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Abstract

In this paper we propose a jackknife method to determine individual and time effects
in linear panel data models. We first show that when both the serial and cross-sectional
correlation among the idiosyncratic error terms are weak, our jackknife method can pick up
the correct model with probability approaching one (w.p.a.1). In the presence of moderate or
strong degree of serial correlation, we modify our jackknife criterion function and show that
the modified jackknife method can also select the correct model w.p.a.l. We conduct Monte
Carlo simulations to show that our new methods perform remarkably well in finite samples.
We apply our methods to study () the crime rates in North Carolina, (ii) the determinants

of saving rates across countries, and (i) the relationship between guns and crime rates in the
U.S.
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1 Introduction

Individual effects and time effects are often used in panel data models to model unobserved
individual or time heterogeneity (see, e.g., Arellano (2003), Baltagi (2013), Hsiao (2014), and
Wooldridge (2010) for a review on panel data models). The goal of this paper is to provide
practical methods to determine whether to include individual effects, time effects, both, or neither

in linear panel data models. Specifically, we consider the following four models:

Model 1: vit = B'Tir + i,

Model 2: vit = B'Tit + oy + wig,
Model 3: vit = B'Tie + M + wit,
Model 4: yit = Bz + o + M+ wig,

wheret =1,..., N, t =1,...,T, x; is a k x 1 vector of regressors that may include lagged dependent
variables, «; is an individual effect, A is a time effect, and u;; is an idiosyncratic error term. We
will treat «;’s and \;’s as fixed parameters to be estimated despite the fact they can be either fixed
effects or random effects for our purpose. For clarity, we assume that z;; contains the constant
term in all models and impose restrictions on «; or/and \; in Models 2-4 to achieve identification

for the individual or time effects. Specifically, we assume that

N
Y a; = 0in Model 2, (1.1)
i=1

T

Z At = 01in Model 3, and (1.2)
t=1

N T
Zai = 0 and Z/\t = 0 in Model 4. (1.3)
i=1 t=1

The above identification restrictions greatly facilitate the asymptotic analysis in this paper and
make it straightforward to extend the methodology developed here to multi-dimensional panel
data models.!

There are two main motivations for model selection in the above panel setup. First, we usually
can achieve a small mean squared error (MSE) for the estimators of parameters of interest based on
the true model, as shown in our simulation results in Section 3 (see Tables 4A and 4C). Therefore
it is desirable to use the true model for point estimation and inference. In our simulations, we
also show that the MSEs based on the selected model are usually smaller than those based on
a single fixed model by ignoring the true underlying data generating process (DGP). Second,

sometimes we may be interested in knowing whether the individual/time effects are present, as

'For our method discussed below, different identification restrictions, e.g., assuming anx = 0 in Model 2 and

Ar = 0 in Model 3, produce identical results.



these effects represent the unobservable heterogeneity and may have economic meaning. For
example, in the wage equation where y;; is the hourly wage and x; contains variables such as
education and working experience, among others, the individual effects may be thought of as
individual’s unobservable ability. We may be interested in knowing whether the “ability” variable
enters the wage equation.

We propose a jackknife or leave-one-out cross-validation (CV) method to select the correct
model.? There are several advantages of our jackknife method in the context of determining fixed
effects. First, the new method is general and easy to implement. It does not require the choice
of any tuning parameter. In all information-criterion-based methods, there is an implicit tuning
parameter (e.g., a Bayesian information criterion (BIC) specifies the penalty term to be propor-
tional to In (NT') /(NT), which works as a tuning parameter). There, to show the consistency
of model selection, we often have the flexibility of choosing alternative tuning parameters. For
the procedure based on hypothesis testing as discussed below, we need to choose the sequence
of testing and the nominal level, which are difficulty to choose in practice. Second, we assume
that the cross-section dimension (V) and time dimension (') pass to infinity simultaneously but
allow the relative rate between N and T to be arbitrary. For example, T can be much slower
than N such as 7' < In (V). Although our method requires a relatively large 7" for the asymptotic
analysis, it can be applied to the case in micro-econometrics where 7' is much smaller than V.
Third, our CV method can be applied to both static and dynamic panel models. We show that
when serial correlation and cross-sectional dependence in the error term are absent or weak, our
CV method can choose the correct model with probability approaching one (w.p.a.1).> Fourth,
we propose a modified CV method that is robust to strong serial correlation in the static panel
models. We show that the modified CV can select the correct model w.p.a.1. in the presence of
strong serial correlation. Fifth, our jackknife method can be easily extended to nonlinear pan-
els and to multi-level panels where the determination of different fixed effects is also imperative.
Sixth, in our simulations, we show that our jackknife outperforms other competing methods, such
as AIC and BIC in the absence of serial correlation in the error terms. In the presence of strong
serial correlation, only our modified jackknife works well and other methods, such as jackknife,
AIC and BIC, all break down.

In the literature, there exist several tests for testing for the presence of fixed effects in two
dimensional panel data models. Most of the tests focus on short static panel models. Let o2

and a%\ be the variances of a; and ), respectively. Under the normality assumption, Breusch

?Throughout the paper, we use Jackknife and CV interchangeably. Jackknife is widely used in model selection
and model averaging (see, e.g., Allen (1974), Stone (1974), Geisser (1974), Wahba and Wold (1975), Li (1987),
Andrews (1991), Shao (1993), Burman, Chow and Nolan (1994), Racine (2000), Hansen and Racine (2012), and Lu
and Su (2015)).

#We only allow serial correlation in static panel models. For dynamic panel data models (e.g., panel AR(1)
model), the serial correlation in the error terms (e.g., AR(1) errors) will cause the error terms to be correlated with
the lagged dependent variables. We do not address the endogeneity issue in this paper.



and Pagan (1980, BP hereafter) propose a Lagrange multiplier (LM) test for testing the null
hypothesis: Hop : 02 = 0 and J%\ = 0. The BP test can also be applied to test the null hypotheses
that Hoz : 02 = 0 (assuming o3 = 0) and that Hoz : 03 = 0 (assuming 02 = 0) (see, e.g., Baltagi,
2013 for a discussion). Honda (1985) shows that BP test is actually robust to the non-normality
and also modifies the test to a one-sided test. Baltagi, Chang and Li (1992, BCL hereafter)
modify the one-side test based on the results of Gourieroux, Holly and Monfort (1982). BCL
also propose conditional LM tests for testing Hos : 02 = 0 (allowing ai > 0) and Hys : Ji =0
(allowing 02 > 0). Moulton and Randolph (1989) consider the ANOVA F-test. All the tests
discussed above assume that the error terms {u;;,t = 1,...,T} are not serially correlated. Bera,
Sosa-Escudero, and Yoon (2001) propose an LM test that allows serial correlation in the error
term. Recently, Wu and Li (2014) propose Hausman-type tests for testing Hoi, Hos and Hops by
comparing the variances of the error terms at different robust levels. Wu and Zhu (2012) extend
the Hausman-type tests to short dynamic panel models.

Potentially, these tests can be used to determine the correct model. For example, we can test
Hy1, Hoy, and Hps sequentially. However, there are several limitations of the approach based on
the hypothesis testing. First, to determine the correct model, three separate tests need to be
implemented sequentially. This involves the multiple testing issue and it is unclear how to choose
an appropriate nominal level.* In addition, in finite samples, it could occur that Hy; is rejected,
while neither Hys nor Hys is rejected, in which case it is difficult to decide the correct model.
Second, the existing tests are designed for short panels (i.e., T' is fixed), and it is unclear how the
tests behave when 7' also goes to infinity. We consider large panels where N and T go to infinity
simultaneously and we allow the relative rates of NV and 1" to be arbitrary. Third, except Wu and
Zhu (2012), most existing tests do not apply to dynamic panel models, i.e., the regressors cannot
contain any lagged dependent variables.

Alternatively, we can consider certain information criteria (IC) such as AIC and BIC. However,
to the best of our knowledge, there is no theoretical analysis of AIC or BIC in the context of
determining fixed effects in panel data. When all four models are allowed, a careful analysis
indicates that AIC is always inconsistent and BIC is consistent in the special case where N and
T pass to infinity at the same rate. In Monte Carlo simulations we compare our jackknife method
with AIC and BIC, and find that our jackknife method generally outperforms this IC-based
approach.

In this paper, we only focus on the consistency of model selection and do not address the issue
of post-selection inference. As is well known in the literature, usually post-selection inference
is not uniformly valid (see, e.g., Leeb and Po6tscher (2005)). This is a general and challenging

question in the model selection literature. Despite its importance, it is beyond the scope of this

*There is a large literature on the multiple testing issue for controlling the family-wise error rate (FWER). See,
e.g., Romano, Shaikh and Wolf (2010) for a review. However, to the best of our knowledge, there is no discussion

on how to address this issue in the context of determining fixed effects.



paper to provide a thorough theory on uniform inference.

The rest of the paper is structured as follows. In Section 2, we propose the jackknife and the
modified jackknife method and study their asymptotic properties. Section 3 reports Monte Carlo
simulation results and compares our new methods with IC-based methods for both static and
dynamic panel data generating processes. In Section 4, we provide three empirical applications.
In the first application, we study the crime rates in North Carolina and find that Model 4 is the
correct model. The second application is about the determinants of saving rates across countries
and our methods select Model 2. In the third application, we investigate the relationship between
guns and crime rates in the U.S. and we determine that Model 4 is the correct model. Section
5 concludes. The proofs of the main results are relegated to Appendix A and some additional
materials are included in the online supplement.

Notation. For an m x n real matrix A, we denote its transpose as A’ and its Frobenius norm as
|A|| (= [tr(AA")]Y/2) where = means “is defined as”. Let Py = A (A’A)"' A" and My = I,,, — Pa,
where I, denotes an m x m identity matrix. When A = {a;;} is symmetric, we use Amax (A)
and Apin (A) to denote its maximum and minimum eigenvalues, respectively. The operator £,
denotes convergence in probability. We use (N,T) — oo to denote that N and T pass to infinity

simultaneously.

2 Methodology and Asymptotic Theory

In this section, we first introduce the jackknife method to determine individual or time effects in
panel data models and then study the consistency of our jackknife estimator. To allow for strong
degree of serial correlation we also propose a modified jackknife criterion function and justify its

asymptotic validity.

2.1 Methodology

Let z; = (241, ..., 7;7) and X = (2, ...,x’N)/. Define y;, u;, Y, and U analogously. To facilitate

the presentation, we define the following dummy matrices:
In_ Ip_
Dy = ( N )ew, DAzLN®< o ) and Day = (Da, Dy),
—iN-1 —lr—1
where ¢, is an a X 1 vector of ones for any integer a > 1. To unify the notation, we write
XM =x, X® = (X, D,), X® =(X,D,), and XW = (X, Dy, D,).
(m)r (m) (m))/

We use z;, ~ to denote a typical row of X (M) guch that X (™ = (21775 IY;)’ - :vg\rg), ey T
for m = 1,2,3,4. Similarly, we use d, ,,, d’/\ﬁ, and dfot to denote a typical row of D,, D), and



D, respectively. Then we can rewrite Models 1-4 as follows:

Model 1: Yit = B'wit + i = B(l)’xz(tl) + wi,

Model 2: Yit = B'xit + o' do it + uir = [3(2)’331(»,52) + U,

Model 3: yit = B'wie + Nyt + ui = 5(3)/131(?) + uge,

Model 4: Yit = B'wit + &' doit + Ndyir + wir = 5(4)'96521) + g,

where @ = (a1, an-1)', A = (1,0 ), B = 8, 8% = (8.a), B9 = (8,X)', and
BW = (f,a/,N). Note that we have imposed the identification conditions in (1.1)-(1.3) for

Models 2-4 in the above representation. In matrix notation, we can write these models simply as

Model 1: Y =X8+U=xWsM 17,

Model 2: Y = X8+ Doa+U = XP® 41,

Model 3: Y =XB8+DA+U=X®36 4y,

Model 4: Y = XB+ Daa+ DA+ U = XWW L 1.

Note that Model 1 is nested in Models 2-4, both Models 2 and 3 are nested in Model 4, and
D!, Dy = 0. These observations greatly simplify the asymptotic analysis in this paper.
The OLS estimator of ﬁ(m) based on all observations {(yi, l‘gn )) 1 <i< N, 1<t<T}is
given by
B — <X<m>’X<m>>_1 XY for m = 1,2,3, 4. (2.1)

We also consider the leave-one-out estimator of ﬁ(m) with the (7,t)th observation deleted:
~(m m) (m)r L m
Bim (xOmrx ) — o2l ) (XY — 2y for m =1,2,3,4, (2.2)

wherei =1,...,N,t = 1,...,T. Define the out-of-sample predicted value of y;; as g)z(tm) = BET)/JJ,EIR)

Our jackknife method is based on the following leave-one-out CV function

T N
_ ! L am)? _
CV (m) = = ; ; (ylt i ) for m = 1,2, 3, 4. (2.3)
Let
m = argmin CV (m). (2.4)
1<m<4

Under some regularity conditions, we will show that w.p.a.1, /m is given by m when Model m is

the true model.

Remark 1. In dynamic panel models with individual effects (Models 2 and 4), it is well known
that bias-correction is needed for the estimation and inference of parameters unless T'/N — oo

as (N,T) — oo. There is a large literature on this issue; see, e.g., Arellano and Hahn (2007) and



Fernandez-Val and Weidner (2018) for a review. Here our purpose is to select the correct model
consistently. We show that our jackknife method can select the true model consistently without
the need for bias-correction. Our simulations also suggest that bias-correction for dynamic panels
may or may not help with the determination of the true model.> Of course, we generally need to

implement the bias-correction for estimation and inference after the model selection.

Remark 2. Here we focus on the determination of whether the individual effects, time
effects, both, or neither should enter the model from the out-of-sample predictive power of these
effects. Even though we treat either effects as fixed parameters to be estimated and allow them
to be correlated with the regressors in x;, they can be either fixed effects or random effects
for subsequent estimation and inference. Our jackknife method can only tell whether either the
individual effects or time effects are present or not, but cannot tell whether they are random or
fixed effects. Note that even in a random effects model, we have the issue of which effects should
be included in the model. For example, in an experimental setting where the key regressor is
randomized, we still need to consider whether we should include individual or time effects (or
both) for the efficiency consideration. Our method provides a practical solution. In a setting
where it is unclear whether we should use random or fixed effects, we may implement a two-step
procedure. In the first step, we apply our method to determine whether the individual or time
effects should be included in the model. In the second step, we apply the Hausman-Wu type test
(see, e.g., Hausman (1978) and Hausman and Taylor (1981)) to determine whether the effects are

“random” or “fixed”.

2.2 Asymptotic theory under weak serial and cross-sectional correlations

Let w;. =T~ 1 Zthl Wit, Uy = N1 Zf\;l ui, and @.. = (NT)~* Zf\il Zthl uit. Let ., Ty, and ..
be defined analogously. Define

. 1 R 1
Q= WX/X and Qp, = WX,MDfX for D¢ = Dy, Dy,and Dgy.

Let C' denote a generic large positive constant whose value may vary across lines.

To proceed, we make the following set of assumptions.

Assumption A.1. (i) E(u;) = 0, maxi<;<n1<i<7 E(u},) < C, and ﬁ Zf\il Zle u?, il 52 > 0.
(ii) maxi<i<ni<i<r B llza]|* < C.
(ili) @.. = Op ((NT)~Y?) and +=X'U = Op ((NT)~1/2).
(iv) There exist positive constants ¢ and ¢q such that P (QQ < Amin (Q D&) < Amax (Q) < EQ)
— 1 for D¢ = Dy, Dy, and D).
V) & Zfil ST uiga; = op (1) and 7 Zfil S uiths = op (1) when Model 2, 3, or 4 is

true and applicable.

®The simulation details are available upon request.



Assumption A.2. (i) £ Zfil (u;.)? E 52, > 0.

(i) X7 (@e)? B a2, > 0.

(i) & SN, Z.i. = Op (T4 + (NT)~V/2).

(iv) 7 Z?:l Tqus=O0p (N~ + (NT)_l/Q) )
Assumption A.3. (i) If Model 2 is the true model, there exist positive constants ¢, x and ¢ x,
such that

N T
1 2
WZZ[ — 2y (X'X) leDaQ} gca,x > 0, and (2.5)
i=1 t=1
1 NI . )
T 0 | (x@x@) X(3)’Dag] Locax, > 0 (2.6)
i=1 t=1

N T
% So> - (xx) X’DAAF Lex > 0 and (2.7)
i=1 t=1
T . )
=3 [At e ( @) X(2)> X@'p, 4 Perx, > 0. (2.8)
=1 t=1

(iii) If Model 4 is the true model, there exist positive constants c,z x, ca,x,, and ¢y x, such
that

N T
1 _ 2
NT Z Z [O‘i + A — 2y (X'X) 7 X (Do + DAA)} Lcorx >0 (2.9)

and both (2.6) and (2.8) h

Assumptions A.1(i)-(ii) impose weak moment conditions on {u;} and {z;}, which are fre-
quently assumed in the literature. The fourth-order moment conditions on {u;} and {z;} imply
that ﬁ Zi\il Z?:l ||xituit|]2 =Op (1) and max1<;<N,1<t<T ||$$tH = Op((NT)1/4) by Markov and
Jensen inequalities and the union bound. Assumption A.1(iii) is also weak and commonly im-
posed in panel data models in the absence of endogeneity. In particular, we permit x;; to contain
lagged dependent variables so that dynamic panel data models are allowed. Assumption A.1(iv)
specifies the usual identification conditions for the OLS or fixed effects (FE) estimation of Mod-
els 1-4. For example, the condition that )\mm(QDa) is bounded below from 0 requires that x;
should not contain any time-invariant regressor beyond a constant term; it is allowed to contain a
constant term because we have imposed the identification constraint that Zi\; 1 ; = 0. Similarly,
the condition that )\min(@ D, ) is bounded below from 0 requires that x;; should not contain any
individual-invariant regressor beyond a constant term; it is allowed to contain a constant term
because we have imposed the identification constraint that Zthl A+ = 0. On the surface, this

condition rules out the inclusion of any time-invariant regressor in Model 2, individual-invariant



regressor in Model 3, and both types of regressors in Model 4. If z;; contains such regressors, they
should be removed from Models 2-4 correspondingly and then we can redefine :Ugn ) for m = 2,3,4
with such regressors removed. For example, if z;; contains a time-invariant regressor other than
the constant term, say, z;, then z; will be omitted from Models 2 and 4 in the estimation proce-
dure, but still kept in Models 1 and 3. The omission of z; in Models 2 and 4 will not cause the
endogenous problem, as its effect will be captured by the individual effects in Models 2 and 4,
which are allowed to be correlated with the other regressors in x;. So the asymptotic analysis
below will continue to hold. Assumption A.1(v) essentially imposes conditions on the interactions
between the idiosyncratic error terms and the individual and time effects, whenever applicable, in
Models 2-4. A sufficient condition for it to hold is that both {u;;;} and {ui\:} have zero mean
and follow a version of weak law of large numbers. The zero mean condition is commonly assumed
in the panel data literature. Note that we allow the individual effects «; and time effects A; to be
random in the true model (if present) even if we treat them as fixed parameters in the estimation
procedure.

Assumption A.2(i) requires that {u;;, ¢ > 1} be weakly serially dependent such that = fil Zle
Zzzl E (ujtu;s) has a finite limit. For example, the latter condition is satisfied by the Davydov
inequality if {wu;,t > 1} is strong mixing with finite (2 4+ ) —th moment and mixing coefficients
a; (+) such that a; (7) = 777 with min;<;<n7y; > (2+ ) /9; see, e.g., Bosq (1998, pp.19-20) or
the online supplement of Su, Shi, and Phillips (2016). Similarly, Assumption A.2(ii) requires that
{wit,i > 1} be weakly cross-sectionally dependent such that <= SN Zjvzl ST | E (ugruji) has a
finite limit. Assumption A.2(iii)-(iv) can be verified under both weak serial and cross-sectional
correlations by the Chebyshev inequality and it is easily met in the absence of both serial and
cross-sectional correlations. In the online supplement, we demonstrate that the primitive con-
"< i)

ditions to ensure Assumption A.2(iii)-(iv) are: (i) maxj<j<y E H% Zthl 23:1 Tl Uis

maXlgtSTEH% PIARD Dl w?tuthQ < G, and (i) 57 it Yjiy Yim aes B (wirugs)| < C,
where z}; = x4 — FE (x;) . Analogous conditions are frequently assumed in the panel data litera-
ture to control weak serial and cross-section dependence; see, e.g., Bai and Ng (2002). It is worth
mentioning that 62, = &2 if there is no serial correlation among {u;,t > 1}, and 62, = &2 if
there is no cross-sectional correlation among {w;;,7 > 1} . When serial correlation is present, 531

is generally different from 2; when cross-sectional correlation is present, 52, is generally different
2

from 7.

Assumption A.3 specifies conditions to ensure that the underfitted or misspecified models will
never be chosen asymptotically. The interpretations of the conditions in (2.5)-(2.9) are easy.
For example, when Model 2 is the true model, Models 1 and 3 are underfitted and misspecified,
respectively. In this case, (2.5) and (2.6) require that the individual effects a;, when stacked into
an NT x 1 vector, should not lie in the column space spanned by the regressor matrix X in Model
1 and X®) in Model 3, respectively. Similarly, when Model 4 is the true model, Models 1, 2, and

3 are all underfitted. In this case, (2.9) requires that «; + A, when stacked into an NT' x 1 vector,



should not lie in the column space spanned by the regressor matrix X in Model 1, (2.8) requires
that the time effects A; should not lie in the column space spanned by X?) in Model 2, and (2.6)
requires that the individual effects a; should not lie in the column space spanned by X ®) in Model
3. In short, Assumption A.3 rules out asymptotic multicollinearity between the individual/time
effects and the regressors.

It is worth mentioning that we allow for both cross-sectional and serial dependence of unknown
form in { (2, u;)} despite the fact that some of the results derived below need further constraints.
We do not need identical distributions or homoskedasticity along either the cross-section dimension
or the time dimension, neither do we need to assume mean or covariance stationarity along either
dimension. In this sense, we say our results below are applicable to a variety of linear panel data

models in practice.

Given Assumptions A.1-A.3, we are ready to state our first main result.

Theorem 2.1 Suppose that Assumptions A.1-A.3 hold. Suppose that max (5%1,532) < 262,

where 521,525, and 52 are defined in Assumptions 2(i), 2(ii), and 1(i), respectively. Then
P (i =m | Model m is the true model) — 1 as (N,T) — oo form =1,...,4.

Remark 3. The proof of Theorem 2.1 is given in the appendix. To appreciate the above
result, we outline the main idea that underlines our proof. When Model 1 is true, all the other
models are overfitted, and we can show that P (CV (1) < CV (m)) — 1 for m = 2,3, 4 by showing
that

TV (2)—cv ()] L 252 —52, >
N[CV3)-cVv(1)] L5262 52, >
(NAT)[CV (4) = CV ()] D 2(1+¢) 62 — (621 + co25) 1{e1 > 1} — (ca2, +025) 1{er <1} >

where ¢ = lim (7)o (% A %) ; and ¢1 = lim(y7)—00 %, and a A b = min (a,b). When Model 2
is true, Models 1, 3 and 4 are underfitted, misspecified and overfitted, respectively, and we can
show that P (CV (2) < CV (m)) — 1 for m = 1,3, 4 by showing that
cv)y—cv@) Lex > 0,
V) -cv2) Lex, > 0,
N[CV(4)—CV (2)] 5252 -52, > 0.

When Model 3 is true, Models 1, 2 and 4 are underfitted, misspecified and overfitted, respectively,
and we can show that P (CV (3) < CV (m)) — 1 for m = 1,2,4 by showing that

cv)y-cv@e)Leax > 0,
cve) -cvE)Leax, > 0
TICV (4)—CV (3)] 5252 -52, > 0.

ul

10



When Model 4 is true, all other models are underfitted, and we can show that P (C'V (4) < CV (m)) —

1 for m = 1,2, 3 by showing that

V() -=cV )L eamx > 0,
cve -cv) Beax, > 0,
P
P

CVE) —CV ) L eax, > 0.

As a result, CV (m) has the minimal value among {C'V (1),l = 1,...,4} asymptotically only when

Model m is the true model.

Remark 4. Theorem 2.1 indicates that we can choose the correct model w.p.a.1 as (N,T) —
0o. In other words, our jackknife method can choose the correct model consistently as long as
the serial or cross-sectional correlation among the error terms is not strong enough to over-
take the average noise level as represented by 2. As remarked above, the additional condition
max (62,,52,) < 262 would be automatically satisfied in the absence of both serial and cross-
sectional correlation among the idiosyncratic error terms. Note that the above result does not
have any restriction on the degree of serial or cross-sectional correlation among {x;;} as long as
Assumptions A.1(ii)-(v) are satisfied. More importantly, we do not need any relative rate con-
dition on how N and T pass to infinity. In fact, our theory allows 7" = O (In N) such that our

method may be applied to micro panels when T is typically small in comparison with N.

Remark 5. To see when the above additional condition can be met in Theorem 2.1, consider
the case where {u;, t > 1} follows a covariance-stationary AR(1) process with mean zero and vari-
ance o2 for each i and is independently and identically distributed (i.i.d.) along the cross-section

dimension. Let p € (—1,1) denote the AR(1) coefficient. Then by straightforward calculations,

TN . I 952 =1
LY p@r = B+ 25 3 Pl =od s ZEY 3
i=1 = t=1 s=t+1 t=1 s=t+1
QO%tT lp 11t+1) 2 2p 2

= —u 1 =01

( T _)U“< +1—p> o

2

In this case, 32 = 02 and 52; < 252 provided p < % Similarly, if {u;,7 > 1} has mean zero and

variance o2 for each i,t such that Corr(uit, wj) = pli=il for all 4,5, t for some p € (—1,1), then

and 72, < 252 provided p < % We can also consider a stationary m-dependent process for
{uj,t > 1} with mean zero and variance o2 for each i (assuming i.i.d. in the cross-section

dimension). In this case, we can show that

o 1 m m
52, = Tlgréo o2+ 7 ) Z Cov (ui1, uij4+1) | = [1+2 Z Corr (u;1,ui j41) | 02
j=1 j=1
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So the condition 6%1 < 262 is satisfied if ZﬁlCorr(uil, Ui 1) < % Again, this means that we
cannot have too large time-series correlation. Note that this condition is always satisfied for an
invertible MA(1) process: i = ;s + 6e;+—1 where |0] < 1 and {e;,t > 1} is a white noise with
2

mean 0 and variance o2,

as in this case,

o= (145 ) ot <2k
where 02 = (14 6%)02.

The above calculations indicate that the serial or cross-sectional correlation among the error
terms cannot be moderately large in order for our jackknife method to work. In the next subsec-
tion, we consider the relaxation of such conditions. Since there is typically no natural ordering
among the individual units, we focus on the relaxation on the serial dependence along the time
dimension and propose a modified jackknife criterion function to handle strong or moderately

large degree of serial correlation.

