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Abstract

In this paper we propose a jackknife method to determine individual and time effects

in linear panel data models. We first show that when both the serial and cross-sectional

correlation among the idiosyncratic error terms are weak, our jackknife method can pick up

the correct model with probability approaching one (w.p.a.1). In the presence of moderate or

strong degree of serial correlation, we modify our jackknife criterion function and show that

the modified jackknife method can also select the correct model w.p.a.1. We conduct Monte

Carlo simulations to show that our new methods perform remarkably well in finite samples.

We apply our methods to study () the crime rates in North Carolina, () the determinants

of saving rates across countries, and () the relationship between guns and crime rates in the

U.S.
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1 Introduction

Individual effects and time effects are often used in panel data models to model unobserved

individual or time heterogeneity (see, e.g., Arellano (2003), Baltagi (2013), Hsiao (2014), and

Wooldridge (2010) for a review on panel data models). The goal of this paper is to provide

practical methods to determine whether to include individual effects, time effects, both, or neither

in linear panel data models. Specifically, we consider the following four models:

Model 1:  = 0 + 

Model 2:  = 0 +  + 

Model 3:  = 0 +  + 

Model 4:  = 0 +  +  + 

where  = 1   = 1   ,  is a ×1 vector of regressors that may include lagged dependent
variables,  is an individual effect,  is a time effect, and  is an idiosyncratic error term. We

will treat ’s and ’s as fixed parameters to be estimated despite the fact they can be either fixed

effects or random effects for our purpose. For clarity, we assume that  contains the constant

term in all models and impose restrictions on  or/and  in Models 2-4 to achieve identification

for the individual or time effects. Specifically, we assume that

X
=1

 = 0 in Model 2, (1.1)

X
=1

 = 0 in Model 3, and (1.2)

X
=1

 = 0 and
X
=1

 = 0 in Model 4. (1.3)

The above identification restrictions greatly facilitate the asymptotic analysis in this paper and

make it straightforward to extend the methodology developed here to multi-dimensional panel

data models.1

There are two main motivations for model selection in the above panel setup. First, we usually

can achieve a small mean squared error (MSE) for the estimators of parameters of interest based on

the true model, as shown in our simulation results in Section 3 (see Tables 4A and 4C). Therefore

it is desirable to use the true model for point estimation and inference. In our simulations, we

also show that the MSEs based on the selected model are usually smaller than those based on

a single fixed model by ignoring the true underlying data generating process (DGP). Second,

sometimes we may be interested in knowing whether the individual/time effects are present, as

1For our method discussed below, different identification restrictions, e.g., assuming  = 0 in Model 2 and

 = 0 in Model 3, produce identical results.
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these effects represent the unobservable heterogeneity and may have economic meaning. For

example, in the wage equation where  is the hourly wage and  contains variables such as

education and working experience, among others, the individual effects may be thought of as

individual’s unobservable ability. We may be interested in knowing whether the “ability” variable

enters the wage equation.

We propose a jackknife or leave-one-out cross-validation (CV) method to select the correct

model.2 There are several advantages of our jackknife method in the context of determining fixed

effects. First, the new method is general and easy to implement. It does not require the choice

of any tuning parameter. In all information-criterion-based methods, there is an implicit tuning

parameter (e.g., a Bayesian information criterion (BIC) specifies the penalty term to be propor-

tional to ln ( ) ( ) which works as a tuning parameter). There, to show the consistency

of model selection, we often have the flexibility of choosing alternative tuning parameters. For

the procedure based on hypothesis testing as discussed below, we need to choose the sequence

of testing and the nominal level, which are difficulty to choose in practice. Second, we assume

that the cross-section dimension () and time dimension ( ) pass to infinity simultaneously but

allow the relative rate between  and  to be arbitrary. For example,  can be much slower

than  such as  ³ ln ()  Although our method requires a relatively large  for the asymptotic
analysis, it can be applied to the case in micro-econometrics where  is much smaller than  .

Third, our CV method can be applied to both static and dynamic panel models. We show that

when serial correlation and cross-sectional dependence in the error term are absent or weak, our

CV method can choose the correct model with probability approaching one (w.p.a.1).3 Fourth,

we propose a modified CV method that is robust to strong serial correlation in the static panel

models. We show that the modified CV can select the correct model w.p.a.1. in the presence of

strong serial correlation. Fifth, our jackknife method can be easily extended to nonlinear pan-

els and to multi-level panels where the determination of different fixed effects is also imperative.

Sixth, in our simulations, we show that our jackknife outperforms other competing methods, such

as AIC and BIC in the absence of serial correlation in the error terms. In the presence of strong

serial correlation, only our modified jackknife works well and other methods, such as jackknife,

AIC and BIC, all break down.

