ2 ≤
2(1+K)1/2

C1/2 . Next,
using the second last inequality in van der Vaart and Wellner (1996) p95, we have

‖za,t − Eza,t‖ψ1 ≤ ‖za,t − Eza,t‖ψ2(log 2)−1/2 ≤ 2(1 +K)1/2

C1/2
(log 2)−1/2 =:

1

W
.

Then, by the definition of the Orlicz norm, E
[
eW |za,t−Eza,t|

]
≤ 2. Use Fubini’s theorem to

expand out the exponential moment. It is easy to see that za,t − Eza,t satisfies the moment
conditions of Bernstein’s inequality in Appendix A.5 with A = 1

W and σ2
0 = 2

W 2 . Now invoke
Bernstein’s inequality for all ε > 0

P
(∣∣∣∣ 1

T

T∑
t=1

(za,t − Eza,t)
∣∣∣∣ ≥ σ2

0

[
Aε+

√
2ε
])
≤ 2e−Tσ

2
0ε.

Invoking Proposition A.8 in Appendix A.5, we have

max
a∈N1/4

∣∣∣∣ 1

T

T∑
t=1

(za,t − Eza,t)
∣∣∣∣ = Op

(
log |N1/4|

T
∨
√

log |N1/4|
T

)
.
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Invoking Lemma A.3 in Appendix A.5, we have |N1/4| ≤ 9n. Thus we have

max
a∈N1/4

∣∣(x̄− µ)ᵀa
∣∣ = Op

(
n

T
∨
√
n

T

)
= Op

(√
n

T

)
, (A.7)

where the last equality is due to Assumption 3.2(i). Now Let’s consider maxa∈N1/4

∣∣aᵀµ∣∣.
max
a∈N1/4

∣∣aᵀµ∣∣ =: max
a∈N1/4

∣∣Eaᵀxt∣∣ = max
a∈N1/4

∣∣Eza,t∣∣ ≤ max
a∈N1/4

E|za,t| = max
a∈N1/4

‖za,t‖L1

≤ max
a∈N1/4

‖za,t‖ψ1 ≤ max
a∈N1/4

‖za,t‖ψ2(log 2)−1/2 ≤ (1 +K)1/2

C1/2
(log 2)−1/2,

where ‖ · ‖L1 is the L1 norm, the second and third inequalities are from van der Vaart and
Wellner (1996) p95. Thus we have

max
a∈N1/4

|aᵀµ| = O(1). (A.8)

Next we consider maxa∈N1/4

∣∣aᵀx̄∣∣.
max
a∈N1/4

∣∣aᵀx̄∣∣ = max
a∈N1/4

∣∣aᵀ(x̄− µ+ µ)
∣∣ ≤ max

a∈N1/4

∣∣aᵀ(x̄− µ)
∣∣+ max

a∈N1/4

∣∣aᵀµ∣∣ = Op

(√
n

T

)
+O(1)

= Op(1), (A.9)

where the last equality is due to Assumption 3.2(i). Combining (A.7), (A.8) and (A.9), we have

‖x̄x̄ᵀ − µµᵀ‖`2 = Op

(√
n

T

)
.

Proposition A.3. Suppose Assumptions 3.1(i), 3.2(i) and 3.3(i) hold. Then

(i)

‖D̂T −D‖`2 = Op

(√
n

T

)
.

(ii) The minimum eigenvalue of D is bounded away from zero by an absolute positive constant
(i.e., ‖D−1‖`2 = O(1)), so is the minimum eigenvalue of D1/2 (i.e., ‖D−1/2‖`2 = O(1)).

(iii)

‖D̂1/2
T −D1/2‖`2 = Op

(√
n

T

)
.

(iv)

‖D̂−1/2
T −D−1/2‖`2 = Op

(√
n

T

)
.

(v)

‖D̂−1/2
T ‖`2 = Op(1).

(vi) The maximum eigenvalue of Σ is bounded from the above by an absolute constant (i.e.,
‖Σ‖`2 = O(1)). The maximum eigenvalue of D is bounded from the above by an absolute
constant (i.e., ‖D‖`2 = O(1)).
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(vii)

‖D̂−1/2
T ⊗ D̂−1/2

T −D−1/2 ⊗D−1/2‖`2 = Op

(√
n

T

)
.

Proof. Define σ2
i := E(xt,i − σi)2 and σ̂2

i := 1
T

∑T
t=1(xt,i − x̄i)2, where the subscript i denotes

the ith component of the corresponding vector. For part (i),

‖D̂T −D‖`2 = max
1≤i≤n

|σ̂2
i − σ2

i | = max
1≤i≤n

|eᵀi (Σ̂T − Σ)ei| ≤ max
‖a‖2=1

|aᵀ(Σ̂T − Σ)a|

= ‖Σ̂T − Σ‖`2 ,

where ei denotes a unit vector whose ith component is 1. Now invoke Lemma A.1 to get the
result. For part (ii),

mineval(D) = min
1≤i≤n

σ2
i = min

1≤i≤n
eᵀiΣei ≥ min

‖a‖2=1
aᵀΣa = mineval(Σ) > 0

where the last inequality is due to Assumption 3.3. For part (iii), invoking Lemma A.5 in
Appendix A.5 gives

‖D̂1/2
T −D1/2‖`2 ≤

‖D̂T −D‖`2
mineval(D̂

1/2
T ) + mineval(D1/2)

= Op(1)‖D̂T −D‖`2 = Op

(√
n

T

)
,

where the first and second equalities are due to parts (ii) and (i), respectively. Part (iv) follows
from Lemma A.6 in Appendix A.5 via parts (ii) and (iii). For part (v),

‖D̂−1/2
T ‖`2 = ‖D̂−1/2

T −D−1/2 +D−1/2‖`2 ≤ ‖D̂
−1/2
T −D−1/2‖`2 + ‖D−1/2‖`2

= Op

(√
n

T

)
+O(1) = Op(1).

For part (vi), we have

‖Σ‖`2 = max
‖a‖2=1

∣∣aᵀ (E[xtx
ᵀ
t ]− µµᵀ

)
a
∣∣ ≤ max

‖a‖2=1
Ez2

a,t + max
‖a‖2=1

(Eza,t)2 ≤ 2 max
‖a‖2=1

Ez2
a,t.

We have shown that in the proof of Lemma A.1 that ‖z2
a,t‖ψ1 ≤ 1+K

C for any ‖a‖2 = 1. This
says that z2

a,t has bounded exponential moments, so the result follows. Next we consider

‖D‖`2 = max
1≤i≤n

σ2
i = max

1≤i≤n
eᵀiΣei ≤ max

‖a‖2=1
aᵀΣa = maxeval(Σ) <∞.

For part (vii),

‖D̂−1/2
T ⊗ D̂−1/2

T −D−1/2 ⊗D−1/2‖`2
= ‖D̂−1/2

T ⊗ D̂−1/2
T − D̂−1/2

T ⊗D−1/2 + D̂
−1/2
T ⊗D−1/2 −D−1/2 ⊗D−1/2‖`2

≤ ‖D̂−1/2
T ⊗ (D̂

−1/2
T −D−1/2)‖`2 + ‖(D̂−1/2

T −D−1/2)⊗D−1/2‖`2

=
(
‖D̂−1/2

T ‖`2 + ‖D−1/2‖`2
)
‖D̂−1/2

T −D−1/2‖`2 = Op

(√
n

T

)
,

where the second equality is due to Proposition A.10 in Appendix A.5.

Proof of Proposition 3.1(i). Recall that

Θ̂T = D̂
−1/2
T Σ̂T D̂

−1/2
T , Θ = D−1/2ΣD−1/2.
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Then we have

‖Θ̂T −Θ‖`2 = ‖D̂−1/2
T Σ̂T D̂

−1/2
T − D̂−1/2

T ΣD̂
−1/2
T + D̂

−1/2
T ΣD̂

−1/2
T −D−1/2ΣD−1/2‖`2

≤ ‖D̂−1/2
T ‖2`2‖Σ̂T − Σ‖`2 + ‖D̂−1/2

T ΣD̂
−1/2
T −D−1/2ΣD−1/2‖`2 . (A.10)

Invoking Lemma A.1 and Proposition A.3(v), we conclude that the first term of (A.10) is
Op(

√
n/T ). Let’s consider the second term of (A.10). Write

‖D̂−1/2
T ΣD̂

−1/2
T −D−1/2ΣD̂

−1/2
T +D−1/2ΣD̂

−1/2
T −D−1/2ΣD−1/2‖`2

≤ ‖(D̂−1/2
T −D−1/2)ΣD̂

−1/2
T ‖`2 + ‖D−1/2Σ(D̂

−1/2
T −D−1/2)‖`2

≤ ‖D̂−1/2
T ‖`2‖Σ‖`2‖D̂

−1/2
T −D−1/2‖`2 + ‖D−1/2‖`2‖Σ‖`2‖D̂

−1/2
T −D−1/2‖`2 .

Invoking Proposition A.3(ii), (iv), (v) and (vi), we conclude that the second term of (A.10) is
Op(

√
n/T ).

To prove part (ii) of Proposition 3.1, we shall use Lemma 4.1 of Gil’ (2012). That lemma
will further simplify when we consider real symmetric, positive definite matrices. For the ease
of reference, we state this simplified version of Lemma 4.1 of Gil’ (2012) here.

Lemma A.2 (Simplified from Lemma 4.1 of Gil’ (2012)). For n × n real symmetric, positive
definite matrices A,B, if

‖A−B‖`2 < a,

for some absolute constant a > 1, then

‖ logA− logB‖`2 ≤ C‖A−B‖`2 ,

for some positive absolute constant C.

Proof. First note that for any real symmetric, positive definite matrix A, p(A, x) = x for any
x > 0 in Lemma 4.1 of Gil’ (2012). Since A is real symmetric and positive definite, all its
eigenvalues lie in the region | arg(z− a)| ≤ π/2. Then according to Gil’ (2012) p11, we have for
any t ≥ 0

ρ(A,−t) ≥ (a+ t) sin(π/2) = a+ t

ρ(A,−t)− δ ≥ a+ t− δ,

where

δ :=

{
‖A−B‖1/n`2

if ‖A−B‖`2 ≤ 1

‖A−B‖`2 if ‖A−B‖`2 ≥ 1

and ρ(A,−t) is defined in Gil’ (2012). Then the condition of Lemma A.2 allows one to invoke
Lemma 4.1 of Gil’ (2012) as

ρ(A,−t) ≥ a+ t ≥ a > δ.

Lemma 4.1 of Gil’ (2012) says

‖ logA− logB‖`2 ≤ ‖A−B‖`2
∫ ∞

0
p

(
A,

1

ρ(A,−t)

)
p

(
B,

1

ρ(A,−t)− δ

)
dt

= ‖A−B‖`2
∫ ∞

0

1

ρ(A,−t)
1

ρ(A,−t)− δ
dt ≤ ‖A−B‖`2

∫ ∞
0

1

(a+ t)(a+ t− δ)
dt

≤ ‖A−B‖`2
∫ ∞

0

1

(a+ t− δ)2
dt = ‖A−B‖`2

1

a− δ
=: C‖A−B‖`2 .
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Proof of Proposition 3.1(ii). It follows trivially from Lemma A.2.

Proof of Proposition 3.1(iii). We have

‖θ̂T − θ0‖2 = ‖(EᵀWE)−1EᵀW‖`2‖D+
n ‖`2‖ log Θ̂T − log Θ‖F

≤ ‖(EᵀWE)−1EᵀW‖`2
√
n‖ log Θ̂T − log Θ‖`2 = O(

√
$κ(W )/n)

√
nOp(

√
n/T )

= Op

(√
n$κ(W )

T

)
,

where the first inequality is due to (A.13), and the second equality is due to (A.19) and parts
(i)-(ii) of this proposition.

A.4

The following proposition linearizes the matrix logarithm.

Proposition A.4. Suppose both n×n matrices A+B and A are real, symmetric, and positive
definite for all n with the minimum eigenvalues bounded away from zero by absolute constants.
Suppose the maximum eigenvalue of A is bounded from above by an absolute constant. Further
suppose ∥∥[t(A− I) + I]−1tB

∥∥
`2
≤ C < 1 (A.11)

for all t ∈ [0, 1] and some constant C. Then

log(A+B)− logA =

∫ 1

0
[t(A− I) + I]−1B[t(A− I) + I]−1dt+O(‖B‖2`2 ∨ ‖B‖

3
`2).

The conditions of the preceding proposition implies that for every t ∈ [0, 1], t(A− I) + I is
positive definite for all n with the minimum eigenvalue bounded away from zero by an absolute
constant (Horn and Johnson (1985) p181). Proposition A.4 has a flavour of Frechet derivative
because

∫ 1
0 [t(A− I) + I]−1B[t(A− I) + I]−1dt is the Frechet derivative of matrix logarithm at

A in the direction B (Higham (2008) p272); however, this proposition is slightly stronger in the
sense of a sharper bound on the remainder.

Proof. Since both A + B and A are positive definite for all n, with minimum eigenvalues real
and bounded away from zero by absolute constants, by Theorem A.2 in Appendix A.5, we have

log(A+B) =

∫ 1

0
(A+B − I)[t(A+B − I) + I]−1dt, logA =

∫ 1

0
(A− I)[t(A− I) + I]−1dt.

Use (A.11) to invoke Proposition A.9 in Appendix A.5 to expand [t(A− I) + I + tB]−1 to get

[t(A− I) + I + tB]−1 = [t(A− I) + I]−1 − [t(A− I) + I]−1tB[t(A− I) + I]−1 +O(‖B‖2`2)

and substitute into the expression of log(A+B)

log(A+B)

=

∫ 1

0
(A+B − I)

{
[t(A− I) + I]−1 − [t(A− I) + I]−1tB[t(A− I) + I]−1 +O(‖B‖2`2)

}
dt

= logA+

∫ 1

0
B[t(A− I) + I]−1dt−

∫ 1

0
t(A+B − I)[t(A− I) + I]−1B[t(A− I) + I]−1dt

+ (A+B − I)O(‖B‖2`2)

= logA+

∫ 1

0
[t(A− I) + I]−1B[t(A− I) + I]−1dt−

∫ 1

0
tB[t(A− I) + I]−1B[t(A− I) + I]−1dt

+ (A+B − I)O(‖B‖2`2)

= logA+

∫ 1

0
[t(A− I) + I]−1B[t(A− I) + I]−1dt+O(‖B‖2`2 ∨ ‖B‖

3
`2),
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where the last equality follows from maxeval(A) < C < ∞ and mineval[t(A − I) + I] > C ′ >
0.

Proposition A.5. Suppose Assumptions 3.1(i), 3.2(i) and 3.3 hold.

(i) Θ has minimum eigenvalue bounded away from zero by an absolute constant and maximum
eigenvalue bounded from above by an absolute constant.

(ii) Θ̂T has minimum eigenvalue bounded away from zero by an absolute constant and maxi-
mum eigenvalue bounded from above by an absolute constant with probability approaching
1.

Proof. For part (i), the maximum eigenvalue of Θ is its spectral norm, i.e., ‖Θ‖`2 .

‖Θ‖`2 = ‖D−1/2ΣD−1/2‖`2 ≤ ‖D−1/2‖2`2‖Σ‖`2 < C,

where the last inequality is due to Proposition A.3(ii) and (vi). Now let’s consider the minimum
eigenvalue of Θ.

mineval(Θ) = mineval(D−1/2ΣD−1/2) = min
‖a‖2=1

aᵀD−1/2ΣD−1/2a ≥ min
‖a‖2=1

mineval(Σ)‖D−1/2a‖22

= mineval(Σ) min
‖a‖2=1

aᵀD−1a = mineval(Σ)mineval(D−1) =
mineval(Σ)

maxeval(D)
> 0,

where the second equality is due to Rayleigh-Ritz theorem, and the last inequality is due to
Assumption 3.3 and Proposition A.3(vi). For part (ii), the maximum eigenvalue of Θ̂ is its
spectral norm, i.e., ‖Θ̂‖`2 .

‖Θ̂T ‖`2 ≤ ‖Θ̂T −Θ‖`2 + ‖Θ‖`2 = Op

(√
n

T

)
+ ‖Θ‖`2 = Op(1)

where the first equality is due to Proposition 3.1(i) and the last equality is due to part (i). The
minimum eigenvalue of Θ̂T is 1/maxeval(Θ̂−1

T ). Since ‖Θ−1‖`2 = maxeval(Θ−1) = 1/mineval(Θ) =

O(1) by part (i) and ‖Θ̂T −Θ‖`2 = Op(
√
n/T ) by Proposition 3.1(i), we can invoke Lemma A.6

in Appendix A.5 to get
‖Θ̂−1

T −Θ−1‖`2 = Op(
√
n/T ),

whence we have
‖Θ̂−1

T ‖`2 ≤ ‖Θ̂
−1
T −Θ−1‖`2 + ‖Θ−1‖`2 = Op(1).