2.3 A modified jackknife criterion function

In this subsection, we consider the panel data model with serially correlated errors and propose
a modified version of the jackknife criterion function. Note that if a generic ARMA process is
invertible, it can be written as an AR(co) process and well approximated by an AR(p) process
for sufficiently large p. For this reason, we assume that the error process {u;,t > 1} can be

approximated by an AR(p) process:

fe’s) p fe’s)
E PjWit—j + €it = E pjit—j | + E PjWit—j + €t
Jj=1 Jj=1 Jj=p+1

— Py + i, (2.10)

Ust

where i = 1,...,. N, t=p+1,...,T, p= (pl,...,pp), is a vector of unknown parameters, u;, ; =
(Wig—1s-ery ui,t_p)’, Vit = Vitp + €it, € 1S an innovation term, and v, = Z;’;pﬂ pjui—j signifies
the approximation error. If {u;,t > 1} is an autoregressive process of order p or less, then vy, =0
and v = ej.

Let ﬂz(ln) = Yit — B(m)ll‘gﬂ) for m = 1,2,3,4. We propose to estimate the AR(p) coefficients

based on the residuals from Model 4 (the largest model), i.e., we run the following regression

~(4 ~(4 ~(4 ~(4 ~ ~(4 ~
uz(‘t) = pluz(‘,t)—l + p2uz(,t)—2 +ot ppuz(,t)—p + Vit = p/ﬂl(}t)—l + Vit (2.11)
where i = 1, N, t = p+ 1, T, () = @),y ), and G = (al) — i) + p/(ws g —

) /[’7t7p
@5?_1) + v Let p = (ﬁl,ﬁQ, ...f)p)/ denote the OLS estimator of p in the above regression. Let

Yooy = Wig—1, s Yit—p) and QET_)l = (yAZ(T_)l, ces Q,ET_)p)’. We modify the CV criterion function as

CV* (m) = —— By o (m) _ aro(m) ]2
m = iy 2 (e —pu) - (07 -2E2)] @)

t=p+1 i=1
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Let

m = argmin CV* (m). (2.13)
1<m<4

Ideally, when Model m is correctly specified, (y;; — p’ Yoo ) — (Qz(t m) - Py (m) ,) will approximate

the true innovation term v;. As long as there is no serial correlation among {vit} or the serial
correlation is weak, m is given by m w.p.a.1l. when Model m is the true model.

Let

(L) =1—pL—pyl* —--- = p,LP,

where L is the lag operator. Similarly, ® (1) =1~ p; —py —--- — p,. Let x( m =@ (L) xz(;n) for
t=p+1,....,T and m = 1,2, 3,4. Note that 9%52“) =& (L)wy =Ty Let v, =T, 1 Zt:pH v for i =
1,..N,and 5, = N~} Zfil vit fort = p+1,..., N, where T, = T —p. Let w; ; 1 = (Wi t—1, .-, Uit—p)’
and I'p = ﬁ Zi\il Zf:pﬂ ui,tflﬂ;,t—l'

To state the next result, we add the following set of assumptions.
Assumption A.4. (i) >°72, p;z’ # 0 for any complex number z with |z] < 1, > lp;] < o0,
P2 (N7L+T71) = 0(1), and Ain(I'p) is bounded away from zero in probability as (N,T") — oo.

P
ii) B ('Uzt) =0, maxi<i<npr1<i<T B (v;) < C, and NT PR Sl 1 V% = 52> 0.

(
(iii) NTp Zz 1 Zt—erl Civit = Op ((NT) 1/2) for ¢;; = 1 and Z;, and H NT, Zz 1 Zt =p+1 i t—1Vit
(

Op ((NT/p) 1/2) .

iv) NlTp iy ZtT:pH viga; = op (1) and NLTP SN th:erl ie[® (L) Ad] = op (1) when Model
2, 3, or 4 is true and applicable.
Assumption A.5. (i) % Zfil (0:.)? EN a2, > 0.

ss T _ P _

(i) % Zt:p+1 (U~t)2 — 0'12}2 > 0.

(iii) £ XN, @0 = Op (T~' + (NT)"V/?).

() 7; S i1 BaUs = Op (N1 (NT)~1/2).
Assumption A.6. (i) If Model 2 is the true model, there exist positive constants c; y and c; X
such that

N T
LSS [eai-# (0X) " XDua] D > 0 and (214)
P =1 t=p+1
: i i ® (1) oy — 2 (X<3>'X<3>) X®p ol Be > 0 (2.15)
N i=1 t=p+1 Z X

N T
1 _ 2
e DY [CD(L)/\t—:Tc;t (X'X) 1X’D>\A] L& x > 0, and  (2.16)
P =1 t=p+1
N T 9
1 O (@ @) L @ P
NTpiz—;t:zp;rl [QD(L)/\t_'fz‘t (X X > XYDA\Al =y, > 0. (2.17)
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(iii) If Model 4 is the true model, there exist positive constants cZA7 X c:y’ x,» and cj‘\’ X, such
that

2
"X (Daa+ D) L >0  (218)

1 L2
Z Z [((I)(l)ai"’_q)(l/)/\t)—a“:ét (X/X)_

and both (2.15) and (2.17) hold.

Assumption A.4(i) rules out unit root or explosive processes for {u;,¢ > 1}. Assumption
A.4(ii)-(iv) parallels Assumption A.1(i), (iii) and (v). Assumption A.5(i)-(iv) parallels Assump-
tion A.2(i)-(iv). Assumption A.6(i)-(iii) is analogous to Assumption A.3(i)-(iii). In the online
supplement (Section C.2), we verify Assumptions A.4 and A.5 under a set of sufficient primitive

conditions on {(z, e, ai, A¢)} .

Theorem 2.2 Suppose that Assumptions A.1-A.2 and A.4-A.6 hold. Suppose that max(52,,52,) <
262. Then

P (m =m | Model m is the true model) — 1 as (N,T) — oo form =1,...,4.

Remark 6. Theorem 2.2 indicates that the modified jackknife criterion function helps us to
select the correct model w.p.a.1 as (N,T) — oo under the weak side condition max(52;,52%,) <
262.  Where there is no serial correlation among {u;,t > 1} such that ® (1) = ® (L) = 1 and
uit = vit, then 62, = 62, = 52 = &2 and G2, = 52,. This implies that the result in Theorem 2.2
coincides with that in Theorem 2.1 in this case. If there is no serial or cross-sectional correlation
among {v;}, then 6%, = 62, = &2 and max(62;,52%,) < 262 is automatically satisfied. More
generally, if {u;,t > 1} is an AR(c0) process, in the online supplement, we show that when p — oo
under certain rate condition, the approximation error v ,(= Z?’;p 1 pjuiyt,j) is asymptotically
negligible so that 62, = 52, = 52 is always satisfied.

(4)

Remark 7. In the above analysis, we run the pooled AR(p) regression for u;’. A close
examination of the proof of Theorem 2.2 indicates that only the consistency of the pooled OLS
estimator p is used. Alternatively, one can allow heterogeneity in both the order of autoregression
and its coefficients. In this case, we use p; and p;, @« =1, ..., N, to denote the order and individual
coefficients in the autoregressive models and run the AR(p;) regression for {@Ef ) ,t > 1} to estimate

p; by p, for i =1,..., N. Then we can modify the jackknife criterion function to be

. 1oL 1 A/ ) oy om) )]
o35 § o) - - )]
1= =Di

Accordingly, we can modify Assumptions A.4-A.6 and establish a result similar to that in Theorem
2.2.
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Remark 8. Alternatively, we can rewrite the original model by including p lagged y;; and
p lagged x;; (excluding the constant) as additional (pk) regressors via the standard Cochrane—
Orcutt procedure. Take Model 4 as an example. Let Z;; be the z; excluding the constant term,
ie., zyi = (1,2},). Correspondingly, let 8 = (61,5’/)/. Then, Model 4

o/ °
Yit = ,BI:L'Z‘t +oa; + N+ uy = (,31,,3 )(1,33;,5)’ + o + N+ ui

can be rewritten as

of ol , ol
yie = (1—p1—-.—pp) Br+ 8%+ pryis—1+ .+ Pplit—p — <P15 Tit—1+ .. + ppB -'L'i,tfp>
+ (1 —pp— . — pp) o; + ()\t — P11 — e — pp)\t,p) + vit
= B/i'it + @ + M+ vit,
!/ ~
where ;; = <1,:fc;t, Yit—1, s Yit—p u%g’tfl, s i"itfp) , B is the new vector of regression coef-
ficients, &; = (1 —pP] — e — pp) «; and 5\15 = (/\t — P A—1 — - — pp/\t,p) . With the new regressor

Zi replacing x;, we can continue to apply the jackknife criterion function C'V (m) as in Section
2.1.

Remark 9. As mentioned above, we regard our AR(p) model as an approximation for the
error process {u;;,t > 1} that does not need to follow the AR(p) process exactly. Note that our
original jackknife method in Section 2.1 works in the presence of weak serial correlation. Hence,
here it is sufficient to reduce and control the serial correlation among {u;,t > 1}. Despite this
fact, we need to choose the value of p. In practice there are several approaches. First, we may
use a “rule of thumb” and let p increase with T, e.g., p = LTl/ 4], where LTl/ 4] is the nearest
integer less than or equal to T%/4. Alternatively, we can follow Lee, Okui, and Shintani (2018)
by setting pmax = |1’ 1/ 4] and consider a general-to-specific testing procedure based on t-statistic
until we reject the null. Third, we may apply the information criteria, such as AIC and BIC,
to the residuals obtained from Model 4 (ﬂgf )) to determine p. For the implementation, see, e.g.,
Stock and Watson (2012, Section 14.5). In general, BIC gives a consistent estimator of p, and

AIC tends to choose a relatively large p. See Section D in the online supplement for more details.

Remark 10. As a referee points out, the standard jackknife (cross-validation) method is
originally designed for i.i.d. observations. For dependent time series data, various modifications
have been proposed in the literature. For example, Burman, Chow and Nolan (1994) consider
a h-block cross-validation function by removing the tth observation and the h observations on
its either side to estimate the regression parameter, which simplifies to the usual leave-one-out
cross-validation function when h = 0. Racine (2000) finds that the h-block cross-validation is not
consistent in general and proposes to combine Shao’s (1993) solution of v-blocking on independent
data with Burman, Chow and Nolan’s (1994) h-blocking on dependent data to yield a hv-block
cross-validation for improved model-selection. Note that the hA-block cross-validation requires the

selection of one tuning parameter (h) while the hv-block cross-validation requires the choices of
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two tuning parameters (h and v). The minimum sample size (7" in our notation) in Racine’s (2000)
simulations is 100 in order for his method to work reasonably well. But we usually do not have
So many time series observations in the panel setup. If T is only 5, 10, or at most 50 as in our
simulations, we do not know how these alternative methods work and whether it is possible to
justify their consistency in determining whether to include the individual or time effects into a
panel data model. At the minimum, our modified jackknife method offers an easy-to-implement
alternative solution to handle serial correlation in the error terms that only demands the choice

of a single tuning parameter (p) in practice.

3 Monte Carlo Simulations

In this section, we conduct Monte Carlo simulations to examine the finite sample performance
of our jackknife method and compare it with various information criteria (IC). We consider the
following three different cases: (i) static panel models with possibly serially correlated errors,
(74) dynamic panel models without exogenous regressors and (iii) dynamic panel models with

€X0genous regressors.

3.1 Implementation

As a comparison, we consider the commonly used information criterion (IC): AIC and BIC, though
to the best of our knowledge, there is no theoretical analysis of AIC and BIC in the context of
determining fixed effects. Here the number of parameters involved depends on N and T" and goes
to infinity, thus the standard theory of AIC and BIC is not directly applicable here.

For Model m, m = 1,2, 3,4, define the in-sample residual as ﬁz(tm) = Y — B(m),xz(tm). Then AIC
and BIC for Model m are defined respectively as

2 (m)
AIC(m) = In <(&<m>) ) + QJIZ—T

2 (m)
BIC(m) = In <(&<m>) ) + %,

2 2
where (6(m)> = & ST, (&E@) and k(™ is the dimension of xgn) in the mth model.
Specifically, k) = k, k& = k+N -1, k®) = k+T —1 and k® = k+ N +T —2. We also consider
the modified BIC as

BICy (m) =In ((am) 2) 4 log (log EV]?T)) B

We choose the model by minimizing the above three ICs.5

SFollowing the standard analysis on the consistency of IC, we can show the following results: (1) BIC and BIC,
are consistent in selecting the individual or time effects under the restrictive condition that N and T pass to infinity
at the same rate; (2) the AIC is never consistent; and (3) neither BIC nor BIC> is consistent in general when N

and T pass to infinity at different rates.
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For static panel models, we consider CV (defined in (2.3)) and CV* (defined in (2.12)). To take
into account the possible serial correlation, we also apply CV to the augmented regression with
additional p lagged y;; and p lagged x;; (excluding the constant), as discussed in Remark 8 above.
We denote it as CV**. For dynamic panel models, we only consider CV, as serial correlation can
cause the endogenous problem and in general is not allowed in dynamic panel models. For all the
simulations, we consider different combinations of N and T : (N,T) = (10,5), (50,5), (10,10),
(50,10), (10,50) and (50,50) . The number of replications is 1000.

3.2 Static panel models

We consider the following static fixed-effect data generating processes (DGPs):

DGP 1.1: y;e = 1 4 x5 + uge DGP 1.2: yir = 1 4 x4 + i + ugt
DGP 1.3: yis =14+ a6+ M +uiy DGP 1.4: yyy =14+ x4 + a + Ap + ust 7

where 7 = 1+ a; + M+ & and a4, A¢ and &;; are mutually independent N (0, 1) random variables.
The error term w;; is generated as

Uit = PUit—1 + Vit,

where vy is a N (0,1) random variable, and p takes different values: 0, 711, %, %, and %.7 Here the
true models corresponding to DGPs 1.1-1.4 are Models 1-4, respectively.

Tables 1A, 1B, 1C, 1D and 1E present the simulation results for p = 0, %, %, %, and %,
respectively. When p = 0, i.e., there is no serial correlation in the error term, our CV performs
best. For example, when N = 10 and 17" = 10, our CV can choose the correct model with a
probability close to 95%. When 7" is small (T'=5) and N is large (N = 50), the correct rate of
our CV is above 90%. Even when both 7" and N are small ("= 5, N = 10), our CV can achieve
a reasonable correct rate above 70%. The performance of AIC is also good and comparable to
that of CV. CV* and CV**, which are robust to possible serial correlation, perform slightly worse
than CV when T is relatively large (7" = 10 or 7' = 50). The performance of BIC is poor. For
example, when the true model is Model 4 and (N, T") = (10, 50), BIC can only choose the correct
model with a probability of 4%. BICy outperforms BIC, but still underperforms CV and AIC.

Next, we consider p = i, i.e., there is weak serial correlation in the error term. When T is
relatively large (7' = 10 or T' = 50), our CV* and CV** perform best overall, as suggested by
our theory. Between CV* and CV**, it is not apparent which one dominates. For example, when
the true model is Model 1, CV** outperforms CV*, but when the true model is Model 2, CV*
outperforms CV**. When T is small, CV** can perform poorly. CV also performs reasonably
well, as our theory suggests that CV can consistently select the correct model when the serial
correlation is weak (p < % for this DGP). When T is small (T = 5), CV can even outperform CV*

"Here the error terms are homoskedastic. We have also considered the DGPs with heteroskedasticy and find that

performances are similar. The details are available upon request.
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and CV**. The performance of AIC is slightly worse than that of CV. Both BIC (e.g., when the
true model is Model 3 or 4) and BIC; (e.g., when the true model is Model 3) perform poorly.
1 1

p = 5 is an interesting case, as p = 3 is the cut-off point for CV to work. In the dis-

cussion following Theorem 2.1, we show that when p = %,
_2 —

max (Uul, 032) < 253 is violated. In our proof, we show that in this case, when the true model is
Model 1, T [CV (2) — CV (1)] . 0 and when the true model is Model 3, T [CV (4) — CV (3)] N
0. This suggests that CV cannot distinguish Model 1 and Model 2 when the true model is Model 1
and cannot distinguish Model 3 and Model 4 when the true model is Model 3. Our simulations con-
firm the theoretical analysis. For example, when the true model is Model 1 and (N, T") = (50, 50),
CV selects Model 1 and Model 2 with probabilities of 56% and 44%, respectively. In this case, CV,
AIC, BIC and BIC, all break down. However, both CV* and CV**, which explicitly take serial
correlation into account, perform well in large samples, as suggested by our theory. For example,
when (N,T') = (50,50), both CV* and CV** can select the correct model with a probability close
to 100%. For this DGP, CV* slightly outperforms CV** as a whole. However, in general, for CV*

and CV** to work well, a relatively large T is required.

52, = 262, thus the key condition

When the serial correlation is high, such as p = % and %, the performances of CV, AIC, BIC
and BICs are all poor. In general, CV* and CV** perform well when the sample is large. For
this DGP, CV* outperforms CV** in general. For example, when (N,T") = (50,50) and p = % or
%, CV* can choose the correct model with a probability close to 100%. However, when the true
model is Model 4 and (N,T) = (50,50), p = %, CV** can only choose the correct model with a
probability of 49%. Also, when T or N is small, CV* and CV** can perform poorly. This suggests
that when serial correlation is high, a large sample is required.

To examine the effect of model misspecification, in Table 4A, we compare the mean squared
errors (MSEs) of the estimator of the slope coefficient (5 = 1) using the four different models
and the model selected by our CV when p = 0.8 It is clear that for this DGP, the correct model
achieves the smallest MSE. For example, when the true model is Model 1 and (N,T) = (10, 10),
the MSE based on Model 4 is about 3.5 times as large as that based on Model 1. When T is
relatively large, the MSEs based on our selected models are almost the same as those based on
the true models. When T is small, our model selection can also achieve MSE reduction, compared
with say, the largest model, Model 4. Table 4B reports the performance of post-selection inference
by presenting the empirical coverage and length of the 95% confidence intervals (CI). We find that
for this DGP, the empirical coverage and length based on our selected model are similar to those
based on the true models, especially when T’ is relatively large.

In sum, for static panel models, when there is no serial correlation or serial correlation is
low, CV, CV*, CV** and AIC all work well. In the absence of serial correlation, CV is the best
performer. When serial correlation is high, only CV* and CV** work in large samples and CV*

generally outperforms CV**. Also it is noted that a relatively large T is required for CV* and

8The results for p = i, %, %, and % are avaiable upon request.
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CV** to work well in the presence of high correlation.

3.3 Dynamic panel models without exogenous regressors

We consider the following dynamic panel DGPs:

DGP 2.1: yit = 1+ Byi—1 + uit DGP 2.2: yit = 1 + Byit—1 + a; + ust
DGP 2.3: y;: =1+ 5yi,t—1 +Xt+uyr DGP24: yyp =1+ Bym_l + a; + N+ Ui ’

where «;, A\; and u; are mutually independent N (0,1) random variables and (3 takes different
values: %,% and %.

Tables 2A, 2B, and 2C report the simulations results for § = %, % and %, respectively. For
most cases, our CV can select the correct method with a high probability and dominates other
methods. Despite its inconsistency, AIC performs slightly worse than CV. For example, when the
true model is Model 1, 8 = %, (N,T) = (10,10), CV and AIC choose the correct model with
probabilities of 84% and 80%, respectively. The performance of BIC is poor in many cases. For
example, when the true model is Model 2, 5 = %, and (N,T) = (50,10), BIC selects the correct
model with zero probability. The performance of BICjy is better than that of BIC, but still worse
than those of CV and AIC in general.

Table 4C shows the MSEs of estimator of 5 based on the four models and the selected model
by CV when § = %.9 We consider both the non-bias corrected estimator and bias corrected
estimator. For the bias correction, we adopt the half panel jackknife method as proposed in
Dhaene and Jochmans (2015). For both types of estimators, the estimator based on the true
model has the smallest MSE. For example, when true model is Model 1 and (N,T") = (10, 10),
the MSEs of the non-bias corrected estimator based on Model 4 is about 10 times as large as that
based on Model 1, and the MSE of the bias corrected estimator based on Model 4 is about 5 times
as large as that based on Model 1. The MSEs based on our selected models are close to those
based on the true models when T' is large. When T is small, in general, our model selection can
also achieve a smaller MSE than a single fixed model. Table 4D shows that the empirical coverage
and length of the 95% CI based on our selected model are comparable to those based on the true

models, especially when T is large.

9The results for 8 = i and % are avaiable upon request.
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3.4 Dynamic panel models with exogenous regressors

We consider the following dynamic panel DGPs with 5 exogenous regressors:

5
DGP 3.1: yiy = 1+ Byis—1 + > 0.2irj + i,
j=1

5
DGP 3.2: yyy =1+ Byi—1 + Z 0.225 j + a; + use,
i=1

5
DGP 3.3: yir =1+ ﬁyz‘,t—l + Z 0.2z ; + At + Uit
=1
5

DGP 3.4: yiy = 1+ Byi—1 + Z 0.2%415 + 0 + A¢ + wit,
=1

where ;11 = 1+ + M+ &y, and x4t 2, Tit 3, Tit 4, Tit,5, Qs Aty Ui and §;; are mutually independent

N (0,1) random variables, and 3 takes different values: %, % and %. Here the number of regressors
is k = 7 (including the constant).

Table 3A, 3B and 3C represent the frequency of the model selected for § = i, % and %,
respectively. The simulation results are similar to those in the dynamic models without exogenous
regressors. In general, our CV performs best, followed by AIC. Both CV and AIC can select the
correct model with a high probability, especially when the sample size is large. For example, when
(N,T) = (50,50) , the correct probabilities are all close to 100%. BIC performs poorly when the

true model is Model 2 or Model 4. BICs outperforms BIC, but still underperforms CV and AIC.

4 Empirical Applications

In this section we consider three empirical applications that illustrate the usefulness of our method

in selecting individual or time effects in panel data models.

4.1 Application I: Crime rates in North Carolina

Cornwell and Trumbull (1994) study the crime rates using the panel data on 90 counties in North
Carolina over the period 1981 — 1987. The vector of explanatory variables z;; includes: (1) the
probability of arrest, measured by the ratio of arrests to offences, (2) the probability of conviction
given arrest, measured by the ratio of convictions to arrests, (3) the probability of a prison sentence
given a conviction, measured by the proportion of total convictions resulting in prison sentences,
(4) the average prison sentence in days, (5) the number of police per capita, (6) the population
density, measured by the county population divided by the county land area, (7) the percentage
of young male, measured by the proportion of the county’s population that is male and between
the ages of 15 and 24, and (8 — 16) the average weekly wage in the county in the following nine

industries: (i) construction, (i¢) transportation, utilities and communication, (ii) wholesale and
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retail trade, (iv) finance, insurance and real estate, (v) services, (vi) manufacturing, (vii) federal
government, (viii) state government and (ix) local government. All the variables are in logarithm.
Hence we have a static panel with N =90, T'= 7 and k = 17 (including the constant). The same
dataset is also used in Baltagi (2006) and Wu and Li (2014).

Table 5 presents the values of AIC, BIC, BICsy, CV, CV*, and CV**, where the number of lags
p used in CV* and CV** is 1. All these methods determine that Model 4 (i.e., including both
individual and time fixed effects) is the correct model. We also apply AIC and BIC to determine
the number of lags p, both of which choose p = 0. Table 5 also reports the estimates and 95% Cls
for the coefficient on the probability of arrest.!’ We consider both the non-clustered and clustered
standard errors (SEs) where the clustered SEs are robust to the serial correlation in the error
terms. Based on the selected Model 4, the point estimate is around -0.355 and the coefficient is

significant at the 5% level.

4.2 Application II: Cross-country saving rates

Su, Shi, and Phillips (2016) use a dynamic panel data model to study the determinants of savings
rates. Following Edwards (1996), they let y;; be the ratio of savings to GDP for country ¢ in year
t, and let z; include (7) its CPI-based inflation rate, (i7) its real interest rate, (i) its per capita
GDP growth rate and (iv) its lagged saving rate, i.e., y;;—1. Their dataset includes 56 countries
over the period of 1995 — 2010. Hence, we have a dynamic panel data model with N = 56, T' = 15,
and k =5 (including the constant).

Table 6 shows the values of AIC, BIC, BIC; and CV. AIC, BIC; and CV all select Model
2, while BIC selects Model 1. Considering the poor performance of BIC in the simulations, we
conclude that Model 2 (i.e., including individual fixed effects only) is the correct model. Table 6
also present the estimation and inference results for the coefficient on the per capita GDP growth
rate.!! Given the dynamic specification, we report both the non-bias corrected and bias-corrected
results. The bias-correction is based on the half panel jackknife method as proposed in Dhaene
and Jochmans (2015). Based on the selected Model 2, the bias-corrected estimate is 0.178 with
the 95% CI of [0.074, 0.281].

4.3 Application III: Guns and crime in the U.S.

In the paper “Shooting down the ‘More Guns less Crime’ hypothesis”, Ayres and Donohue (2003)
consider how the “shall-issue” law affects the crime rates in the U.S., where the “shall-issue” law
refers to whether local authorities can issue a concealed weapon permit if the applicants meet
certain determinate criteria. So, here y;; is the crime rates for state ¢ in year t. Specifically, we

consider the logarithms of three measures of crime rates separately, namely, the violent crime

10The results for other coefficients are available upon request.
"' The results for other coefficients are available upon request.
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rate, the murder rate and the robbery rate, which are measured by incidents per 100,000 members
of the population. The key regressor in x; is the “shall-issue” variable, which is 1 if the state
has a shall-carry law in effect in that year and 0 otherwise. Other controls in z;; include (7) the
incarceration rate in the state in the previous year, which is measured by sentenced prisoners per
100,000 residents, (i) the population density per square mile of land area, divided by 1000, (i77)
the real per capita personal income in the state, in thousands of dollars, (iv) the state population,
in millions of people, (v) the percentage of state population that is male with an age between
10 and 29, (vi) the percentage of state population that is white with an age between 10 to 64
and (vii) the percentage of state population that is black with an age between 10 and 64. The
dataset contains 50 US states and the District of Columbia (N = 51) over the period of 1977 —
1999 (T = 23). The dataset is also discussed in the textbook by Stock and Watson (2012).

We consider a static panel model, where the dimension of x; is k = 9 (including constant).
Table 7 shows the results for three dependent variables separately. All the information criteria and
CV methods select Model 4 (i.e., including both individual and time fixed effects). The number
of lags p used in CV* and CV** is 1. We also apply AIC and BIC to determine the number of
lags p. Both AIC and BIC determine the same value of p, and choose p = 1, 0 and 1 for the three
dependent variables (the violent crime rate, the murder rate and the robbery rate), respectively.
In this application, the coefficient on the “shall issue” is often the parameter of interest. Table
7 also reports the estimation and inference results. We find that the effect of the “shall issue” is
not significant at the 5% level based on the selected Model 4. For example, when the dependent
variable is the logarithm of the violent crime rate, the estimate is -0.028 with the 95% CI of
[-0.106, 0.050] using the clustered SEs. In this application, whether to include individual fixed
effects makes a difference. If we do not include individual effects, the effects of the *“shall issue”
are in general negative and significant at the 5% level. However, after including individual fixed

effects, the significance is gone.