In the literature, there exist several tests for testing for the presence of fixed effects in two

dimensional panel data models. Most of the tests focus on short static panel models. Let 2

and 2 be the variances of  and  respectively. Under the normality assumption, Breusch

2Throughout the paper, we use Jackknife and CV interchangeably. Jackknife is widely used in model selection

and model averaging (see, e.g., Allen (1974), Stone (1974), Geisser (1974), Wahba and Wold (1975), Li (1987),

Andrews (1991), Shao (1993), Burman, Chow and Nolan (1994), Racine (2000), Hansen and Racine (2012), and Lu

and Su (2015)).
3We only allow serial correlation in static panel models. For dynamic panel data models (e.g., panel AR(1)

model), the serial correlation in the error terms (e.g., AR(1) errors) will cause the error terms to be correlated with

the lagged dependent variables. We do not address the endogeneity issue in this paper.
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and Pagan (1980, BP hereafter) propose a Lagrange multiplier (LM) test for testing the null

hypothesis: 01 : 
2
 = 0 and 2 = 0 The BP test can also be applied to test the null hypotheses

that 02 : 
2
 = 0 (assuming 

2
 = 0) and that 03 : 

2
 = 0 (assuming 

2
 = 0) (see, e.g., Baltagi,

2013 for a discussion). Honda (1985) shows that BP test is actually robust to the non-normality

and also modifies the test to a one-sided test. Baltagi, Chang and Li (1992, BCL hereafter)

modify the one-side test based on the results of Gourieroux, Holly and Monfort (1982). BCL

also propose conditional LM tests for testing 04 : 
2
 = 0 (allowing 2  0) and 05 : 

2
 = 0

(allowing 2  0). Moulton and Randolph (1989) consider the ANOVA F-test. All the tests

discussed above assume that the error terms {  = 1  } are not serially correlated. Bera,
Sosa-Escudero, and Yoon (2001) propose an LM test that allows serial correlation in the error

term. Recently, Wu and Li (2014) propose Hausman-type tests for testing 01 04 and 05 by

comparing the variances of the error terms at different robust levels. Wu and Zhu (2012) extend

the Hausman-type tests to short dynamic panel models.

Potentially, these tests can be used to determine the correct model. For example, we can test

01 04 and 05 sequentially. However, there are several limitations of the approach based on

the hypothesis testing. First, to determine the correct model, three separate tests need to be

implemented sequentially. This involves the multiple testing issue and it is unclear how to choose

an appropriate nominal level.4 In addition, in finite samples, it could occur that 01 is rejected,

while neither 04 nor 05 is rejected, in which case it is difficult to decide the correct model.

Second, the existing tests are designed for short panels (i.e.,  is fixed), and it is unclear how the

tests behave when  also goes to infinity. We consider large panels where  and  go to infinity

simultaneously and we allow the relative rates of  and  to be arbitrary. Third, except Wu and

Zhu (2012), most existing tests do not apply to dynamic panel models, i.e., the regressors cannot

contain any lagged dependent variables.

Alternatively, we can consider certain information criteria (IC) such as AIC and BIC. However,

to the best of our knowledge, there is no theoretical analysis of AIC or BIC in the context of

determining fixed effects in panel data. When all four models are allowed, a careful analysis

indicates that AIC is always inconsistent and BIC is consistent in the special case where  and

 pass to infinity at the same rate. In Monte Carlo simulations we compare our jackknife method

with AIC and BIC, and find that our jackknife method generally outperforms this IC-based

approach.

In this paper, we only focus on the consistency of model selection and do not address the issue

of post-selection inference. As is well known in the literature, usually post-selection inference

is not uniformly valid (see, e.g., Leeb and Pötscher (2005)). This is a general and challenging

question in the model selection literature. Despite its importance, it is beyond the scope of this

4There is a large literature on the multiple testing issue for controlling the family-wise error rate (FWER). See,

e.g., Romano, Shaikh and Wolf (2010) for a review. However, to the best of our knowledge, there is no discussion

on how to address this issue in the context of determining fixed effects.
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paper to provide a thorough theory on uniform inference.

The rest of the paper is structured as follows. In Section 2, we propose the jackknife and the

modified jackknife method and study their asymptotic properties. Section 3 reports Monte Carlo

simulation results and compares our new methods with IC-based methods for both static and

dynamic panel data generating processes. In Section 4, we provide three empirical applications.