Thus the minimum eigenvalue of Θ̂T is bounded away from zero by an absolute constant.

Define

ĤT :=

∫ 1

0
[t(Θ̂T − I) + I]−1 ⊗ [t(Θ̂T − I) + I]−1dt.

The following proposition gives the rate of convergence for ĤT . The following proposition is
also true when one replaces ĤT with ĤT,D.

Proposition A.6. Let Assumptions 3.1(i), 3.2(i) and 3.3 be satisfied. Then we have

‖H‖`2 = O(1), ‖ĤT ‖`2 = Op(1), ‖ĤT −H‖`2 = Op

(√
n

T

)
. (A.12)

32



Proof. The proofs for ‖H‖`2 = O(1) and ‖ĤT ‖`2 = Op(1) are exactly the same, so we only give
the proof for the latter. Define At := [t(Θ̂T − I) + I]−1 and Bt := [t(Θ− I) + I]−1.

‖ĤT ‖`2 =

∥∥∥∥∫ 1

0
At ⊗Atdt

∥∥∥∥
`2

≤
∫ 1

0

∥∥At ⊗At∥∥`2 dt ≤ max
t∈[0,1]

∥∥At ⊗At∥∥`2 = max
t∈[0,1]

‖At‖2`2

= max
t∈[0,1]

{maxeval([t(Θ̂T − I) + I]−1)}2 = max
t∈[0,1]

{
1

mineval(t(Θ̂T − I) + I)

}2

= Op(1),

where the second equality is due to Proposition A.10 in Appendix A.5, and the last equality is
due to Proposition A.5(ii). Now,

‖ĤT −H‖`2 =

∥∥∥∥∫ 1

0
At ⊗At −Bt ⊗Btdt

∥∥∥∥
`2

≤
∫ 1

0
‖At ⊗At −Bt ⊗Bt‖`2 dt

≤ max
t∈[0,1]

‖At ⊗At −Bt ⊗Bt‖`2 = max
t∈[0,1]

‖At ⊗At −At ⊗Bt +At ⊗Bt −Bt ⊗Bt‖`2

= max
t∈[0,1]

∥∥At ⊗ (At −Bt) + (At −Bt)⊗Bt
∥∥
`2
≤ max

t∈[0,1]

(∥∥At ⊗ (At −Bt)
∥∥
`2

+
∥∥(At −Bt)⊗Bt

∥∥
`2

)
= max

t∈[0,1]

(
‖At‖`2 ‖At −Bt‖`2 + ‖At −Bt‖`2 ‖Bt‖`2

)
= max

t∈[0,1]
‖At −Bt‖`2 (‖At‖`2 + ‖Bt‖`2)

= Op(1) max
t∈[0,1]

∥∥∥[t(Θ̂T − I) + I]−1 − [t(Θ− I) + I]−1
∥∥∥
`2

where the first inequality is due to Jensen’s inequality, the third equality is due to special
properties of Kronecker product, the fourth equality is due to Proposition A.10 in Appendix
A.5, and the last equality is because Proposition A.5 implies

‖[t(Θ̂T − I) + I]−1‖`2 = Op(1) ‖[t(Θ− I) + I]−1‖`2 = O(1).

Now ∥∥∥[t(Θ̂T − I) + I]− [t(Θ− I) + I]
∥∥∥
`2

= t‖Θ̂T −Θ‖`2 = Op(
√
n/T ),

where the last equality is due to Proposition 3.1(i). The proposition then follows after invoking
Lemma A.6 in Appendix A.5.

Proposition A.7. Given the n2 × n(n + 1)/2 duplication matrix Dn and its Moore-Penrose
generalised inverse D+

n = (DᵀnDn)−1Dᵀn (i.e., Dn is full-column rank), we have

‖D+
n ‖`2 = ‖D+ᵀ

n ‖`2 = 1, ‖Dn‖`2 = ‖Dᵀn‖`2 = 2. (A.13)

Proof. First note that DᵀnDn is a diagonal matrix with diagonal entries either 1 or 2. Using the
fact that for any matrix A, AAᵀ and AᵀA have the same non-zero eigenvalues, we have

‖D+ᵀ
n ‖2`2 = maxeval(D+

nD
+ᵀ
n ) = maxeval((DᵀnDn)−1) = 1

‖D+
n ‖2`2 = maxeval(D+ᵀ

n D+
n ) = maxeval(D+

nD
+ᵀ
n ) = maxeval((DᵀnDn)−1) = 1

‖Dn‖2`2 = maxeval(DᵀnDn) = 2

‖Dᵀn‖2`2 = maxeval(DnD
ᵀ
n) = maxeval(DᵀnDn) = 2
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Proof of Theorem 3.1. We first show that (A.11) is satisfied with probability approaching 1 for
A = Θ and B = Θ̂T −Θ. That is,

‖[t(Θ− I) + I]−1t(Θ̂T −Θ)‖`2 ≤ C < 1 with probability approaching 1,

for some constant C.

‖[t(Θ− I) + I]−1t(Θ̂T −Θ)‖`2 ≤ t‖[t(Θ− I) + I]−1‖`2‖Θ̂T −Θ‖`2
= ‖[t(Θ− I) + I]−1‖`2Op(

√
n/T ) = Op(

√
n/T )/mineval(t(Θ− I) + I) = op(1),

where the first equality is due to Proposition 3.1(i), and the last equality is due to mineval(t(Θ−
I) + I) > C > 0 for some absolute constant C (implied by Proposition A.5(i)) and Assumption
3.2(i). Together with Proposition A.5(ii) and Lemma 2.12 in van der Vaart (1998), we can
invoke Proposition A.4 stochastically with A = Θ and B = Θ̂T −Θ:

log Θ̂T − log Θ =

∫ 1

0
[t(Θ− I) + I]−1(Θ̂T −Θ)[t(Θ− I) + I]−1dt+Op(‖Θ̂T −Θ‖2`2). (A.14)

(We can invoke Proposition A.4 stochastically because the remainder of the log linearization

is zero when the perturbation is zero. Moreover, we have ‖Θ̂T − Θ‖`2
p−→ 0 under Assumption

3.2(i).) Note that (A.14) also holds with Θ̂T replaced by Θ̂T,D by repeating the same argument.
That is,

log Θ̂T,D − log Θ =

∫ 1

0
[t(Θ− I) + I]−1(Θ̂T,D −Θ)[t(Θ− I) + I]−1dt+Op(‖Θ̂T,D −Θ‖2`2).

Now we can write
√
Tcᵀ(θ̂T,D − θ0)√

ĜT,D

=

√
Tcᵀ(EᵀWE)−1EᵀWD+

nH(D−1/2 ⊗D−1/2) vec(Σ̂T − Σ)√
ĜT,D

+

√
Tcᵀ(EᵀWE)−1EᵀWD+

n vecOp(‖Θ̂T,D −Θ‖2`2)√
ĜT,D

=: t̂D,1 + t̂D,2.

Define

tD,1 :=

√
Tcᵀ(EᵀWE)−1EᵀWD+

nH(D−1/2 ⊗D−1/2) vec(Σ̃T − Σ)√
GD

.

To prove Theorem 3.1, it suffices to show tD,1
d−→ N(0, 1), tD,1 − t̂D,1 = op(1), and t̂D,2 = op(1).

A.4.1 tD,1
d−→ N(0, 1)

We now prove that tD,1 is asymptotically distributed as a standard normal.

tD,1 =

√
Tcᵀ(EᵀWE)−1EᵀWD+

nH(D−1/2 ⊗D−1/2) vec
(

1
T

∑T
t=1

[
(xt − µ)(xt − µ)ᵀ − E(xt − µ)(xt − µ)ᵀ

])
√
GD

=
T∑
t=1

T−1/2cᵀ(EᵀWE)−1EᵀWD+
nH(D−1/2 ⊗D−1/2) vec

[
(xt − µ)(xt − µ)ᵀ − E(xt − µ)(xt − µ)ᵀ

]
√
GD

=:
T∑
t=1

UD,T,n,t.
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Trivially E[UD,T,n,t] = 0 and
∑T

t=1 E[U2
D,T,n,t] = 1. Then we just need to verify the following

Lindeberg condition for a double indexed process (e.g., Phillips and Moon (1999) Theorem 2
p1070): for all ε > 0,

lim
n,T→∞

T∑
t=1

∫
{|UD,T,n,t|≥ε}

U2
D,T,n,tdP = 0.

For any γ > 2,∫
{|UD,T,n,t|≥ε}

U2
D,T,n,tdP =

∫
{|UD,T,n,t|≥ε}

U2
D,T,n,t|UD,T,n,t|−γ |UD,T,n,t|γdP

≤ ε2−γ
∫
{|UD,T,n,t|≥ε}

|UD,T,n,t|γdP ≤ ε2−γE|UD,T,n,t|γ .

We first investigate at what rate the denominator
√
GD goes to zero:

GD = cᵀ(EᵀWE)−1EᵀWD+
nH(D−1/2 ⊗D−1/2)V (D−1/2 ⊗D−1/2)HD+ᵀ

n WE(EᵀWE)−1c

≥ mineval(V )mineval(D−1 ⊗D−1)mineval(H2)mineval(D+
nD

+ᵀ
n )mineval(W )mineval((EᵀWE)−1)

=
mineval(V )mineval2(H)

maxeval(D ⊗D)maxeval(DᵀnDn)maxeval(W−1)maxeval(EᵀWE)

≥ mineval(V )mineval2(H)

maxeval(D ⊗D)maxeval(DᵀnDn)maxeval(W−1)maxeval(W )maxeval(EᵀE)

where the first and third inequalities are true by repeatedly invoking the Rayleigh-Ritz theorem.
Note that

maxeval(EᵀE) ≤ tr(EᵀE) ≤ s · n, (A.15)

where the last inequality is due to Proposition A.2. For future reference

‖E‖`2 = ‖Eᵀ‖`2 =
√

maxeval(EᵀE) ≤
√
sn. (A.16)

Since the minimum eigenvalue of H is bounded away from zero by an absolute constant by
Proposition A.5(i), the maximum eigenvalue ofD is bounded from above by an absolute constant
(Proposition A.3(vi)), and maxeval[DᵀnDn] is bounded from above since DᵀnDn is a diagonal
matrix with diagonal entries either 1 or 2, we have

1√
GD

= O(
√
s · n · κ(W )). (A.17)

Then a sufficient condition for the Lindeberg condition is:

T 1− γ
2 (snκ(W ))γ/2

· E
∣∣∣cᵀ(EᵀWE)−1EᵀWD+

nH(D−1/2 ⊗D−1/2) vec
[
(xt − µ)(xt − µ)ᵀ − E(xt − µ)(xt − µ)ᵀ

]∣∣∣γ
= o(1), (A.18)

for some γ > 2. Note that

‖(EᵀWE)−1EᵀW 1/2‖`2 =
√

maxeval
([

(EᵀWE)−1EᵀW 1/2
]ᵀ

(EᵀWE)−1EᵀW 1/2
)

=
√

maxeval
(
(EᵀWE)−1EᵀW 1/2

[
(EᵀWE)−1EᵀW 1/2

]ᵀ)
=
√

maxeval
(
(EᵀWE)−1EᵀW 1/2W 1/2E(EᵀWE)−1

)
=
√

maxeval
(
(EᵀWE)−1

)
=

√
1

mineval(EᵀWE)
≤

√
1

mineval(EᵀE)mineval(W )

= O
(√

$/n
)√
‖W−1‖`2 ,
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where the second equality is due to the fact that for any matrix A, AAᵀ and AᵀA have the same
non-zero eigenvalues, the third equality is due to (Aᵀ)−1 = (A−1)ᵀ, and the last equality is due
to Assumption 3.3(ii). Thus

‖(EᵀWE)−1EᵀW‖`2 = O(
√
$κ(W )/n). (A.19)

We now verify (A.18).

E
∣∣∣cᵀ(EᵀWE)−1EᵀWD+

nH(D−1/2 ⊗D−1/2) vec
[
xt − µ)(xt − µ)ᵀ − E(xt − µ)(xt − µ)ᵀ

]∣∣∣γ
≤ ‖cᵀ(EᵀWE)−1EᵀWD+

nH(D−1/2 ⊗D−1/2)‖γ2E
∥∥vec

[
xt − µ)(xt − µ)ᵀ − E(xt − µ)(xt − µ)ᵀ

]∥∥γ
2

= O
(
($κ(W )/n)γ/2

)
E
∥∥xt − µ)(xt − µ)ᵀ − E(xt − µ)(xt − µ)ᵀ

∥∥γ
F

≤ O
(
($κ(W )/n)γ/2

)
E
∣∣‖xt − µ)(xt − µ)ᵀ‖F + ‖E(xt − µ)(xt − µ)ᵀ‖F

∣∣γ
≤ O

(
($κ(W )/n)γ/2

)
2γ−1

(
E‖xt − µ)(xt − µ)ᵀ‖γF + E‖E(xt − µ)(xt − µ)ᵀ‖γF

)
≤ O

(
($κ(W )/n)γ/2

)
2γE‖xt − µ)(xt − µ)ᵀ‖γF

≤ O
(
($κ(W )/n)γ/2

)
2γE

(
n max

1≤i,j≤n

∣∣(xt − µ)i(xt − µ)j
∣∣)γ

= O
(
($κ(W )n)γ/2

)
E
(

max
1≤i,j≤n

∣∣(xt − µ)i(xt − µ)j
∣∣γ)

= O
(
($κ(W )n)γ/2

)∥∥∥ max
1≤i,j≤n

∣∣(xt − µ)i(xt − µ)j
∣∣∥∥∥γ
Lγ

where the first equality is because of (A.19), (A.12), and Proposition A.3(ii), the third inequality
is due to Loeve’s cr inequality, the fourth inequality is due to Jensen’s inequality, and the last
equality is due to the definition of Lp norm. By Assumption 3.1(i), for any i, j = 1, . . . , n,

P(|xt,ixt,j | ≥ ε) ≤ P(|xt,i| ≥
√
ε) + P(|xt,j | ≥

√
ε) ≤ 2Ke−Cε.

It follows from Lemma 2.2.1 in van der Vaart and Wellner (1996) that ‖xt,ixt,j‖ψ1 ≤ (1+2K)/C.

Similarly we have P(|xt,i| ≥ ε) ≤ Ke−Cε
2
, so ‖xt,i‖ψ1 ≤ ‖xt,i‖ψ2(log 2)−1/2 ≤

[
1+K
C

]1/2
(log 2)−1/2.

Next,

max
1≤i≤n

|µi| = max
1≤i≤n

|Ext,i| ≤ max
1≤i≤n

E|xt,i| = max
1≤i≤n

‖xt,i‖L1 ≤ max
1≤i≤n

‖xt,i‖ψ1 = O(1). (A.20)

Then we have

‖(xt − µ)i(xt − µ)j‖ψ1 ≤ ‖xt,ixt,j‖ψ1 + µj‖xt,i‖ψ1 + µi‖xt,j‖ψ1 + µiµj ≤ C

for some constant C. Then invoke Lemma 2.2.2 in van der Vaart and Wellner (1996)∥∥∥ max
1≤i,j≤n

|(xt − µ)i(xt − µ)j |
∥∥∥
ψ1

. log(1 + n2)C = O(log n).

Since ‖X‖Lr ≤ r!‖X‖ψ1 for any random variable X (van der Vaart and Wellner (1996), p95),
we have∥∥∥ max

1≤i,j≤n
|(xt − µ)i(xt − µ)j |

∥∥∥γ
Lγ

≤ (γ!)γ
∥∥∥ max

1≤i,j≤n
|(xt − µ)i(xt − µ)j |

∥∥∥γ
ψ1

= O(logγ n). (A.21)

Summing up the rates, we have

T 1− γ
2 (snκ(W ))γ/2

· E
∣∣∣cᵀ(EᵀWE)−1EᵀWD+

nH(D−1/2 ⊗D−1/2) vec
[
(xt − µ)(xt − µ)ᵀ − E(xt − µ)(xt − µ)ᵀ

]∣∣∣γ
= T 1− γ

2 (snκ(W ))γ/2($κ(W )n)γ/2O(logγ n) = O

(
n2 · κ2(W ) · log3 n ·$

T
1− 2

γ

)γ/2
= o(1)

by Assumption 3.2(ii). Thus, we have verified (A.18).
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A.4.2 tD,1 − t̂D,1 = op(1)

We now show that tD,1− t̂D,1 = op(1). Let AD and ÂD denote the numerators of tD,1 and t̂D,1,
respectively.

tD,1 − t̂D,1 =
AD√
GD
− ÂD√

ĜT,D

=

√
snκ(W )AD√
snκ(W )GD

−
√
snκ(W )ÂD√
snκ(W )ĜT,D

.