5 Conclusion

In this paper, we propose a jackknife method to determine fixed effects in panel data models
based on the leave-one-out cross validation (CV) criterion function. We show that when the
serial correlation and cross-sectional dependence in the error terms are weak, our new method
can consistently select the correct model. We also modify the CV criterion function to take into
account the strong serial correlation in the error term. Our simulations suggest that our new
method outperforms the methods based on the information criteria such as AIC and BIC. We
provide three empirical applications on (7) the crime rates in North Carolina, (i7) the determinants
of saving rates across countries, and (#77) the relationship between guns and crime rates in the
U.S.

Several extension are possible. First, our method can be extended to multidimensional panel
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data models where there are many ways of incorporating fixed effects (see, e.g., Balazsi, Matyas,
and Wansbeek (2017) for a review). Therefore, it is even more imperative to select an appropriate
specification of fixed effects in multidimensional panels. Second, given the fact that there is no
natural ordering along the cross-section dimension in general, it is not easy to extend our jackknife
method as in Section 2.3 to allow for strong or moderate degree of cross-section dependence in
the standard two-way or one-way panel. If cross-section dependence is a concern, one can follow
Bai (2009) and consider the determination of individual effects, time effects, and interactive fixed
effects (IFEs) in the following model

Yit = TpB + i + M + Vi ft + i,

where f; is an R x 1 vector of factors and «; is an R x 1 vector of factor loadings. The above
equation models the cross-section dependence explicitly. Conceptually, we can apply the jackknife
idea to the above models to select the number of factors and to determine the presence of ; and/or
A+ simultaneously. The major difficulty lies in the fact that after deleting one observation, the
panel data becomes unbalanced, which is not easy to deal with due to the presence of unobservable
factors (see, e.g., Bai, Liao and Yang (2015)). When the regressors also share the factor structure
as in Pesaran (2006), we conjecture that we can augment Models 1-4 by the cross-sectional means
of the dependent and independent variables and then apply our jackknife method. Alternatively,
we could model cross-sectional dependence using certain metric of economic distance, as in Conley

(1999). We shall explore these topics in our future research.
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Appendix

A Proofs of the main results

Let 6y = N~'4+T~'. To prove Theorem 2.1, we need the following six lemmas whose proofs can be found
in the online supplement.

Lemma A.1 Let Xp = (X, D) and Mp = In7—D (D’D)f1 D'. If both D'D and X' MpX are nonsingular,
then

, 1 X3 ~X3X'D(D'D)
(XDXD) = -1 -1 -1 -1
—(D'D)'D'XX} (D'D)'+(D'D)  D'XX5X'D(D'D)

where X7, = (X' MpX)™"

Lemma A.2 Let Xp = (X,D) and D = (D1, D3) where D{ Dy = 0. If D\ D1, DyDs, and X' MpX are all
nonsingular, then

X5 X3 By — X3 B,
(XpXp) "= | —BiX: (D{D)) '+ B X}B; B, X% B,
—By X}, By X} DB (DyD5) ™" + By X1 By

where X3 = (X'MpX)™" and By = X' Dy (D,Dy) " for t=1,2.

Lemma A.3 Suppose that Assumption A. 1(%2) holds. Then

(i) §U'Da (Do Do)~ DU = =% v 2. it = & Xila @ = Op((NT) ™),
(ii) NlTUID)\ (D4 DA) =T Zt 1 u? — u,, = % Zt:% u? — OP((NT)%)
(iii) NlTU, aX (DaADOU\) D//\U = N Zz 1 U z + %Zt:l ﬂ?t —2u? = N Zz 1w _2 + th 1 U

Op((NT)™).

Lemma A.4 Suppose that Assumptions A.1(iii) and A.2(%ii)-(iv) holds. Then
(i) NlTX/D (D,D,) ' DU = szvlszz Uy — T.0.. = Op(T~' + (NT)~1/2),
(i) 35 X'Dy (D4yDy)~ ID’U LT 1xt Uy, — .. _Op(N Ly (NT)1/2),
(m) 57X Dax (D'a/\Da,\) DU =+ Zi:l Tl + 5 thl Tp.Up. — 2%..4.. = Op(dNT)-

Lemma A5 Let n("’) 2 (X X )T XY and oy = 52 SN, SF L ()2 = LU/ X )
(X(m)/X(m)) ™'U form = 1,2,3,4. Suppose that Assumptions A.1(iii)-(iv) and A.2(iii)-(iv) hold.

Then

(i) Jint = Op((NT)™"),

(ii) Jont = % Zﬁv LU+ Op((NT)™H +T72),

(i6) Jant = 7 324 T +Op((NT)™! 4+ N7,

(iv) JanT = % 21:1 _12‘ + T Zt:l ~t+0P (5?\IT) ; JanT — JonT = % ZtT:1 a-2t +O0p (N72 + (NT)fl) ’
and JunT — J3NT = % leil ﬁg +Op (T_2 =+ (NT)_I) .

Lemma A.6 Let hl(-t x( ™)/ (X(m)'X(m)) Elﬂ) form = 1,2,3,4 and By = X'Dy (DyDy)~" for £ =

a, A, and a. Let max; ; = Maxi<;<N,1<t<T - Suppose that Assumption A.1(i), (ii) and (iv) holds. Then
(i) maxi; hyy) = Op((NT)~'/?),
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(11) h(2) T-1 Nﬁl + (244 — Badmit)'nga (zit — Bada,it) and max; ¢ hl(f) = O0p(T~' + (NT)~1/?),
(iii) hlf) = N'I2L oy (@ — Badai) X, (wie — Badaie) and maxi hlY = Op(N=1 + (NT)~1/2),
(iv) KD =71 NNl F NI (2 — Bandanie) X, (@it — Bardan,ir) and maxi; hl) =Op(dnr),
() 1 Xoies Yiy (@it = Badait) Xp, (#it = Bada,it) u} = Op((NT)™),
(vi) 5 SN S (@i — Badir)’ X5, (@it — Badx i) ujy = Op((NT)™1),
(vii) J7 Yt Yot (@i = Bardanie) Xp,_, (@it = Bardarae) ufy = Op((NT)™).
Proof of Theorem 2.1. Recall that B(m) = (X(m)'X(m))71 XM’y and BE?) = (X(m)’X(m)—xl(-:l)xl(-?)')_l
x (X (m)ry — :pgn)yit). By the updated formula for OLS estimation (e.g., Greene (2008, p.964)), we have for
m=1,2,34,

m) ~(m)

By~ B
m m m m)r\— m (M)
= (X( x(m — xgt )'Tz('t )/) 1(X( Y — Et )ylt) B

_ [(Xm)/X(m))‘l n % (X<m>’X<m>)_1 2 ) (X<m>'X<m>)_1] (XY — 2y — 3™

= _71()((’”)')((’")) (m>yzt+%(X<m>/X<m>)‘1$§¢>m5:z>f (X(’")'X(m))_lX(m)Y,(A.l)

T A

where hz(-;n) (m) (X(m)/X(m)) (m) . Below, we will use C'V} ,,, to denote the CV (m) when the true
model is given by Model | where I,m = 1,2,3,4. Let ¢;.m = (1 hl(-ln)) and ¢t 1m = Cit,i1Cit,m- By Lemma
A6, for l,m =1,2,3,4 we have

max " = Op (§nnr), max|cim — 1| = Op (Srunr) and max|ciim — 1| = Op (Sivr + Smnr), (A2)
where 81y = (NT) Y2, Sonr = T~ + (NT) V2, 6557 = N1+ (NT) "%, and Synr = Sy
Case 1: Model 1 is the true model. In this case, Models 2-4 are all overfitted and we will show that
P(CV11 < CVim) — 1 for m =2,3,4. When Model 1 is true, we have

-1
yie = Bt + i = B 4wy and B — g0 = (X(mVX(m)) Xy = B,

where the true values correspond to the coefficients of the dummies d, ;; and d ;¢ for @; and \; in 5("‘),
m = 2,3,4, are all zero. This, in conjunction with (A.1l), implies that for m = 1,2, 3,4,

m A(m) m m A(m) m 1 m m -1 m
B - By = el |3 = ) - — L () T ol
1-h¢
L1 (x> X<m>)*1$<,m>$(m>/ B
1— h(m) it it U
it
(m) (m)
(m)! pp(m) hiy hiy (m)/ py(m)
= z,; By’ - g + T By
R
hy L mygom)
= - : m Uit + m Ty BU ’
1— A 1A
and
Yit — yl(t ™ — Uit — $,(',Zn)/ (an) - ﬁ(m)) = Cit,m (uit - :EEZ")'Bém)) . (A3)

25



2
It follows that C'Vy,, = w7 Zf\; Zle (yit - ?Qz(tm)) = vF ZZ 1 Zt L Crm (uzt - x(m)/B(m)) We first

study CV; 2 — C'Vy 1. We make the following decomposition:

N T
1 ) .
Vo= Clis = 33 [ (=82 = (e —2"50) |
i=1 t=1
1 L& LW 2
(2)
= WZZ Cit2 — ztl u —TZZ[M( ) g ))
=t i=1 t=1
9 N
2)7 2 1)s 1
7NT Z Z |:C’L2t72uit$l('t) Bé) ZQt 1uZ ( ) B( )]
=1 t=1
- Al + 2 — 2A3’ Say_
For A;, we have
Al - zt 2 “5 1

1 2 2 1
C?t 12 (2 - hz('t) - hz('t)> (hz(‘t) - hz('t)) uzzt

= Al 1 — Al 2, Say.
For A; 1, we make the following decomposition:

N T
1 1 2 2
Ajp = NT Z Zczzt,IQ (2 - hz(t) - hl('t)> hz('t)ulzt

i=1 t=1

N T
i NI CURE A LRS- D IR CRURE AL

2 (=B

(1) u2

it Wit

g N T 1 T
= N Zzhzt zt+_TZZ Cit,12 — hgtz ?t—ﬁzcht,lz (h§:)+hgt2))h£‘t2)“2

i=1 t=1 3
= A+ A2 — 4.

I\
_

t=1 i=1 t=1

By Lemma A.6(ii) and (v) we can readily show that
2 a 1
SRS s D) (it (DeDa) ™ it + (@it = Badat) X, (wit — Badait)]

_T—lN_12NT 2~y Bodait) X}
- "N NT ZZ ‘ WZZ(%— ada,it) Xp, (@it =
T

This result, in conjunction with (A.2) and the dominated convergence theorem (DCT'), implies that Ay 12 =

op (T_l) and A 13 =op (T_l) . For A 2, we have by (A.2)

2 (1) -1 2
Arp < Hﬁxcz‘t,mp*hit - zt ‘ E E 2 (X'X) T wigug
’ i=1t=1

1

IN
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1 2 (1) (2) 1 2 2 -1
NT Hﬁxcit,u@ —hiy” = hip | | Amin WX/X NT ; §:1 [2it]|” ui = Op ((NT) ) :



It follows that Ay = 27! = Zivzl 23:1 u? +op (IT') . For Ay, we write

Ay = NTZZ( 2 )+%Zz(c§t72_1)($gt> g)) NTZZCm(n B<1>)

=1 t=1 i=1 t=1 i=1 t=1
= Ayq+ Aso — Ags, say.
By Lemma A.5(ii), Az1 = + Zf\il u? +Op((NT)~' +T72), where the first term is Op(T~'). This result,
in conjunction with (A.2) and the DCT, implies that Aso = op(T~!). By Lemmas A.5(i) and A.6(i),
Ay s = Op ((NT)™Y) . It follows that Ay = &+ SN a2 4+ 0p(T~1). For A3, we have

N T

1 2)7 (2)
As = ZZuztx@)/B(Q) — Z Cito — uit:rl(»t By,
NT i=1 t=1 NT = o
N T
o S S B oSS0 ) w5
i=1 t=1 i=1 t=1

= A3,1 + As2 — Asz + Az, say.
By Lemma A.5(i) and (ii), As1 = + Zf;l a2 +Op((NT)" ' +T72) and A3 3 = Op((NT)™!). In addition,
X /X(Q))_1 ’ LX@)UH L iV:ET: ‘
NT NT — e

(2)
) Op (1) Op((NT)"Y2)0p (1) = 0p(T™Y), and
(1)

2 1 -t 1 1 1 N T
il < sl =1l () [0 g2 23

=1 t=1

(2)
Ly~ Wit

Aaal < x|t 1| | (57
- Op (T*1+(NT)

(1)
Ly Uit

NT
—1/2
NT

= 0p ((NT)72) Op (1) Op((NT)"V3)0p (1) = 0p (T ).

So As = % Zi\[:l u? +op(T~1). Combining the above results, we have

T[CVigy—CVig] = NZZ Zu +op(1) 5252 — 52, (A.4)

i=1 t=1

where the convergence holds by Assumptions A.1(i) and A.2(i). Similarly, by using Lemma A.5(iii) and

Lemma A.6(i) and (iii), we can show that

N T T
N
N[CVis—CVi4] ZZult - TZa?tJroP 1) £ 252 — 52, (A.5)
i=1 t=1 t=1
where the convergence holds by Assumptions A.1(i) and A.2(ii).

By using Lemma A.5(iv) and Lemma A.6(i) and (iv), we can show that

N T

1 2
CVia-Chy = 45 ZZ |:Ci2t 1 (“zt — 2By )> — i (Uit - xz('g)/B((Jl)> ]
i=1 t=1
1 ii 1 Zi (@) p(4)) 2 (1) (1))
2 2 2
= = Cit,a — ztl t T~ |:Cit,4 (%t By, ) — Cit,1 (xit By; ) }
NT == NT ==
2 (1) g _ 2 1) (1)
“NT ZZ { Citalitiy By’ — Ciy 1wy By ]
-1
= Ay+ As —2Ag, say.

27



As in the analysis of A;, we can apply Lemma A.5(iv) and Lemma A.6(i), (iv) and (vii) to show that

N T
2
Ay = WZZth— it i +op (NTH+T71)
i=1 t=1
2 LKL [N-1 T-1 o ) IR
= WZZ W'Fw'i‘(%t Baxdax,it) Xp,, (xit — Baxdax,it) | ufy +op (N7'+T71)
=1 t=1
9 N T
- (T‘1+N_1)N SN ud +0p((NT) ) +op (NTH4T71)
=1 t=1
9 N T
= (TN 2 D uhtop (NI4T,
i=1 t=1
1 N T 1 N 1 T
45 = WZZ(:CE?’BSU) top (N 4T ) =D @+ ) @ top (N1 +T71),
=1 t=1 i=1 t=1
1 N T (2) (2) 1 N 1 T
/ —1 —1 —2 —2 —1 —1
Ag = ﬁi;;un & +op (N1 4T ):N;ui.+T;u,t+0p(N +7T71).
It follows that
9 N T 1 N 1 T
(NAT)[CVia=CVia] = (NAT) [T+ N 22y D upy — o > ui — 7 )@ | +op (1)
=1 t=1 =1 t=1

c1 = lim(y,7)—oo T , and the convergence holds by Assumptions A.1(i) and

where ¢ = lim(y 7)o (% %)
(A.6) yields P (CViy < CViym) — 1 for m = 2,3,4 provided max (62;,52,)

A.2(i)-(ii). Combining (A.4)-
< 262.

Case 2: Model 2 is the true model. In this case, Models 1, 3 and 4 are underfitted, misspecified and
overfitted, respectively, and we will show that P (CV22 < CVa,,) — 1 for m = 1,3,4. Let uq it = a; + s
and Uy = (Ua,11s e, Ua 1T -, Ua,N1, --s Ua,NT) . Note that Uy, = Doa + U where a = (aq,...,an_1)".
Following the steps to obtain (A.3), we can show that

. ~(1)
Yit — yz(tl) = Uq,it — %t (5# - 5(1)) = Cit,1 (u(x,it - ZE;,:B[(}N)) . (A.7)

where B = (XX (™)™ XU, for m = 1,2,3,4. Then

T

N
a 1 1)) 2
g (ua it — xztB )) ~7 E E Zt 11— (umit - x;tB(U(D = A7 + Ag, say.

1t=1 i=1 t=1

1
NT <

WE

CV271 =

.
Il

It is easy to show that by Assumptions A.1 and A.3(i)

2
(ai — 2, (X'X) " X Do+ gy — 2y (X'X) 7" X’U)

WE
B

Ar =

s
I
-
o~
Il
_

P _2
1t + OP ) — Ca, X + Oy-

I

3~ 3~
M=
[M]=
HMH

/ / =1 -/ 2 1 Y
(ai—xit(XX) XDag) N_Z

&
Il
—
~
I
—
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This result, in conjunction with (A.2) and the DCT, implies that Ag = op (1). In addition, we can follow
the analysis in Case 1 and readily show that CVs o = <= Zf\il Zthl uZ, +op (1) il 2. Tt follows that

OVoy — Vo 5 cox > 0. (A.8)

To study CV5 3, we observe that

Vit = 9 = e — 23 (3 —p® ) = Cit3 (ua,it — wgf)'B((i)) 7 (A.9)

and

o B® L oy @y 5@
2,3 = TZZ(uazt ) WZZ Cit,3 — (“azt Lit Ua)

i=1 t=1 i=1 t=1
Ag + Ay, say.

By Assumptions A.1(i), A.1(iii) and A.3(i), Lemmas A.4-A.5, and (A.2), we can readily show that

N T 2
1 ) .
a0 = 23 (ol (x0x) XD =B
o
= ﬁ Z Z (az - .CC (X(S)/X(d)) X(3)/DO¢Q> Z Z Uy + OP _> Ca, X + U
i=1 t=1 i=1 t=1
and Ao = op (1). It follows that
CVas — CVas B cax, > 0. A.10
) k) IEL DN
To study CV3 4, noting that
Yit — Qi(t) = Ui — (4)I (B — W ) = Cit4 (uzt — xﬁf)/ ((]4)> ) (A.11)
we have
1 L 4y (4)\ 2 2)r (2)\ 2
! !
CVoy—CVao = NT ZZ [Cu 4 (uzt - :c( ) B((J)> — Ch 2 (uit - :rz(t) B[(])) ]
i=1 t=1
I v 1 ¢ @) @) @1 1))
A !
= ﬁz 1t4 zt2 uzt+—TZZ|:Czt4( ) _Clzt,Q(mit BU>:|
i=1 t:l =1 t=1
N T
Z { Cit, aWit Ty B B(4) < 2“it$1('t2)/31(12)]
i=1 t=

= A+ A5 - 2A137 say.

Following the analysis of C'V; 4 —CV3 1 in Case 1 and applying Lemmas A.5(ii) and (iv) and A.6 and (A.2),

29



we can readily show that

N T
2
Au = =33 (h = nP) u +op (N7)
=1 t=1
2 L [T-1
= N7 ; ; { NT + (s — Baxda,\,it)/Xf)M (zit — Baxdanit) — (it — Badait) X5 (¥t — Bada,it)
“+op N_l)
5 N T
- IWZZ%HP ).
=1 t=1
L N ) L T
Moo= g2 |(BP) (w2 BE) | op (V) = £ 30 op () ana
i=1 t=1 t=1
L N L
A13 = —= ZZ |:’U,Zt$£?)/ — U4t ZIJS)/B( )i| +op (N 1) = ? Z’L_LQt + op (Nil) .
l:l t=1 t=1
It follows that
5 N T N
N[CVQA_CVZQ] = ﬁ;;Ui— T - +0p —>2512L—5'32, (A.12)

where the convergence holds by Assumptions A.1(i) and A.2(i
By (A.8), (A.10), and (A.12), we have P (CVa22 < CVa 1)
52, < 252.

)
— las (N,T) — oo for m =1, 3,4 provided

Case 3: Model 3 is the true model. This case parallels Case 2 and we can analogously show that

CVs1—CVss L conx > 0,
CVzo—CV33 L cenx., > 0,
T[CVss— CVis] 5252 — 52, > 0,

provided 2, < 262. Then P (CV33 < CV3,,) — 1 for m = 1,2, 4.

Case 4: Model 4 is the true model. In this case, Models 1-3 are underfitted and we will show that
P (CV474 < CV47m) — 1form =1,2,3. Let Uy, it = A+, Ug )it = i+ ituge, Uy = (U)\711, ey UN 1Ty +oey WA, N1,
..,U)\,NT)I, and U,y = (Ua)\,lla wees U\, 1T s ...,’uaA’Nl,...,’u.a)\’NT)/. Note that Uyy = Do + DA + U,
where A = (A1, .o, Ar_1). Let BYY = (XX (m) ™ Xtmrgy and BY™) = (X x(m) ™ Xmrg,y for
m = 1,2,3, 4. Following the steps to obtain (A.3), now we can show that

1)

Yit — gz(tl) = Ua\,it — zzt(ﬁ - B 1)) = Cit,1 (ua)\ it — B((jl)A) . (A13)

As in Case 2, we can show that by Assumptions A.1 and A.3(iii),
N T

2
_ 2 1 (1)
CVyy = E Cit,1 {ua/\,it - xz‘tBUQJ

1

“
Il
=

K2

1

H‘H §|”
= 1]
[M]=

N T
[ai-l-)\t—QT;t(XlX) X' (Da a—&—D}A] + ZZ s or(l
- i=1 t=1

2

o

1t

v =
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Similarly, we have by Assumptions A.1 and A.3(iii)

1 L& 2
CVir = 57 20 D cha e — ot B
i=1 t=1
1 N T 1 2
- NT Z Z {)‘t - %(f)l (X(Q)/X(Q)) X(Q)/D)\A:| + = Zuzt +op( L exnx., + 05
i=1 t=1 i=1 t=1
LNy @) 53>
CVas = NT Z Zczt 3 [Ua it = Ty BUJ
i1 t=1
1 N T 5 _1 2 1 N T .
, R ) B
= WZZ |:Oéi1‘z('t) (X(S)/X(3)> X(S)/Dag} +WZZu?t+OP (1) = ca,x, + 2,
i=1 t=1 i=1 t=1
and
1 L& (4)7 1(4) 1 S s P 2
CV44ZWZZCU§4|:U”5—Z'“ BUi| +NTZZU”+0P(1>—>U“
i=1 t=1 i=1 t=1

Then P(CVyy < CVyp) —1las (N, T) - o0 form=1,2,3. &

To prove Theorem 2.2, we introduce some notation and three new lemmas. The proofs of these lemmas

can be found in the online supplement. Let @; = (@i pi1, ..., i), U = (@, ..., o), 2; = (T gy ooy Us 1)
and Z = (2, ...,25\,)/ , where 1, , = u(4t) = (u(f‘),. ,ﬂgi)7p+1)’ fort =p,...,T —1. Let u; = (Wi pt1, -, Uir) s
U= (u),..,uy), z = (; 1y sy 1) and Z = (21, .y Zhy)", where iy = (Uity oy Ui —pr1) and iy =
Uit — Ui, — Ugp + .. for t = p,....,T — 1. Let §;z = yir — Ui- — Y.+ + ¥.., where g;., gt, and §.. are defined
analogously to #;., 4., and u... Let x(m) gn) —gl(-)n;llp where 25721 = (375721, " n p) form=1,2,3,4.

Lemma A.7 Suppose Assumptions A.1, A.2 and A.J hold. Then |p — p||=Op(pdnT)-

Lemma A.8 Let K,,nT = ﬁ Zfil Zf:p_H Uztfz'(ln) (X(m)’X(m))*l XU for m = 1,2,3,4. Suppose
that Assumptions A.1, A.2(iii)-(w), A.4(ii), and A.5(iii)-(iv) hold. Then

(i) KinT = Op ((NT)_l) ,

(ii) Kant = 72 Soiey Yot Vit + Op(NT) ™' +T72),

(iii) Ksnt = - 52000 S pgr v L)y + Op((NT) "+ N72),

(iv) Kanr = ‘I><1> zz Lt Vit + NI zl 1 Vit ®(L)y + Op(N~2 + T72), Kynr —
Kont = ¥ Yiy Zt:p+1 va®(L)i+Op(NT) ™' +N72), and Kanr—Ksnr = R S0, S04y virtli+
Op((NT)™ ' +T-2).

Lemma A.9 Let L,,NT = NT ZZ 1 Zt—p+1 ( ) (X(m)'X(m)) ("‘)'U)Q form =1,2,3,4. Suppose
that Assumptions A.1, A.2(iii)-(iv), A.4(iii), and A.5(m)—(w) hold. Then

(i) LinT = Op ((NT)*l)

(ii) Loyt = (2(1))° % XL, a2 + Op (NT)™ +T72)

(iii) LanT = 7= D[P (L) ) + Op((NT)™' + N72),

(iv) Lant = ((I)(l))2 % i= 1 U3 + Zt p+1[ (L)u..)*+Op (T72 + N72) s Lant —Lant = Tip Z15T:10+1
[®(L)u.¢)*> +Op (NT)™' + N72), and Lant — Lany = [®()]PL SN, @2 + Op (NT) ™ +T72).
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Proof of Theorem 2.2. Noting that (yit_ﬁlﬂi,tq) (Tse e fJ/ZQ( )1) (yu—p’gi’tfl)—(:z)gf”—p’g(j‘jl)

Zi,

+(p p) ( ’ET)l _Ei,t—l)’ we ha‘ve

T
ovim = > 3 [ a6 - )

N
Z Z (thnll - Qz’,t—1) [(y“ - p/gi,t—1> o (Qz(tm) p’yET)l)}

p i=1 t=p+1

CV" (m) + 5V (m) +2CV5 (m).

As in the proof of Theorem 2.1, we will use C'V;,, and C'V}%, (j) to denote CV* (m) and C'V}* (m) when
the true model is Model I. Note that CVy,, =377, CV/',, (j 7).