In the first application, we study the crime rates in North Carolina and find that Model 4 is the

correct model. The second application is about the determinants of saving rates across countries

and our methods select Model 2. In the third application, we investigate the relationship between

guns and crime rates in the U.S. and we determine that Model 4 is the correct model. Section

5 concludes. The proofs of the main results are relegated to Appendix A and some additional

materials are included in the online supplement.

Notation. For an × real matrix  we denote its transpose as 0 and its Frobenius norm as
kk (≡ [tr(0)]12) where ≡ means “is defined as”. Let  ≡  (0)−10 and  ≡ − 

where  denotes an  ×  identity matrix. When  = {} is symmetric, we use max ()
and min () to denote its maximum and minimum eigenvalues, respectively. The operator

−→
denotes convergence in probability. We use ( )→∞ to denote that  and  pass to infinity

simultaneously.

2 Methodology and Asymptotic Theory

In this section, we first introduce the jackknife method to determine individual or time effects in

panel data models and then study the consistency of our jackknife estimator. To allow for strong

degree of serial correlation we also propose a modified jackknife criterion function and justify its

asymptotic validity.

2.1 Methodology

Let  = (1   )
0 and  = (01  0)

0
 Define    and  analogously. To facilitate

the presentation, we define the following dummy matrices:

 =

Ã
−1
−0−1

!
⊗    =  ⊗

Ã
−1
−0−1

!
 and  = () 

where  is an × 1 vector of ones for any integer  ≥ 1 To unify the notation, we write

(1) =  (2) = ()  
(3) = ()  and (4) = () 

We use 
()0
 to denote a typical row of () such that () = (

()
11   

()
1   

()
1   

()
 )

0

for  = 1 2 3 4 Similarly, we use 0 
0
 and 0 to denote a typical row of   and
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 respectively. Then we can rewrite Models 1-4 as follows:

Model 1:  = 0 +  ≡ (1)0(1) + 

Model 2:  = 0 + 0 +  ≡ (2)0(2) + 

Model 3:  = 0 + 0 +  ≡ (3)0(3) + 

Model 4:  = 0 + 0 + 0 +  ≡ (4)0(4) + 

where  = (1  −1)0   = (1  −1)0 (1) =  (2) =
¡
0 0

¢0
 (3) =

¡
0 0

¢0
 and

(4) = (0 0 0)0 Note that we have imposed the identification conditions in (1.1)-(1.3) for
Models 2-4 in the above representation. In matrix notation, we can write these models simply as

Model 1:  =  +  = (1)(1) + 

Model 2:  =  ++  = (2)(2) + 

Model 3:  =  ++  = (3)(3) + 

Model 4:  =  +++  = (4)(4) + 

Note that Model 1 is nested in Models 2-4, both Models 2 and 3 are nested in Model 4, and

0
 = 0 These observations greatly simplify the asymptotic analysis in this paper.

The OLS estimator of () based on all observations {( () ) : 1 ≤  ≤  1 ≤  ≤ } is
given by

̂
()

=
³
()0()

´−1
()0 for  = 1 2 3 4 (2.1)

We also consider the leave-one-out estimator of () with the ( )th observation deleted:

̂
()
 =

³
()0() − 

()
 

()0


´−1 ³
()0 − 

()
 

´
for  = 1 2 3 4 (2.2)

where  = 1    = 1   . Define the out-of-sample predicted value of  as ̂
()
 = ̂

()0
 

()
 

Our jackknife method is based on the following leave-one-out CV function

 () =
1



X
=1

X
=1

³
 − ̂

()


´2
for  = 1 2 3 4 (2.3)

Let

̂ = argmin
1≤≤4

 ()  (2.4)

Under some regularity conditions, we will show that w.p.a.1, ̂ is given by  when Model  is

the true model.

Remark 1. In dynamic panel models with individual effects (Models 2 and 4), it is well known

that bias-correction is needed for the estimation and inference of parameters unless  → ∞
as ( )→∞. There is a large literature on this issue; see, e.g., Arellano and Hahn (2007) and
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Fernandez-Val and Weidner (2018) for a review. Here our purpose is to select the correct model

consistently. We show that our jackknife method can select the true model consistently without

the need for bias-correction. Our simulations also suggest that bias-correction for dynamic panels

may or may not help with the determination of the true model.5 Of course, we generally need to

implement the bias-correction for estimation and inference after the model selection.