Since we have already shown in (A.17) that snκ(W )GD is bounded away from zero by an
absolute constant, it suffices to show the denominators as well as numerators of tD,1 and t̂D,1
are asymptotically equivalent.

A.4.3 Denominators of tD,1 and t̂D,1

We first show that the denominators of tD,1 and t̂D,1 are asymptotically equivalent, i.e.,

snκ(W )|ĜT,D −GD| = op(1).

Define

G̃T,D := cᵀ(EᵀWE)−1EᵀWD+
n ĤT,D(D−1/2⊗D−1/2)V (D−1/2⊗D−1/2)ĤT,DD

+ᵀ

n WE(EᵀWE)−1c.

By the triangular inequality: |snκ(W )ĜT,D − snκ(W )GD| ≤ |snκ(W )ĜT,D − snκ(W )G̃T,D| +
|snκ(W )G̃T,D − snκ(W )GD|. First, we prove |snκ(W )ĜT,D − snκ(W )G̃T,D| = op(1).

snκ(W )|ĜT,D − G̃T,D|
= snκ(W )|cᵀ(EᵀWE)−1EᵀWD+

n ĤT,D(D−1/2 ⊗D−1/2)V̂T (D−1/2 ⊗D−1/2)ĤT,DD
+ᵀ

n WE(EᵀWE)−1c

− cᵀ(EᵀWE)−1EᵀWD+
n ĤT,D(D−1/2 ⊗D−1/2)V (D−1/2 ⊗D−1/2)ĤT,DD

+ᵀ

n WE(EᵀWE)−1c|
= snκ(W )

· |cᵀ(EᵀWE)−1EᵀWD+
n ĤT,D(D−1/2 ⊗D−1/2)(V̂T − V )(D−1/2 ⊗D−1/2)ĤT,DD

+ᵀ

n WE(EᵀWE)−1c|
≤ snκ(W )‖V̂T − V ‖∞‖(D−1/2 ⊗D−1/2)ĤT,DD

+ᵀ

n WE(EᵀWE)−1c‖21
≤ sn3κ(W )‖V̂T − V ‖∞‖(D−1/2 ⊗D−1/2)ĤT,DD

+ᵀ

n WE(EᵀWE)−1c‖22
≤ sn3κ(W )‖V̂T − V ‖∞‖(D−1/2 ⊗D−1/2)‖2`2‖ĤT,D‖2`2‖D

+ᵀ

n ‖2`2‖WE(EᵀWE)−1‖2`2

= Op(sn
2κ2(W )$)‖V̂T − V ‖∞ = Op

(√
n4κ4(W )s2$2 log5 n4

T

)
= op(1),

where ‖·‖∞ denotes the absolute elementwise maximum, the third equality is due to Proposition
A.3(ii), Proposition A.10 in Appendix A.5, (A.12), (A.19), and (A.13), the second last equality
is due to Proposition 8.2 in SM 8.2, and the last equality is due to Assumption 3.2(ii). We now
prove snκ(W )|G̃T,D −GD| = op(1).

snκ(W )|G̃T,D −GD|
= snκ(W )|cᵀ(EᵀWE)−1EᵀWD+

n ĤT,D(D−1/2 ⊗D−1/2)V (D−1/2 ⊗D−1/2)ĤT,DD
+ᵀ

n WE(EᵀWE)−1c

− cᵀ(EᵀWE)−1EᵀWD+
nH(D−1/2 ⊗D−1/2)V (D−1/2 ⊗D−1/2)HD+ᵀ

n WE(EᵀWE)−1c|

≤ snκ(W )
∣∣maxeval

[
(D−1/2 ⊗D−1/2)V (D−1/2 ⊗D−1/2)

]∣∣2 ‖(ĤT,D −H)D+ᵀ

n WE(EᵀWE)−1c‖22
+ 2snκ(W )‖(D−1/2 ⊗D−1/2)V (D−1/2 ⊗D−1/2)HD+ᵀ

n WE(EᵀWE)−1c‖2
· ‖(ĤT,D −H)D+ᵀ

n WE(EᵀWE)−1c‖2 (A.22)
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where the inequality is due to Lemma A.7 in Appendix A.5. We consider the first term of (A.22)
first.

snκ(W )
∣∣maxeval

[
(D−1/2 ⊗D−1/2)V (D−1/2 ⊗D−1/2)

]∣∣2 ‖(ĤT,D −H)D+ᵀ

n WE(EᵀWE)−1c‖22
= O(snκ(W ))‖ĤT,D −H‖2`2‖D

+ᵀ

n ‖2`2‖WE(EᵀWE)−1‖2`2
= Op(snκ

2(W )$/T ) = op(1),

where the second last equality is due to (A.12), (A.13), and (A.19), and the last equality is due
to Assumption 3.2(ii). We now consider the second term of (A.22).

2snκ(W )‖(D−1/2 ⊗D−1/2)V (D−1/2 ⊗D−1/2)HD+ᵀ

n WE(EᵀWE)−1c‖2
· ‖(ĤT,D −H)D+ᵀ

n WE(EᵀWE)−1c‖2
≤ O(snκ(W ))‖H‖`2‖ĤT,D −H‖`2‖D+ᵀ

n ‖2`2‖WE(EᵀWE)−1c‖22 = O(
√
nκ4(W )s2$2/T ) = op(1),

where the first equality is due to (A.12), (A.13), and (A.19), and the last equality is due to As-
sumption 3.2(ii). We have proved |snκ(W )G̃T,D−snκ(W )GD| = op(1) and hence |snκ(W )ĜT,D−
snκ(W )GD| = op(1).

A.4.4 Numerators of tD,1 and t̂D,1

We now show that numerators of tD,1 and t̂D,1 are asymptotically equivalent, i.e.,√
snκ(W )|AD − ÂD| = op(1).

This is relatively straight forward.√
Tsnκ(W )

∣∣cᵀ(EᵀWE)−1EᵀWD+
nH(D−1/2 ⊗D−1/2) vec(Σ̂T − Σ− Σ̃T + Σ)

∣∣
=
√
Tsnκ(W )

∣∣cᵀ(EᵀWE)−1EᵀWD+
nH(D−1/2 ⊗D−1/2) vec(Σ̂T − Σ̃T )

∣∣
=
√
Tsnκ(W )

∣∣cᵀ(EᵀWE)−1EᵀWD+
nH(D−1/2 ⊗D−1/2) vec

[
(x̄− µ)(x̄− µ)ᵀ

]∣∣
≤
√
Tsnκ(W )‖(EᵀWE)−1EᵀW‖`2‖D+

n ‖`2‖H‖`2‖D−1/2 ⊗D−1/2‖`2‖ vec
[
(x̄− µ)(x̄− µ)ᵀ

]
‖2

= O(
√
Tsnκ(W ))

√
$κ(W )/n‖(x̄− µ)(x̄− µ)ᵀ‖F

≤ O(
√
Tsnκ(W ))

√
$κ(W )/nn‖(x̄− µ)(x̄− µ)ᵀ‖∞

= O(
√
Tsn2κ2(W )$) max

1≤i,j≤n

∣∣(x̄− µ)i(x̄− µ)j
∣∣ = Op(

√
Tsn2κ2(W )$) log n/T

= Op

(√
log3 n · n2κ2(W )$

T

)
= op(1),

where the third equality is due to (A.12), (A.13), and (A.19), the third last equality is due to
(8.20), and the last equality is due to Assumption 3.2(ii).

A.4.5 t̂D,2 = op(1)

Write

t̂D,2 =

√
T
√
snκ(W )cᵀ(EᵀWE)−1EᵀWD+

n vecOp(‖Θ̂T,D −Θ‖2`2)√
snκ(W )ĜT,D

.

Since the denominator of the preceding equation is bounded away from zero by an absolute
constant with probability approaching one by (A.17) and that |snκ(W )ĜT,D − snκ(W )GD| =
op(1), it suffices to show

√
T
√
snκ(W )cᵀ(EᵀWE)−1EᵀWD+

n vecOp(‖Θ̂T,D −Θ‖2`2) = op(1).
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This is straightforward:

|
√
Tsnκ(W )cᵀ(EᵀWE)−1EᵀWD+

n vecOp(‖Θ̂T,D −Θ‖2`2)|

≤
√
Tsnκ(W )‖cᵀ(EᵀWE)−1EᵀWD+

n ‖2‖ vecOp(‖Θ̂T,D −Θ‖2`2)‖2
= O(

√
Ts$κ(W ))‖Op(‖Θ̂T,D −Θ‖2`2)‖F = O(

√
Ts$nκ(W ))‖Op(‖Θ̂T,D −Θ‖2`2)‖`2

= O(
√
Ts$nκ(W ))Op(‖Θ̂T,D −Θ‖2`2) = Op

(
κ(W )

√
Ts$nn

T

)
= Op

(√
s$n3κ2(W )

T

)
= op(1),

where the last equality is due to Assumption 3.2(ii).

A.5

Definition A.1 (Nets and covering numbers). Let (T, d) be a metric space and fix ε > 0.

(i) A subset Nε of T is called an ε-net of T if every point x ∈ T satisfies d(x, y) ≤ ε for some
y ∈ Nε.

(ii) The minimal cardinality of an ε-net of T is denote N (ε, d) and is called the covering
number of T (at scale ε). Equivalently, N (ε, d) is the minimal number of balls of radius ε
and with centers in T needed to cover T .

Lemma A.3. The unit Euclidean sphere {x ∈ Rn : ‖x‖2 = 1} equipped with the Euclidean
metric d satisfies for every ε > 0 that

N (ε, d) ≤
(

1 +
2

ε

)n
.

Proof. See Vershynin (2011) p8.

Recall that for a symmetric n×n matrix A, its `2 spectral norm can be written as: ‖A‖`2 =
max‖x‖2=1 |xᵀAx|.

Lemma A.4. Let A be a symmetric n × n matrix, and let Nε be an ε-net of the unit sphere
{x ∈ Rn : ‖x‖2 = 1} for some ε ∈ [0, 1). Then

‖A‖`2 ≤
1

1− 2ε
max
x∈Nε

|xᵀAx|.

Proof. See Vershynin (2011) p8.

Theorem A.1 (Bernstein’s inequality). We let Z1, . . . , ZT be independent random variables,
satisfying for positive constants A and σ2

0

EZt = 0 ∀t, 1

T

T∑
t=1

E|Zt|m ≤
m!

2
Am−2σ2

0, m = 2, 3, . . . .

Let ε > 0 be arbitrary. Then

P
(∣∣∣∣ 1

T

T∑
t=1

Zt

∣∣∣∣ ≥ σ2
0

[
Aε+

√
2ε
])
≤ 2e−Tσ

2
0ε.
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Proof. Slightly adapted from Bühlmann and van de Geer (2011) p487.

We can use Bernstein’s inequality to establish a rate for the maximum.

Proposition A.8. Suppose via Bernstein’s inequality that we have for 1 ≤ i ≤ n

P

(∣∣∣∣ 1

T

T∑
t=1

Zt,i

∣∣∣∣ ≥ σ2
0

[
Kε+

√
2ε
])
≤ 2e−Tσ

2
0ε.

Then

max
1≤i≤n

∣∣∣∣ 1

T

T∑
t=1

Zt,i

∣∣∣∣ = Op

(
log n

T
∨
√

log n

T

)
.

Proof. We need to use joint asymptotics n, T →∞. We shall use the preceding inequality with
ε = (2 log n)/(Tσ2

0). Fix ε > 0. These exist Nε := 2/ε, Tε and Mε := max(4K, 4σ0) such that
for all n > Nε and T > Tε we have

P

(
max

1≤i≤n

∣∣∣∣ 1

T

T∑
t=1

Zt,i

∣∣∣∣ ≥Mε

(
log n

T
∨
√

log n

T

))

≤
n∑
i=1

P

(∣∣∣∣ 1

T

T∑
t=1

Zt,i

∣∣∣∣ ≥ σ2
0

[
Kε+

√
2ε
])
≤ 2elogn−2 logn =

2

n
< ε.

Lemma A.5. Let A,B be n× n positive semidefinite matrices and not both singular. Then

‖A−B‖`2 ≤
‖A2 −B2‖`2

mineval(A) + mineval(B)
.

Proof. See Horn and Johnson (1985) p410.

Lemma A.6. Let Ω̂n and Ωn be invertible (both possibly stochastic) square matrices whose
dimensions could be growing. Let T be the sample size. For any matrix norm, suppose that
‖Ω−1

n ‖ = Op(1) and ‖Ω̂n − Ωn‖ = Op(an,T ) for some sequence an,T with an,T → 0 as n → ∞,

T →∞ simultaneously (joint asymptotics). Then ‖Ω̂−1
n − Ω−1

n ‖ = Op(an,T ).

Proof. The original proof could be found in Saikkonen and Lutkepohl (1996) Lemma A.2.

‖Ω̂−1
n − Ω−1

n ‖ ≤ ‖Ω̂−1
n ‖‖Ωn − Ω̂n‖‖Ω−1

n ‖ ≤
(
‖Ω−1

n ‖+ ‖Ω̂−1
n − Ω−1

n ‖
)
‖Ωn − Ω̂n‖‖Ω−1

n ‖.

Let vn,T , zn,T and xn,T denote ‖Ω−1
n ‖, ‖Ω̂−1

n − Ω−1
n ‖ and ‖Ωn − Ω̂n‖, respectively. From the

preceding equation, we have

wn,T :=
zn,T

(vn,T + zn,T )vn,T
≤ xn,T = Op(an,T ) = op(1).

We now solve for zn,T :

zn,T =
v2
n,Twn,T

1− vn,Twn,T
= Op(an,T ).
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Theorem A.2 (Higham (2008) p269; Dieci, Morini, and Papini (1996)). For A ∈ Cn×n with
no eigenvalues lying on the closed negative real axis (−∞, 0],

logA =

∫ 1

0
(A− I)[t(A− I) + I]−1dt.

Proposition A.9. Let A,B be n × n real matrices. Suppose that A is symmetric, positive
definite for all n and its minimum eigenvalue is bounded away from zero by an absolute constant.
Assume ‖A−1B‖`2 ≤ C < 1 for some constant C. Then A+B is invertible for every n and

(A+B)−1 = A−1 −A−1BA−1 +O(‖B‖2`2).

Proof. We write A + B = A[I − (−A−1B)]. Since ‖ − A−1B‖`2 ≤ C < 1, I − (−A−1B) and
hence A+B are invertible (Horn and Johnson (1985) p301). We then can expand

(A+B)−1 =
∞∑
k=0

(−A−1B)kA−1 = A−1 −A−1BA−1 +
∞∑
k=2

(−A−1B)kA−1.

Then ∥∥∥∥∥
∞∑
k=2

(−A−1B)kA−1

∥∥∥∥∥
`2

≤

∥∥∥∥∥
∞∑
k=2

(−A−1B)k

∥∥∥∥∥
`2

‖A−1‖`2 ≤
∞∑
k=2

∥∥∥(−A−1B)k
∥∥∥
`2
‖A−1‖`2

≤
∞∑
k=2

∥∥∥−A−1B
∥∥∥k
`2
‖A−1‖`2 =

∥∥A−1B
∥∥2

`2
‖A−1‖`2

1−
∥∥A−1B

∥∥
`2

≤
‖A−1‖3`2‖B‖

2
`2

1− C
,

where the first and third inequalities are due to the submultiplicative property of a matrix
norm, the second inequality is due to the triangular inequality. Since A is real, symmetric, and
positive definite with the minimum eigenvalue bounded away from zero by an absolute constant,
‖A−1‖`2 = maxeval(A−1) = 1/mineval(A) < D < ∞ for some absolute constant D. Hence the
result follows.

Proposition A.10. Consider real matrices A (m× n) and B (p× q). Then

‖A⊗B‖`2 = ‖A‖`2‖B‖`2 .

Proof.

‖A⊗B‖`2 =
√

maxeval[(A⊗B)ᵀ(A⊗B)] =
√

maxeval[(Aᵀ ⊗Bᵀ)(A⊗B)]

=
√

maxeval[AᵀA⊗BᵀB] =
√

maxeval[AᵀA]maxeval[BᵀB] = ‖A‖`2‖B‖`2 ,

where the fourth equality is due to the fact that both AᵀA and BᵀB are symmetric, positive
semidefinite.

Proposition A.11. Suppose we have subgaussian random variables Zl,t,j for l = 1, . . . , L (L ≥ 2
fixed), t = 1, . . . , T and j = 1, . . . , p. Zl1,t1,j1 and Zl2,t2,j2 are independent as long as t1 6= t2
regardless of the values of other subscripts. Then,

max
1≤j≤p

max
1≤t≤T

E
∣∣∣∣ L∏
l=1

Zl,t,j

∣∣∣∣ ≤ A = O(1),

for some positive constant A and

max
1≤j≤p

∣∣∣ 1

T

T∑
t=1

( L∏
l=1

Zl,t,j − E
[ L∏
l=1

Zl,t,j

])∣∣∣ = Op

(√(log p)L+1

T

)
.
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Proof. See Proposition 3 of Kock and Tang (2018).