Case 1: Model 1 is the true model. In this case, Models 2-4 are all overfitted models and we will show
that P (CVy, < CVy,,) — 1 for m = 2,3,4. When Model 1 is the true model, we have by (A.3)

A (m) (m)r

(yit - P/wal) - (y@t - P/Q(?il) = cit,m[uit B(M) Z PjCz t—j,m uz t—j — x@ t— jB(M)]

27

= cit7m[vw—s~c§?)’35’">]+ijmt7m,j[ui,t_j e By, (A14)
j=1

where ¢y m = (1 — h(m)) s and 564 m ;= Cit.m — Cit—j,m form=1,2,3,4and j =1,...,p. By Lemma A.6,

we have
m%x|%it7m,j| =Op (0pnt) for m=1,234and j=1,...,p. (A.15)
Note that
1 N T p
OVin(l) = =3 3 b= S B4 e S 3 S sy~ o325
i=1 t=p+1 P =1 t=p+1 | j=1

N

2 - m m m
R O S 3 prciumramatoe — B B s — 52, B
P =1 t=p+1 j=1

= OV, (L) + OV, (1,2) +2CV7,, (1,3) , say

We first study CVy'y (1) — C'Vy*; (1) . Following the study of C'V; 2 — CVyy in the proof of Theorem 2.1, we
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can readily apply Lemmas A.8(i)-(ii) and A.9(i)-(ii), Assumptions A.4(ii) and A.5(i) to show that

N T
12 _%Z Z Vit ;. +0P )
1=1t=p

N
N T 9 N N
N2T,,Z > v§t+quj)\(fl) Zaf 2Tp§ ;@ ;. +op (1

Tp [CVI*Q (17 1) - CV1*71 (la 1)]

Il
=
'U.ﬂ >
]
E
So
+
S
=&
WE
S\

i=1 t=p+1 =1
N T N N
_ 2 2 Tp ~2 TP
S IDIEE D3t D LR SRNE
P =1 t=p+1 i=1 i=1
E) 26121 - 612)1)

where we use the fact that 7;. = Ti Z?:pﬂ Vit = Ti ZtT:pH (uit —u t_lp) = ®(1)u;. + Op (T‘l) . Simi-
p P El

larly, using (A.15) and following the analysis of C'V; 2 — CVy 1, we can readily show that T;,[CVy5 (1,2) —

cvyy (1,2)] = op (1) and T, [C’Vf:Q (1,3) — CcViy (1,3)} = op (1). It follows that T, [CVl’fQ (1) — cvyy (1)] LA
262 —52%,.

By (A.3) and (A.14),

N T
* (i) _ p)/ ~(m ~(m -
Cvl’m @) = NT, Z Z (gz(’,tll o gi,z‘/—1>(gz(‘,t21 - Qi,t,1>l(p - p)
P =1 t=p+1
p p
= Z Z(bjl_ph)(pjz ij)Dlm(]' ]1;,72) and
Jj1=1j72=1
~ N T
CV* (3) . (p*p)/ZZ(A(m) _ )(7 / ) (() ,(m))
b - NT, ) Yipo1 = Yipr) Wit =P Y44 Py
i=1 t=p+

Jji=1
where
N T
. . 1 m m m)/ m
Dim (Lj1,02) = w7 SN CiimimCiim oy — o0 BY i, — 2l BUY),
P =1 t=p+1

Dl,m (27j1)

Il
3-
M-

M=

N
Il
-
o~
I
hS]
+

Ci,t—jl,mcit,m[ui,t—ﬁ ( Y B(m)] [ it T $(;n)/B§]m):| )

Tit=j1
1

N T P
. 1
Dim(3.01) = 7 SN S piciijumsinm il g, — 2 BY e — 2l BV,
P =1 t=p+1j=1

As in the analysis of C'V; o — CV; 1, we can readily show that Dj 2 (1,51,72) — D11 (1,71,72) = Op (T‘l)
and Dy, (¢,51) = Op ((NT)_l) for £ = 2,3 uniformly in ji,jo = 1,...,p. Then by Lemma A.7
T, [CVi5(2) = CVyy (2)] = pllp—pl?Op (1) = Op(p*s3r) = op (1), and
T, [Cvﬁ (3) - Cvl*,l (3)] \/1_7 lp—pllOp(1) = OP(P3/25NT) =op(1).
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In sum, we have

9 N T N T N
T, [CViy = OV = NT,,Z > WPZ ) 2 [o: J*+op (1)
i=1 t=p+1 =1 =1
L 252 —52,. (A.16)

Similarly, by using Lemma A.8(i) and (iii), Lemma A.9(i) and (iii), Assumptions A.4(ii) and A.5(ii) we can
show that

9 N N T N T
T, [CVis — CVi4] ~7 Z G DT+ > B S(L)a +op (1)
Pi=1t=p+1 Pt=p+1 P =p+1

L 252 — 52, (A.17)

v

where we use the fact that 0., = Zz 1Vit = Zz 1 @ (L) uiy = ® (L) uy. By using Lemma A.8(iv) and
Lemma A.9(i) and (iv),

N T N T
2 1 1
R I R AR P D) ST TR LS o] Pt
P =1 t=p+1 i=1 P i=p+1
L2(1+4¢)52 — (62 + co2) 1{er > 1} — (2, +52,) 1{e1 < 1}, (A.18)

where ¢ = lim(n 1) 0 (Tﬂp A %) and ¢; = lim(y, 7)—00 7 T . Combining (A.16)-(A.18) yields P (CVy*;, < CVy',,)
— 1 for m = 2,3,4 provided max (53,,52,) < 20%.

Case 2: Model 2 is the true model. In this case, Model 1 is underfitted, Model 3 is misspecified, and
Model 4 is overfitted; and we will show that P (CVsy < CVy,,) — 1 for m = 1,3,4. Let uq, and Uy be
as defined in the proof of Theorem 2.1. Following the steps to obtain (A.7), we can show that

~(1 ~ 1
(e —93) =Py, — 8 ) = cinalua ijcn jaltait—s = %o BY)]

= i [®()a; + vy — # B + Z p;inn jltai—j — i BY](A.19)

j=1
where Bgz) = (X(m)'X(m))i1 X'y, for m =1,2,3,4. Then
T TR p
C‘/Q*,l = NT. Z Z C?t,l [@(1)0[1 + Vit — i’;tha)] NT Z Z ij}flt 1,5 ua it—j — z t ]B(l)]
P =1 t=p+1 P i=1t=p+1

N T D
2 N
e 2 D D cirasn (@) + vie = 8 B [uai—; — o, ;B
p 1
= Dg’l (1) + D271 ( ) + 2D2’1 (3) , Say.

It is easy to show that by Assumptions A.1, A.4(ii)-(iv), and A.6(i)

N N T
1 - 2 1
Daa(1) =5 D [0 =, (X'X) " X'Daa| + =37 7 vh+op (1) S el x +57
P p —t

i=1 t=p+1
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In addition, Dy (2) = op (1) for £ = 2,3. Thus CVy, = ¢}, x + 72. Following the analysis in Case 1 and
noting that

~ ~ 2 2
(yit - yz(tQ)) - Pl(£i7t,1 - _Eill) = GCit2 |:U/1t - xlf)l :| ZP]CZ t—j,2 |:uz t—j — E t)ljB( )]
1,t—J

= Cit2 {Uzt — &y B[(j2):| + ij%it,Q,j [Ui,t—j — ) -B((f)] ;
=1

we can readily show that CV5', = NLTP Zl 1 Zt—p+1 2 +op (1) il 2. Tt follows that

OV — OVi'y 5 et x > 0. (A.20)
To study CV5'3, noting that
(yit - :’QZ(?)) - P/(Qu_l - 25732_1) = Cit, 3[Ua it (3)/ Z P] Ci,t—3,3 Ua it—7g zl(i)ilBl(]i)]

= Cit,g[q)(l)az’ + v — v(3)/3(3) +Zp]%1t 3,5 [Ua it—j — (3)/ B(B)] (AQl)

1t]
Jj=1

we can follow the analysis of CV5'; and show that by Assumptions A.4(ii)-(iv) and A.6(i)

C VQ”: 3 -

2| -
3

M-
E

i
5
il
bS]
43
=

_ 2
~(3 9
_(yit - yz(t)) - p/(gi,t_1 o Qz('i)—l)}

r 2
S(L)a; + vig — ffz(f)lBg} +op (1)

I
==
hS]
-

<
Il
—
~
Il
=
+
=

Il
M-
[M]=

2
B (B3 @)
(1) — &5y (X X ) X Dag] NT Z Z vZ +op (1

i=1t=p+1 "~ =1 t=p+1
P =2
- COC,X)\ + O—'lﬂ
It follows that
* x Pk
CVyy —CVyy =i x, >0. (A.22)
To study CV5'y, noting that
4 (W 5\ (W p)
~ ~ / /
(i — 9%)) — P,y — yE? D= cialui =y Byl =Y piciejaluin —a) By
j=1
4)1 (4 - 4 4
v /
= cipalvi — 5B+ > by agluie; — 3?1(-,27]-31(])]7 (A.23)
j=1
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we have

CVyy — CV3y
L« v @7 ()2 L) ()2
o /
- NT Z Z [C?M (vzt — ;. By, ) —c?m (Ult —I;; By ) }
P =1 t=p+1
1 N T P » 2
JrNT Z ij%itA,j (Wi e—j — 1(4,5) JB(4)] — ij%mgd (Wi t—; f:rz(-i)ijB[(f)]
P i=1t=p+1 j= j=
9 N T p
I IR [C”A”M,j (vie — &5t By Vs — @iy’ By
P i=1t=p+1 j=1
—Cit 21,2, (Vit — x@)IB((J))(ui,tﬂ EQt)/JB(Q))}

= D2,4 ( ) + D274 ( ) + 2D2,4 (3) , say.

For Ds 4 (1), we make further decomposition:

N T
Dyy(1) = Z Z it,4

z NT Z Z [M( (4)/3(4)) 022”'( (2)/3(2)) ]

=p+1 =1 t=p+1
9 N T
o (4) 2)1 2
“NT Z Z [?tzixgt é) Czt2 Et)B( )}
P i=1t=p
= _D24(17 )+D2,4 (1,2)—2D2,4 (1,3), [Steh

Following the analysis of C'Vy*y — CV{"; in Case 1 and that of C'V5 4 — C'Va ;1 in the proof of Theorem 2.1,
and applying Lemmas A.8(ii) and (iv) and A.9, (A.2) and (A.15), we can readily show that

D) N T
Daa(1,1) = NT,,Z > v top(N7Y),
i=1 t=p+1
1 S S 1@ p@h2 o2 (@) 1 1 _ o 1
Dyq(1,2) = NTpZ > @ BY)? - (@7 B+ op (N ):E > [®(L)ad’ +op (N7,
i=1 t=p+1 t=p+1
N T N T
1 5 1
Dyu(1,3) = S5 wlil B — 5@ BP) + op (N Y vu@(L)us +op (N7
NTp i=1 t=p+1 NTp i=1 t=p+1

It follows that N - Dy 4 (1) = 5% S, S i v = A VA Y [ — B(L)ae)* +op (1)
Similarly, we can show that Dj 4 (ﬁ) =op (N71) for ¢ = 2 3. Consequently, we have by Assumptions A.4(ii)

and A.5(ii)

N T
N [CV;4 _C‘/sz] = NQT Z Z vl Z v2 +op (1 Kt 262 — 52,. (A.24)
=p+

P =1 t=p+1 Pt =p+1

By (A.20), (A.22), and (A.24), we have P (CVyy < CVy,,) — L as (N,T) — oo for m = 1, 3,4 provided
=2 =2
Opo < 20%.

Case 3: Model 3 is the true model. This case parallels Case 2 and we can follow the analysis in Case
2 and show that P (CVy'3 < CVy,,) — 1 for m = 1,2,4. The details are omitted for brevity.
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Case 4: Model 4 is the true model. In this case, Models 1-3 are underfitted and we will show that
P (CV4’f4 < C’Vj:m) — 1form =1,2,3. Let uy it, Uax,it; Ux, and Uy be as defined in the proof of Theorem
2.1. Following the steps to obtain (A.14), now we can show that

~(1 ~
(i =) =P, — 31 )

= cialtani — T4 BY 1= picii—jiluanii—s — 7he ;BY) ]
1 u 1
= ciua[®(1)ay; + (L) + vie — l’ztB( ) ]+ ij%it,l,j [Uanit—i — $;7t—jB[(j(3)\]a (A.25)
j=1

where B[(]T:i = (X(m)’X(m))_1 X for m =1,2,3,4. As in Case 2, we can show that by Assumptions
A.4(ii)-(iv) and A.6(iii),

N T
* v 1
cvy = N Z Z { (Da; + ®(L)A — &, (X' X) ' X' (Da a+D>\)\] + 57 SN vhtor(1)
i=1 t=p+1 P =1 t=p+1
E’CZ)\,X‘i’O_'U.
Similarly, we have
;N T " = 12 ;| X7
* o !
Vi, = NTpZ 3 |e@n - & (X@)/X(?)) XD+ NTPZ S w2 top(l
i=1t=p+1 *+ - i=1 t=p+1
i c;,XQ + 612;7
1N T @ 4 12 ;] N7
o o 5 B3 x (3 (3)
Vi, = NTp;t:Xpil (i — ] (X X ) XO'Dag| + NTp;t:szlvn—&—oP

* N T P * *
and CVyy = NlTp Doim1 Yotmpi1 Vip + 0P (1) = 5. Then P (CVyy <CVy,) — 1 as (N,T) — oo for
m=1,2,3 N
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Table 1A: Frequency of the model selected: static panels, p =0

True M Model 1 Model 2 Model 3 Model 4
Selected M M1 M2 M3 M4 M1 M2 M3 M4 M1 M2 M3 M4 M1 M2 M3 M4
(N,T)
(10,5) .80 .06 .11 .03 .04 .74 .02 .20 .05 .01 .82 .13 .06 .05 .04 .86
(50,5) .90 0 .10 O 0 .84 0 .16 01 0 99 0 0 0 0 1
AIC (10,10) .90 .06 .04 .01 .01 .91 0 .08 .01 0 .90 .09 0 .01 .01 .98
(50,10) .96 0 .04 O 0o .93 0 .07 0 0 1 0 0 0 0
(10,50) .97 .03 0 0 0 1 0 0 0 0 .95 .05 0 0 0
(50,50) 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0
(10,5) .99 0 .01 O 49 .46 .04 .01 23 0 .T7 0 74 .02 .06 .18
(50,5) 1 0 0 0 b1 0 49 0 03 0 .97 0 b2 0 48 0
BIC (10,10) 1 0 0 0 14 86 0 0 20 0 .80 O 74 .03 .01 .22
(50,10) 1 0 0 0 41 .39 20 O 0 0 1 0 54 0 41 .05
(10,50) 1 0 0 0 0 1 0 0 35 .28 .37 0 40 56 0 .04
(50,50) 1 0 0 0 0 0 0 0 0 1 0 0 0 0 1
(10,5) .44 .20 .17 .20 0 .59 .01 .41 .02 .02 .56 .40 0 .04 .01 .95
(50,5) .85 .01 .14 .01 0o .76 0 .24 0 0 .98 .02 0 0 0 1
BIC, (10,10) .65 .13 .16 .06 0 .74 0 .26 0 0 .76 .24 0 0 0 1
(50,10) .93 0 07 0 0 90 0 .11 0 0 1 0 0 0 0 1
(10,50) .94 .06 O 0 0 1 0 0 0 0 .90 .10 0 0 0 1
(50,50) 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1
(10,5) .87 .03 .10 O .08 .80 .03 .08 .07 .01 .90 .03 .15 .07 .08 .70
(50,5) 90 O 10 0 0 .90 .01 .09 01 0 1 0 0 0 .02 .98
CvV  (10,10) .93 .04 .03 O .01 96 0 .03 01 0 .95 .04 .01 .02 .01 .96
(50,10) .96 0 04 0 0 97 0 .04 0 0 1 0 0 0 0 1
(10,50) .97 .03 0 0 0 1 0 0 0 0 .98 .02 0 0 0
(50,50) 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0
(10,5) 61 .26 .09 .04 03 .83 .02 .12 .07 .04 .65 .24 .09 .11 .04 .77
(50,5) .79 .12 .08 .01 o .89 0 .11 0 0 .87 .12 0o .01 0 .99
cv*  (10,10) .81 .14 .04 .01 01 .94 0 .05 .01 .01 .86 .13 .01 .02 .01 .96
(50,10) .94 .01 .05 O 0 .94 0 .06 0 0 .99 .01 0 0 0
(10,50) .96 .04 O 0 0 1 0 0 0 0 .96 .04 0 0 0
(50,50) 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0
(10,5) 79 .08 .12 .02 35 .46 .12 .07 15 .02 .75 .08 17 .08 41 .34
(50,5) .89 0 .11 O 16 .49 .30 .06 01 0 .99 0 .02 .01 .52 .46
cv** (10,10) .88 .08 .04 .01 04 .90 .01 .04 .02 0 .90 .07 .02 .03 .12 .83
(50,10) .95 0 .05 O 0 95 0 .05 0 0 1 0 0 0 .01
(10,50) .97 .03 0 0 0 0 0 0 0 .97 .04 0 0 0
(50,50) 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0
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Table 1B: Frequency of the model selected: static panels, p = 1/4

True M Model 1 Model 2 Model 3 Model 4
Selected M M1 M2 M3 M4 M1 M2 M3 M4 M1 M2 M3 M4 M1 M2 M3 M4
(N,T)
(10,5) .53 .31 .06 .10 .02 .78 .01 .20 .03 .02 .51 .43 .02 .06 .02 .91
(50,5) .69 .20 .06 .05 0o .82 0 .18 01 0 .73 .26 0 0 0 1
AIC (10,10) .61 .32 .03 .04 .01 .89 0 .10 .01 0 .58 .42 0 .01 .01 .98
(50,10) .76 .19 .03 .02 0 .92 0 .09 0 0 77 .24 0 0 0 1
(10,50) .72 28 0 0 0 1 0 0 0 0 .63 .37 0 0 0 1
(50,50) .86 .15 O 0 0 1 0 0 0 0o .83 .17 0 0 0 1
(10,5) .98 .02 .01 0 36 .61 .02 .01 25 .01 .72 .03 .61 .04 .05 .30
(50,5) 1 0 0 0 b3 .01 46 O 03 0 .97 0 b5 0 45 0
BIC (10,10) 1 0 0 0 11 .89 0 0 24 0 .75 .01 .65 .05 .01 .29
(50,10) 1 0 0 0 31 .59 10 O 0 0 1 0 b1 0 .33 .16
(10,50) 1 0 0 0 0 1 0 0 37039 24 0 38 .60 0 .02
(50,50) 1 0 0 0 0 0 0 0 0 1 0 0 0 0 1
(10,5) .20 .40 .07 .33 0 .58 0 41 .01 .02 .23 .74 0O .03 0 .96
(50,5) .40 .41 .05 .14 0o .76 0 .24 0 0 .42 .58 0 0 0 1
BIC, (10,10) .34 .43 .08 .16 0 .74 0 .26 0 0 .37 .63 0 0 0 1
(50,10) .59 .33 .04 .04 0O .89 0 .11 0 0 .59 41 0 0 0 1
(10,50) .65 .35 O 0 0 1 0 .01 0 0 .54 .46 0 0 0 1
(50,50) .88 .12 0 0 0 1 0 0 0 0o .87 .13 0 0 0 1
(10,5) 67 .24 .06 .03 04 .86 .02 .09 .05 .02 .69 .24 .09 .06 .05 .80
(50,5) .84 .08 .06 .01 0 90 0 .10 01 0 .90 .09 0 0 0 1
cv  (10,10) .69 .27 .03 .01 01 95 0 .04 .01 .01 .71 .27 0o .02 .01 .97
(50,10) .84 .13 .03 .01 0 .95 0 .05 0 0o .87 .13 0 0 0 1
(10,50) .73 27 0 0 0 1 0 0 0 0 .72 .28 0 0 0
(50,50) .87 .13 0 0 0 1 0 0 0 0o .87 .13 0 0 0
(10,5) 47 41 .06 .06 04 .82 .02 .12 .04 .06 .50 .39 .07 .10 .04 .80
(50,5) 51 .40 .04 .04 0 .90 o0 .11 0 0 .56 .43 0 0 0 1
cv*  (10,10) .74 21 .04 .02 01 .94 0 .05 .01 .01 .77 21 .01 .02 .02 .95
(50,10) .90 .05 .05 O 0 95 0 .05 0 0 .95 .05 0 0 0
(10,50) .95 .05 0 0 0 1 0 0 0 0 .95 .05 0 0 0
(50,50) 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0
(10,5) 75 .12 .11 .03 46 .36 .12 .06 A2 .02 .75 .11 13 .06 .53 .28
(50,5) .89 .01 .11 0 33 .26 .37 .03 01 0 .98 .01 01 0 .75 .24
cv** (10,10) .86 .09 .04 .01 18 .74 .04 .03 .02 .01 .89 .09 .02 .02 .35 .61
(50,10) .95 0 .05 O 03 .87 .06 .05 0 0 1 0 0 0 .18 .82
(10,50) .96 .04 0 0 0 1 0 0 0 0 .96 .04 0 0 0
(50,50) 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0
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Table 1C: Frequency of the model selected: static panels, p = 1/3

True M Model 1 Model 2 Model 3 Model 4
Selected M M1 M2 M3 M4 M1 M2 M3 M4 M1 M2 M3 M4 M1 M2 M3 M4
(N,T)
(10,5) .41 .42 .05 .13 .01 .78 .01 .20 .03 .03 .38 .56 .02 .05 .01 .92
(50,5) .41 .46 .03 .10 0o .83 0 .17 0 0 .41 .59 0 0 0 1
AIC (10,10) .47 .44 .03 .06 .01 .89 0 .11 .01 0 .44 .55 0 .01 .01 .98
(50,10) .45 49 .02 .04 0 91 0 .09 0 0 .44 .56 0 0 0 1
(10,50) .57 43 0 0 0 1 0 0 0 0 .48 .52 0 0 0 1
(50,50) .63 47 0 0 0 1 0 0 0 0 .49 .51 0 0 0 1
(10,5) .95 .04 .01 O 31 .66 .02 .01 27 .01 .67 .05 b5 .05 .04 .36
(50,5) 1 0 0 0 b5 .02 43 0 04 0 97 O bS7T 0 43 0
BIC (10,10) .99 .01 © 0 10 .90 0 0 27 .01 .70 .01 .61 .06 .01 .32
(50,10) 1 0 0 0 28 .65 .07 O 0 0 1 0 49 0 .29 .22
(10,50) 0 0 0 0 1 0 0 38 45 17 0 37 61 0 .02
(50,50) 0 0 0 0 0 0 0 0 1 0 0 0 0 1
(10,5) .14 .45 .05 .36 0 .58 0 .42 .01 .02 .16 .81 o .03 0 .97
(50,5) .15 .63 .02 .20 0o .76 0 .24 0 0 .15 .85 0 0 0 1
BIC; (10,10) .24 .52 .05 .20 0 .74 0 .25 0 0 .25 .75 0 0 0 1
(50,10) .28 .62 .02 .09 0o .89 0 .12 0 0 .28 .72 0 0 0 1
(10,50) .47 52 .01 O 0 99 0 .01 0 0 .41 .59 0 0 0 1
(50,50) .60 .40 O 0 0 1 0 0 0 0 .56 .44 0 0 0 1
(10,5) .55 .36 .05 .04 03 .87 .01 .09 .05 .03 .57 .35 .07 .08 .04 .82
(50,5) .64 .29 .05 .03 0O 90 0 .11 .01 0 .68 .31 0 0 0 1
CvV  (10,10) .54 .42 .02 .02 01 .94 0 .05 .01 .01 .57 41 0o .02 .01 .97
(50,10) .55 41 .02 .02 0 .95 0 .05 0 0 .58 .42 0 0 0 1
(10,50) .58 42 0 0 0 1 0 0 0 0 .58 .43 0 0 0
(50,50) .56 .44 0 0 0 1 0 0 0 0 .56 .44 0 0 0
(10,5) .42 47 .05 .07 03 .84 .02 .12 .04 .06 .44 47 .06 .09 .04 .81
(50,5) .38 .53 .03 .07 0o .89 0 .11 0 0 .41 .58 0 0 0 1
cv*  (10,10) .69 .25 .04 .02 02 .93 0 .05 0r 0 .73 .26 .01 .02 .02 .95
(50,10) .87 .08 .04 .01 0 95 0 .05 0 0 .91 .09 0 0 0
(10,50) .95 .05 0 0 0 1 0 0 0 0 .94 .06 0 0 0
(50,50) 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0
(10,5) .73 .14 .11 .03 48 .35 .12 .06 A1 .03 .74 .13 11 .06 .55 .28
(50,5) .88 .01 .11 0 38 .23 .37 .03 01 0 .98 .01 0L o0 .79 .19
cv** (10,10) .84 .11 .04 .01 25 .67 .05 .03 .01 .01 .88 .10 .02 .01 .45 .52
(50,10) .95 0 .05 O .09 .75 .13 .03 0 0 1 0 0 0 .34 .66
(10,50) .96 .04 0 0 0 1 0 0 0 0 .96 .04 0 0 0
(50,50) 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0
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Table 1D: Frequency of the model selected: static panels, p =1/2

True M Model 1 Model 2 Model 3 Model 4
Selected M M1 M2 M3 M4 M1 M2 M3 M4 M1 M2 M3 M4 M1 M2 M3 M4
(N,T)
(10,5) .18 .62 .02 .18 01 77 0 .22 .02 .03 .17 .78 .01 .05 .01 .94
(50,5) .02 .79 0 .19 0 .81 0 .19 0 0 .02 .98 0 0 0 1
AIC (10,10) .21 .68 .01 .10 .01 .87 0 .12 0 .01 .18 .81 0o .02 0 .98
(50,10) .04 87 0 .09 0 91 0 .09 0 0 .03 97 0 0 0
(10,50) .27 .72 0 0 0 1 0 0 0 0 .22 .78 0 0 0
(50,50) .04 .96 O 0 0 1 0 0 0 0 .03 .97 0 0 0
(10,5) .78 21 0 .01 21 .t .01 .02 27 .04 .47 22 42 .08 .03 .47
(50,5) 1 0 0 0 b5 .16 .30 0 05 0 95 0 62 0 .33 .05
BIC (10,10) .89 .11 0O 0 .09 91 0 0 36 .04 .49 .10 b1 12 .01 .36
(50,10) 1 0 0 0 20 .78 .02 O 01 0 1 0 43 0 .16 .42
(10,50) .98 .02 0 0 0 1 0 0 39 58 .03 O 37 62 0 .01
(50,50) 1 0 0 0 0 0 0 0 0 1 0 0 0 0 1
(10,5) .05 .55 .02 .39 0 .59 0 41 0 .02 .05 .93 o .02 0 .97
(50,5) o 7% 0 .25 0o .75 0 .25 0 0 0 1 0 0 0 1
BIC, (10,10) .08 .67 .02 .23 0 .74 0 .25 0 .01 .09 .90 0o .01 0 .99
(50,10) .01 .87 0 .12 0O .88 0 .13 0 0 .01 .99 0 0 0
(10,50) .22 .77 0 .01 0 99 0 .01 0 0 .18 .82 0 0 0
(50,50) .06 .94 0 0 0 1 0 0 0 0 .04 .96 0 0 0
(10,5) .28 .63 .03 .07 02 .89 0 .09 .04 .06 .30 .61 .03 .08 .02 .87
(50,5) .07 .82 .01 .11 0O .88 0 .12 0 0 .08 .92 0 .01 o0 1
Ccv  (10,10) .25 .69 .01 .05 01 .93 0 .06 .01 .02 .28 .69 0o .03 .01 .97
(50,10) .06 .88 0 .06 0 .94 0 .06 0 0 .06 .94 0 0 0
(10,50) .28 .72 0 0 0 1 0 0 0 0 .29 71 0 0 0
(50,50) .04 .96 O 0 0 1 0 0 0 0 .05 .95 0 0 0
(10,5) .28 .61 .04 .08 03 .84 .01 .12 .03 .06 .31 .61 .04 .09 .04 .84
(50,5) .13 .76 .01 .10 0O .88 0 .12 0 0 .14 .85 0 0 0 1
cv*  (10,10) .58 .36 .03 .03 03 .91 0 .06 .01 .01 .61 .37 .01 .01 .03 .95
(50,10) .69 .26 .03 .01 0 95 0 .05 0 0o .74 27 0 0 0
(10,50) .91 .09 0 0 0 1 0 0 0 0 .90 .10 0 0 0
(50,50) 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0
(10,5) .67 .20 .10 .04 50 .34 .11 .05 .08 .04 .70 .19 .09 .05 .58 .28
(50,5) .86 .03 .11 0 49 .20 .29 .02 .01 0 .96 .04 .01 0 .82 .17
cv** (10,10) .81 .14 .04 .01 42 .51 .05 .02 .01 .01 .84 .14 .01 .01 .58 .40
(50,10) .95 .01 .05 0 31 .44 .23 .02 0 0 .99 .01 0 0 .69 .31
(10,50) .95 .05 0 0 0 0 0 0 0 .96 .04 0 0 .02 .98
(50,50) 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1
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Table 1E: Frequency of the model selected: static panels, p = 3/4