Lemma A.7. Let A be a p× p symmetric matrix and v̂, v ∈ Rp. Then

|v̂ᵀAv̂ − vᵀAv| ≤ |maxeval(A)|2‖v̂ − v‖22 + 2(‖Av‖2‖v̂ − v‖2).

Proof. See Lemma 3.1 in the supplementary material of van de Geer, Buhlmann, Ritov, and
Dezeure (2014).

Lemma A.8. Let A and B be m × n and p × q matrices, respectively. There exists a unique
permutation matrix PK := In ⊗Kq,m ⊗ Ip, where Kq,m is the commutation matrix, such that

vec(A⊗B) = P (vecA⊗ vecB).

Proof. Magnus and Neudecker (2007) Theorem 3.10 p55.

Theorem A.3. For arbitrary n×n complex matrices A and E, and for any matrix norm ‖ · ‖,

‖eA+E − eA‖ ≤ ‖E‖ exp(‖E‖) exp(‖A‖).

Proof. See Horn and Johnson (1991) p430.

Lemma A.9 (van der Vaart (1998) p27).

χ2
k − k√

2k

d−→ N(0, 1),

as k →∞.

Lemma A.10 (van der Vaart (2010) p41). For T, n ∈ N let XT,n be random vectors such that
XT,n  Xn as T → ∞ for every fixed n such that Xn  X as n → ∞. Then there exists a
sequence nT →∞ such that XT,nT  X as T →∞.
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Université catholique de Louvain
Oliver B. Linton†

University of Cambridge
Haihan Tang‡

Fudan University

February 28, 2018

8 Supplementary Material

8.1

Proposition 8.1. Suppose that A1, A2, . . . , Av are real symmetric and positive definite matrices
of sizes a1 × a1, . . . , av × av, respectively. Then

log(A1 ⊗A2 ⊗ · · · ⊗Av)
= logA1 ⊗ Ia2 ⊗ · · · ⊗ Iav + Ia1 ⊗ logA2 ⊗ Ia3 ⊗ · · · ⊗ Iav + · · ·+ Ia1 ⊗ Ia2 ⊗ · · · ⊗ logAv.

Proof. Since A1, A2, . . . , Av are real symmetric, they can be orthogonally diagonalized: for
i = 1, . . . , v,

Ai = Uᵀ
i ΛiUi,

where Ui is orthogonal, and Λi = diag(λi,1, . . . , λi,ai) is a diagonal matrix containing the ai
eigenvalues of Ai. Positive definiteness of A1, A2, . . . , Av ensures that their Kronecker product
is positive definite. Then the logarithm of A1 ⊗A2 ⊗ · · · ⊗Av is:

log(A1 ⊗A2 ⊗ · · · ⊗Av) = log[(U1 ⊗ · · · ⊗ Uv)ᵀ(Λ1 ⊗ · · · ⊗ Λv)(U1 ⊗ · · · ⊗ Uv)]
= (U1 ⊗ · · · ⊗ Uv)ᵀ log(Λ1 ⊗ · · · ⊗ Λv)(U1 ⊗ · · · ⊗ Uv), (8.1)

where the first equality is due to the mixed product property of the Kronecker product, and
the second equality is due to a property of matrix functions.

Now let Λ2−v denote Λ2 ⊗ · · · ⊗ Λv.

log(Λ1 ⊗ Λ2−v) = diag(log(λ1,1Λ2−v), . . . , log(λ1,a1Λ2−v))

= diag(log(λ1,1Ia2···avΛ2−v), . . . , log(λ1,a1Ia2···avΛ2−v))

= diag(log(λ1,1Ia2···av) + log(Λ2−v), . . . , log(λ1,a1Ia2···av) + log(Λ2−v))

= diag(log(λ1,1Ia2···av), . . . , log(λ1,a1Ia2···av)) + diag(log(Λ2−v), . . . , log(Λ2−v))

= log(Λ1)⊗ Ia2···av + Ia1 ⊗ log(Λ2−v), (8.2)
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where the third equality holds only because λ1,jIa2···av and Λ2−v have real positive eigenvalues
only and commute for all j = 1, . . . , a1 (Higham (2008) p270 Theorem 11.3). Substitute (8.2)
into (8.1):

log(A1 ⊗A2 ⊗ · · · ⊗Av) = (U1 ⊗ · · · ⊗ Uv)ᵀ log(Λ1 ⊗ · · · ⊗ Λv)(U1 ⊗ · · · ⊗ Uv)
= (U1 ⊗ U2−v)

ᵀ(log Λ1 ⊗ Ia2···av + Ia1 ⊗ log Λ2−v)(U1 ⊗ U2−v)

= (U1 ⊗ U2−v)
ᵀ(log Λ1 ⊗ Ia2···av)(U1 ⊗ U2−v) + (U1 ⊗ U2−v)

ᵀ(Ia1 ⊗ log Λ2−v)(U1 ⊗ U2−v)

= logA1 ⊗ Ia2···av + Ia1 ⊗ logA2−v,

where U2−v := U2 ⊗ · · · ⊗ Uv and A2−v := A2 ⊗ · · · ⊗Av. This procedure can be repeated until
we get the proposition.

8.2

Proposition 8.2. Let Assumptions 3.1(i), 3.2(i) be satisfied. Then

‖V̂T − V ‖∞ = Op

(√
log5 n4

T

)
.

Proof. Let x̃t,i denote xt,i− x̄i, similarly for x̃t,j , x̃t,k, x̃t,`. Let ẋt,i denote xt,i− µi, similarly for
ẋt,j , ẋt,k, ẋt,`.

‖V̂T − V ‖∞ := max
1≤x,y≤n2

|V̂T,x,y − Vx,y| = max
1≤i,j,k,`≤n

|V̂T,i,j,k,` − Vi,j,k,`|

≤ max
1≤i,j,k,`≤n

∣∣∣∣ 1

T

T∑
t=1

x̃t,ix̃t,j x̃t,kx̃t,` −
1

T

T∑
t=1

ẋt,iẋt,j ẋt,kẋt,`

∣∣∣∣ (8.3)

+ max
1≤i,j,k,`≤n

∣∣∣∣ 1

T

T∑
t=1

ẋt,iẋt,j ẋt,kẋt,` − E[ẋt,iẋt,j ẋt,kẋt,`]

∣∣∣∣ (8.4)

+ max
1≤i,j,k,`≤n

∣∣∣∣( 1

T

T∑
t=1

x̃t,ix̃t,j

)(
1

T

T∑
t=1

x̃t,kx̃t,`

)
−
(

1

T

T∑
t=1

ẋt,iẋt,j

)(
1

T

T∑
t=1

ẋt,kẋt,`

)∣∣∣∣ (8.5)

+ max
1≤i,j,k,`≤n

∣∣∣∣( 1

T

T∑
t=1

ẋt,iẋt,j

)(
1

T

T∑
t=1

ẋt,kẋt,`

)
− E[ẋt,iẋt,j ]E[ẋt,kẋt,`]

∣∣∣∣ (8.6)

8.2.1 (8.4)

By Assumption 3.1(i), xt,i, xt,j , xt,k, xt,` are subgaussian random variables. We now show that
ẋt,i, ẋt,j , ẋt,k, ẋt,` are also uniformly subgaussian. Without loss of generality consider ẋt,i.

P
(
|ẋt,i| ≥ ε

)
= P

(
|xt,i − µi| ≥ ε

)
≤ P

(
|xt,i| ≥ ε− |µi|

)
≤ Ke−C(ε−|µi|)2

≤ Ke−Cε2e2Cε|µi|e−C|µi|
2 ≤ Ke−Cε2e2Cε|µi| ≤ Ke−Cε2eC(ε2/2+2|µi|2)

= Ke−
1
2
Cε2e2C|µi|2 ≤ Ke−

1
2
Cε2e2C(max1≤i≤n |µi|)2 = K ′e−

1
2
Cε2 ,

where the fifth inequality is due to the decoupling inequality 2xy ≤ x2/2 + 2y2, and the last
equality is due to (A.20). We now consider (8.4). Invoke Proposition A.11 in Appendix A.5:

max
1≤i,j,k,`≤n

∣∣∣∣ 1

T

T∑
t=1

ẋt,iẋt,j ẋt,kẋt,` − Eẋt,iẋt,j ẋt,kẋt,`
∣∣∣∣ = Op

(√
log5 n4

T

)
. (8.7)
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8.2.2 (8.6)

We now consider (8.6).

max
1≤i,j,k,`≤n

∣∣∣∣( 1

T

T∑
t=1

ẋt,iẋt,j

)(
1

T

T∑
t=1

ẋt,kẋt,`

)
− E[ẋt,iẋt,j ]E[ẋt,kẋt,`]

∣∣∣∣
≤ max

1≤i,j,k,`≤n

∣∣∣∣( 1

T

T∑
t=1

ẋt,iẋt,j

)(
1

T

T∑
t=1

ẋt,kẋt,` − E[ẋt,kẋt,`]

)∣∣∣∣ (8.8)

+ max
1≤i,j,k,`≤n

∣∣∣∣E[ẋt,kẋt,`]

(
1

T

T∑
t=1

ẋt,iẋt,j − E[ẋt,iẋt,j ]

)∣∣∣∣ . (8.9)

Consider (8.8).

max
1≤i,j,k,`≤n

∣∣∣∣( 1

T

T∑
t=1

ẋt,iẋt,j

)(
1

T

T∑
t=1

ẋt,kẋt,` − Eẋt,kẋt,`
)∣∣∣∣

≤ max
1≤i,j≤n

(∣∣∣∣ 1

T

T∑
t=1

ẋt,iẋt,j − Eẋt,iẋt,j
∣∣∣∣+
∣∣Eẋt,iẋt,j∣∣) max

1≤k,`≤n

∣∣∣∣ 1

T

T∑
t=1

ẋt,kẋt,` − Eẋt,kẋt,`
∣∣∣∣

=

(
Op

(√
log3 n2

T

)
+O(1)

)
Op

(√
log3 n2

T

)
= Op

(√
log3 n2

T

)
where the first equality is due to Proposition A.11 in Appendix A.5 and the last equality is due
to Assumption 3.2(i). Now consider (8.9).

max
1≤i,j,k,`≤n

∣∣∣∣E[ẋt,kẋt,`]

(
1

T

T∑
t=1

ẋt,iẋt,j − E[ẋt,iẋt,j ]

)∣∣∣∣
≤ max

1≤k,`≤n
|E[ẋt,kẋt,`]| max

1≤i,j≤n

∣∣∣∣ 1

T

T∑
t=1

ẋt,iẋt,j − Eẋt,iẋt,j
∣∣∣∣ = Op

(√
log3 n2

T

)
where the equality is due to Proposition A.11 in Appendix A.5. Thus

max
1≤i,j,k,`≤n

∣∣∣∣( 1

T

T∑
t=1

ẋt,iẋt,j

)(
1

T

T∑
t=1

ẋt,kẋt,`

)
− E[ẋt,iẋt,j ]E[ẋt,kẋt,`]

∣∣∣∣ = Op

(√
log3 n2

T

)
. (8.10)

8.2.3 (8.3)

We first give a rate for max1≤i≤n |x̄i − µi|. The index i is arbitrary and could be replaced
with j, k, `. By Assumption 3.1(i), {xt,i}Tt=1 are independent subgaussian random variables. For

ε > 0, P(|xt,i| ≥ ε) ≤ Ke−Cε
2
. It follows from Lemma 2.2.1 in van der Vaart and Wellner (1996)

that ‖xt,i‖ψ2 ≤ (1+K)1/2/C1/2. Then ‖xt,i−Ext,i‖ψ2 ≤ ‖xt,i‖ψ2 +E‖xt,i‖ψ2 ≤
2(1+K)1/2

C1/2 . Next,
using the second last inequality in van der Vaart and Wellner (1996) p95, we have

‖xt,i − Ext,i‖ψ1 ≤ ‖xt,i − Ext,i‖ψ2(log 2)−1/2 ≤ 2(1 +K)1/2

C1/2
(log 2)−1/2 =:

1

W
.

Then, by the definition of the Orlicz norm, E
[
eW |xt,i−Ext,i|

]
≤ 2. Use Fubini’s theorem to

expand out the exponential moment. It is easy to see that xt,i − Ext,i satisfies the moment

3



conditions of Bernstein’s inequality in Appendix A.5 with A = 1
W and σ2

0 = 2
W 2 . Now invoke

Bernstein’s inequality for all ε > 0

P
(∣∣∣∣ 1

T

T∑
t=1

(xt,i − Ext,i)
∣∣∣∣ ≥ σ2

0

[
Aε+

√
2ε
])
≤ 2e−Tσ

2
0ε.

Invoking Proposition A.8 in Appendix A.5, we have

max
1≤i≤n

|x̄i − µi| = max
1≤i≤n

∣∣∣∣ 1

T

T∑
t=1

(xt,i − Ext,i)
∣∣∣∣ = Op

(
log n

T
∨
√

log n

T

)
= Op

(√
log n

T

)
, (8.11)

where the last equality is due to Assumption 3.2(i). Then we also have

max
1≤i≤n

|x̄i| = max
1≤i≤n

|x̄i − µi + µi| ≤ max
1≤i≤n

|x̄i − µi|+ max
1≤i≤n

|µi| = Op

(√
log n

T

)
+O(1) = Op(1).

(8.12)
We now consider (8.3):

max
1≤i,j,k,`≤n

∣∣∣∣ 1

T

T∑
t=1

x̃t,ix̃t,j x̃t,kx̃t,` −
1

T

T∑
t=1

ẋt,iẋt,j ẋt,kẋt,`

∣∣∣∣ .
With tedious expansion, simplification and recognition the indices i, j, k, ` are completely sym-
metric, we can bound (8.3) by

max
1≤i,j,k,`≤n

∣∣x̄ix̄j x̄kx̄` − µiµjµkµ`∣∣ (8.13)

+ 4 max
1≤i,j,k,`≤n

∣∣∣x̄i (x̄j x̄kx̄` − µjµkµ`)∣∣∣ (8.14)

+ 6 max
1≤i,j,k,`≤n

∣∣∣∣( 1

T

T∑
t=1

xt,ixt,j

)(
x̄kx̄` − µkµ`

)∣∣∣∣ (8.15)

+ 4 max
1≤i,j,k,`≤n

∣∣∣∣( 1

T

T∑
t=1

xt,ixt,jxt,k

)(
x̄` − µ`

)∣∣∣∣ . (8.16)

We consider (8.13) first. (8.13) can be bounded by repeatedly invoking triangular inequal-
ities (e.g., inserting terms like µix̄j x̄kx̄`) using (A.20), (8.12) and (8.11). (8.13) is of order
Op(

√
log n/T ). (8.14) is of order Op(

√
log n/T ) by a similar argument. (8.15) and (8.16) are of

the same orderOp(
√

log n/T ) using a similar argument provided that both max1≤i,j≤n |
∑T

t=1 xt,ixt,j |/T
and max1≤i,j,k≤n |

∑T
t=1 xt,ixt,jxt,k|/T are Op(1); these follow from Proposition A.11 in Ap-

pendix A.5. Thus

max
1≤i,j,k,`≤n

∣∣∣∣ 1

T

T∑
t=1

x̃t,ix̃t,j x̃t,kx̃t,` −
1

T

T∑
t=1

ẋt,iẋt,j ẋt,kẋt,`

∣∣∣∣ = Op(
√

log n/T ). (8.17)

8.2.4 (8.5)

We now consider (8.5).

max
1≤i,j,k,`≤n

∣∣∣∣( 1

T

T∑
t=1

x̃t,ix̃t,j

)(
1

T

T∑
t=1

x̃t,kx̃t,`

)
−
(

1

T

T∑
t=1

ẋt,iẋt,j

)(
1

T

T∑
t=1

ẋt,kẋt,`

)∣∣∣∣
≤ max

1≤i,j,k,`≤n

∣∣∣∣( 1

T

T∑
t=1

x̃t,ix̃t,j

)(
1

T

T∑
t=1

(
x̃t,kx̃t,` − ẋt,kẋt,`

))∣∣∣∣ (8.18)

+ max
1≤i,j,k,`≤n

∣∣∣∣( 1

T

T∑
t=1

ẋt,kẋt,`

)(
1

T

T∑
t=1

(
x̃t,ix̃t,j − ẋt,iẋt,j

))∣∣∣∣ (8.19)
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It suffices to give a bound for (8.18) as the bound for (8.19) is of the same order and follows
through similarly. First, it is easy to show that max1≤i,j≤n | 1T

∑T
t=1 x̃t,ix̃t,j | = max1≤i,j≤n | 1T

∑T
t=1 xt,ixt,j−

x̄ix̄j | = Op(1) (using Proposition A.11 in Appendix A.5). Next

max
1≤k,`≤n

∣∣∣∣ 1

T

T∑
t=1

(
x̃t,kx̃t,` − ẋt,kẋt,`

)∣∣∣∣ = max
1≤k,`≤n

∣∣∣∣−(x̄k − µk)(x̄` − µ`)
∣∣∣∣ = Op

(
log n

T

)
. (8.20)

The proposition follows after summing up the rates for (8.7), (8.10), (8.17) and (8.20).

8.3

Proposition 8.3. Let Assumptions 3.1(i), 3.2(i) and 3.3 be satisfied. Then we have

‖P‖`2 = O(1), ‖P̂T ‖`2 = Op(1), ‖P̂T − P‖`2 = Op

(√
n

T

)
. (8.21)

Proof. The proofs for ‖P‖`2 = O(1) and ‖P̂T ‖`2 = Op(1) are exactly the same, so we only give
the proof for the latter.

‖P̂T ‖`2 = ‖In2 −DnD
+
n (In ⊗ Θ̂T )Md‖`2 ≤ 1 + ‖DnD

+
n (In ⊗ Θ̂T )Md‖`2

≤ 1 + ‖Dn‖`2‖D+
n ‖`2‖In ⊗ Θ̂T ‖`2‖Md‖`2 = 1 + 2‖In‖`2‖Θ̂T ‖`2 = Op(1)

where the second equality is due to (A.13) and Proposition A.10 in Appendix A.5, and last
equality is due to Proposition A.5(ii). Now,

‖P̂T − P‖`2 = ‖In2 −DnD
+
n (In ⊗ Θ̂T )Md − (In2 −DnD

+
n (In ⊗Θ)Md)‖`2

= ‖DnD
+
n (In ⊗ Θ̂T )Md −DnD

+
n (In ⊗Θ)Md)‖`2 = ‖DnD

+
n (In ⊗ (Θ̂T −Θ))Md‖`2

= Op(
√
n/T ),

where the last equality is due to Proposition 3.1(i).

Proof of Theorem 3.2. We write
√
Tcᵀ(θ̂T − θ0)√

ĜT

=

√
Tcᵀ(EᵀWE)−1EᵀWD+

nH vec(Θ̂T −Θ)√
ĜT

+

√
Tcᵀ(EᵀWE)−1EᵀWD+

n vecOp(‖Θ̂T −Θ‖2`2)√
ĜT

=

√
Tcᵀ(EᵀWE)−1EᵀWD+

nH
∂ vec Θ
∂ vec Σ

∣∣∣
Σ=Σ̃

(i)
T

vec(Σ̂T − Σ)√
ĜT

+

√
Tcᵀ(EᵀWE)−1EᵀWD+

n vecOp(‖Θ̂T −Θ‖2`2)√
ĜT

=: t̂1 + t̂2,

where ∂ vec Θ
∂ vec Σ

∣∣∣
Σ=Σ̃

(i)
T

denotes the matrix whose jth row is the jth row of the Jacobian matrix

∂ vec Θ
∂ vec Σ evaluated at vec Σ̃

(j)
T , which is a point between vec Σ and vec Σ̂T , for j = 1, . . . , n2.

Define

t1 :=

√
Tcᵀ(EᵀWE)−1EᵀWD+

nHP (D−1/2 ⊗D−1/2) vec(Σ̃T − Σ)√
G

.

To prove Theorem 3.2, it suffices to show t1
d−→ N(0, 1), t1 − t̂1 = op(1), and t̂2 = op(1). The

proof is similar to that of Theorem 3.1, so we will be concise for the parts which are almost
identical to that of Theorem 3.1.
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8.3.1 t1
d−→ N(0, 1)

We now prove that t1 is asymptotically distributed as a standard normal.

t1 =
√
Tcᵀ(EᵀWE)−1EᵀWD+

nHP (D−1/2 ⊗D−1/2) vec
(

1
T

∑T
t=1

[
(xt − µ)(xt − µ)ᵀ − E(xt − µ)(xt − µ)ᵀ

])
√
G

=
T∑
t=1

T−1/2cᵀ(EᵀWE)−1EᵀWD+
nHP (D−1/2 ⊗D−1/2) vec

[
(xt − µ)(xt − µ)ᵀ − E(xt − µ)(xt − µ)ᵀ

]
√
G

=:
T∑
t=1

UT,n,t.

Trivially E[UT,n,t] = 0 and
∑T

t=1 E[U2
T,n,t] = 1. Then we just need to verify the following

Lindeberg condition for a double indexed process (e.g., Phillips and Moon (1999) Theorem 2
p1070): for all ε > 0,

lim
n,T→∞

T∑
t=1

∫
{|UT,n,t|≥ε}

U2
T,n,tdP = 0.

For any γ > 2,∫
{|UT,n,t|≥ε}

U2
T,n,tdP =

∫
{|UT,n,t|≥ε}

U2
T,n,t|UT,n,t|−γ |UT,n,t|γdP ≤ ε2−γ

∫
{|UT,n,t|≥ε}

|UT,n,t|γdP

≤ ε2−γE|UT,n,t|γ .

We first investigate at what rate the denominator
√
G goes to zero:

G = cᵀ(EᵀWE)−1EᵀWD+
nHP (D−1/2 ⊗D−1/2)V (D−1/2 ⊗D−1/2)P ᵀHD+ᵀ

n WE(EᵀWE)−1c

≥ mineval
(
EᵀWD+

nHP (D−1/2 ⊗D−1/2)V (D−1/2 ⊗D−1/2)P ᵀHD+ᵀ

n WE
)
‖(EᵀWE)−1c‖22

≥ n

$
mineval2(W )c(EᵀWE)−2c ≥ n

$
mineval2(W )mineval

(
(EᵀWE)−2

)
=

n ·mineval2(W )

$maxeval2(EᵀWE)
≥ n

$maxeval2(W−1)maxeval2(W )maxeval2(EᵀE)

=
n

$κ2(W )maxeval2(EᵀE)

where the second inequality is due to Assumption 3.5(ii). Using (A.15), we have

1√
G

= O(
√
s2 · n · κ2(W ) ·$). (8.22)

Then a sufficient condition for the Lindeberg condition is:

T 1− γ
2 (s2nκ2(W )$)γ/2

· E
∣∣∣cᵀ(EᵀWE)−1EᵀWD+

nHP (D−1/2 ⊗D−1/2) vec
[
(xt − µ)(xt − µ)ᵀ − E(xt − µ)(xt − µ)ᵀ

]∣∣∣γ
= o(1), (8.23)

for some γ > 2. The verification will be exactly the same as that of (A.18). In the end, we have

T 1− γ
2 (s2nκ2(W )$)γ/2

· E
∣∣∣cᵀ(EᵀWE)−1EᵀWD+

nHP (D−1/2 ⊗D−1/2) vec
[
(xt − µ)(xt − µ)ᵀ − E(xt − µ)(xt − µ)ᵀ

]∣∣∣γ
= T 1− γ

2 (s2nκ2(W )$)γ/2($κ(W )n)γ/2O(logγ n) = O

(
n2 · κ3(W ) · log4 n ·$2

T
1− 2

γ

)γ/2
= o(1)

by Assumption 3.2(ii).
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8.3.2 t1 − t̂1 = op(1)

We now show that t1− t̂1 = op(1). Let A and Â denote the numerators of t1 and t̂1, respectively.

t1 − t̂1 =
A√
G
− Â√

ĜT
=

√
s2nκ2(W )$A√
s2nκ2(W )$G

−
√
s2nκ2(W )$Â√
s2nκ2(W )$ĜT

.

Since we have already shown in (8.22) that s2nκ2(W )$G is bounded away from zero by an
absolute constant, it suffices to show the denominators as well as numerators of t1 and t̂1 are
asymptotically equivalent.

8.3.3 Denominators of t1 and t̂1

We first show that the denominators of t1 and t̂1 are asymptotically equivalent, i.e.,

s2nκ2(W )$|ĜT −G| = op(1).

Define

G̃T := cᵀ(EᵀWE)−1EᵀWD+
n ĤT P̂T (D̂

−1/2
T ⊗D̂−1/2

T )V (D̂
−1/2
T ⊗D̂−1/2

T )P̂ ᵀ
T ĤTD

+ᵀ

n WE(EᵀWE)−1c.

By the triangular inequality: s2nκ2(W )$|ĜT −G| ≤ s2nκ2(W )$|ĜT −G̃T |+s2nκ2(W )$|G̃T −
G|. First, we prove s2nκ2(W )$|ĜT − G̃T | = op(1).

s2nκ2(W )$|ĜT − G̃T |

= s2nκ2(W )$|cᵀ(EᵀWE)−1EᵀWD+
n ĤT P̂T (D̂

−1/2
T ⊗ D̂−1/2

T )V̂T (D̂
−1/2
T ⊗ D̂−1/2

T )P̂ ᵀ
T ĤTD

+ᵀ

n WE(EᵀWE)−1c

− cᵀ(EᵀWE)−1EᵀWD+
n ĤT P̂T (D̂

−1/2
T ⊗ D̂−1/2

T )V (D̂
−1/2
T ⊗ D̂−1/2

T )P̂ ᵀ
T ĤTD

+ᵀ

n WE(EᵀWE)−1c|
= s2nκ2(W )$

· |cᵀ(EᵀWE)−1EᵀWD+
n ĤT P̂T (D̂

−1/2
T ⊗ D̂−1/2

T )(V̂T − V )(D̂
−1/2
T ⊗ D̂−1/2

T )P̂ ᵀ
T ĤTD

+ᵀ

n WE(EᵀWE)−1c|

≤ s2nκ2(W )$‖V̂T − V ‖∞‖(D̂−1/2
T ⊗ D̂−1/2

T )P̂ ᵀ
T ĤTD

+ᵀ

n WE(EᵀWE)−1c‖21
≤ s2n3κ2(W )$‖V̂T − V ‖∞‖(D̂−1/2

T ⊗ D̂−1/2
T )P̂ ᵀ

T ĤTD
+ᵀ

n WE(EᵀWE)−1c‖22
≤ s2n3κ2(W )$‖V̂T − V ‖∞‖(D̂−1/2

T ⊗ D̂−1/2
T )‖2`2‖P̂

ᵀ
T ‖

2
`2‖ĤT ‖2`2‖D

+ᵀ

n ‖2`2‖WE(EᵀWE)−1‖2`2

= Op(s
2n2κ3(W )$2)‖V̂T − V ‖∞ = Op

(√
n4κ6(W )s4$4 log5 n4

T

)
= op(1),

where ‖·‖∞ denotes the absolute elementwise maximum, the third equality is due to Proposition
A.3(v), Proposition A.10 in Appendix A.5, (A.12), (A.19), (A.13) and (8.21), the second last
equality is due to Proposition 8.2 in SM 8.2, and the last equality is due to Assumption 3.2(ii).

We now prove s2nκ2(W )$|G̃T −G| = op(1). Define

G̃T,a := cᵀ(EᵀWE)−1EᵀWD+
n ĤT P̂T (D−1/2 ⊗D−1/2)V (D−1/2 ⊗D−1/2)P̂ ᵀ

T ĤTD
+ᵀ

n WE(EᵀWE)−1c

G̃T,b := cᵀ(EᵀWE)−1EᵀWD+
n ĤTP (D−1/2 ⊗D−1/2)V (D−1/2 ⊗D−1/2)P ᵀĤTD

+ᵀ

n WE(EᵀWE)−1c.

We use triangular inequality again

s2nκ2(W )$|G̃T−G| ≤ s2nκ2(W )$|G̃T−G̃T,a|+s2nκ2(W )$|G̃T,a−G̃T,b|+s2nκ2(W )$|G̃T,b−G|.
(8.24)
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We consider the first term on the right hand side of (8.24).

s2nκ2(W )$|G̃T − G̃T,a| =

s2nκ2(W )$|cᵀ(EᵀWE)−1EᵀWD+
n ĤT P̂T (D̂

−1/2
T ⊗ D̂−1/2

T )V (D̂
−1/2
T ⊗ D̂−1/2

T )P̂ ᵀ
T ĤTD

+ᵀ

n WE(EᵀWE)−1c

− cᵀ(EᵀWE)−1EᵀWD+
n ĤT P̂T (D−1/2 ⊗D−1/2)V (D−1/2 ⊗D−1/2)P̂ ᵀ

T ĤTD
+ᵀ

n WE(EᵀWE)−1c|

≤ s2nκ2(W )$
∣∣maxeval(V )

∣∣2 ‖(D̂−1/2
T ⊗ D̂−1/2

T −D−1/2 ⊗D−1/2)P̂ ᵀ
T ĤTD

+ᵀ

n WE(EᵀWE)−1c‖22
+ s2nκ2(W )$‖V (D−1/2 ⊗D−1/2)P̂ ᵀ

T ĤTD
+ᵀ

n WE(EᵀWE)−1c‖2
· ‖(D̂−1/2

T ⊗ D̂−1/2
T −D−1/2 ⊗D−1/2)P̂ ᵀ

T ĤTD
+ᵀ

n WE(EᵀWE)−1c‖2 (8.25)

where the inequality is due to Lemma A.7 in Appendix A.5. We consider the first term of (8.25)
first.

s2nκ2(W )$
∣∣maxeval(V )

∣∣2 ‖(D̂−1/2
T ⊗ D̂−1/2

T −D−1/2 ⊗D−1/2)P̂ ᵀ
T ĤTD

+ᵀ

n WE(EᵀWE)−1c‖22
= O(s2nκ2(W )$)‖D̂−1/2

T ⊗ D̂−1/2
T −D−1/2 ⊗D−1/2‖2`2‖P̂

ᵀ
T ‖

2
`2‖ĤT ‖2`2‖D

+ᵀ

n ‖2`2‖WE(EᵀWE)−1‖2`2
= Op(s

2nκ3(W )$2/T ) = op(1),

where the second last equality is due to (A.12), (A.13), (A.19), (8.21) and Proposition A.3(vii),
and the last equality is due to Assumption 3.2(ii).

We now consider the second term of (8.25).

2s2nκ2(W )$‖V (D−1/2 ⊗D−1/2)P̂ ᵀ
T ĤTD

+ᵀ

n WE(EᵀWE)−1c‖2
· ‖(D̂−1/2

T ⊗ D̂−1/2
T −D−1/2 ⊗D−1/2)P̂ ᵀ

T ĤTD
+ᵀ

n WE(EᵀWE)−1c‖2
≤ O(s2nκ2(W )$)‖D̂−1/2

T ⊗ D̂−1/2
T −D−1/2 ⊗D−1/2‖`2‖P̂

ᵀ
T ‖

2
`2‖ĤT ‖2`2‖D

+ᵀ

n ‖2`2‖WE(EᵀWE)−1‖2`2
= O(

√
s4nκ6(W )$4/T ) = op(1),

where the first equality is due to (A.12), (A.13), (A.19), (8.21) and Proposition A.3(vii), and
the last equality is due to Assumption 3.2(ii). We have proved s2nκ2(W )$|G̃T − G̃T,a| = op(1).

We consider the second term on the right hand side of (8.24).

s2nκ2(W )$|G̃T,a − G̃T,b| =
s2nκ2(W )$|cᵀ(EᵀWE)−1EᵀWD+

n ĤT P̂T (D−1/2 ⊗D−1/2)V (D−1/2 ⊗D−1/2)P̂ ᵀ
T ĤTD

+ᵀ

n WE(EᵀWE)−1c

− cᵀ(EᵀWE)−1EᵀWD+
n ĤTP (D−1/2 ⊗D−1/2)V (D−1/2 ⊗D−1/2)P ᵀĤTD

+ᵀ

n WE(EᵀWE)−1c|

≤ s2nκ2(W )$
∣∣maxeval[(D−1/2 ⊗D−1/2)V (D−1/2 ⊗D−1/2)]

∣∣2 ‖(P̂T − P )ᵀĤTD
+ᵀ

n WE(EᵀWE)−1c‖22
+ 2s2nκ2(W )$‖(D−1/2 ⊗D−1/2)V (D−1/2 ⊗D−1/2)P ᵀĤTD

+ᵀ

n WE(EᵀWE)−1c‖2
· ‖(P̂T − P )ᵀĤTD

+ᵀ

n WE(EᵀWE)−1c‖2 (8.26)

where the inequality is due to Lemma A.7 in Appendix A.5. We consider the first term of (8.26)
first.

s2nκ2(W )$
∣∣maxeval[(D−1/2 ⊗D−1/2)V (D−1/2 ⊗D−1/2)]

∣∣2 ‖(P̂T − P )ᵀĤTD
+ᵀ

n WE(EᵀWE)−1c‖22
= O(s2nκ2(W )$)‖P̂ ᵀ

T − P
ᵀ‖2`2‖ĤT ‖2`2‖D

+ᵀ

n ‖2`2‖WE(EᵀWE)−1‖2`2
= Op(s

2nκ3(W )$2/T ) = op(1),

where the second last equality is due to (A.12), (A.13), (A.19), and (8.21), and the last equality
is due to Assumption 3.2(ii).
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We now consider the second term of (8.26).