True M Model 1 Model 2 Model 3 Model 4
Selected M M1 M2 M3 M4 M1 M2 M3 M4 M1 M2 M3 M4 M1 M2 M3 M4
(N,T)
(10,5) .02 .77 0 .21 .01 .78 0 .21 0 .05 .02 .93 0O .05 0 .94
(50,5) 0 80 0 .20 0 .80 0 .20 0 0 0 1 0 0 0 1
AIC (10,10) .01 .84 0 .14 0O .85 0 .15 0 .03 .01 .96 0o .03 0 .97
(50,10) 0 .87 0 .13 o .87 0 .13 0 0 0 1 0 0 0 1
(10,50) .02 95 0 .03 0o 97 0 .03 0 .01 .01 .98 o .01 0 .99
(50,50) 0 .98 0 .02 0 .98 0 .02 0 0 0 1 0 0 0 1
(10,5) .20 .77 0 .03 05 .91 0 .04 11 .16 .10 .63 13 .18 .01 .68
(50,5) .52 48 0 .01 .06 .93 .01 .01 .06 .01 .44 .50 .10 .02 .03 .86
BIC (10,10) .24 .75 0 .01 .04 95 0 .01 .19 .36 .08 .38 19 .38 .01 .42
(50,10) .47 .53 0 0 01 99 0 0 02 0 .42 .56 06 .01 0 .94
(10,50) .47 .53 0 0 0 1 0 0 25 76 0 0 23 170 0
(50,50) .77 .23 0 0 0 0 0 0 0 .74 .26 0 0 0 1
(10,5) .01 .61 0 .38 0 .62 0 .38 0o .02 .01 .97 0o .02 0 .98
(50,5) o 7% 0 .25 0o .75 0 .25 0 0 0 1 0 0 0 1
BIC, (10,10) 0 .74 0 .26 0 .74 0 .26 0 .01 .01 .98 0o .01 0 .99
(50,10) 0 .84 0 .16 0 .84 0 .16 0 0 0 1 0 0 0
(10,50) .01 94 0 .05 0 95 0 .05 0 .01 .01 .99 0 .01 o0
(50,50) 0 .98 0 .02 0 .98 0 .02 0 0 0 1 0 0 0
(10,5) .04 85 0 .11 .01 .88 0 .11 .01 .08 .04 .87 .01 .08 .01 .91
(50,5) 0 87 0 .13 o .87 0 .13 0 0 0 1 0 0 0 1
cv  (10,10) .02 .90 .01 .08 0 .92 0 .08 .01 .06 .03 .91 0 .06 0 .94
(50,10) 0 .91 0 .09 0 .91 0 .09 0 0 0 1 0 0 0 1
(10,50) .02 .96 0 .02 0O .98 0 .02 0 .02 .03 .95 0 .02 0 .98
(50,50) 0 .98 0 .02 0 .98 0 .02 0 0 0 1 0 0 0 1
(10,5) .10 .77 .01 .12 .02 .84 .01 .13 .01 .07 .11 .81 .02 .08 .03 .88
(50,5) 0o 87 0 .12 0o .88 0 .12 0 0 0 1 0 0 0 1
cv*  (10,10) .30 .63 .02 .04 .04 .90 0 .07 01 0 .32 .68 0 .01 .05 .94
(50,10) .15 .79 .01 .05 0 .94 0 .06 0 0 .17 .83 0 0 0
(10,50) .71 29 0 0 01 99 0 0 0 0 .68 .32 0 0 0
(50,50) .96 .04 O 0 0 1 0 0 0 0 .96 .04 0 0 0
(10,5) .56 .31 .08 .06 49 .36 .09 .06 .06 .05 .61 .29 .06 .05 .58 .31
(50,5) .66 .22 .09 .03 b2 .30 .15 .04 0 0 .76 .23 0o .01 .69 .30
cv** (10,10) .66 .29 .03 .02 b3 .41 .04 .02 .01 0 .73 .26 01 0 .64 .36
(50,10) .87 .09 .04 0 .65 .23 .11 .01 0 0 .91 .09 0 0 .82 .19
(10,50) .92 .08 0 0 32 .68 0 0 0 0 .93 .07 0 0 .52 .48
(50,50) 1 0 0 0 16 .84 0 0 0 0 1 0 0 0 .51 .49
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Table 2A: Frequency of the model selected: dynamic panels without exogenous regressors, 5 = 1/4

True M Model 1 Model 2 Model 3 Model 4
Selected M M1 M2 M3 M4 M1 M2 M3 M4 M1 M2 M3 M4 M1 M2 M3 M4
BN
(10,5) .66 .19 .08 .08 04 74 0 21 .05 .01 .65 .29 0 .05 .04 .91
(50,5) .88 .03 .08 .01 0 .85 0 .15 0 0 .95 .04 0 0 0 1
AIC (10,10) .85 .10 .04 .02 01 .91 0 .09 01 0 .8 .15 0 .01 0 .99
(50,10) .96 0 .04 O 0 .93 0 .07 0 0 .99 .01 0 0 0 1
(10,50) .95 .05 O 0 0 1 0 0 0 0 .92 .08 0 0 0 1
(50,50) 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1
(10,5) .99 0 0 0 .71 .27 .01 .01 21 0 .79 0 14 .04 56 .27
(50,5) 1 0 0 0 1 0 0 0 03 0 97 0 02 0 98 0
BIC (10,10) 1 0 0 0 41 .59 0 0 A1 0 .89 0 .07 .05 .31 .57
(50,10) 1 0 0 0 1 0 0 0 0 0 1 0 0 0 1 0
(10,50) 1 0 0 0 0 1 0 0 08 0 92 0 0 .08 0 .92
(50,50) 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1
(10,5) .28 .34 .10 .28 0 .60 0 .40 .01 .01 .36 .62 0 .02 0 .98
(50,5) .71 .15 .09 .05 0o .78 0 .22 0 0 .79 .21 0 0 0 1
BIC; (10,10) .57 .22 .12 .09 0o .76 0 .24 0 0 .65 .34 0 0 0 1
(50,10) .92 .02 .06 O 0o .89 0 .11 0 0 .97 .03 0 0 0 1
(10,50) .93 .07 0 0 0 1 0 0 0 0 .89 .12 0 0 0 1
(50,50) 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1
(10,5) .79 .12 .08 .02 .09 .80 .01 .10 .07 .01 .81 .12 .01 .07 .13 .79
(50,5) .91 .01 .08 O 0 .92 0 .08 01 0 .99 .01 0 0 .01 .99
Cv (10,10) .89 .08 .03 .01 01 .95 0 .04 01 0 .91 .08 0 .01 .01 .98
(50,10) .96 0 .04 O 0 96 0 .04 0 0 1 0 0 0 0 1
(10,50) .96 .05 O 0 0 1 0 0 0 0 .96 .05 0 0 0 1
(50,50) 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1
Table 2B: Frequency of the model selected: dynamic panels without exogenous regressors, 8 = 1/2
True M Model 1 Model 2 Model 3 Model 4
Selected M M1 M2 M3 M4 M1 M2 M3 M4 M1 M2 M3 M4 M1 M2 M3 M4
N,T)
(10,5) .56 .27 .06 .11 .06 .73 .01 .21 .04 .02 .54 40 .01 .04 .06 .90
(50,5) .78 .12 .07 .03 0 .85 0 .15 0 0 .84 .15 0 0 0 1
AIC (10,10) .80 .14 .04 .02 01 91 0 .09 01 o0 .78 .22 0 .01 .01 .99
(50,10) .94 .02 .04 O 0 .93 0 .07 0 0 .98 .02 0 0 0 1
(10,50) .95 .05 O 0 0 1 0 0 0 0 .92 .09 0 0 0 1
(50,50) 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1
(10,5) .98 .01 0 0 .82 .17 .01 .01 21 0 .78 .02 .15 .03 .65 .18
(50,5) 1 0 0 0 1 0 0 0 02 0 .98 0 02 0 98 0
BIC (10,10) 1 0 0 0 76 .24 0 0 12 0 .88 0 10 .02 .64 .24
(50,10) 1 0 0 0 1 0 0 0 0 0 1 0 0 0 1 0
(10,50) 1 0 0 0 0 1 0 0 09 0 .92 0 0 .07 0 .93
(50,50) 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1
(10,5) .19 .42 .07 .32 0 .60 0 .40 .01 .02 .25 .73 0o .02 .01 .97
(50,5) .48 .35 .07 .10 o w77 0 .23 0 0 .53 47 0 0 0 1
BIC, (10,10) .51 .28 .09 .12 0o .76 0 .24 0 0 .55 .45 0 0 0 1
(50,10) .88 .05 .06 .01 0 .90 0 .10 0 0 .94 .06 0 0 0 1
(10,50) .92 .08 0 0 0 1 0 0 0 0 .87 .13 0 0 0 1
(50,50) 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1
(10,5) .70 .20 .07 .04 13 .75 .02 .09 .06 .02 .73 .20 .01 .07 .22 .70
(50,5) .88 .04 .08 0 .03 .89 .01 .07 0 0 .97 .03 0 0 .05 .95
cv  (10,10) .84 .12 .03 .01 01 95 0 .04 01 o .88 .11 0 .01 .03 .96
(50,10) .95 .01 .04 O 0 .96 0 .04 0 0 .99 .01 0 0 0 1
(10,50) .95 .05 O 0 0 1 0 0 0 0 .95 .05 0 0 0 1
(50,50) 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1
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Table 2C: Frequency of the model selected: dynamic panels without exogenous regressors, 8 = 3/4

True M Model 1 Model 2 Model 3 Model 4
Selected M M1 M2 M3 M4 M1 M2 M3 M4 M1 M2 M3 M4 M1 M2 M3 M4
BN
(10,5) .37 .45 .04 .15 .09 .70 .01 .20 .03 .03 .34 .60 .01 .05 .08 .87
(50,5) .44 .44 .05 .07 01 .84 0 .15 0 0 .45 .54 0 0 .01 .99
AIC (10,10) .63 .30 .03 .03 .05 .87 0 .08 01 0 .61 .39 0 0 .05 .95
(50,10) .83 .12 .03 .02 0 .93 0 .08 0 0 .85 .16 0 0 0 1
(10,50) .92 .08 0 0 0 1 0 0 0 0 .89 .12 0 0 0 1
(50,50) 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1
(10,5) .97 .03 0 0 87 12 0 0 20 .01 .76 .04 A5 .02 .71 .12
(50,5) 1 0 0 0 1 0 0 0 03 0 .98 0 02 0 98 0
BIC (10,10) 1 0 0 0 95 .05 O 0 12 0 .87 .01 .09 .01 .85 .05
(50,10) 1 0 0 0 1 0 0 0 0 0 1 0 0 0 1 0
(10,50) 1 0 0 0 08 92 0 0 09 0 91 0 .03 .05 .08 .84
(50,50) 1 0 0 0 91 .10 O 0 0 0 1 0 0 0 .90 .10
(10,5) .09 .52 .03 .36 0 .60 0 .40 0 .02 .10 .88 0o .03 o0 .97
(50,5) .13 .65 .02 .20 o .r7 0 .23 0 0 .14 .86 0 0 0 1
BIC; (10,10) .33 .45 .05 .17 01 .75 0 .24 0 0 .35 .65 0 0 .01 .99
(50,10) .66 .26 .04 .04 0 .90 0 .10 0 0 .68 .33 0 0 0 1
(10,50) .89 .11 0 0 0 1 0 0 0 0 .84 .17 0 0 0 1
(50,50) 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1
(10,5) .54 .36 .05 .05 20 .69 .03 .08 .05 .03 .58 .34 .02 .07 .29 .63
(50,5) .70 .21 .07 .02 .09 .83 .01 .07 0 0o .78 .21 0 0 .12 .88
Cv (10,10) .71 .26 .02 .01 .08 .88 0 .04 01 o0 .76 .23 0 .01 .14 .85
(50,10) .89 .07 .03 .01 01 .95 0 .04 0 0 .92 .08 0 0 .01 .99
(10,50) .93 .07 0 0 0 1 0 0 0 0 .93 .07 0 0 0 1
(50,50) 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1
Table 3A: Frequency of the model selected: dynamic panels with exogenous regressors, 5 = 1/4
True M Model 1 Model 2 Model 3 Model 4
Selected M M1 M2 M3 M4 M1 M2 M3 M4 M1 M2 M3 M4 M1 M2 M3 M4
N,T)
(10,5) .59 .18 .11 .13 .09 .62 .04 .26 .05 .02 .60 .33 .04 .05 .11 .80
(50,5) .87 .03 .09 .01 .01 .77 .02 .20 0 0 .96 .04 0 0 .05 .95
AIC (10,10) .81 .11 .05 .03 .01 .88 .01 .11 0 0 .80 .20 .01 .01 .02 .96
(50,10) .95 0 .04 O 0 .91 0 .09 0 0 1 0 0 0 0 1
(10,50) .94 .06 0O 0 0 1 0 0 0 0 .91 .09 0 0 0 1
(50,50) 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1
(10,5) .99 .01 .01 O 78 .18 .03 .02 26 0 .72 .02 49 .02 36 .13
(50,5) 1 0 0 0 9 0 .04 O 03 0 97 0 09 0 92 o0
BIC (10,10) 1 0 0 0 68 .32 0 0 23 0 77 0 71 .01 17 11
(50,10) 1 0 0 0 1 0 0 0 0 0 1 0 02 0 98 0
(10,50) 1 0 0 0 0 1 0 0 38 28 .33 0 .79 18 0 .03
(50,50) 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1
(10,5) .26 .29 .10 .36 .01 .49 .01 .48 .02 .02 .32 .65 0 .03 .02 .95
(50,5) .72 .11 .12 .06 0 71 0 .29 0 0 .81 .19 0 0 0 1
BIC, (10,10) .55 .21 .12 .13 o .71 0 .28 0 0 .62 .38 0 0 0 1
(50,10) .91 .01 .07 0 o .87 0 .13 0 0 .98 .02 0 0 0 1
(10,50) .92 .08 0 0 0 1 0 0 0 0 .87 .13 0 0 0 1
(50,50) 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1
(10,5) .79 .10 .09 .02 31 .54 .07 .08 .10 .01 .79 .10 16 .07 .35 .43
(50,5) .92 0 .08 0 .10 .73 .10 .08 01 o0 99 o0 0 0 .27 .73
cv  (10,10) .91 .06 .02 .01 .03 .93 .01 .03 .01 .01 .92 .06 .03 .02 .09 .86
(50,10) .96 0 .04 O 0 .96 0 .04 0 0 1 0 0 0 0 1
(10,50) .95 .05 0O 0 0 1 0 0 0 0 .95 .05 0 0 0 1
(50,50) 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1
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Table 3B: Frequency of the model selected: dynamic panels with exogenous regressors. §=1/2

True M Model T Model 2 Model 3 Model 4
Selected M M1 M2 M3 M4 MI M2 M3 M4 MI M2 M3 M4 MI M2 M3 M4
(N.T)
(10.5) .50 .25 .09 .16 A1 .59 .04 .26 .05 .03 .50 .43 .03 .05 .13 .79
(50.5) .81 .08 .08 .03 .04 .71 .03 .22 0 0o .87 .12 0 0 .07 .92
AIC (10.10) .77 .14 .05 .04 .04 .85 .01 .11 0 0 76 .24 .01 .01 .06 .93
(50.10) .95 .01 .04 0 0 .90 0 .10 0 0 99 .01 0 0 0 1
(10.50) .94 .06 O 0 0 1 0 0 0 0 .90 .10 0 0 0 1
(50.50) 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1
(10.5) .97 02 .01 O .83 .14 .02 .01 27 .01 .70 .03 42 .02 44 .12
(50.5) 1 0 0 0 99 0 01 0 03 0 97 0 05 0 95 0
BIC (10.10) 1 0 0 0 87 .13 0 0 .24 0 .76 0 .63 .01 .29 .07
(50.10) 1 0 0 0 1 0 0 0 0 0 1 0 01 0 99 o0
(10.50) 1 0 0 0 .01 1 0 0 40 27 .33 0 92 06 0 .02
(50.50) 1 0 0 0 0 1 0 0 0 0 1 0 0 0 .01 .99
(10.5) .19 34 .07 .40 .02 .48 .01 .49 .01 .02 .23 .73 0 03 .02 .94
(50.5) .56 .22 .09 .13 0O .68 0 .32 0 0 .62 .38 0 0 .01 .99
BIC, (10.10) .50 .26 .10 .14 0 71 .01 .28 0 0 .55 45 0 0 .01 .99
(50.10) .89 .03 .07 .01 0 .86 0 .14 0 0 95 .05 0 0 0 1
(10.50) .91 .09 0 0 0 1 0 0 0 0 .87 .14 0 0 0 1
(50.50) 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1
(10.5) .75 .13 .08 .04 37 .48 .07 .08 10 .02 .75 .13 14 .07 .40 .40
(50.5) .90 .01 .08 0 23 .58 .10 .09 .01 0 98 .01 0 0 39 .61
cv  (10.10) .87 .10 .02 .01 .08 .88 .01 .03 .01 .01 .88 .10 .03 .02 .18 .78
(50.10) .96 0 .04 O 0 95 0 .04 0 0 1 0 0 0 .01 .99
(10.50) .95 .05 0 0 0 1 0 0 0 0 .95 .05 0 0 0 1
(50.50) 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1
Table 3C: Frequency of the model selected: dynamic panels with exogenous regressors, S = 3/4
True M Model T Model 2 Model 3 Model 4
Selected M M1 M2 M3 M4 MI M2 M3 M4 MI M2 M3 M4 MI M2 M3 M4
N.T)
(10,5) 37 .38 .06 .20 14 .56 .04 .26 .04 .04 .35 .57 .02 .06 .14 .78
(50,5) 59 .25 .06 .10 10 .64 .02 .24 0 0 .61 .39 0 0 .11 .89
AIC (10,10) .64 .27 .03 .06 13 .76 .01 .10 0 0 .61 .38 .01 .01 .14 .84
(50,10) .88 .07 .03 .02 .04 .85 0 11 0 0 .89 .11 0 0 .05 .95
(10,50) .93 .08 0 0 0 1 0 0 0 0 .88 .12 0 0 0 1
(50,50) 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1
(10,5) .95 .04 .01 0 .86 .11 .01 .01 27 .01 .66 .06 35 .02 53 .11
(50,5) 1 0 0 0 1 0 0 0 03 0 97 0 04 0 96 O
BIC (10,10) 1 0 0 0 96 .04 O 0 26 0 .14 O 48 .01 .49 .03
(50,10) 1 0 0 0 1 0 0 0 0 0 1 0 01 0 99 o0
(10,50) 1 0 0 0 38 .62 0 0 44 .24 .32 0 98 .01 0 .01
(50,50) 1 0 0 0 1 0 0 0 0 0 1 0 0 0 1 0
(10,5) .11 .41 .05 .45 .02 .48 .01 .49 .01 .03 .13 .83 0 .04 .03 .93
(50,5) .23 .47 .04 .27 01 .64 0 .35 0 0 .24 .76 0 0 .01 .99
BIC, (10,10) .36 .39 .07 .18 .02 .69 .02 .27 0 0 .37 .63 0 0 .04 .96
(50,10) .75 .16 .05 .04 .01 .83 0 .16 0 0o .78 .22 0 0 .01 .99
(10,50) .89 .11 0 0 0 1 0 0 0 0o .84 .17 0 0 0 1
(50,50) 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1
(10,5) .65 .23 .07 .05 41 .45 .06 .07 .09 .04 .66 .21 10 .07 44 .39
(50,5) .82 .08 .08 .02 .36 .48 .07 .09 0 0 .89 .10 0 0 .47 .53
Cv  (10,10) .78 .19 .02 .01 24 .71 .01 .03 .01 .01 .81 .17 .03 .01 .37 .59
(50,10) .93 .03 .03 0 .08 .85 .01 .06 0 0 .96 .04 0 0 13 .87
(10,50) .93 .07 0 0 0 1 0 0 0 0o .93 .07 0 0 0 1
(50,50) 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1
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Table 4A:

MSEsx1000: static panels, p =0

Adopted Model M1 M2 M3 M4 Selected by CV
True Model
N=10 T=hH 8.03 14.56 11.41 29.77 9.83
N=50 T=5 1.45 2.82 2.05 5.23 1.61
M1 N=10 T=10 3.79 6.32 5.83 13.16 4.16
N=50 T=10 0.71 1.23 1.02 2.31 0.73
N=10 T=50 0.68 1.03 0.99 2.16 0.69
N=50 T=50 0.14 0.21 0.21 0.41 0.14
N=10 T=5 165.85 14.56 300.24 29.77 36.35
N=50 T=hH 148.68 2.82 262.69 5.23 5.11
M2 N=10 T=10 145.62 6.32 295.26 13.16 6.99
N=50 T=10 130.7 1.23 259.24 2.31 1.31
N=10 T=50 128.66 1.03 287.75 2.16 1.03
N=50 T=50 117.76 0.21 258.94 0.41 0.21
N=10 T=5 94.25 250.15 11.41 29.77 14.62
N=50 T=5 82.01 223.07 2.05 5.23 2.05
M3 N=10 T=10 102.06 245.89 5.83 13.16 6.66
N=50 T=10 94.97 235.31 1.02 2.31 1.02
N=10 T=50 109.93 249.80 0.99 2.16 1.01
N=50 T=50 107.42 246.93 0.21 0.41 0.21
N=10 T=5 427.81 250.15 300.24 29.77 103.77
N=50 T=5 404.04 223.07 262.69 5.23 9.38
M4 N=10 T=10 440.18 245.89 295.26 13.16 17.93
N=50 T=10 422.87 235.31 259.24 2.31 2.31
N=10 T=50 448.25 249.80 287.75 2.16 2.16
N=50 T=50 441.74 246.93 258.94 0.41 0.41
Table 4B: Coverages and length of 95% Cls: static panels, p =0
Coverages Length
Adopted Model MI M2 M3 M4 CV MI M2 M3 M4 CV
True Model
N=10 T=h 0.93 090 092 0.88 0.91 0.32 0.39 037 0.54 0.32
N=50 T=5 0.96 091 094 091 0.94 0.15 0.18 0.17 0.25 0.15
M1 N=10 T=10 0.93 092 0.92 090 0.92 0.23 0.28 0.26 0.38 0.23
N=50 T=10 0.96 0.93 095 0.94 0.96 0.10 0.13 0.12 0.17 0.10
N=10 T=50 0.94 095 094 094 0.94 0.10 0.12 0.12 0.17 0.10
N=50 T=50 0.95 095 0.95 0.95 0.95 0.05 0.06 0.05 0.08 0.05
N=10 T=5 0.13 0.90 0.07 0.88 0.81 0.40 0.39 0.45 0.54 0.40
N=50 T=5 0.00 0.91 0.00 0.91 0.89 0.19 0.18 0.21 0.25 0.19
M2 N=10 T=10 0.05 0.92 0.02 0.90 0.91 0.29 0.28 0.32 0.38 0.28
N=50 T=10 0.00 0.93 0.00 0.94 0.93 0.13 0.13 0.15 0.17 0.13
N=10 T=50 0.00 0.95 0.00 0.94 0.95 0.13 0.12 0.14 0.17 0.12
N=50 T=50 0.00 0.95 0.00 0.95 0.95 0.06 0.06 0.07 0.08 0.06
N=10 T=5 0.34 0.17 0.92 0.88 0.89 0.38 046 0.37 0.54 0.37
N=50 T=5 0.11 0.04 0.94 091 0.94 0.18 0.21 0.17 0.25 0.17
M3 N=10 T=10 0.09 0.03 0.92 0.90 0.91 0.28 0.33 0.26 0.38 0.27
N=50 T=10 0.01 0.00 0.95 0.94 0.95 0.13 0.15 0.12 0.17 0.12
N=10 T=50 0.00 0.00 0.94 094 0.94 0.13 0.15 0.12 0.17 0.12
N=50 T=50 0.00 0.00 0.95 0.95 0.95 0.06 0.07 0.05 0.08 0.05
N=10 T=5 0.01 0.17 0.07 0.88 0.66 0.41 046 0.45 0.54 0.49
N=50 T=5 0.00 0.04 0.00 0.91 0.89 0.19 0.21 0.21 0.25 0.24
M4 N=10 T=10 0.00 0.03 0.02 0.90 0.88 0.29 0.33 0.32 0.38 0.38
N=50 T=10 0.00 0.00 0.00 0.94 0.94 0.13 0.15 0.15 0.17 0.17
N=10 T=50 0.00 0.00 0.00 0.94 0.94 0.13 0.15 0.14 0.17 0.17
N=50 T=50 0.00 0.00 0.00 0.95 0.95 0.06 0.07 0.07 0.08 0.08
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Table 4C: MSEsx1000: dynamic panels without exogenous regressors, 8 = 3/4

Non-bias correction Bias correction
Adopted M M1 M2 M3 M4 CV M1 M2 M3 M4 CV

True M

N=10 T=56 11.78 208.92 11.13 214.24 124.20 12.47 88.12 11.64 98.40 55.41
N=50 T=5 1.90 174.56 1.87 174.77 51.53 1.96 19.85 1.93 19.96 8.95
M1 N=10 T=10 5.55 57.34 5.40 58.74  30.10 5.41 25.20 5.52 2849 13.30
N=50 T=10 0.95 45.78 0.94 45.91 6.53 0.94 4.69 0.95 4.80 1.71
N=10 T=50 0.84 2.48 0.92 2.64 1.25 0.85 1.51 0.94 1.69 0.95
N=50 T=50 0.17 1.61 0.17 1.62 0.17 0.17 0.32 0.17 0.32  0.17