2s2nκ2(W )$‖(D−1/2 ⊗D−1/2)V (D−1/2 ⊗D−1/2)P ᵀĤTD
+ᵀ

n WE(EᵀWE)−1c‖2
· ‖(P̂T − P )ᵀĤTD

+ᵀ

n WE(EᵀWE)−1c‖2
≤ O(s2nκ2(W )$)‖P̂ ᵀ

T − P
ᵀ‖2`2‖ĤT ‖2`2‖D

+ᵀ

n ‖2`2‖WE(EᵀWE)−1‖2`2
= O(

√
s4nκ6(W )$4/T ) = op(1),

where the first equality is due to (A.12), (A.13), (A.19), and (8.21), and the last equality is due
to Assumption 3.2(ii). We have proved s2nκ2(W )$|G̃T,a − G̃T,b| = op(1).

We consider the third term on the right hand side of (8.24).

s2nκ2(W )$|G̃T,b −G| =
s2nκ2(W )$|cᵀ(EᵀWE)−1EᵀWD+

n ĤTP (D−1/2 ⊗D−1/2)V (D−1/2 ⊗D−1/2)P ᵀĤTD
+ᵀ

n WE(EᵀWE)−1c

− cᵀ(EᵀWE)−1EᵀWD+
nHTP (D−1/2 ⊗D−1/2)V (D−1/2 ⊗D−1/2)P ᵀHD+ᵀ

n WE(EᵀWE)−1c|

≤ s2nκ2(W )$
∣∣maxeval[P (D−1/2 ⊗D−1/2)V (D−1/2 ⊗D−1/2)P ᵀ]

∣∣2 ‖(ĤT −H)D+ᵀ

n WE(EᵀWE)−1c‖22
+ 2s2nκ2(W )$‖P (D−1/2 ⊗D−1/2)V (D−1/2 ⊗D−1/2)P ᵀHD+ᵀ

n WE(EᵀWE)−1c‖2
· ‖(ĤT −H)D+ᵀ

n WE(EᵀWE)−1c‖2 (8.27)

where the inequality is due to Lemma A.7 in Appendix A.5. We consider the first term of (8.27)
first.

s2nκ2(W )$
∣∣maxeval[P (D−1/2 ⊗D−1/2)V (D−1/2 ⊗D−1/2)P ᵀ]

∣∣2 ‖(ĤT −H)D+ᵀ

n WE(EᵀWE)−1c‖22
= O(s2nκ2(W )$)‖ĤT −H‖2`2‖D

+ᵀ

n ‖2`2‖WE(EᵀWE)−1‖2`2
= Op(s

2nκ3(W )$2/T ) = op(1),

where the second last equality is due to (A.12), (A.13), and (A.19), and the last equality is due
to Assumption 3.2(ii).

We now consider the second term of (8.27).

2s2nκ2(W )$‖P (D−1/2 ⊗D−1/2)V (D−1/2 ⊗D−1/2)P ᵀHD+ᵀ

n WE(EᵀWE)−1c‖2
· ‖(ĤT −H)D+ᵀ

n WE(EᵀWE)−1c‖2
≤ O(s2nκ2(W )$)‖ĤT −H‖2`2‖D

+ᵀ

n ‖2`2‖WE(EᵀWE)−1‖2`2
= O(

√
s4nκ6(W )$4/T ) = op(1),

where the first equality is due to (A.12), (A.13), and (A.19), and the last equality is due to
Assumption 3.2(ii). We have proved s2nκ2(W )$|G̃T,b − G| = op(1). Hence we have proved
s2nκ2(W )$|G̃T −G| = op(1).

8.3.4 Numerators of t1 and t̂1

We now show that numerators of t1 and t̂1 are asymptotically equivalent, i.e.,√
s2nκ2(W )$|A− Â| = op(1).
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Note that

Â =
√
Tcᵀ(EᵀWE)−1EᵀWD+

nH
∂ vec Θ

∂ vec Σ

∣∣∣∣
Σ=Σ̃

(i)
T

vec(Σ̂T − Σ)

=
√
Tcᵀ(EᵀWE)−1EᵀWD+

nH
∂ vec Θ

∂ vec Σ

∣∣∣∣
Σ=Σ̃

(i)
T

vec(Σ̂T − Σ̃T )

+
√
Tcᵀ(EᵀWE)−1EᵀWD+

nH
∂ vec Θ

∂ vec Σ

∣∣∣∣
Σ=Σ̃

(i)
T

vec(Σ̃T − Σ)

=: Âa + Âb.

To show
√
s2nκ2(W )$|A − Â| = op(1), it suffices to show

√
s2nκ2(W )$|Âb − A| = op(1) and√

s2nκ2(W )$|Âa| = op(1). We first show that
√
s2nκ2(W )$|Âb −A| = op(1).√

s2nκ2(W )$|Âb −A|

=
√
s2nκ2(W )$

∣∣∣∣√Tcᵀ(EᵀWE)−1EᵀWD+
nH

[
∂ vec Θ

∂ vec Σ

∣∣∣∣
Σ=Σ̃

(i)
T

− P (D−1/2 ⊗D−1/2)

]
vec(Σ̃T − Σ)

∣∣∣∣
≤
√
Ts2nκ2(W )$‖(EᵀWE)−1EᵀW‖`2‖D+

n ‖`2‖H‖`2

·
∥∥∥∥ ∂ vec Θ

∂ vec Σ

∣∣∣∣
Σ=Σ̃

(i)
T

− P (D−1/2 ⊗D−1/2)

∥∥∥∥
`2

‖ vec(Σ̃T − Σ)‖2

= O(
√
Ts2nκ2(W )$)

√
$κ(W )/nOp

(√
n

T

)
‖Σ̃T − Σ‖F ≤ O(

√
ns2κ3(W )$2)

√
n‖Σ̃T − Σ‖`2

= O(
√
ns2κ3(W )$2)

√
nOp

(√
n

T

)
= Op

(√
n3s2κ3(W )$2

T

)
= op(1),

where the second equality is due to Assumption 3.5(i), the third equality is due to Lemma A.1,
and final equality is due to Assumption 3.2(ii).

We now show that
√
s2nκ2(W )$|Âa| = op(1).√

s2nκ2(W )$T

∣∣∣∣cᵀ(EᵀWE)−1EᵀWD+
nH

∂ vec Θ

∂ vec Σ

∣∣∣∣
Σ=Σ̃

(i)
T

vec(Σ̂T − Σ̃T )

∣∣∣∣
=
√
s2nκ2(W )$T

∣∣∣∣cᵀ(EᵀWE)−1EᵀWD+
nH

∂ vec Θ

∂ vec Σ

∣∣∣∣
Σ=Σ̃

(i)
T

vec
[
(x̄− µ)(x̄− µ)ᵀ

]∣∣∣∣
≤
√
s2nκ2(W )$T‖(EᵀWE)−1EᵀW‖`2‖D+

n ‖`2‖H‖`2

∥∥∥∥ ∂ vec Θ

∂ vec Σ

∣∣∣∣
Σ=Σ̃

(i)
T

∥∥∥∥
`2

‖ vec
[
(x̄− µ)(x̄− µ)ᵀ

]
‖2

= O(
√
Ts2nκ2(W )$)

√
$κ(W )/n‖(x̄− µ)(x̄− µ)ᵀ‖F

≤ O(
√
Ts2nκ2(W )$)

√
$κ(W )/nn‖(x̄− µ)(x̄− µ)ᵀ‖∞

= O(
√
Ts2n2κ3(W )$2) max

1≤i,j≤n

∣∣(x̄− µ)i(x̄− µ)j
∣∣ = Op(

√
Ts2n2κ3(W )$2) log n/T

= Op

(√
log4 n · n2κ3(W )$2

T

)
= op(1),

where the third last equality is due to (8.20), the last equality is due to Assumption 3.2(ii), and
the second equality is due to (A.12), (A.13), (A.19), and the fact that∥∥∥∥ ∂ vec Θ

∂ vec Σ

∣∣∣∣
Σ=Σ̃

(i)
T

∥∥∥∥
`2

=

∥∥∥∥ ∂ vec Θ

∂ vec Σ

∣∣∣∣
Σ=Σ̃

(i)
T

− P (D−1/2 ⊗D−1/2)

∥∥∥∥
`2

+

∥∥∥∥P (D−1/2 ⊗D−1/2)

∥∥∥∥
`2

= Op

(√
n

T

)
+O(1) = Op(1).
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8.3.5 t̂2 = op(1)

Write

t̂2 =

√
T
√
s2nκ2(W )$cᵀ(EᵀWE)−1EᵀWD+

n vecOp(‖Θ̂T −Θ‖2`2)√
s2nκ2(W )$ĜT

.

Since the denominator of the preceding equation is bounded away from zero by an absolute
constant with probability approaching one by (8.22) and that s2nκ2(W )$|ĜT −G| = op(1), it
suffices to show

√
T
√
s2nκ2(W )$cᵀ(EᵀWE)−1EᵀWD+

n vecOp(‖Θ̂T −Θ‖2`2) = op(1).

This is straightforward:

|
√
Ts2nκ2(W )$cᵀ(EᵀWE)−1EᵀWD+

n vecOp(‖Θ̂T −Θ‖2`2)|

≤
√
Ts2nκ2(W )$‖cᵀ(EᵀWE)−1EᵀWD+

n ‖2‖ vecOp(‖Θ̂T −Θ‖2`2)‖2
= O(

√
Ts2κ3(W )$2)‖Op(‖Θ̂T −Θ‖2`2)‖F = O(

√
Tns2κ3(W )$2)‖Op(‖Θ̂T −Θ‖2`2)‖`2

= O(
√
Tns2κ3(W )$2)Op(‖Θ̂T −Θ‖2`2) = Op

(√
n3s2κ3(W )$2

T

)
= op(1),

where the last equality is due to Assumption 3.2(ii).

8.4

Proof of Proposition 4.1. At each step, we take the symmetry of Ω(θ) into account.

d`T,D(θ, µ)

= −T
2
d log

∣∣∣D1/2 exp(Ω)D1/2
∣∣∣− T

2
dtr

(
1

T

T∑
t=1

(xt − µ)ᵀD−1/2[exp(Ω)]−1D−1/2(xt − µ)

)
= −T

2
d log

∣∣∣D1/2 exp(Ω)D1/2
∣∣∣− T

2
dtr
(
D−1/2Σ̃TD

−1/2[exp(Ω)]−1
)

= −T
2

tr
([
D1/2 exp(Ω)D1/2

]−1
D1/2d exp(Ω)D1/2

)
− T

2
dtr
(
D−1/2Σ̃TD

−1/2[exp(Ω)]−1
)

= −T
2

tr
([

exp(Ω)
]−1

d exp(Ω)
)
− T

2
tr
(
D−1/2Σ̃TD

−1/2d[exp(Ω)]−1
)

= −T
2

tr
([

exp(Ω)
]−1

d exp(Ω)
)

+
T

2
tr
(
D−1/2Σ̃TD

−1/2[exp(Ω)]−1d exp(Ω)[exp(Ω)]−1
)

=
T

2
tr

({
[exp(Ω)]−1D−1/2Σ̃TD

−1/2[exp(Ω)]−1 −
[
exp(Ω)

]−1
}
d exp(Ω)

)
=
T

2

[
vec

({
[exp(Ω)]−1D−1/2Σ̃TD

−1/2[exp(Ω)]−1 −
[
exp(Ω)

]−1
}ᵀ
)]ᵀ

vec d exp(Ω)

=
T

2

[
vec
(

[exp(Ω)]−1D−1/2Σ̃TD
−1/2[exp(Ω)]−1 −

[
exp(Ω)

]−1
)]ᵀ

vec d exp(Ω),

where in the second equality we used the definition of Σ̃T , the third equality is due to that
d log |X| = tr(X−1dX), the fifth equality is due to that dX−1 = −X−1(dX)X−1, the seventh
equality is due to that tr(AB) = (vec[Aᵀ])ᵀ vecB, and the eighth equality is due to that matrix
function preserves symmetry and we can interchange inverse and transpose operators.

The following differential of matrix exponential can be inferred from (10.15) in Higham
(2008) p238:

d exp(Ω) =

∫ 1

0
e(1−t)Ω(dΩ)etΩdt.
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Therefore,

vec d exp(Ω) =

∫ 1

0
etΩ ⊗ e(1−t)Ωdt vec(dΩ) =

∫ 1

0
etΩ ⊗ e(1−t)ΩdtDn vech(dΩ)

=

∫ 1

0
etΩ ⊗ e(1−t)ΩdtDnEdθ.

Hence,

d`T,D(θ, µ)

=
T

2

[
vec
(

[exp(Ω)]−1D−1/2Σ̃TD
−1/2[exp(Ω)]−1 −

[
exp(Ω)

]−1
)]ᵀ ∫ 1

0
etΩ ⊗ e(1−t)ΩdtDnEdθ

and

y :=
∂`T,D(θ, µ)

∂θᵀ

=
T

2
EᵀDᵀ

n

∫ 1

0
etΩ ⊗ e(1−t)Ωdt

[
vec
(

[exp(Ω)]−1D−1/2Σ̃TD
−1/2[exp(Ω)]−1 −

[
exp(Ω)

]−1
)]

=:
T

2
EᵀDᵀ

nΨ1Ψ2.

Now we derive the Hessian matrix.

dy =
T

2
EᵀDᵀ

n(dΨ1)Ψ2 +
T

2
EᵀDᵀ

nΨ1dΨ2 =
T

2
(Ψᵀ

2 ⊗ E
ᵀDᵀ

n) vec dΨ1 +
T

2
EᵀDᵀ

nΨ1dΨ2. (8.28)

Consider dΨ1 first.

dΨ1 = d

∫ 1

0
etΩ ⊗ e(1−t)Ωdt =

∫ 1

0
detΩ ⊗ e(1−t)Ωdt+

∫ 1

0
etΩ ⊗ de(1−t)Ωdt

=:

∫ 1

0
A⊗ e(1−t)Ωdt+

∫ 1

0
etΩ ⊗Bdt,

where

A :=

∫ 1

0
e(1−s)tΩd(tΩ)estΩds, B :=

∫ 1

0
e(1−s)(1−t)Ωd((1− t)Ω)es(1−t)Ωds.

Therefore,

vec dΨ1 =

∫ 1

0
vec
(
A⊗ e(1−t)Ω) dt+

∫ 1

0
vec
(
etΩ ⊗B

)
dt

=

∫ 1

0
PK
(
vecA⊗ vec e(1−t)Ω) dt+

∫ 1

0
PK
(
vec etΩ ⊗ vecB

)
dt

=

∫ 1

0
PK
(
In2 ⊗ vec e(1−t)Ω) vecAdt+

∫ 1

0
PK
(
vec etΩ ⊗ In2

)
vecBdt

=

∫ 1

0
PK
(
In2 ⊗ vec e(1−t)Ω) ∫ 1

0
estΩ ⊗ e(1−s)tΩds · vec d(tΩ)dt

+

∫ 1

0
PK
(
vec etΩ ⊗ In2

) ∫ 1

0
es(1−t)Ω ⊗ e(1−s)(1−t)Ωds · vec d((1− t)Ω)dt

=

∫ 1

0
PK
(
In2 ⊗ vec e(1−t)Ω) ∫ 1

0
estΩ ⊗ e(1−s)tΩds · tdtDnEdθ

+

∫ 1

0
PK
(
vec etΩ ⊗ In2

) ∫ 1

0
es(1−t)Ω ⊗ e(1−s)(1−t)Ωds · (1− t)dtDnEdθ (8.29)

12



where PK := In ⊗Kn,n ⊗ In, the second equality is due to Lemma A.8 in Appendix A.5. We
now consider dΨ2.

dΨ2 = d vec
(

[exp(Ω)]−1D−1/2Σ̃TD
−1/2[exp(Ω)]−1 −

[
exp(Ω)

]−1
)

= vec
(
d[exp(Ω)]−1D−1/2Σ̃TD

−1/2[exp(Ω)]−1
)

+
(

[exp(Ω)]−1D−1/2Σ̃TD
−1/2d[exp(Ω)]−1

)
− vec

(
d
[
exp(Ω)

]−1
)

= vec
(
−[exp(Ω)]−1d exp(Ω)[exp(Ω)]−1D−1/2Σ̃TD

−1/2[exp(Ω)]−1
)

+ vec
(
−[exp(Ω)]−1D−1/2Σ̃TD

−1/2[exp(Ω)]−1d exp(Ω)[exp(Ω)]−1
)

+ vec
(

[exp(Ω)]−1d exp(Ω)[exp(Ω)]−1
)

=
(

[exp(Ω)]−1 ⊗ [exp(Ω)]−1
)

vec d exp(Ω)

−
(

[exp(Ω)]−1 ⊗ [exp(Ω)]−1D−1/2Σ̃TD
−1/2[exp(Ω)]−1

)
vec d exp(Ω)

−
(

[exp(Ω)]−1D−1/2Σ̃TD
−1/2[exp(Ω)]−1 ⊗ [exp(Ω)]−1

)
vec d exp(Ω) (8.30)

Substituting (8.29) and (8.30) into (8.28) yields the result:

∂2`T,D(θ, µ)

∂θ∂θᵀ
=

− T

2
EᵀDᵀ

nΨ1

(
[exp Ω]−1D−1/2Σ̃TD

−1/2 ⊗ In + In ⊗ [exp Ω]−1D−1/2Σ̃TD
−1/2 − In2

)
·(

[exp Ω]−1 ⊗ [exp Ω]−1
)

Ψ1DnE

+
T

2
(Ψᵀ

2 ⊗ E
ᵀDᵀ

n)

∫ 1

0
PK
(
In2 ⊗ vec e(1−t)Ω) ∫ 1

0
estΩ ⊗ e(1−s)tΩds · tdtDnE

+
T

2
(Ψᵀ

2 ⊗ E
ᵀDᵀ

n)

∫ 1

0
PK
(
vec etΩ ⊗ In2

) ∫ 1

0
es(1−t)Ω ⊗ e(1−s)(1−t)Ωds · (1− t)dtDnE.

8.5

Proposition 8.4. Suppose Assumptions 3.1(i), 3.2(i) and 3.3 hold. Then

(i)

Ξ =

∫ 1

0

∫ 1

0
Θt+s−1 ⊗Θ1−t−sdtds

has minimum eigenvalue bounded away from zero by an absolute constant and maximum
eigenvalue bounded from above by an absolute constant.

(ii)

Ξ̂T =

∫ 1

0

∫ 1

0
Θ̂t+s−1
T ⊗ Θ̂1−t−s

T dtds

has minimum eigenvalue bounded away from zero by an absolute constant and maximum
eigenvalue bounded from above by an absolute constant with probability approaching 1.

(iii)

‖Ξ̂T − Ξ‖`2 = Op

(√
n

T

)
.
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(iv)

‖Ψ1‖`2 =

∥∥∥∥∫ 1

0
etΩ(θ) ⊗ e(1−t)Ω(θ)dt

∥∥∥∥
`2

= O(1).

Proof. The proofs for the first two parts are the same, so we only give one for part (i). Under
assumptions of this proposition, we can invoke Proposition A.5(i) to have eigenvalues of Θ to
be bounded away from zero and from above by absolute positive constants. Let λ1, . . . , λn
denote these eigenvalues. Suppose Θ = Qᵀdiag(λ1, . . . , λn)Q (orthogonal diagonalization). By
definition of matrix function, we have

Θ(t+s−1) = Qᵀdiag(λ
(t+s−1)
1 , . . . , λ(t+s−1)

n )Q

Θ(1−s−t) = Qᵀdiag(λ
(1−s−t)
1 , . . . , λ(1−s−t)

n )Q

Θ(t+s−1) ⊗Θ(1−s−t) = (Q⊗Q)ᵀ
[
diag(λ

(t+s−1)
1 , . . . , λ(t+s−1)

n )⊗ diag(λ
(1−s−t)
1 , . . . , λ(1−s−t)

n )
]

(Q⊗Q)

=: (Q⊗Q)ᵀM2(Q⊗Q),

where M2 is an n2 × n2 diagonal matrix whose [(i− 1)n+ j]th diagonal entry is
1 if i = j
1 if i 6= j, λi = λj(

λi
λj

)s+t−1
if i 6= j, λi 6= λj

for i, j = 1, . . . , n.
Thus ∫ 1

0

∫ 1

0
Θt+s−1 ⊗Θ1−t−sdtds = (Q⊗Q)ᵀ

∫ 1

0

∫ 1

0
M2dtds(Q⊗Q)

where
∫ 1

0

∫ 1
0 M2dsdt is an n2 × n2 diagonal matrix whose [(i− 1)n+ j]th diagonal entry is

1 if i = j
1 if i 6= j, λi = λj

1[
log
(
λi
λj

)]2 λjλi [ λiλj − 1
]2

if i 6= j, λi 6= λj

To see this,∫ 1

0

∫ 1

0

(λi
λj

)s+t−1

dsdt =
λj
λi

∫ 1

0

(λi
λj

)s
ds

∫ 1

0

(λi
λj

)t
dt

=
λj
λi

[∫ 1

0

(λi
λj

)s
ds

]2

=
λj
λi

[[ (
λi
λj

)s
log
(
λi
λj

)]1

0

]2

=
1[

log
(
λi
λj

)]2 λjλi
[
λi
λj
− 1

]2

.
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For part (iii), we have∥∥∥∥∫ 1

0

∫ 1

0
Θ̂t+s−1
T ⊗ Θ̂1−t−s

T dtds−
∫ 1

0

∫ 1

0
Θt+s−1 ⊗Θ1−t−sdtds

∥∥∥∥
`2

≤
∫ 1

0

∫ 1

0

∥∥∥Θ̂t+s−1
T ⊗ Θ̂1−t−s

T −Θt+s−1 ⊗Θ1−t−s
∥∥∥
`2
dtds

=

∫ 1

0

∫ 1

0

∥∥∥Θ̂t+s−1
T ⊗ Θ̂1−t−s

T − Θ̂t+s−1
T ⊗Θ1−t−s + Θ̂t+s−1

T ⊗Θ1−t−s −Θt+s−1 ⊗Θ1−t−s
∥∥∥
`2
dtds

=

∫ 1

0

∫ 1

0

∥∥∥Θ̂t+s−1
T ⊗ (Θ̂1−t−s

T −Θ1−t−s) + (Θ̂t+s−1
T −Θt+s−1)⊗Θ1−t−s

∥∥∥
`2
dtds

=

∫ 1

0

∫ 1

0

[
‖Θ̂t+s−1

T ‖`2‖Θ̂
1−t−s
T −Θ1−t−s‖`2 + ‖Θ̂t+s−1

T −Θt+s−1‖`2‖Θ1−t−s‖`2
]
dtds

≤ max
t,s∈[0,1]

[
‖Θ̂t+s−1

T ‖`2‖Θ̂
1−t−s
T −Θ1−t−s‖`2 + ‖Θ̂t+s−1

T −Θt+s−1‖`2‖Θ1−t−s‖`2
]
.

First, note that for any t, s ∈ [0, 1], ‖Θ̂t+s−1
T ‖`2 and ‖Θ1−t−s‖`2 are Op(1) and O(1), respectively.

For example, diagonalize Θ, apply the function f(x) = x1−t−s, and take the spectral norm.
The proposition would then follow if we show that

max
t,s∈[0,1]

‖Θ̂1−t−s
T −Θ1−t−s‖`2 = Op(

√
n/T ), max

t,s∈[0,1]
‖Θ̂t+s−1

T −Θt+s−1‖`2 = Op(
√
n/T ).

It suffices to give a proof for the first equation, as the proof for the second is similar.

‖Θ̂1−t−s
T −Θ1−t−s‖`2 =

∥∥e(1−t−s) log Θ̂T − e(1−t−s) log Θ
∥∥

≤ ‖(1− t− s)(log Θ̂T − log Θ)‖`2 exp[(1− t− s)‖ log Θ̂T − log Θ‖`2 ] exp[(1− t− s)‖ log Θ‖`2 ]

= ‖(1− t− s)(log Θ̂T − log Θ)‖`2 exp[(1− t− s)‖ log Θ̂T − log Θ‖`2 ]O(1),

where the first inequality is due to Theorem A.3 in Appendix A.5, and the second equality is
due to the fact that all the eigenvalues of Θ are bounded away from zero and infinity by absolute
positive constants. Now use Proposition 3.1 to get

‖ log Θ̂T − log Θ‖`2 = Op

(√
n

T

)
.

The result follows after recognising exp(op(1)) = Op(1).
For part (iv), since Θ = Qᵀdiag(λ1, . . . , λn)Q, we have

Θt = Qᵀdiag(λt1, . . . , λ
t
n)Q, Θ1−t = Qᵀdiag(λ1−t

1 , . . . , λ1−t
n )Q.

Then

Θt ⊗Θ1−t = (Q⊗Q)ᵀ
[
diag(λt1, . . . , λ

t
n)⊗ diag(λ1−t

1 , . . . , λ1−t
n )

]
(Q⊗Q)

=: (Q⊗Q)ᵀM3(Q⊗Q),

where M3 is an n2 × n2 diagonal matrix whose [(i− 1)n+ j]th diagonal entry is
1 if i = j
1 if i 6= j, λi = λj

λj

(
λi
λj

)t
if i 6= j, λi 6= λj

for i, j = 1, . . . , n.
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Thus

Ψ1 =

∫ 1

0
Θt ⊗Θ1−tdt = (Q⊗Q)ᵀ

∫ 1

0
M3dt(Q⊗Q)

where
∫ 1

0 M3dt is an n2 × n2 diagonal matrix whose [(i− 1)n+ j]th diagonal entry is
1 if i = j
1 if i 6= j, λi = λj

λi−λj
log λi−log λj

if i 6= j, λi 6= λj

To see this,

λj

∫ 1

0

(λi
λj

)t
dt = λj

∫ 1

0

(λi
λj

)t
dt = λj

[ (
λi
λj

)t
log
(
λi
λj

)]
1

0

=
1

log
(
λi
λj

)λj [λi
λj
− 1

]
.

Proposition 8.5. Suppose Assumptions 3.1(i), 3.2(i) and 3.3 hold. Then

(i)

‖Υ̂T,D −ΥD‖`2 = Op

(
sn

√
n

T

)
.

(ii)

‖Υ̂−1
T,D −Υ−1

D ‖`2 = Op

(
$2s

√
1

nT

)
.

Proof. For part (i),

‖Υ̂T,D −ΥD‖`2 =
1

2
‖EᵀDᵀ

n(Ξ̂T − Ξ)DnE‖`2 ≤
1

2
‖Eᵀ‖`2‖Dᵀ

n‖`2‖Ξ̂T − Ξ‖`2‖Dn‖`2‖E‖`2

= O(1)‖Ξ̂T − Ξ‖`2‖E‖2`2 = Op

(
sn

√
n

T

)
,

where the second equality is due to (A.13), and the last equality is due to (A.16) and Proposition
8.4(iii).

For part (ii),

‖Υ̂−1
T,D −Υ−1

D ‖`2 = ‖Υ̂−1
T,D(ΥD − Υ̂T,D)Υ−1

D ‖`2 ≤ ‖Υ̂
−1
T,D‖`2‖ΥD − Υ̂T,D‖`2‖Υ

−1
D ‖`2

= Op($
2/n2)Op

(
sn

√
n

T

)
= Op

(
s$2

√
1

nT

)
.

Proof of Theorem 4.1. We first show that Υ̂T,D is invertible with probability approaching 1, so

that our estimator θ̃T,D := θ̂T,D − Υ̂−1
T,D

∂`T,D(θ̂T,D,x̄)
∂θᵀ /T is well defined. It suffices to show that

16



Υ̂T,D has minimum eigenvalue bounded away from zero by an absolute constant with probability
approaching one.

mineval(Υ̂T,D) =
1

2
mineval(EᵀDᵀ

nΞ̂TDnE) ≥ mineval(Ξ̂T )mineval(Dᵀ
nDn)mineval(EᵀE)/2

≥ C n

$
,

for some absolute positive constant C with probability approaching one, where the second
inequality is due to Proposition 8.4(ii) and Assumption 3.3(ii). Hence Υ̂T,D has minimum
eigenvalue bounded away from zero by an absolute constant with probability approaching one.
Also as a by-product

‖Υ̂−1
T,D‖`2 =

1

mineval(Υ̂T,D)
= Op

(
$

n

)
‖Υ−1

D ‖`2 =
1

mineval(ΥD)
= O

(
$

n

)
. (8.31)

From the definition of θ̃T,D, for any b ∈ Rs with ‖b‖2 = 1 we can write

√
Tbᵀ(Υ̂T,D)(θ̃T,D − θ) =

√
Tbᵀ(Υ̂T,D)(θ̂T,D − θ)−

√
Tbᵀ

1

T

∂`T,D(θ̂T,D, x̄)

∂θᵀ

=
√
Tbᵀ(Υ̂T,D)(θ̂T,D − θ)−

√
Tbᵀ

1

T

∂`T,D(θ, x̄)

∂θᵀ
−
√
TbᵀΥD(θ̂T,D − θ) + op(1)

=
√
Tbᵀ(Υ̂T,D −ΥD)(θ̂T,D − θ)− bᵀ

√
T

1

T

∂`T,D(θ, x̄)

∂θᵀ
+ op(1)

where the second equality is due to Assumption 4.1 and the fact that θ̂T,D is CE
√
n log n/T -

consistent. Defining aᵀ = bᵀ(−Υ̂T,D), we write

√
T

aᵀ

‖a‖2
(θ̃T,D − θ) =

√
T

aᵀ

‖a‖2
Υ̂−1
T,D(Υ̂T,D −Υ)(θ̂T,D − θ)

− aᵀ

‖a‖2
Υ̂−1
T,D

√
T

1

T

∂`T,D(θ, x̄)

∂θᵀ
+
op(1)

‖a‖2
.

By recognising that ‖aᵀ‖2 = ‖bᵀΥ̂T,D‖2 ≥ mineval(Υ̂T,D), we have

1

‖a‖2
= Op

(
$

n

)
.

Thus without loss of generality, we have

√
Tbᵀ(θ̃T,D − θ) =

√
TbᵀΥ̂−1

T,D(Υ̂T,D −ΥD)(θ̂T,D − θ)− bᵀΥ̂−1
T,D

√
T

1

T

∂`T,D(θ, x̄)

∂θᵀ
+ op($/n).

We now determine a rate for the first term on the right side. This is straightforward
√
T |bᵀΥ̂−1

T,D(Υ̂T,D −ΥD)(θ̂T,D − θ)| ≤
√
T‖b‖2‖Υ̂−1

T,D‖`2‖Υ̂T,D −ΥD‖`2‖θ̂T,D − θ‖2

=
√
TOp($/n)snOp(

√
n/T )Op(

√
n$κ(W )/T ) = Op

(√
n2 log2 n$3κ(W )

T

)
,

where the first equality is due to (8.31), Proposition 8.5(i) and the rate of convergence for the
minimum distance estimator θ̂T (θ̂T,D). Thus

√
Tbᵀ(θ̃T,D − θ) = −bᵀΥ̂−1

T,D

√
T

1

T

∂`T,D(θ, x̄)

∂θᵀ
+ rem

rem = Op

(√
n2 log2 n$3κ(W )

T

)
+ op($/n)
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whence, if we divide by
√
bᵀΥ̂−1

T,Db, we have

√
Tbᵀ(θ̃T,D − θ)√

bᵀΥ̂−1
T,Db

=
−bᵀΥ̂−1

T,D

√
T
∂`T,D(θ,x̄)

∂θᵀ /T√
bᵀΥ̂−1

T,Db
+

rem√
bᵀΥ̂−1

T,Db
=: t̂os,D,1 + tos,D,2.

Define

tos,D,1 :=
−bᵀΥ−1

D

√
T
∂`T,D(θ,µ)

∂θᵀ /T√
bᵀΥ−1

D b
.

To prove Theorem 4.1, it suffices to show −tos,D,1
d−→ N(0, 1), t̂os,D,1 − tos,D,1 = op(1), and

tos,D,2 = op(1).

8.5.1 −tos,D,1
d−→ N(0, 1)

We now prove that −tos,D,1 is asymptotically distributed as a standard normal. It is not difficult
to show E[−tos,D,1] = 0 and var(−tos,D,1) = 1 under assumption of normality (Assumption
3.1(ii)). Write

tos,D,1 :=
−bᵀΥ−1

D

√
T
∂`T,D(θ,µ)

∂θᵀ /T√
bᵀΥ−1

D b
=

T∑
t=1

1
2b

ᵀΥ−1
D EᵀDᵀ

nΨ1(Θ−1 ⊗Θ−1)(D−1/2 ⊗D−1/2)T−1/2 vec
[
(xt − µ)(xt − µ)ᵀ − E(xt − µ)(xt − µ)ᵀ

]√
bᵀΥ−1

D b

=:
T∑
t=1

Uos,D,T,n,t.

The proof is very similar to that of tD,1
d−→ N(0, 1) in Section A.4.1. We now just need to verify

the following Lindeberg condition for a double indexed process: for all ε > 0,

lim
n,T→∞

T∑
t=1

∫
{|Uos,D,T,n,t|≥ε}

U2
os,D,T,n,tdP = 0.