N=10 T=5 47.88 208.92 49.05 214.24 200.23 47.28 88.12 48.72 98.40 84.22
N=50 T=5 47.65 174.56 47.88 174.77 167.70 47.51 19.85 47.80 19.96 23.21
M2 N=10 T=10 46.82 57.34 48.10 58.74  60.86 46.54 25.20 47.92 2849 24.83
N=50 T=10 47.76 45.78 48.00 4591 46.19 47.71 4.69 4798 4.80 4.97
N=10 T=50 46.77 2.48 48.04 2.64 2.48 46.86 1.51 48.11 1.69 1.51
N=50 T=50 47.74 1.61 47.98 1.62 1.61 47.75 0.32 47.99 0.32  0.32

N=10T=5 38.70 261.27 11.13 21424 116.90 62.42 201.05 11.64 98.40 55.80
N=50 T=5 23.14 235.57 1.87 17477 49.00 40.55 14249 1.93 19.96 8.60
M3 N=10 T=10 20.31 79.86  5.40 58.74  28.02 24.37 56.13 5.52 2849 13.06
N=50 T=10 13.41 72.01  0.94 45.91 6.38 17.73  39.64 0.95 4.80 1.72
N=10 T=50 3.16 5.09 0.92 2.64 1.34 3.85 4.59 0.94 1.69 1.05
N=50 T=50 2.41 435 0.17 1.62 0.17 3.02 3.56 0.17 0.32 0.17

N=10T=5 37.69 261.27 49.05 214.24 192.47 35.79 201.05 48.72 98.40 89.18
N=50 T=5 38.03 235.57 47.88 174.77 165.80 36.60 14249 47.80 19.96 23.82
M4 N=10 T=10 36.30 79.86 48.10 58.74 63.45 36.09 56.13 47.92 28.49 28.45
N=50 T=10 37.51 72.01 48.00 45.91 46.21 37.25  39.64 4798 4.80 5.10
N=10 T=50 36.75 5.09 48.04 2.64 2.64 37.13 4.59 4811 1.69 1.69
N=50 T=50 37.62 4.35 4798 1.62 1.62 37.87 3.56 4799 0.32 0.32

Table 4D: Coverages and length of 95% CIs (bias-corrected): dynamic panels without exogenous regressors, 8 = 3/4

Coverages Length

Adopted Model M1 M?2 M3 M4 CV M1 M2 M3 M4 CV

True Model

N=10 T=5 0.91 0.70 0.91 0.66 0.75 0.37 062 036 0.62 0.45
N=50 T=5 0.94 0.67 0.93 0.66 0.83 0.16 0.28 0.16 0.28 0.19
M1 N=10 T=10 0.93 0.72 0.91 0.70  0.84 0.26 036 0.26 0.36 0.29
N=50 T=10 0.94 0.77 0.94 0.76  0.91 0.12 0.16 0.12 0.16 0.12
N=10 T=50 0.95 0.88 0.94 0.88 0.94 0.12 0.12 0.12 0.12 0.12
N=50 T=50 0.96 0.88 0.96 0.89  0.96 0.05 0.06 0.05 0.06 0.05

N=10 T=5 0.01 0.70 0.01 0.66  0.50 0.14 0.62 0.13 0.62 0.49
N=50 T=5 0.00 0.67 0.00 0.66  0.59 0.06 0.28 0.06 0.28 0.26
M2 N=10 T=10 0.00 0.72 0.00 0.70  0.68 0.10 0.36 0.09 0.36 0.34
N=50 T=10 0.00 0.77 0.00 0.76  0.76 0.04 0.16 0.04 0.16 0.16
N=10 T=50 0.00 0.88 0.00 0.88  0.88 0.04 0.12 0.04 0.12 0.12
N=50 T=50 0.00 0.88 0.00 0.89 0.88 0.02 0.06 0.02 0.06 0.06

N=10 T=5 0.57 0.50 0.91 066 0.77 042 0.62 0.36 0.63 0.44
N=50 T=5 0.36 0.29 0.93 0.67 0.83 0.19 0.28 0.16 0.28 0.19
M3 N=10 T=10 0.64 0.49 0.91 070 0.84 0.29 036 0.26 0.36 0.28
N=50 T=10 0.30 0.27 0.94 076 0.91 0.13 0.16 0.12 0.16 0.12
N=10 T=50 0.68 0.66 0.94 088 0.93 0.12 0.12 0.12 0.12 0.12
N=50 T=50 0.36 0.36 0.96 0.89 0.96 0.05 0.06 0.05 0.06 0.05

N=10 T=b5 0.12 0.50 0.01 0.66 0.42 0.18 0.62 0.13 0.63 0.45
N=50 T=5 0.01 0.29 0.00 0.67 0.57 0.08 0.28 0.06 0.28 0.25
M4 N=10 T=10 0.03 0.49 0.00 0.70 0.63 0.13 036 0.09 0.36 0.32
N=50 T=10 0.00 0.27 0.00 0.76 0.76 0.06 0.16 0.04 0.16 0.16
N=10 T=50 0.00 0.66 0.00 0.88 0.88 0.06 0.12 0.04 0.12 0.12
N=50 T=50 0.00 0.36 0.00 0.89 0.89 0.03 0.06 0.02 0.06 0.06
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Table 5: Application I: Crime rates in North Carolina (N=90, T=7, k=17)

Model selection

Inference for

the coefficient on the “probability of arrest”

Model ~AIC  BIC BIC; CV___CV® CV™  Estimates  95% CL' 95% CI2
Model 1 -2.121 -2.001 -2.125 0.124 0.094 0.028 -0.530  [-0.655, -0.406] [-0.785, -0.276]
Model 2 -3.773 -3.025 -3.796 0.025 0.023 0.026 -0.385  [-0.473,-0.297] [-0.500, -0.270]
Model 3 -2.124 -1.962 -2.129 0.124 0.094  0.027 -0.521  [-0.646, -0.396] [-0.778, -0.264]
Model 4 -3.823 -3.032 -3.847 0.024 0.022 0.025 -0.355  [-0.441, -0.269]  [-0.470, -0.240]
Selected M4 M4 M4 M4 M4 M4 -0.355  [-0.441, -0.269] [-0.470, -0.240]

Notes: CI' and CI? stand for the CIs based on the non-clustered and clustered standard errors, respectively.

Table 6: Application II: Cross-country saving rates (N=56, T=15, k=5)

Model selection

Inference for the coefficent on the “GDP growth”

Non-bias correction

Bias correction

Model AIC BIC BIC, (A% Estimates 95% CI Estimates 95% CI
Model 1 2.547 2.576 2.547 12.844 0.190 [0.108, 0.273] 0.192 [0.107, 0.277]
Model 2 2.505 2.843 2.498 12.459 0.188 [0.088, 0.288] 0.178 [0.074, 0.281]
Model 3 2.555 2.663 2.553 12.953 0.160 [0.072, 0.248] 0.163 [0.073, 0.253]
Model 4 2512 2.929 2.504 12.584 0.149  [0.039, 0.258] 0.146  [0.031, 0.262]
Selected M2 M1 M2 M2 0.188  [0.088, 0.288] 0.178  [0.074, 0.281]
Table 7: Application III: Guns and crime in the U.S. (N=51, T=23, k=9)
Inference for
Model selection the coefficient of the “shall issue”
Model AIC BIC BIC2 Ccv cvr cv** Estimates 95% CI* 95% CI?
log (violent crime rate)
M1 -1.6911 -1.6522 -1.6914 0.1860 0.0165 0.0073 -0.368 [-0.436, -0.301] [-0.589, -0.148]
M2 -3.6072 -3.3523 -3.6094 0.0274 0.0080 0.0072 -0.046 [-0.084, -0.008] [-0.127, 0.035]
M3 -1.7198 -1.5859 -1.7210 0.1816 0.0140 0.0061 -0.288 [-0.359, -0.217] [-0.526, -0.050]
M4 -3.8653 -3.5154 -3.8684 0.0211 0.0063 0.0059 -0.028 -0.065, 0.009 -0.106, 0.050
Selected M4 M4 M4 M4 M4 M4 -0.028 -0.065, 0.009 -0.106, 0.050
log (murder rate)
M1 -1.6202 -1.5813 -1.6205 0.1991 0.1234 0.0560 -0.313 [-0.383, -0.244] [-0.505, -0.122]
M2 -2.9845 -2.7296 -2.9867 0.0510 0.0457 0.0452 -0.061 [-0.113, -0.009] [-0.132, 0.011]
M3 -1.7012 -1.5673 -1.7024 0.1844 0.1144 0.0550 0.198 [-0.267, -0.130] [-0.385, -0.012]
M4 -3.1243 -2.7744 -3.1274 0.0443 0.0413 0.0421 -0.015 -0.066, 0.037 -0.088, 0.058
Selected M4 M4 M4 M4 M4 M4 -0.015 -0.066, 0.037 -0.088, 0.058
log (robbery rate)
M1 -0.9853 -0.9464 -0.9856 0.3748 0.0375 0.0164 -0.529 [-0.628, -0.429] [-0.840, -0.218]
M2 -3.0239 -2.7690 -3.0261 0.0490 0.0167 0.0156 -0.008 [-0.058, 0.043] [-0.115, 0.099]
M3 -1.1079 -0.9740 -1.1091 0.3338 0.0305 0.0137 -0.341 [-0.436, -0.246] [-0.642, -0.040]
M4 -3.2181 -2.8682 -3.2212 0.0403 0.0135 0.0130 0.027 [-0.021, 0.075] [-0.073, 0.127]
Selected M4 M4 M4 M4 M4 M4 0.027 [-0.021, 0.075] [-0.073, 0.127]

Notes: CI' and CI® stand for the CIs based on the non-clustered and clustered standard errors, respectively.
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This supplement is composed of three parts. Section B contains the proofs of the technical lemmas in the
above paper. Section C provides some primitive conditions to verify Assumptions A.2(iii)-(iv) and A.4-
A.5 in the paper. Section D discusses how to choose p in our modified jackknife and contains additional

simulation results.

B Proofs of the Technical Lemmas

X'X X'D
D'X D'D
inversion formula for a 2 X 2 partitioned matrix. See, e.g., Bernstein (2005, p.45). B

Proof of Lemma A.1. Noting that X, Xp = ( , the lemma follows from the standard

Proof of Lemma A.2. By Lemma A.1,
(X, Xp) ! = X3 ~X3X'D(D'D)
bab —(D'DY ' D'XX3 (D'D)'+(D'D) ' D'XX5X'D(D'D)' )

/ -1
Noting that D Dy = 0, we have (D'D) ™" = < (D1D1) 1 ) ,and X'D (D'D)"" = X'(Dy (D} Dy) ™",

(D5 D)
D, (DyDy)™") = (By, By) . Combining the above results yields the desired result. B

Proof of Lemma A.3. (i) Noting that D!, D, =T (IN,l + LN,1L/N71) , we have

_ 1
(DDa) ™" =T H Iyt = Fpiv-1ty—1), (B.1)
and
/ —1 -1 Iny 1 / /
D, (DQDQ) D, =T _1/3\[_1 &L In_1— NLN_lLN_l (( In_1 —in—1 ) ® LT)
-1 IN_1 — miN—1ty_y /
=T A L)@ ) (( Inc1 —in—1 ) @)
NiN-1
_ L1 / _1
= (et 4 Yo i,
TNIN-1 N
By straightforward but tedious algebra we can show that
_ 1 1
U'Do (D,Do)” DLU = NTTUN-1 KIN—l - NLN—1L§V_1> ® (LTL/T):| Uy

1 2, ’ N-1, ,
TNT? | NEN-1 [tn—1 @ (epep)] un — TN UNITiTUN

N-1 N-1 2 N-1

1 1 2 N -1 1

= |yt (N Z“?) ~ e D W i = ) u -
i=1 i=1 ;



The result then follows from Assumption A.1(iii).

(ii) The proof is analogous to that of (i) and thus omitted. The main difference is that one now applies

/ -1 / Ip—1 — sir—1th_y  —%ir—1
Dy (D\Dy) "Dy = (tniy/N)®@ i ¥ }

NL/Tfl T
(iii) Noting that Day (D', Dax) "' D,y = Do (D!, Do) " D!+ Dy (D4Dy) ™" D} by the fact D!, Dy = 0,
we have

1 _ 1 _ 1 _
WU'DOM (D! \Dox) ' D\U = WU’DQ (D!,D,)" ' D.U + ﬁU’DA (D\Dy) "' D\U
1 & 1 <&
-2 -2 -2 -2
= —Zuz —ul | + (— utu>
(N =1 > T t=1

where the second equality follows from the results in (i)-(ii) and the last equality follows by Assumption
A1(iii). W

Proof of Lemma A.4. (i) Following the proof of Lemma A.3(i), we have

1 1
—X'D, (D.D,) ' D.U
L X'D, (DD, D,
1

1 1
= %7 {2&1 [(IN1 — NLNlbIN1> ® (LTL'T)] Un_1 — N:c'N,l [t ® (erip)] un—y

1 —1
— N1 [ev-1 ® (ereg)] un + Tﬂc'NLTL/TUN}

1 N—1 1 N—-1 N—1 1 N—1 1 N—1 N—l
= |5 Z Tl — 5z D T ui.] — NN Z Ui — o5 Z Tilly. + —z NN
i=1 i=1 i=1 =1 i=1
N N
1 1
= 5 Z@ﬂ, — T = chlaz — Op((NT)™Y2) = Op(T~' + (NT)~/?),

where we use the fact that % Zf\il Z;.U;. = Op (T‘l) and %.. = Op ((NT)_l/Q) by Assumptions A.2(iii)
and A.1(iii).
(i) The proof is analogous to that of (i) and thus omitted.
(iii) Noting that D (D;/\Dax)fl D!, =D, (D!,D,)"" D, + Dy (D;\DA)*1 DY, the results follow from
(i)-(ii). W
Proof of Lemma A.5. (i) Jinr < ”(ﬁX/X)ilH HﬁX’UH2 = Op (54) by Assumption A.1(iii)-(iv).
(ii) By Lemma A.1 with D = D,,, we have

- 1 / / X5. — X7, Ba X'U
Jonr = NT (U'X,U'Da) ( —-B. X}, (D;Darl + B, X} Ba DU
1 * * * -t I XIU
= 7 (UXXD, —U'DaB, X, ~U'XXp, Ba+U'Da (DyDa) "' +U' DBl X5, Be) < DU )
1

- (U’XX}_;QX’U —2U'DoBL X}, X'U +U' D, (D4D,) " DLU + U' Do B, X}, BaDLU

NT
= Jonta —2JonT2 + JonT 3 + JanT 4, SAY,

/
[e3%



where B, = X'D,, (D,D,)"". As in (i), we can show that Jon7.1 = Op((NT) ™) by Assumption A.1(ii)-
(iv). By Lemma A.4(i) and Assumptions A.1(iii)-(iv) and A.2(iii) and using X}, = (X'Mp. X)™"

JonT1 = WUD oBo XD, X'U

-1

~ 1 1

— —UD D'D) D X —X'Mp X| —XU
NT (DoDa) a(NT D“)NT

— (%Z_lelul—xu> Op (1) Op ((NT)—W)

— Op (T-l + (NT)—1/2) Op ((NT)—1/2) — Op ((NT)™ +T72), and

1
J2NT,4 = WU’DQB&XBQBQD(IJU
1 !
- ﬁUD( Da)lD;X(ﬁX’MDNX) ﬁX/Da(D;Da)*lD;U

1 " W
I N N [EN
= (N ;xpuz. xu) (NTX MDQX) (N;%-Uz. :Eu)
= O0p (T4 (NT)7?) 0p (1 Op (T 4+ (NT)H2) = Op (T2 4 (NT) ).
By Lemma A.3(i),

N N
1 1
Jonts = 570" Do (D4 Da) ' DU = Z Z @, — Op((NT)™).

It follows that Jonr = & S +Op(T~2+ (NT)™1).
(iii) The proof is analogous to that of (ii) and thus omitted.
(iv) By Lemma A.2

zlz

Janr = —U' (X(‘L)’X(4)>_1 xXWy
NT
- U'X,U'Da,U'D
NT ( A)
X3 ~Xp.,Bo ~X}, B, XU
« | ~BLX;  (DLDa) + BLX5_ Ba BLXp,, By DU
~Bi X, B\X}, B (D4D))"" + By X}, Ba DU
-1 %
= 7 {U XX; X'U+U'D, ((D;Da) + B;XDMBQ) DLU

+U'D, ((Df\Dx)_ + B’AXBMBA) D\U - 2U'D, B, X}, X'U
—2U' DB\ X}, X'U + 2U' DyBy\ X}, Ba DU}

Jant 1 + Jant2 + Jantz — 2Janta — 2JanTs + 2JanT 6, Sy,

where Doy = (Da, Dy) and By = X' Dy (DyD;)~" for £ = a, \. By Assumption A.1(iii)-(iv),

(WX Mo, ) — Op((NT)™).

Jant1 <

‘—XU




By Lemmas A.3(i) and A.4(i) and Assumption A.1(iii),

1 - 1
Jintz = 575U Da(DyDa) ' DU + 55U DaBL XD BaDLU
-~ L up,op) DU+ DB (X My, X _ILB DU
T ONT O T\ Tere o TNT T TeTe \NTT TP NT 7@
1 —2 —2 —1 —-1/2 —1 —1/2
- (vX@-= +0p (T4 (NT)2) 0p (1) Op (T + (NT)1/2)
=1
1 N
= NZﬂ$.+Op(T*2+(NT)*1).
1=1
By Lemmas A.3(ii) and A.4(ii) and Assumption A.1(iii),
J - Lup (DAD )*1D/U+LU/D B (- XMy, X - L popw
ANT3 = N A (DD A NT N e Dax NT AN

(1 XT:ai - a?) +O0p (N*1 + (NT)*/?) Op(1)Op (N*1 + (NT)’W)

In addition, by Lemma A.4(i)-(ii) and Assumption A.1(iii)-(iv), we have

LX’M X - LX’U

NT ™ P NT

= Op(T™' +(NT)"'?)0p (1) Op((NT) /%) = Op(T 7% + (NT) 1),

1 1

1 —1
J4NT75 - WU/DABS\ <NTX/MDO‘>‘X) WX/U

= Op(N"'4+(NT)"Y%0p (1) Op((NT)"V/?) = Op(N~2 + (NT)™ 1),

1, , (1 1
Jwrs = NpU A (ﬁ NT
= Op(N"'+(NT)"Y%H0p (1) Op(T~ L + (NT)"¥?) = Op(N2 + T72).

1
JiNT4 = WU'DaB:}<

-1
X’MDMX) Bo DU

It follows that Jyin7 = % ZN az + % Zle u% +O0p (N72 + T72) . In addition, we can show that Jyn7 —

i=1 Ui
Jont = % 3Ly @4+ Op(N~2 4+ (NT)™1) and Janr — Jsnr = & Sy @+ Op(N 2+ 772). B
-1
Proof of Lemma A.6. (i) max,; h};) = max; 2}, (X'X) " 2y < {Amin ((NT)_1 X’X)] (NT)™" max;
|z = Op((NT)™?) by Assumption A.1(ii) and (iv).
(ii) Let d’

a,it

KD = (x@x@) o
_ roq X'X XIDa - Lit
= (xm a,it) D.X DD, da it

(2, d), 1) XD, —Xb, Ba it
ity Yot —B(IJXBQ (D:}Da)_l _|_B(’1XBQBO¢ d(x,it

—1
= ! (D/ Da) da,it + x;tXBaxit - d/ B;Xga$it - x;tXBaBadoc,it + d/ B;XBaBada,it

«,it « a,it a,it

= ! (D;Da)i da,it + (zit - Bada,it)/ XBQ (xit - B(xda,it) . (BQ)

it

denote a typical row of D, such that D, = (dy11,-.-sda 1T, s o, N1 -+ o, NT)’- Then

1

4



Fori < N—1, d, ;+ contains 1 in one place and zeros elsewhere, implying that dfm-t (IN_l — %LN_lLlNil) doit
:1—%:% forany i < N —1land t=1,..,7. When i = N, we have

1 1 N -1
oy Nt (INl — NLNlblNl) da,Nt = Un_1 (IN1 — NLN1L§Vl> IN_1 = fort=1,...,T.

These observations, in conjunction with (B.1), imply that

1 N —

1
d, for all 4, ¢. (B.3)

it

_ 1
(DL,Dy) " dait = 1d/a it <IN—1 - NLN—lblN_1> doit =T7"

Next, notice that

max ($zt — Badqy zt) XD (xz’t — Badqy it) < eanT maX Tit — Bada,z’t)/ (xz’t - Bad(x,it)

it ’ NT(

S EINT max ﬁ {szt” + da ztB/ Bada,it} 5

where EINT = [>\min (ﬁXIMDaX)]il

Markov inequality,

= Op (1) by Assumption A.1(iv). By Assumption A.1(ii) and

1 1 _
max = |7l = 5= 0p(NT)'?) = Op(NT) /).

For x7 dy, it BoBada,it, We have
U /! )
na NTdD‘ it BaBadait
1 a - - —
= max NTtr{d; i (DLDG)? [(D;Da) V2 Dt X X' D (D', Dy) 1/2] (D.D,) 1/2da,z’t}
1 1 o o
< ) —
< maxdy  (DoDa) it gppte ((DaDa) D!, XX'D, (D, D,) )
AN-11 B
_ A , .
= T\ <=t (XX'Da (D, D) ' D)
GN-11
< T AT AT X/X = T71
- N vr XX =0p (1),

where the last inequality follows from the fact that D, (D;Da)f1 D!, is a projection matrix with maximum
eigenvalue 1. It follows that hl(»f) = T_l% + (zi — Bada,it)/X]*Ja (zit — Bada,it) and max; 4 hgf) =
Op((NT)™ /2 4 7-1),

(iii) Let d’/\’it denote a typical row of Dy such that Dy = (dx11,...,dx 17, -, A N1, ..., da,N7) . Following

the analysis in (ii), we can show that

byt = d} i (DADA) ™ dae + (i = Badaar)' Xp, (@i — Bade) (B.4)
and T
1 —1
oy it (ITl - ?Z,lelT1> Ao it = for all 4, ¢t. (B.5)
Noting that
_ 1
Di\D)\ =N (IT—l + LT_lL/T_l) and (DS\D)\) o N1 <IT_1 — fLT—lL/T—1> s (BG)



we have

T—1
—

In addition, following the arguments as used in the analysis of (z; — Badwt)/XBa (it — Bada,it) and

(B.6), we have

\it (DADA) ' daie = N~ (B.7)

7,t

max (z;s — Badai) X5, (zit — Badait) < eant max < (szt” + dj ith\B,\dA,it> = Op((NT)'?4N—1),

where eanT = [)\min (ﬁX’MDAX)]f1 = Op (1) by Assumption A.1(iv). It follows that hgf) = N_l% +
(2t — Bradaie) Xp, (i — Badai) and max; by = Op((NT)™"/% + N=1).
(iv) Let dixMt denote a typical row of Dy such that Doy = (dax,11, s dar1T s AaA,N15 s dar,NT)' -

Following the analysis in (ii), we can show that
h(4) =diy it (DiaDar)” " darit + (it — Bardarit)' Xp., (@it — Baxdanx.it) - (B.8)

Noting that Dy = (Dg, D)) and D!, Dy = 0, we have

D! Dy)""
D\ Dax) ' = (Do Do ).
Then
‘it (DoaDax) " daxit = dl iy (DhDa) ™" dane +d iy (DADA) ™ daie
N —1 T —

1
for all 4, ¢. (B.9)

= T+ N

In addition, following the arguments as used in the analysis of (z; — Bada7it)/XBa (it — Bada,it) and
(B.9), we can show that

max (a; — Boadaxit) Xp. (it — Baxdarit) < esnr max {Ilwn\l + di,y it Bl Boadan, zt}

= Op((NT) V2N 4T ) =0p(N+T7Y),

where esy7 = [)\min (ﬁX’MDnAX)] o Op (1) by Assumption A.1(iv). It follows that hz(f) = T_l%—i—
N7'ZL 4 (24 — Baadanie) Xp, (@it — Baada i) and max;; hly) = Op(N~' +T-1).
(v) Note that

| X
NT 2

=11
26 N 1 L& 2e
INT INT
< { Z:Z: ztxltuzt N ZZ:: « ztB;Bada,itu?t} = NT (IIl + II?)’ Sa,

Note that I1; = Op(1) by Assumption A.1(i)-(ii) and Markov and Jensen inequalities. For ITs, observing

MH

xzt - Bada,it)l XBQ (xit - Bada,it) u
1

2|>—



that X'D,, (D(')tDa)_1 dw,it = Ti. — .., we have by Assumption A.1(i)-(ii)

N T
1 _ —
I < — dly 4 (DiDa) ™ DLXX D (Dl Do) ™" doivs?
NT «,it o [ [ 5 1t
=1 t=1
| NI
_ _ ! - =
= N_ZZ(%_%)(%_QU)U’%
N 1/2 | X 1/2
4 4 —
< {450 ..|} {ﬁzz} ~0r ()

because we can readily show that + 57 ||z, —z.* < 2SN [|#.|* +8z.||* = Op (1) under Assump-
tion A.1(ii). It follows that xS0 S°0 | (i — Badai) Xp, (zit — Bada,i) ul = Op((NT)™1)

(vi) The proof of (vi) is analogous to that of (v). The major difference is now we need to apply the
fact that X' Dy (DDx) " dyg = .y — ...

(vii) Note that

1 N

< 2€3NT {

We know that II; = Op(1). For I3, observing that X' D, (D;/\DM)*1 daxit = Zi. + T4 — 2T.., we have
by Assumption A.1(i)-(ii)

M'ﬂ

! 2
xlt - Ba/\da/\,it) XB(W\ (:Eit - Ba)\da)\,it) Uyt

t=1

2|>~

N T
2e3NT
DRWTTIETS NN LNNEIEE. S

zltl

N T
L —1
= N—;Z:: ot (DexDax)” " DA XX Dax (DiyDan) ™ daniutdy
1 N T
= N7 SN @i+ —22.) (i + 30— 22.) ug,
=1 t=1
3 N T
— 2 _ 2 _ 2
= WZZ(H%H + |zl + 4|z | )u$t=0p(1),

@
Il
—
&~
Il
-

Consequently, = SN S (25 — Baxdanit)' Xy (@it = Baxdaxi) ujy = Op((NT)~").1

Proof of Lemma A.7. Let |||, denotes the spectral norm of A. Note that

Il
N

pP—p

Il
[

It suffices to show that (i) w7 ’

— Op(pdnr), HNT 22T, | = op(1). (i) i

= Op(p'/?6x7). To see this, note that the last term in (B.lO)

Sp

— Op(p"/23n7), and (iv) H(z Z)"'ZU - p \




is bounded the desired probability order by (iv). The second term in (B.10) is bounded above by

H(Z’Z)‘1 (Z’ﬂ—z’U)H < H(Z’Z)‘1 Z’fJ—Z’UH
Sp
1 |
= >\min < Z/Z>:| Z/ﬂ — Z/UH
[ NT, NT,
1
1 ..
< min '"Z— ! -7 H
< [)\ (1“,,)+'NTPZZ r, ] T, 70 -7'U

= O0p (1) Op(p**6nr) = Op(p**5n7),

where the second inequality follows from the eigenvalue stability inequality, and the last line follows from

the fact that Ayin (I'y) is bounded away from zero in probability. For the first term in (B.10), we have

) Lpz) | L {||Z’U|\+)
NT, NT, NT,
sp

= Op(pont)Op(1 +p'/?5N57) = Op(pSnT),

IA

\[(#2)" @2 |zo 20 - 70

where we use the fact that by (i)-(iii),

1 -1 1 -1
7'7 - 77
H <NTp > <NTp >

1 B / 1 -1
= 7'7 727717 77
H (NTP ) NT, ( ) <NTp >

-1
1 4,4 1 1
>\min Y ZIZ )\min Z/Z

Op (1) Op(pdnT),

sp sp

PPN /
7'2—-77

sp

and that ﬁ IZ'U|| = Op(1) under Assumption A.4. Next, we show (i)-(iv) in turn.

To show (i), we reparametrize Model 4 as
Yir = T30+ of + Ao+ ua,

where z}, and §* correspond to z;; and § after one removes the constant term, and « incorporates the
intercept term now. Let &}, = =}, — z} — z, + ¥, where z}, z¥,, and =7 are defined analogously to u;., 4.,
and 4... Let §j; = (i1, ..., Jir)’ and Y = (41, ..., ijn) . Define &;, X, ii; and U analogously. After eliminating
the individual and time effects o and \; from the above regression through the within and time-demeaned

1. .
X'V, Then o

transformation, we can obtain the two-way within estimator of 8* given by B* = (X 'X )

can be equivalently represented as

~ A k] ~ %

tie = i — B &5, =t — (B — B7) i, (B.11)

Under Assumptions A.1(iii)-(iv) and A.2(iii)-(iv), we can readily show that B —p = Op(dnT)- Recall



. . . ’ o = o ’
that ui,t = (Uit, ---7U/i,t—p+1) . Let ui,t = (U/i,t; ---U/i,t—p-l-l) . Then

1 PPN 1 o~
NTP(Z/Z_Z/Z) = N Z Z (—ztgzt ztuzt)

i=11t= p+1
. = Y\ 1 NoE = . "
() (s e S (50

i=1 :p+1 i=1 t=p+1
N Z Z—zt(—zt —zt)
i=1 t=p+1
= 9+ 192 + 3, say.
Noting that ﬁzt — Uy, = —i%, (8" — B*) where i, = (i, s B4 py1)', we have
T
1] < N Z iyl | = Op(pdir)
P i1 t=p
For 95, we have
1 N T 2
192" = )i 4
R |2 2, HO
T N T
Z Z Z { -F ) Ztull t1<5 - B )/ :1/751":}}

(NT,
= & ﬂ*
h 0, = 1 N T N T YR cokf ook Obs h d Ass . A(i
where O3 = 7z D il Dtmpid Dmiy=1 Doty —pi1 Uil 4 & ET . Observe that under Assumption A.1(i)-

(i)

p—1lp—1

N
B0, < Etr(6;) = NI >

p J =0i=1t

N T
Z Z E (fai’tfji’iilatlfj‘{c'z/t*lij;l,tlfl) = O (p2) *

+1i1=1t1=p+1

I§
=

It follows that H@Q”Sp =Op (p2) and |92 < ||1/2 = Op (pdnT) . Similarly, ||93]] = [|J2]] =
Op(pdnt). [When w;; is strictly exogenous, we can show that Etr(©;) = O (p*dn7) and then |[d3] =
|92 < 10,12 = 0p (p6%r) = op(p'/25n7).] Then (i) follows.

sp
.. ’ _ 1 N T . -/ . (5 ’
To show (ii), we note that N—TPZ Z=wr; D im1 D tmpi1 i1 g1, Where Gy g = (lie—1, ..., Uije—p)'

Noting that i;; = wiz — ;. — 4.4 + .. for each (i,t), the (j,1) th element of ﬁZ’Z is given by

1 1 N T
NT, 2'Z);, = NT, Z D i
i=1 t=p+1
1 N T 1 T
= N7 o> (wigy — W) (Wit — W) — 7 (Uepmj — W) (Uepmt — U..)
P i=1t=p+1 Pt=p+1
1 N T
= SN i juisi+[Bal;, = [Bil;, + (Bl
NT, -

1

@
Il
-
~
I
=
+



N T _ N T _ N T _

where [BZ]j,l = NlTp Zi:l Zt:p+1 Wit —5 Ui — NlTp Zi:l Zt:p«i»l ui“i,t—l‘*‘% Zi:l uZQ_TLp Zt:p+1 Ut —jU. t—1
T _ T _ _ 2 .

—|—TLP D tmpin Uet—j U + Tip Dtmpi1 Ut — (@.)", [By];,; denotes the (j,1)th element of By, for £ = 1,2,

and By’s are implicitly defined. It is easy to show that ||Ba|| = Op (pdy+) . Consequently, we have

1 N T
- ‘ Y i T

P =1 t=p+1
The analysis of (iii) is similar to that in (i) and thus omitted.

1 _
‘ —7'7-T, <|IBs = Op (p53k) = op (1).

NT,

Lastly, we show (iv) Let 0., = @4 — p’@_jh1 where @., | = (@ 4—1,...;U.1—p)'. Noting that i, =
Uz — Ui — U + U.. and ’UJi,t_l =Ujp—1 — Ui — U.p—1 + U.., WE have
U — Plﬂi,t—l = (uit - P/@z',t—1) - (1) a; - (ﬂ-t - PI@,t—l) +@(1)a.
vig — P (1) Us. — Vg + P (1) U...

Then
N T -1 N 7
—1
(ZZ) ZU-p = (Z > uz,tlué,H) D> i —p

i=1 t=pt1 i=1 t=p+1
N T -I'n T

_ (z 5 _) S5 e [ — (1) — 5+ B
=1 t=p+1 i=1t=p+1
N T -1y T

- (z S ) S5
=1 t=p+1 i=1t=p+1

where the third equality follows from the fact that Zf\il ;3 = 0 for each ¢. Noting that Zthl ;¢ = 0 for each
i, we can readily apply Assumptions A.1(i), (iii) and A.2(iii)-(iv) and show that H NLTP Zivzl ZLPH iy 41U

= Op (p'/*>T) . For example, the first element of = SN | ZZ:;;H di; 1. s

1 N T 1 N T p—1
NT Z Z Ui 1U;. = T Z ( Uiy — Zuzs - uzT) ;.
P i=1t=p+1 P =1 \t=1 s=1
] N p—1 1 N
= N_’I’p £ ;uwﬂz - ﬁ ;UZT’&,Z = OP (Tﬁl) .

. 1 N T .
Similarly, we can show that H T Doim Dot i1 Vit

- Hﬁ leil ZtT:pﬂ Uiy —1Vit|| +Op (p1/25NT)
= Op (p'/?5nr) under Assumptions A.1(iii), A.4(iii), and A.5(i)-(ii). Then we have H(Z’Z)_1 Z'U — pH =
Op(pl/Q(SNT)..

Proof of Lemma A.8. (i) Noting that :iz(tl) =Tit—2; 4 1p = P (L)wyy =Ty wherem, 1 = (Tip—1, s Tist—p),

we can readily apply Assumptions A.1(iv)-(v) and A.4(iii) to show that

1 L& 1 1
K = W (—X'X ) —X'U
1NT NT, z‘:Zu:;d o <NT ) NT

Op ((NT)*1/2) Op (1) Op ((NT)*1/2> = 0p (NT)™Y).

10



/ /
(i) Note that igtz) = 3353) —Ezt)— p = ((mit _%,t—lp)/v(davit _da,it—lp)/> = (xzt’da zt) where
doit1= (dav,it—1y - Ao it—p)- By Lemma A.1 with D = D, we have

N T
-1
P i=1t=p+1
N T
_ 1 T Xf)a *XD B, X'U
- NT, ;tzlwt (Iit’da Zt) ( ~B.X; (D,D,)"'+B.,X}B, DLU
1= =p (23

N T
= Z Z Vit {xn X'U—d, 4 BLXp, X'U—2,X}, BaDLU +dl, 4 (D..D,) ' D.U

+da ztB;XEaBaD;U}

Kont1 — Kont2 — Kont,3 + KonTa + KonT 5, say.

As in (i), we can show that Konp,1 = Op((NT) ") by Assumption A.1(iv)-(v). Observing that d, (D D! Dy)~"
xD! X = (z;. — z..)" for each (i,t), we have

N T N .
1 5 ) )
v 2 2 vedaitBh = 20 D v (dase — dau1p) (D4Da) T DX
P ist t=p P =1 t=p+1
N T
(1 )

- N(T)Z > v (2. —2.) =0p(T~' + (NT) 1/2),

P =1 t=p+1

by Assumptions A.4(iii) and A.5(iii). It follows that

Hﬁ > Z vitde, B

i=1 t=p+1

1
—X'U
NT

IN

Kont2

1 -1
—X'Mp X

Op(T~! + (NT)"Y%)0p (1) Op((NT)"/?) = Op(T2 + (NT) 1),

Similarly, we can show that

N T
1 1
Kont3z < E g Vil <—X'MDQX> ’ —B D'UH
NT, p e NT NT

= op<<NT>*”2>op<1>Op< L (NT) VP = 0p(T2 + (NT) T,

1
KQNT75 S N Z Z @ztda ztB/ || —X MD X) ‘WBQD/QUH
=1 t=p+1
= Op(T™' + (NT)™*)0p (1) Op(T™" + (NT) /%) = Op(T > + (NT) ™),
and
N T N T
1 1 d(1 _ _
KQNTA = NT. Z Z 'Uztda Zt ) D;U = Nj_(' >1 Z Z Vit (’U.Z —U>
P =1 t=p+1 P =pta
N T
D(1 _
= N(T) Z Z ’Uit’l_Li. +OP((NT) 1).
P =1 t=p+1

11



It follows that Koy = NTp+1 Zl 1 Zt_pﬂ Vit + Op((NT) +T72).
(iii) The proof is analogous to that of (ii). The major difference is that we need to use the ex-
/! !
pression :c( ) = ZEE?) - lz(‘i)qp = ((%t *li,t—lp)/a (dxit *d,\,it—lp)/) = ( md,\ n) with dy ;1 =
Nit—1s -5 d)it—p) and the fact that . \) = (x.+ —Z..) for each (z,t) to obtain
dy, dyit—p) and the fact that df ,, (D4Dy) ™" D4X ! f h b

N T
1 _
NT Z Z Uth)\ aBy = NT. Z Z vit (it *C—lz\,it—lp)/ (Do Do) ' D, X
i=1 t=p+1 P =1 t=p+1
1 K& ,
= Vit [(:Et —z.) = p (T4 —T.1)) ] ,
NT, ;t:;—l ' b

where Z.,_; = (Z.t—1, ..., T-1—p). The dominant term then becomes

N TR
L (DADy) 'D\U = T SN v (@ —a.) - p (@ —a1y)]
i=1 P i=1t=p+1
;] NI
= 2 X va®(L)is + Op(NT) ™+ N7
P =1 t=p+1

where @, 1 = (Up—1, ..., Up—p) -
(iv) The proof is a combination of (ii)-(iii) as in that of Lemma A.5. W

Proof of Lemma A.9. (i) Noting that a”cz(tl) = Tiyt — T; ;1P = Tit, we can readily apply Assumptions
A1(iv)-(v) and A.4(i) to show that

Liny = U'X(X'X) 1—2 Z Fadl (X'X) T XU
i=1 t=p+1
—1 ;NI
< () [ |sexe] [ s 5 s - or o,
i=1t=p+1
$@ g _ [ Fulie Tivdy i

(ii) By Lemma A.1 with D = D, and using &, A , we have
da,itxit da,it a,it

L U'x® (x@ x@) L f: ET: @)z @7 () x@) ~ xerg

v = UK (XX moa (xerxe)

NT, i=1t=p+1

X; ~Xp,Bo 1
_ 1 / Da 2 (2) o (2)1
=@ X’UD")( ~BLX},  (DLDa)'+ BLX}Ba > NT, 2 2 it
Xp ~Xp, Ba X'U
X > /
~B,X;, (DLD.)'+BLXpB, )\ DLU

V) 1 S <(2) 5, (2 ¢
= (C1a<2) NTPZ Z Tit Ty << >

i=1 t=p+1
= ClNT Z Z Tit T 1+<2NT Z Z do i, zt<2+2<1NT Z Z Fud,, 162
P i=11t= p+1 P i=1t= p+1 Pi=11t= p+1

LonT1 + LonT2 + 2LoNT 3, Say,

12



where ¢; = Xjy X'U—~Xp BoD,U and (, = —B, X}, X'U+ (D, D) " DU+ B, X} BoD,U. 1t is easy
to show that Lon71 = Op((NT) ™" +T2) by Assumptions A.1(iv)-(v) and Lemma A.4(i). For Lon7.2,

Lonre = U'XX} B Z Z doird, 4 BoL X5 X'U
1= 1t—p+1
+U'Dy (D, Do)~ N Z Z deiedly i (DoDo) ' DLU
i=1 t= p+1

+U'D,B, X} B NT Z Z doitd), 4y BoL X} BaDWU

i=1 t=p+1
—1
—2U'X X}, Ba NT Z Z daitd, ¢ (Do Da) ™ DU
1= 1t—p+1

—2U'XX}, B N Z Z doitd), 4 Bo X} BoDWU

=1 t= p+1

+2U'D,, (D!, D) N Z Z doitd), 4 Bo X}y BoDWU
i=1 t=p+1
= LonT21 + LonT,20 + L2NT,23 —2LoNT,24 — 2LanT,25 + 2LaNnT 26, SAY.

Bl =d\; (D\Do)"" D\ X = &(1) (z;. — 3..)’, we have

N
NT Z Z daltda it %Z —j‘.)/:OP (1)

i=1 t=p+1

Noting that d

a,it

This result, in conjunction with Assumption A.1(iv)-(v) and Lemma A.5(i), implies that

—1/|2 2
1
/ / _ —1
LonT21 < N Z Z do ztda itBa H(ﬁX MDaX> ’ﬁX Ul =0p((NT)™ "),
i=1t=p+1
1 -1 1 2
LQNT,Q?, < T Z Z da ztdoé ZtBl H( X MDQX> HWBO(D;U = OP(T_2 + (NT)_I)
i=1t=p+1
Noting that da 4 (DD " DLU = ®(1) (. — @..) , we have
L = UD ‘1IZZd d D) ' DLU = ®(1) ii
2NT,22 a it Oélt o N v

i=1 t=p+1

N
= @(1)2% Z @ +Op((NT)™).

Analogously, we can show that Lonra; = Op(T72 + (NT)_I) for j = 4,5,6 and Loyt = Op(T2 +
(NT)™"). It follows that Loy = ®(1)>+ SN @2 + Op (NT) ' +T72).

(ili) The proof is analogous to that of (ii) with the major difference as outlined in the proof of Lemma
A.8(ii).

(iv) The proof is a combination of (ii) and (iii) as in that of Lemma A.5(iv) and thus omitted. W
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C Verification of Some Assumptions

In this section, we verify Assumptions A.2(iii)-(iv) and A.4-A.5 based on some primitive conditions.

C.1 Verification of the rate conditions in Assumption A.2(iii)-(iv)

In this subsection, we verify the rate conditions in Assumption A.2(iii)-(iv). Recall that we use C to denote
a generic positive constant whose value can change across lines. Let ¥, = x; — E(x;). To verify the rate

conditions in Assumption A.2(iii)-(iv), we add the following assumptions.

2
<C;

. . 1 T T
Assumption A.2* (i) maxi<;<y F HT Y oi1 D Tiilis

2
(i) maxi<i<r E H% S Y | < C

(iii) ﬁ ZZV:1 Zjv:1 23:1 25:1 |E (Uitujs)| <C.

The conditions of the above type are frequently assumed in the panel data literature to control weak

serial and cross-section dependence; see, e.g., Bai and Ng (2002). Below we first show that Assumption A.2*
in conjunction with Assumption A.1(i)-(ii), is sufficient for Assumptions A.2(iii)-(iv), and then give more
primitive conditions to ensure Assumption A.2*(i). Similar primitive conditions can ensure Assumption
A.2*(ii) by relying upon some mixing conditions in random field to handle weak cross-sectional dependence.

First, we verify Assumption A.2(iii): + Zf\’:1 Zpu;. = Op(T™1 + (NT)71/2). Let zf = %;. — E(Z;.).
Then

i‘:‘ﬂ = A1 + As, say.

HMZ
o]
g
\5

an

1 N
WZ@@Z =

For A;, we have A; = £ Zl 1 Zt 1 E(Z;.) uip. Note that £ (A;) =0 and

W

N N T T
E||A1H2 = N2T2 ZZZZE )/E(jj.)E(uit’Ust)
1=1 j=1 t=1 s=1
C N ’ T T
< s 2L 2L 2 D B (i) = O((NT) ™),
i=1 j=1t=1 s=1

where the last equality follows from Assumption A.2*(iii). Then A; = Op((N T)_l/ %) by Chebyshev
inequality. For As, we apply the Jensen inequality and Assumption A.2*(i) to obtain

) 1L 1 T 1 1 ¢
E|:||.A2H:|:E (NZTQZZQU;}U”) SNZE (EZZ@‘,&UH) < —=.

t=1 s=1

k!

It follows that As = Op (T‘l) by Chebyshev inequality. In sum, we have shown % Zf\’:1 Zit;. = Op(T~ 1+
(NT)~/?).

Next, we verify Assumption A.2(iv): £ S i = Op(N™! + (NT)™Y?). Let % = 2.4 — E(Z.4).
Then

’ﬂl
el

T 1 T 1 T
Z =7 E@)uct =) 4. = As + Ay, say.
t=1 t=1 t=1

14



For As, we have A3 = = Zivzl 23:1 E (Z.t) uiz. Note that F (Az) =0 and

E(l4l?) < 5am S Y B B E )

A

N N T T
< NQCTQ Z Z Z Z |E (uirujs)| = O((NT)_I) by Assumption A.2*(iii).

Hence A3 = Op ((N 7)Y 2) by Chebyshev inequality. For A4, we have by Jensen inequality and Assump-
tion A.2*(ii)
2
N N

T

C

PIETEF D SE21 Fd D) DA™Y BEFC
t=1

1j=1 i=1 j=1

Ella] =B (13

t=1 i

N[~

It follows that A4 = Op (N_l) by Chebyshev inequality. In sum, we have that % Zle Tty = Op(N~1+
(NT)™7%).

Now, we provide a set of sufficient primitive conditions for Assumption A.2*(i).

1+6)

Assumption A.2* (i.a) max;; E H$it||4( < C and max; ; E |uit|4(1+6) < oo for some § > 0;

(i.b) For each i = 1,..., N, {(zs,u;it), t > 1} is a strong stationary strong mixing process with mixing

coefficients «; (-) such that max; 23:1 T oy ) < C for some C < oo.

Assumption A.2*(i.a) strengthens the moment conditions in Assumption A.1(i)-(ii) slightly for the
application of Davydov inequality. Assumption A.2*(i.b) requires that {(x;,u;:), t > 1} be strong mixing.
This condition is a standard condition assumed for dynamic panels when the individual effect is assumed
to be fixed. For example, for a dynamic panel autoregressive process of order one (PAR(1)), it is strong
mixing with the mixing coefficient «; (7) decaying to zero at a rate proportional to |p|” as long as the
autoregressive coefficient p is strictly less than 1 in absolute value. In this case, Assumption A.2*(i.b) is
automatically satisfied for all p € (—1,1). If the individual effect is random, then we can replace the strong
mixing condition by the corresponding conditional mixing condition: {(z;,u;), t > 1} is conditionally
strong mixing with mixing coefficients «; (-) given the individual effect. See Prakasa Rao (2009) for the
definition of conditional strong mixing, and Hahn and Kuersteiner (2011) and Su and Chen (2013) for the
applications of conditional strong mixing in dynamic panels.

We now show that Assumption A.2*(i.a)-(i.b) is sufficient for Assumption A.2*(i). By Cauchy-Schwarz
inequality,

9 2

1
+2mlaxE T Z ThlUis
1<t£s<T

2

T T
1 *
TE E Titlis
t=1 s=1

It is easy to see that under Assumption A1(i)-(ii), the first term on the right hand side of the above equation

max F
7

T
1
< 2mzaxE HT ;xftuit

is bounded from the above by

T
2
max 7= > B |lajui|* < 2max Bllafu|® < C.
[ 1,
t=1
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For the second term, by straightforward moment calculations for second-order degenerate U-statitics (see,

2
e.g., Lemma A.2(ii) in Gao (2007, p.194)), we have 2max; E H% di<its<T Tiis|| < C under Assumption

2
A.2*(i.a)-(i.b). Consequently, max; E H% 23:1 Zle xfus|| < C for some C < 0.

C.2 Verification of Assumptions A.4 and A.5

In this subsection, we verify the conditions in Assumption A.4(ii)-(iv) and A.5(i)-(iv) under some primitive
conditions when {u;,t > 1} is a generic stationary and invertible ARMA process. For simplicity, we focus
on the case where u;;’s are independent along the cross-section dimension.

The invertibility of the ARMA process implies that we can write {u;,t > 1} as an AR(oco) process and
approximate it by an AR(p) process for sufficiently large p :

oo P %)
Usp = E PjUit—j + €it = E pitit—j | + E PjUit—j T €it
j=1 =1 j=p+1

/
P U1+ Vi,

o / _ / o _ o0 . .
where p = (Pu -~-7,0p) y Ui 1 = (Wist—1y s Uit —p)'s Vit = Vitp + €it, Vitp = Zj:p+1 PjiWit—j signifies the

approximation error, and e;; is the error term with mean zero and variance o; Note that v, = 0 if
)

o
. . / /

{ui,t > 1} is an autoregressive process of order p or less. Let e; = (ey4,...,eny) and z; = (214, .., TNt) -

Let k; (0,51, ..., 84—1) denote the ath order joint cumulant of (eio,eisl...,eiskl) where s1,...,5._1, and a

are integers. Let @ (-) be defined as in Section 2.3.

Assumption A.4" (i) 3°7°, p;z7 # 0 for any complex number z with |2 <1, Y272 |p;] < o0, PP 2(N~1 4
— 1/2 00
T =o(1), and (NT)'? 272, ;| =0 (1).
(ii) For each i, {e;,t > 1} is strictly stationary and ergodic such that E (e;|Fi—1) = 0 where F;_1 =

o (et—1,€t—2, ..., Tt, Tt—1...) is the o-field generated by {et—1,et—9,..., 2, x4—1...}, E (e%t) = 02276, and max;
Y o oo D im0 i (0,81, 0y 8a—1) < C for a = 2,3,4; {&it, eir, o} are independent along the indi-

. . . N _
vidual dimension; & ;" 02, — 62 as N — oc.

i,e

(iii) E (es;) =0, E (eit]er—1, €1—2, ooy Aty Ai—1, -..) = 0, E(a}) < C, and E()\?) <C.

Assumption A.4*(i) is similar to Assumption A.4(i) except that now we do not impose any condition
on Awin (T) but require (NT)/? 2% |p;| = O(1). Following Lee, Okui and Shintani (2018, LOS
hereafter), we can easily show that the condition on Ayin (I'p) is satisfied under Assumption A.4*(i)-(ii). The
condition (]\7T)1/2 Z;c:pﬂ |p;| = O(1) is weaker than the requirement that (NT)l/2 Z;c:pﬂ lp;| = o(1)
in LOS because we do not consider bias correction in our setup. Assumption A.4*(ii) imposes that e;;’s are
independent along the individual dimension and a martingale difference sequence (m.d.s.) along the time
dimension. The independence assumption can be relaxed to allow for certain weak form cross-sectional
dependence at more lengthy arguments. The m.d.s. sequence is also assumed in Gongalves and Kilian
(2007) in the time series setup and it is weaker than the i.i.d. requirement in Lewis and Reinsel (1985)
and LOS. Note that Assumption A.4*(ii) implies that {u;,t > 1} is a stationary process for each i, and

can be represented by an infinite order moving average (MA(o0)) process, and the approximation error
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Vitp = Zj —pt1 Pjlit—j is well behaved in the sense of mean square errors. Assumption A.4*(iii) is used to
verify A.4(iv).

First, we verify Assumption A.4(ii). Assumption A.4*(i)-(ii) ensures that {u;;} has mean zero and finite
fourth moment and E (vir) = Y721 p;E (uir—j) + E(eir) = 0. Let ¢, = 322 1 |p;|. Then vit,, = 0
if ¢, = 0. Without loss of generality, we assume that ¢, > 0. Note that Assumption A.4*(i) implies that
c, = O((NT)"*/2) = 0(1) and Iy ’pj}4 < max;>pi1 ‘pjyg ¢y < ¢ =0(1). Then by Jensen inequality

4
o0
mat,XE( ) = m%xE Z PjUit—j <c maxE Z |p]}|u” j|
" " J=p+1 P j=p+1
. 4
< c max Z ‘p]’ E(u ” ])<C’c Z ‘pj’ = o(1).
Jj=p+1 j=p+1

It follows that max; ; E(vj;) < 8max; ; E(vj, ) +8max; E(ef;) < C < oo. In addition, by the law of large

numbers, we have ﬁ Zivzl ZZZPH e =52+ op (1), where 6% = limy_.c Zz 107 So in this case,
o2 =52,
Next, we verify Assumption A.4(iii) for (,, = &;; as the case for (;; = 1 is easier. Noting that
Tit = Tyt — T; 41 P, We have
T T T
NT Z Z Tipvy = NT Z Z TitVit,p + N Z Z Tireir = bi1 + b2, say.
P =1 t=p+1 P =1 t=p+1 i=1t=p+1
Note that
1/2
Pl £ > 3 laasl = g 3 3 (B} (508, )
=1 t=p+1 i=1 t=p+1
<Y |pl=0 ((vr)=72)

Jj=p+1
where we use the fact that
H%E%XE lZ)® = QmaxE ll@ae||® + QmaXE |z 1p|| < 2maxE lzael® + 2maxz Z iP5 By i)

j=1j1=1
2

211}%XE||.’13“H2 1+ Z|pj| <C<

IN

and that by Assumption A.4*(i),

2

H%%XE(UEW) max Z Z pipi E(ui—juis i) <C Z |pj\ :O((NT)*l).
Jj=p+1j'=p+1 Jj=p+1

It follows that b1 = Op ((NT)*1/2) by Markov inequality. For b; 2, we have E (b;2) = 0 and for any
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nonrandom vector w € R¥ with ||w|| = 1,

1 N T 1 N T T
Var (w'by 2) T, 2w’ZVar< Z fit@t) w= T, )20/2 Z Z E (2147} eieis) w

t=p+1 P

= SW Z Z E (Zn2,€3) w—O((NTp)fl).
NT i=1 t=p+1

Then by 2 = Op ((NT)_l/z) by Chebyshev inequality. Consequently, we have shown that NT ZZ 1 Zt_p+1
Tivie = Op ((NT)’l/Q) . Analogously, we can verify the last condition in A.4(iii).