For any γ > 2,∫
{|Uos,D,T,n,t|≥ε}

U2
os,D,T,n,tdP =

∫
{|Uos,D,T,n,t|≥ε}

U2
os,D,T,n,t|Uos,D,T,n,t|−γ |Uos,D,T,n,t|γdP

≤ ε2−γ
∫
{|Uos,D,T,n,t|≥ε}

|Uos,D,T,n,t|γdP ≤ ε2−γE|Uos,D,T,n,t|γ ,

We first investigate that at what rate the denominator
√
bᵀΥ−1

D b goes to zero.

bᵀΥ−1
D b = 2bᵀ

(
EᵀDᵀ

nΞDnE
)−1

b ≥ 2mineval
((
EᵀDᵀ

nΞDnE
)−1
)

=
2

maxeval
(
EᵀDᵀ

nΞDnE
) .

Since,

maxeval
(
EᵀDᵀ

nΞDnE
)
≤ maxeval(Ξ)maxeval(Dᵀ

nDn)maxeval(EᵀE) ≤ Csn,
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for some positive constant C. Thus we have

1√
bᵀΥ−1

D b
= O(

√
sn). (8.32)

Then a sufficient condition for the Lindeberg condition is:

T 1− γ
2 (sn)γ/2·

E
∣∣∣bᵀΥ−1

D EᵀDᵀ
nΨ1(Θ−1 ⊗Θ−1)(D−1/2 ⊗D−1/2) vec

[
(xt − µ)(xt − µ)ᵀ − E(xt − µ)(xt − µ)ᵀ

]∣∣∣γ
= o(1), (8.33)

for some γ > 2. We now verify (8.33). We shall be concise as the proof is very similar to that
in Section A.4.1.

E
∣∣∣bᵀΥ−1

D EᵀDᵀ
nΨ1(Θ−1 ⊗Θ−1)(D−1/2 ⊗D−1/2) vec

[
(xt − µ)(xt − µ)ᵀ − E(xt − µ)(xt − µ)ᵀ

]∣∣∣γ
≤ ‖bᵀΥ−1

D EᵀDᵀ
nΨ1(Θ−1 ⊗Θ−1)(D−1/2 ⊗D−1/2)‖γE

∥∥∥vec
[
(xt − µ)(xt − µ)ᵀ − E(xt − µ)(xt − µ)ᵀ

]∥∥∥γ
.
(
‖Υ−1

D ‖`2‖E
ᵀ‖`2‖Dᵀ

n‖`2‖Ψ1‖`2‖Θ−1 ⊗Θ−1‖`2‖D−1/2 ⊗D−1/2)‖`2
)γ

E‖(xt − µ)(xt − µ)ᵀ‖γF
= O

(
s$2/n

)γ/2
nγ
∥∥∥ max

1≤i,j≤n

∣∣(xt − µ)i(xt − µ)j
∣∣∥∥∥γ
Lγ

= O
(
s$2/n

)γ/2
nγO(logγ n),

where the second last equality is due to Proposition 8.4(iv), (A.16) and (8.31), and the last
equality is due to (A.21). Summing up the rates, we have

T 1− γ
2 (sn)γ/2O

(
s$2/n

)γ/2
nγO(logγ n) = O

(
n2$2 log4 n

T
1− 2

γ

)γ/2
= o(1),

by Assumption 3.2(iii). Thus, we have verified (8.33).

8.5.2 t̂os,D,1 − tos,D,1 = op(1)

We now show that t̂os,D,1−tos,D,1 = op(1). Let Aos,D and Âos,D denote the numerators of tos,D,1
and t̂os,D,1, respectively.

t̂os,D,1 − tos,D,1 =
Âos,D√
bᵀΥ̂−1

T,Db
−

Aos,D√
bᵀΥ−1

D b
=

√
snÂos,D√
snbᵀΥ̂−1

T,Db
−
√
snAos,D√
snbᵀΥ−1

D b

Since we have already shown in (8.32) that snbᵀΥ−1
D b is bounded away from zero by an absolute

constant, it suffices to show the denominators as well as numerators of t̂os,D,1 and tos,D,1 are
asymptotically equivalent.

8.5.3 Denominators of t̂os,D,1 and tos,D,1

We need to show
sn|bᵀ(Υ̂−1

T,D −Υ−1
D )b| = op(1).

This is straightforward.

sn|bᵀ(Υ̂−1
T,D −Υ−1

D )b| ≤ sn‖Υ̂−1
T,D −Υ−1

D )‖`2 = snOp

(
s$2

√
1

nT

)
= Op

(
s2$2

√
n

T

)
= op(1),

where the last equality is due to Assumption 3.2(iii).
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8.5.4 Numerators of t̂os,D,1 and tos,D,1

We now show

√
sn

∣∣∣∣bᵀΥ̂−1
T,D

√
T
∂`T,D(θ, x̄)

∂θᵀ
/T − bᵀΥ−1

D

√
T
∂`T,D(θ, µ)

∂θᵀ
/T

∣∣∣∣ = op(1).

Using triangular inequality, we have

√
sn

∣∣∣∣bᵀΥ̂−1
T,D

√
T
∂`T,D(θ, x̄)

∂θᵀ
/T − bᵀΥ−1

D

√
T
∂`T,D(θ, µ)

∂θᵀ
/T

∣∣∣∣
≤
√
sn

∣∣∣∣bᵀΥ̂−1
T,D

√
T
∂`T,D(θ, x̄)

∂θᵀ
/T − bᵀΥ−1

D

√
T
∂`T,D(θ, x̄)

∂θᵀ
/T

∣∣∣∣
+
√
sn

∣∣∣∣bᵀΥ−1
D

√
T
∂`T,D(θ, x̄)

∂θᵀ
/T − bᵀΥ−1

D

√
T
∂`T,D(θ, µ)

∂θᵀ
/T

∣∣∣∣ (8.34)

We first show that the first term of (8.34) is op(1).

√
sn

∣∣∣∣bᵀ(Υ̂−1
T,D −Υ−1

D )
√
T
∂`T,D(θ, x̄)

∂θᵀ
/T

∣∣∣∣
=
√
sn

∣∣∣∣bᵀ(Υ̂−1
T,D −Υ−1

D )
√
T

1

2
EᵀDᵀ

nΨ1(Θ−1 ⊗Θ−1)(D−1/2 ⊗D−1/2) vec(Σ̂T − Σ)

∣∣∣∣
.
√
sn‖Υ̂−1

T,D −Υ−1
D ‖`2

√
T‖Eᵀ‖`2‖Σ̂T − Σ‖F

.
√
sn$2s

√
1/(nT )

√
T
√
sn
√
n‖Σ̂T − Σ‖`2 .

√
sn$2s

√
1/(nT )

√
T
√
sn
√
n
√
n/T

= Op

(√
n3s4$4

T

)
= op(1),

where the last equality is due to Assumption 3.2(iii).
We now show that the second term of (8.34) is op(1).

√
sn

∣∣∣∣bᵀΥ−1
D

√
T

(
∂`T,D(θ, x̄)

∂θᵀ
/T −

∂`T,D(θ, µ)

∂θᵀ
/T

)∣∣∣∣
=
√
sn

∣∣∣∣bᵀΥ−1
D

√
T

1

2
EᵀDᵀ

nΨ1(Θ−1 ⊗Θ−1)(D−1/2 ⊗D−1/2) vec(Σ̂T − Σ̃T )

∣∣∣∣
= O(

√
sn)‖Υ−1

D ‖`2
√
T‖E‖`2‖Σ̂T − Σ̃T ‖F = Op(

√
sn)

$

n

√
T
√
snn

log n

T

= Op

(√
log4 n · n2$2

T

)
= op(1),

where the third last equality is due to (8.20), and the last equality is due to Assumption 3.2(iii).

8.5.5 tos,D,2 = op(1)

To prove tos,D,2 = op(1), it suffices to show that
√
sn|rem| = op(1). This is delivered by

Assumption 3.2(iii).

8.6

Proof of Proposition 3.2. We only give a proof for part (i), as that for part (ii) is similar. Note
that under H0,

√
TgT,D(θ) =

√
T [vech(log Θ̂T,D)− Eθ] =

√
T [vech(log Θ̂T,D)− vech(log Θ)]

=
√
TD+

n vec(log Θ̂T,D − log Θ).
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Thus we can adopt the same method as in Theorem 3.1 to establish the asymptotic distribution
of
√
TgT,D(θ). In fact, it will be much simpler here because we fixed n. We should have

√
TgT,D(θ)

d−→ N(0, S), S := D+
nH(D−1/2 ⊗D−1/2)V (D−1/2 ⊗D−1/2)HD+ᵀ

n , (8.35)

where S is positive definite given the assumptions of this proposition. The closed-form solution
for θ̂T = θ̂T,D has been given in (3.3), but this is not important. We only need that θ̂T,D sets
the first derivative of the objective function to zero:

EᵀWgT,D(θ̂T,D) = 0. (8.36)

Notice that
gT,D(θ̂T,D)− gT,D(θ) = −E(θ̂T,D − θ). (8.37)

Pre-multiply (8.37) by
∂gT,D(θ̂T,D)

∂θᵀ W = −EᵀW to give

−EᵀW [gT,D(θ̂T,D)− gT,D(θ)] = EᵀWE(θ̂T,D − θ),

whence we obtain

θ̂T,D − θ = −(EᵀWE)−1EᵀW [gT,D(θ̂T,D)− gT,D(θ)]. (8.38)

Substitute (8.38) into (8.37)

√
TgT,D(θ̂T,D) =

[
In(n+1)/2 − E(EᵀWE)−1EᵀW

]√
TgT,D(θ) + E(EᵀWE)−1

√
TEᵀWgT,D(θ̂T,D)

=
[
In(n+1)/2 − E(EᵀWE)−1EᵀW

]√
TgT,D(θ),

where the second equality is due to (8.36). Using (8.35), we have

√
TgT,D(θ̂T,D)

d−→

N
(

0,
[
In(n+1)/2 − E(EᵀWE)−1EᵀW

]
S
[
In(n+1)/2 − E(EᵀWE)−1EᵀW

]ᵀ)
.

Now choosing W = S−1, we can simplify the asymptotic covariance matrix in the preceding
display to

S1/2
(
In(n+1)/2 − S−1/2E(EᵀS−1E)−1EᵀS−1/2

)
S1/2.

Thus √
T Ŝ
−1/2
T,D gT,D(θ̂T,D)

d−→ N
(

0, In(n+1)/2 − S−1/2E(EᵀS−1E)−1EᵀS−1/2
)
,

because ŜT,D is a consistent estimate of S given (A.12) and Proposition 8.2, which hold under
the assumptions of this proposition. The asymptotic covariance matrix in the preceding display
is idempotent and has rank n(n+ 1)/2− s. Thus, under H0,

TgT,D(θ̂T,D)ᵀŜ−1
T,DgT,D(θ̂T,D)

d−→ χ2
n(n+1)/2−s.

Proof of Corollary 3.3. We only give a proof for part (i), as that for part (ii) is similar. From
(3.5) and the Slutsky lemma, we have for every fixed n (and hence v and s)

TgT,D(θ̂T,D)ᵀŜ−1
T,DgT,D(θ̂T,D)−

[n(n+1)
2 − s

][
n(n+ 1)− 2s

]1/2 d−→
χ2
n(n+1)/2−s −

[n(n+1)
2 − s

]
[
n(n+ 1)− 2s

]1/2 ,
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as T →∞. Then invoke Lemma A.9 in Appendix A.5

χ2
n(n+1)/2−s −

[n(n+1)
2 − s

]
[
n(n+ 1)− 2s

]1/2 d−→ N(0, 1),

as n→∞ under H0. Next invoke Lemma A.10 in Appendix A.5, there exists a sequence n = nT
such that

TgT,n,D(θ̂T,n,D)ᵀŜ−1
T,n,DgT,n,D(θ̂T,n,D)−

[n(n+1)
2 − s

][
n(n+ 1)− 2s

]1/2 d−→ N(0, 1), under H0

as T →∞.

Proof of Corollary 3.1. Theorem 3.1 and a result we proved before, namely,

|ĜT,D −GD| = |cᵀĴT,Dc− cᵀJDc| = op

(
1

snκ(W )

)
, (8.39)

imply √
Tcᵀ(θ̂T,D − θ0)

d−→ N(0, cᵀJDc). (8.40)

Consider an arbitrary, non-zero vector b ∈ Rk. Then∥∥∥∥ Ab

‖Ab‖2

∥∥∥∥
2

= 1,

so we can invoke (8.40) with c = Ab/‖Ab‖2:

√
T

1

‖Ab‖2
bᵀAᵀ(θ̂T,D − θ0)

d−→ N

(
0,

bᵀAᵀ

‖Ab‖2
JD

Ab

‖Ab‖2

)
,

which is equivalent to √
TbᵀAᵀ(θ̂T,D − θ0)

d−→ N
(
0, bᵀAᵀJDAb

)
.

Since b ∈ Rk is non-zero and arbitrary, via the Cramer-Wold device, we have

√
TAᵀ(θ̂T,D − θ0)

d−→ N
(
0, AᵀJDA

)
.

Since we have shown in the mathematical display above (A.15) that JD is positive definite and
A has full-column rank, AᵀJDA is positive definite and its negative square root exists. Hence,

√
T (AᵀJDA)−1/2Aᵀ(θ̂T,D − θ0)

d−→ N
(
0, Ik

)
.

Next from (8.39),

∣∣bᵀBb∣∣ :=
∣∣bᵀAᵀĴT,DAb− bᵀAᵀJDAb

∣∣ = op

(
1

snκ(W )

)
‖Ab‖22 ≤ op

(
1

snκ(W )

)
‖A‖2`2‖b‖

2
2.

By choosing b = ej where ej is a vector in Rk with jth component being 1 and the rest of
components being 0, we have for j = 1, . . . , k

∣∣Bjj∣∣ ≤ op( 1

snκ(W )

)
‖A‖2`2 = op(1),
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where the equality is due to ‖A‖`2 = Op(
√
snκ(W )). By choosing b = eij , where eij is a vector

in Rk with ith and jth components being 1/
√

2 and the rest of components being 0, we have

∣∣Bii/2 +Bjj/2 +Bij
∣∣ ≤ op( 1

snκ(W )

)
‖A‖2`2 = op(1).

Then
|Bij | ≤ |Bij +Bii/2 +Bjj/2|+ | − (Bii/2 +Bjj/2)| = op(1).

Thus we proved
B = AᵀĴT,DA−AᵀJDA = op(1),

because the dimension of the matrix B, k, is finite. By Slutsky’s lemma

√
T (AᵀĴT,DA)−1/2Aᵀ(θ̂T,D − θ0)

d−→ N
(
0, Ik

)
.

Proposition 8.6. For any positive definite matrix Θ,(∫ 1

0
[t(Θ− I) + I]−1 ⊗ [t(Θ− I) + I]−1dt

)−1

=

∫ 1

0
et log Θ ⊗ e(1−t) log Θdt.

Proof. (11.9) and (11.10) of Higham (2008) p272 give, respectively, that

vecE =

∫ 1

0
et log Θ ⊗ e(1−t) log Θdt vecL(Θ, E),

vecL(Θ, E) =

∫ 1

0
[t(Θ− I) + I]−1 ⊗ [t(Θ− I) + I]−1dt vecE.

Substitute the preceding equation into the second last

vecE =

∫ 1

0
et log Θ ⊗ e(1−t) log Θdt

∫ 1

0
[t(Θ− I) + I]−1 ⊗ [t(Θ− I) + I]−1dt vecE.

Since E is arbitrary, the result follows.

Example 8.1. In the special case of normality, V = 2DnD
+
n (Σ⊗ Σ) (Magnus and Neudecker

(1986) Lemma 9). Then GD could be simplified into

GD =

2cᵀ(EᵀWE)−1EᵀWD+
nH(D−1/2 ⊗D−1/2)DnD

+
n (Σ⊗ Σ)(D−1/2 ⊗D−1/2)HD+ᵀ

n WE(EᵀWE)−1c

= 2cᵀ(EᵀWE)−1EᵀWD+
nH(D−1/2 ⊗D−1/2)(Σ⊗ Σ)(D−1/2 ⊗D−1/2)HD+ᵀ

n WE(EᵀWE)−1c

= 2cᵀ(EᵀWE)−1EᵀWD+
nH(D−1/2ΣD−1/2 ⊗D−1/2ΣD−1/2)HD+ᵀ

n WE(EᵀWE)−1c

= 2cᵀ(EᵀWE)−1EᵀWD+
nH(Θ⊗Θ)HD+ᵀ

n WE(EᵀWE)−1c,

where the second equality is true because, given the structure of H, via Lemma 11 of Magnus
and Neudecker (1986), we have the following identity:

D+
nH(D−1/2 ⊗D−1/2) = D+

nH(D−1/2 ⊗D−1/2)DnD
+
n .
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