Next, we verify Assumption A.4(iv). Note that

;N 1 T L N
NT Z Z Vit® = o Z Z Vit pQ; + NT Z Z ety = by 1+ bao.
P i=1 t=p+ t=p+1

i=1t=p+1 P i=1t=p+1 Pi=1

2
By Assumption A.4*(iii), we have E (b 2) = 0 and Var(baz) = (NT e Zl W E (Zt —pr1 Cit ) =0 (N71).
So bg2 = op (1). ba1 = op (1) by Markov inequality and the fact that

N T 9]
1
E|by,| < T Z Z E [vit poi| < 5o Y {E(e}) E(y?t,p)}lmgc ST el =0(1)
i=1t=p+1 P =1 t=p+1 j=p+1
Similarly, we have

1 L& 1 XL ZL 1 NI
NTPZ:,ZU ]:NTPZ§U””’ H—NTZ:,.Ze LYl = b3 1 + b3

i=1t 1 i=1t 1 Pi=1t 1

Following the analysis of be 1, we can readily show that bs1 = op (1) by Markov inequality. For b3 2, we
have E (b3 2) = 0 and

T

Var (b3 2) N2T2 Z Z Z E elte“t (L) M ) =0 (Tﬁl) )

i=1i1=1t=p+1

So b372 =op (1) .
Next, we verify that Assumption A.5(i) is satisfied with 2 ; = 52. Noting that 7;. = 7 Zf,p“ (Vit,p +€it) =
: s 2=

_ _ . _ 1 T ) S 1 T )
Uy p + €. with 9;. , = T, Zt:pﬂ Vit,p and &;. = T Zt:p-l—l e;t, we have

N N N
T T 2T,
E (17,',)2 =P (@i"p>2 + L E é?, + P E V;.p€;. = a1,1 + a1+ ai s, say.

i=1 i=1 i=1 =1

Z |5

T 1 & Xz
E(al,l) = NPZE<T Z Uit,p) SNZ Z E( th) <TI118,XE( ztp)

AN
Q
5
N
>
I
=
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By Assumption A.4*(ii), E (a12) = f Zl 1 Zt —pt1 E (%) = NT,, Zf\il o2, =a?

+
T N/ Z 2 L& T 2
— . - . — -1
Var (a1,2) = mVar Z <? Z e,t> = NoT ZVar ( Z elt> = O(N )
i=1 P t=pt+1 P =1 t=p+1
It follows that a; 2 = 62 + op(1). By the Cauchy-Schwarz inequality, a; 3 < 2 (a171a172)1/2 =o0p(1). Then
T, N [~ \2 -
% 2imy (03.)7 = a2 +op(1).
Next, we verify that Assumption A.5(ii) is satisfied with 52 , = 62. Noting that 1., = & Zfil (Vit,p + €it) =
’L_i.t,p + ey with ’l_].t7p = % Zfil Vit,p and €. = % Zfil €it, W€ have

T T

= Z 'Ut _T Z Ut,p ﬁ Z é.zt 2TN Z V.tp€t = a21 + G222 + a3, say.

Ty t=p+1 P t—p+1 Ty t=p+1 P o=p+1

az1 = op (1) by Markov inequality and the fact that

N 2 N T
1 1
E(az1) = Z E{<D vip| <7 Y, E(v;,) < NmaxE@},)
Tp t=p+1 N i=1 Ty 4 !
2

C (VN i lp;| | =o0(1).

j=p+1

By Assumption A.4*(ii), E (az2) = NLTP Zfil ZtT:p_H E (%) = 7 Zfil 0?,=02+0(1) and

P

N T L 2 N 2
Var (az,2) = ﬁvar Z (N Zeit> = Z Var (Z ez-t) =0 (T*l) .

P t=p+1 7 t=p+1

IN

It follows that aso = 62 + op(1). By Cauchy-Schwarz inequality, as 3 < 2((12,1(12,2)1/2 = op (1). Then
T N2 -
TﬂZt p+1 (0.0)" = a2 +op(1).

To verify Assumption A.5(iii), note that

XN N T T ;] NoroT
N;zzvz = NTzzZ;t:ISX:;E Tt ’Uz's+NT2;;;1‘tUw_a31+a32, say.
For a31, we have
;] NrToT T
3.1 = s ZZZE (@it) Visp + ~NT2 Z Z ZE (xit) €is = a3 11 + a3, 12, say
i=1 t=1 s=1 i=1 t=1 s=1

Under Assumption A.4*(i)-(ii), we can readily show that az 12 = Op ((NT)*l/Q) by Chebyshev inequality.

For as 11, we have

N T T
1
< 575 2o 2 DB @)l 1B (vis)| < Cmax [B||o7, ][] = O(NT)~72).

1=1 t=1 s=1

Then a3z = Op ((NT)*I/Q) . For a3 2, we have

N

T T T
NlTQ Z Z Z TipVisp + % Z Z Z Tjeis = a3 21+ ag 22, say.

i=1 t=1 s=1 i=1 t=1 s=1

agz 2 =
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Following the verification of Assumption A.2(iii), we can readily show that as 22 = Op (T‘l) . For a3z 21,
we have

N T T

N T T
Ellagz1] < %ZZZ 1B (z}vis p)]| < Cmaxzzz w2 )] <c Z ;] = O((NT)172).

1,8

i=1 t=1 s=1 i=1 t=1 s=1 j=p+1

It follows that az2 = Op ((NT)_l/2 +T7') and + Zf\il Z;.0;. = Op ((]\7T)_1/2 +T71Y).
To verify Assumption A.5(iv), note that

T N N
1 1
TV = e g E E E(zit) vjt + 57 g E E TiHUjt = a1 + G2, sAY.
: N2T, : N T
t=p+1 i=1 j=1 P t=p+1i=1 j=1
For a4, we have
T N N N N
aq1 = N2 E xlt Vjs,p + == 2 E xlt €jt = A4,11 + a4,12, Say.
N Tp 2. 2.2 N Tp Z 2.2
t=p+1i=1 j=1 t=p+1i=1 j=1

Following the analysis of as 1, we can readily show that as12 = Op ((N 7)Y 2) by Chebyshev inequality.

For a4,11, we have

N N
N2T Z ZZHE i) [[ 1B (vjep)] < Cmax [EHUJtpH]l/Q O((NT)~'/2).

P = p+1i=1 j=1

Then as1 = Op ((NT)*I/Q) . For a4 2, we have
rm o 3 Y i g 3 3D sl = va -, s
ptp-‘rlz 1j=1 t=p+1i=1 j=1

Following the verification of Assumption A.2(iv), we can readily show that a420 = Op (N_l) . For a4 21,

we have

Ellass| < NQT Z ZZE TiiVjt.p) Tp

Pt=p+1i=1j=1

¢S |yl = 0UNT) )

Jj=p+1

t

T N N 1/2
Z ZZ Jt,p
=p+

+1 i=1 j=1

IN

It follows that ass = Op ((NT)~Y/2 +T~1) and %404 = Op (NT)"Y/2 4 N71).

D Choice of p in the Modified Jackknife

As discussed in Remark 9 in the main paper, there are several practical approaches to choose p in the
modified jackknife method.
First, we can use a “rule of thumb” and let p increase with T, e.g., p = |T/*|, where |T"/*] is the

nearest integer less than or equal to 7/4.
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Second, we can follow Lee, Okui, and Shintani (2018) by setting pmax = |7/*] and consider a general-
to-specific testing procedure based on t-statistic until we reject the null. Specifically, we first run the

following auxiliary regression using the pooled OLS

~(4 ~(4 ~(4 (4 B
uz('t) = pluz('7t)_1 + p2u£7t)_2 +...4+ ppmaxu( ) + iy

%,t—Pmax

and test p, = 0 using t-statistics. If it is rejected, we conclude that p = pyax. If we fail to reject it,
we eliminate the ppaxth lag and run the regression with piax — 1 lags, and test p, ;= 0. We continue
this procedure until we reject the null. Note that here ﬁz(f Vs are estimated. To take this into account,
Wooldridge (2010, p. 311) argues that for the pooled OLS, we should use the fully robust standard errors
(robust to both heteroskedasticity and serial correlation, see equation (7.26) in Wooldridge (2010, p. 171)).
Another issue is that we need to choose the nominal level to decide whether to reject. In our simulations
below, we choose the conventional 5% level.

Third, we can apply the information criteria, such as AIC and BIC, to the residuals obtained from
Model 4 (ﬂgf)) to determine p. For the implementation, see, e.g., Stock and Watson (2012, Section 14.5).
In general, BIC gives a consistent estimator of p, and AIC tends to choose a relatively large p.

We conduct simulations to examine the finite sample performance of four methods above, labelled as
rule of thumb, testing, AIC, and BIC, respectively. We consider three DGPs which are the same as those
in Section 3.2 except that now the errors follow AR(1), MA(1) and ARMA(1,1) processes, respectively.

Specifically, u;; is generated respectively as

DGP D.1: Uip = O.5ui,t_1 + €+,
DGP D.2: Uit = €t + 0.5e; 11, and
DGP D.3: Uit = 0.75Ui,t—1 + e + 0-56i,t—17

where e;; is an N (0,1) random variable.

Tables D1-D3 present the simulations results for DGPs D.1-D.3, respectively. For DGPs D.1 and D.2
with AR(1) and MA(1) errors respectively, both CV* and CV** work well. For the ARMA errors, CV*
works well when T is large and outperforms CV** in general. This suggests that CV** which is based on the
Cochrane-Orcutt procedure relies on the AR(p) assumption more. Among the four methods of selecting p,
there is no dominant one. When the sample size is large and CV* is used, all four methods can select the

true model with a high probability.
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Table D1: Frequency of the model selected with selected p (DGP D.1: w;s = 0.5u; -1 + €:t)

Selection
of lag p True M Model 1 Model 2 Model 3 Model 4
in OV* ~ Sclected M| M1 M2 M3 M4 |MI M2 M3 M4 |MI M2 M3 M4 |MI M2 M3 M4
and CV*™* (N,T)

(10,10) | .21 68 .0l .10]|.0l .87 0 12| 0 0L .18 81| 0 .02 0 .98

AIC (50,10)[.04 87 0 09|0 .91 0 09|0 0 .03 97/ 0 0 0 1

(1050)| .27 72 0 o|o0 1 0 0|0 0 .22 780 0 0 1

(5050)| .04 96 0 0|0 1 o0 0|0 0 .03 970 0 o0 1
(10,10) | .89 11 0 0 |00 .91 0 0 |.36 .04 .49 10|51 .12 .0l .36
BIC (50,000 1 0 0 0|20 .78 02 001 0 1 0|43 0 .16 .42
(1050)[ .98 02 0 o0 1 0o o0 .39 58 .08 0 .37 62 0 .01

(5050) 1 0o o o|o0o 1 0o 0|0 0 1 o0|l0 0 o0 1
(10,10)| .08 67 02 23| 0 .74 0 25| 0 0L .09 00| 0 0L 0 .99

BIC, (50,10)|.01 .87 o0 12| 0 .88 0 13| 0 0 .01 99| 0 0 0 1

(1050)| .22 77 0 01| 0 .99 o0 01| 0 o0 .18 8|0 0 0 1

(5050) .06 94 0o oo 1 0o 0|0 0 .04 9|0 0 0 1
(10,10)| .25 69 .01 .05|.01 .93 0 .06].01 .02 .28 69| 0 .03 .0l .97

CV  (50,10)| .06 .88 0 .06|/ 0 .94 0 .06/ 0 0 .06 94/ 0 0 0 1

(1050)| .28 72 0 0o|0 1 0 0|0 0 .29 71/0 0 0 1

(5050)| .04 96 0 0|0 1 0 0|0 0 .05 9|0 0 0 1
(10,10) | .58 36 .03 .03|.03 .91 0 .06].0l 0L .61 37|.0L 0L .03 .95

CV*  (50,10)| .69 .26 .03 .01| 0 .95 0 .05/ 0 0 .74 270 0 0 1

rule (1050)| .87 13 0o o0 1 o0 o0 o0 .87 A3/ 0 0 o0 1

of (5050){ .99 01 0 0|0 1 0 0|0 0 .99 01/0 0 0 1
thumb (10,10) | .81 .14 .04 01| 42 .51 05 02| .01 0L .84 .14|.0l 0L 58 .40
{Tl/“J CvV* (50,10)| .95 .01 .05 0 |31 .44 23 02| 0 0 .99 01| 0 0 .69 .31
(10,50)| .93 07 0 o0 ]|.00 .99 0 0|0 0 .95 .06/ 0 0 .09 .91

50500)] 1 0o o oflo 1 o o|l0 0o 1 0|0 0 0 1
(10,10) | .25 69 .01 .05|.0l .93 0 .06].01 02 .28 69| 0 .03 .01 .96

CV* (50,10)| .06 88 0 .06| 0 .94 0 .06/ 0 0 .06 94| 0 0 0 1

(1050)| .90 10 0o 0|0 1 o0 0|0 0 .90 .20/0 0 0 1

AIC (5050) 1 0o o o|o0o 1 0o o0o|0 0o 1 o0|l0 0 o0 1
(10,10) | .25 69 .01 .05|.0l .93 0 .06].0l 02 .28 69| 0 .03 .0l .96

CvV** (50,10)| .06 88 0 06| 0 .94 0 06/0 O .06 94| 0 0 0 1
(1050 .95 05 0 oo 1 o o|o0 o0 .95 05|0 0 .02 .98

(5050) 1 0o o o|o0o 1 0o 0|0 0 1 o0|l0 0 o0 1
(10,10) | .31 .63 .02 .05|.0L .92 0 .06].0lL 02 .34 64|.0L 02 0L .96

CV* (50,10)| .06 88 0 .06| 0 .94 0 06| 0 0 .06 94| 0 0 0 1

(1050){ .91 09 0 0|0 1 o0 0|0 o0 .0 .20/0 0 0 1

BIC (5050) 1 0o o oo 1 0o 0|0 0 1 0|0 0 0 1
(10,10)| .32 .62 .02 05| .09 .84 0l 06| .0l .02 .35 63|.0L .02 .1l .87
CV** (50,10)| .06 88 0 .06/ 0 .93 0 06| 0 0 .06 94[0 0 .01 .99
(1050)| .95 05 0 0|0 1 0 0|0 0 .96 .04/ 0 0 .02 .98

(5050) 1 0o o oo 1 0o 0|0 0 1 o0|l0 0 o0 1
(10,10) | .56 38 .03 .03]| 03 .91 0 .06].0l 0 .58 .40|.0l .0l 03 .95

CV*  (50,10)| .69 .26 .03 01| 0 .95 0 .05/ 0 0 .74 270 0 0 1

(1050) .90 10 0 o0 1 o0 0|0 o0 .89 a1l0 0 0 1

Testing (5050) 1 0o o o|o0o 1 0o o0o|0 0o 1 o0|l0 0 o0 1
(10,10) | .74 21 .04 02|40 .52 05 03|01 0 .77 22|00 0l 55 .43
CvV** (50,10)| .95 .01 .05 0 |.31 .44 23 02| 0 0 .99 01| 0 0 .69 .31
(1050)| .94 06 0 0|0 1 0 0|0 0 .95 .05|0 0 .03 .97

(5050) 1 0o o o|o0o 1 0o o0o|0 0o 1 o0|l0 0 o0 1
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Table D2: Frequency of the model selected with selected p (DGP D.2: u;s = €5+ + 0.5€;,4—1)

Selection
of lag p True M Model 1 Model 2 Model 3 Model 4
in OV* ~ Sclected M| M1 M2 M3 M4 |MI M2 M3 M4 |MI M2 M3 M4 |MI M2 M3 M4
and CV** (N, T)

(10.10) | 55 36 01 0501 88 0 11|01 0l 53 500 0 0l o7

AIC (50,10) .59 35 .02 04| 0 .92 0 09| 0 O .58 42| 0 0 0 1

(1050)| 65 35 0 0|0 1 0 0|0 0 .57 43/ 0 0 0 1

(5050)| .73 27 0o o|o0 1 o0 0|0 o0 20 300 0 0 1
(10,10)| .99 01 0 0 |16 .84 0 0 |35 .01 .63 01 |.75 .05 .0l .19
BIC (5010)] 1 0 0 0 |46 .44 11 o |0 ©0 1 0|64 0 .29 .07

0501 0 0o oo 1 0 0|49 43 .08 0 |47 53 0 0O

(5050) 1 0o o o|o0o 1 0o 0|0 0 1 o0|l0 0 o0 1

(10,10)| .20 47 06 18| 0 .74 0 26| 0 0 .31 68/ 0 0 0 1

BIC, (50,10)|.41 49 03 07| 0 .88 0 2|0 0 .42 58/ 0 0 0 1

(1050)| .57 43 0 0|0 .99 0 01| 0 0 .49 510 0 0 1

(5050) .78 22 0o oo 1 o o0 o0 o5 250 0 0 1
(10,10)| .62 33 .03 .02|.01 .94 0 .05|.01 .01 .65 .33|.02 .03 .0l .94

CV  (50,10)| .68 .27 .03 02| 0 .94 0 06| 0 0 .72 28|0 0 0 1

(1050)| 66 34 0 0|0 1 0 0|0 0 .66 34/ 0 0 0 1

(5050)| .75 25 0 0|0 1 o0 0|0 0 5 2500 0 0 1
(10,10)| .82 12 .04 01]|.04 .91 0 05]|.0l 0 .8 .13|.02 0L .04 .93

CV* (50,10)| .94 01 05 0|0 .94 0 .06/ 0 0 .99 01| 0 0 0 1

rule (1050)| .86 14 0 0|0 1 o0 0|0 o0 .87 A3/ 0 0 0 1

of (5050){ .99 01 0 0|0 1 0 0|0 0 .99 01/0 0 0 1
thumb (10,10)| .91 .04 05 0 | .46 .45 07 020l 0 .95 .04|.02 0L 67 .31
{Tl/“J CvV* (50,10)| .94 0 .06 0 |33 .27 39 o01l0 o0 1 0|0 0 .84 .16

(1050){ .91 .09 0 0|0 1 o0 0|0 0 .91 .09/0 0 o0 1

50500 1 0o o oflo 1 o o|l0 0o 1 0|0 0 0 1
(10,10) | .62 33 .03 .02|.00 .94 0 .05|.00 .01 .65 .33|.02 .03 .0l .94

CV* (50,10)| .68 .27 .03 .02| 0 .94 0 06| 0 0 .72 28/0 0 0 1

(1050)| .92 08 0 0|0 1 0 0|0 0 .92 08|/0 0 0 1

AIC (5050)| .86 14 0 0|0 1 0 0|0 o0 .86 A4/ 0 0 0 1
(10,10)| .62 33 .03 02|.0l .94 0 05|00 .0l .65 33|.02 03 .01 .04

CvV** (50,10)| .68 27 .03 02| 0 .94 0 06| 0 O .72 2|0 0 0 1

(1050) .93 07 0 oo 1 o o|0 o0 .93 070 0 0 1

(5050)| .86 14 0 0|0 1 o0 0|0 0 .8 .14/ 0 0 0 1
(10,10) | .62 33 .03 .02|.0L .93 0 .06].0lL 0L .64 34|.02 .02 0L .95

CV* (50,10)| .68 .27 .03 .02| 0 .94 0 06| 0 0 .72 28|0 0 0 1

(1050)| .80 11 0 o0 1 o0 0|0 o0 .0 .20/0 0 0 1

BIC (5050){ .99 01 0 0|0 1 o0 0|0 0 .99 01/0 0 0 1
(10,10) | .64 31 .04 02| .05 .88 .01 .05].0lL .0l .67 31|.02 .02 .05 .88

CvV** (50,0)| .68 27 03 02| 0 .94 0 06[0 0 .72 28| 0 0 0 1

(1050)| .93 07 0 o|o0 1 o0 0|0 o0 .93 070 0 0 1

(5050) 1 0o o oo 1 0o 0|0 0 1 0|0 0 o0 1
(10,10)| .80 15 .04 01| .04 .91 0 .05].00 0 .84 .15|.02 0L .04 .93

CvV* (50,10)| .94 01 05 0|0 .94 0 .06/ 0 0 .99 01| 0 0 0 1

(1050)| .86 14 0 0|0 1 o0 0|0 o0 .87 A3/ 0 0 0 1

Testing (5050){ .99 01 0 0|0 1 o0 0|0 0 .99 01|/0 0 0 1
(10,10) | .86 .09 .05 01| 43 .49 06 03|.0l 0 .91 .03|.02 0l 61 .36
CvV* (50,10)| .94 0 .06 0 |33 .27 39 010 0 1 0|0 0 .84 .16

(1050){ .91 .09 0 o]0 1 0 0|0 0 .91 .09/0 0 0 1

(5050) 1 0o o o|o0o 1 0o o0o|0 0o 1 o0|l0 0 o0 1
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Table D3: Frequency of the model selected with selected p (DGP D.3: w;s = 0.75u;¢+—1 + €ir + 0.5€5,¢—1)

Selection
of lag p True M Model 1 Model 2 Model 3 Model 4
in OV* ~ Sclected M| M1 M2 M3 M4 |MI M2 M3 M4 |MI M2 M3 M4 |MI M2 M3 M4
and CV** (N,T)
(1010 0 8 0 6] 0 84 0 160 17 0 =20 17 0 82
AIC (50,100 0 87 o0 14| 0 .87 0 44| 0 O O 1]0 0 0 1
(10,50) | .01 .95 0 .04| 0 .97 0 .04| 0 32 .01 67| 0 .32 0 .68
(5050)| o .97 0 03| 0 .97 0 03/0 0 o 1l0 0 o0 1
(10,10) | .14 85 0 0L|.06 .93 0 .01|.17 .66 .0l .17|.15 68 0 .17
BIC (50,10)|.16 .84 0 0 |.02 .98 0 0 |.05 05 .10 80|.08 .05 0 .87
(1050) [ .37 63 0 0 |.03 .97 0 0|27 73 0 0|26 74 0 0
(5050)| .52 48 0 0|0 1 0 0 |.20 50 .18 .12|.27 56 0 .17
(10,10)] 0 74 0 26| 0 .74 0 26| 0 07 0 03| 0 .07 0 .93
BIC, (50,10)| 0 .84 o0 17| 0 .84 0 7|0 O O 1|0 0 0 1
(10,50)| .01 .93 0 .06| 0 .94 0 .07| 0 .21 .01 .78| 0 21 0 .79
(5050) o 98 o0 .02|0 .98 0 02/0 0 o 1|0 0 0 1
(10,10)| .01 88 0 11| 0 .89 0 11| 0 .27 .01 72|00l 27 0 .72
cV (50,100 0 .90 o0 1|0 .90 o0 1|0 0 o 1l0 0 o0 1
(10,50)| .02 .96 0 .02| 0 .98 0 .02| 0 .42 .01 56| 0 .43 0 .57
(5050)] o 98 o0 .02/ 0 .98 0 02/0 0 o 1l0 0 o0 1
(10,10) | .37 56 .03 .05|.14 .79 0l 06| .0l 0 .41 53| 0 0L .14 .85
CV* (50,10)| .41 .51 .03 .05|.00 .90 0 08| 0 0 .46 54| 0 0 .01 .99
rule (10,50) | .47 52 0 0 ].02 .97 0 01| 0 0 .48 52| 0 0 .01 .99
of (50,50)| 63 37 0 0|0 .99 0 01| 0 0 .62 38/ 0 0 0 1
thumb (10,10) | .76 .19 .04 02|72 .22 04 02] 0 0 .81 19| 0 0 .79 .20
{Tl/“J CvV** (50,10)| .92 .03 .05 0 |87 .04 09 0|0 0 .97 03| 0 0 .97 .03
(1050)| .82 18 0 0|49 .51 0 0|0 o0 .82 8|0 0 .64 .37
(50,50) | .96 .04 0 0 |46 54 0 0|0 0 .97 03| 0 0 .71 .29
(10,10) | .20 61 .02 .08|.10 .79 .01 .10].01 .0l .33 65| 0 .02 .10 .88
CV* (50,10)| .38 .53 .03 .06|.001 .89 0 .09| 0 0 .42 58| 0 0 .01 .99
(1050)| .52 48 0 0 .03 .96 0 .01| 0 0 .52 48| 0 0 .01 .99
AIC (5050)| .79 21 0 o0 1 o0 0|0 o0 278 22/0 0 0 1
(10,10) | .62 30 .03 05|59 .33 03 05| 0 .0l .67 31| 0 .0l .66 .33
CvV* (50,0)| .73 21 .04 .03|.69 .21 07 03| 0 o0 .77 23| 0 o0 .77 .23
(1050) | .85 15 0 0 |56 .44 0 0|0 0 .8 15| 0 0 .69 .31
(50,50)| .97 03 0 0 |.73 .27 0 0|0 0 .98 .02/ 0 0 .8 .16
(10,10) | .17 72 02 10| .05 .83 0L 11| 0 0 .21 79| 0 0 .06 .94
CV* (50,10)| .04 85 ©0 11| 0 .88 0 12| 0 0 .04 9|0 0 0 1
(1050)| .48 52 0 0 ].02 .97 0 01| 0 0 .49 510 0 .01 .99
BIC (50,50)| 63 37 0 0|0 .99 0 01| 0 0 .62 38/ 0 0 0 1
(10,10) | .56 37 .03 04| 50 .43 03 04| 0 0 .64 36| 0 0 60 .40
CV** (50,10) | .54 .40 .04 .03|.41 .49 07 03| 0 O .59 41| 0 0 .53 .47
(10,50)| .84 16 0 0 |53 .47 0 0|0 0 .84 16| 0 0 .67 .33
(50,50)| .96 .04 0 0 |47 .53 0 0|0 0 .97 .03/ 0 0 .71 .29
(10,10) | .37 56 .03 .05| .14 .79 01 .06] .01 0 .41 53| 0 .0l .14 .85
CV* (50,10)| .41 .51 .03 .05|.00 .90 0 .08| 0 0 .46 54| 0 0 .01 .99
(1050) | .47 52 0 0 |.02 .97 0 01| 0 0 .48 52| 0 0 .01 .99
Testing (50,50)| 63 37 0 0|0 .99 0 01| 0 0 .62 38/ 0 0 0 1
(10,10) | .76 19 .04 02|72 .22 04 02| 0 0 .81 19| 0 0 .79 .20
CvV** (50,10)| .92 .03 .05 0 |87 .04 09 0|0 0 .97 03| 0 0 .97 .03
(1050)| .82 18 0 0|49 .51 0 0|0 o0 .82 18| 0 0 .64 .37
(50,50)| .96 .04 0 0 |46 .54 0 0|0 0 .97 03/ 0 0 .71 .29
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