Remark 2. Here we focus on the determination of whether the individual effects, time

effects, both, or neither should enter the model from the out-of-sample predictive power of these

effects. Even though we treat either effects as fixed parameters to be estimated and allow them

to be correlated with the regressors in , they can be either fixed effects or random effects

for subsequent estimation and inference. Our jackknife method can only tell whether either the

individual effects or time effects are present or not, but cannot tell whether they are random or

fixed effects. Note that even in a random effects model, we have the issue of which effects should

be included in the model. For example, in an experimental setting where the key regressor is

randomized, we still need to consider whether we should include individual or time effects (or

both) for the efficiency consideration. Our method provides a practical solution. In a setting

where it is unclear whether we should use random or fixed effects, we may implement a two-step

procedure. In the first step, we apply our method to determine whether the individual or time

effects should be included in the model. In the second step, we apply the Hausman-Wu type test

(see, e.g., Hausman (1978) and Hausman and Taylor (1981)) to determine whether the effects are

“random” or “fixed”.

2.2 Asymptotic theory under weak serial and cross-sectional correlations

Let ̄· = −1
P

=1  ̄· = −1P
=1  and ̄·· = ( )−1

P
=1

P
=1  Let ̄· ̄· and ̄··

be defined analogously. Define

̂ =
1


 0 and ̂

=
1


 0

 for  =   and 

Let  denote a generic large positive constant whose value may vary across lines.

To proceed, we make the following set of assumptions.

Assumption A.1. (i) () = 0 max1≤≤1≤≤ (4) ≤  and 1


P
=1

P
=1 

2


→ ̄2  0

(ii) max1≤≤1≤≤  kk4 ≤ 

(iii) ̄·· = 

¡
( )−12

¢
and 1


 0 = 

¡
( )−12

¢
.

(iv) There exist positive constants  and ̄ such that 
³
 ≤ min

³
̂

´
≤ max

³
̂
´
≤ ̄

´
→ 1 for  =   and 

(v) 1


P
=1

P
=1  =  (1) and

1


P
=1

P
=1  =  (1) when Model 2, 3, or 4 is

true and applicable.

5The simulation details are available upon request.
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Assumption A.2. (i) 


P
=1 (̄·)

2 → ̄21  0

(ii) 


P
=1 (̄·)

2 → ̄22  0

(iii) 1


P
=1 ̄·̄· = 

¡
−1 + ( )−12

¢


(iv) 1


P
=1 ̄·̄· = 

¡
−1 + ( )−12

¢


Assumption A.3. (i) If Model 2 is the true model, there exist positive constants  and 

such that

1



X
=1

X
=1

h
 − 0

¡
 0

¢−1
 0

i2 →   0 and (2.5)

1



X
=1

X
=1

∙
 − 

(3)0


³
(3)0(3)

´−1
(3)0

¸2
→ 

 0 (2.6)

(ii) If Model 3 is the true model, there exist positive constants  and 
such that

1



X
=1

X
=1

h
 − 0

¡
 0

¢−1
 0

i2 →   0 and (2.7)

1



X
=1

X
=1

∙
 − 

(2)0


³
(2)0(2)

´−1
(2)0

¸2
→ 

 0 (2.8)

(iii) If Model 4 is the true model, there exist positive constants   
 and 

such

that

1



X
=1

X
=1

h
 +  − 0

¡
 0

¢−1
 0 (+)

i2 →   0 (2.9)

and both (2.6) and (2.8) hold.

Assumptions A.1(i)-(ii) impose weak moment conditions on {} and {}  which are fre-
quently assumed in the literature. The fourth-order moment conditions on {} and {} imply
that 1



P
=1

P
=1 kk2 =  (1) and max1≤≤1≤≤ kk =  (( )14) by Markov and

Jensen inequalities and the union bound. Assumption A.1(iii) is also weak and commonly im-

posed in panel data models in the absence of endogeneity. In particular, we permit  to contain

lagged dependent variables so that dynamic panel data models are allowed. Assumption A.1(iv)

specifies the usual identification conditions for the OLS or fixed effects (FE) estimation of Mod-

els 1-4. For example, the condition that min(̂) is bounded below from 0 requires that 

should not contain any time-invariant regressor beyond a constant term; it is allowed to contain a

constant term because we have imposed the identification constraint that
P

=1  = 0 Similarly,

the condition that min(̂
) is bounded below from 0 requires that  should not contain any

individual-invariant regressor beyond a constant term; it is allowed to contain a constant term

because we have imposed the identification constraint that
P

=1  = 0 On the surface, this

condition rules out the inclusion of any time-invariant regressor in Model 2, individual-invariant

8



regressor in Model 3, and both types of regressors in Model 4. If  contains such regressors, they

should be removed from Models 2-4 correspondingly and then we can redefine 
()
 for  = 2 3 4

with such regressors removed. For example, if  contains a time-invariant regressor other than

the constant term, say, , then  will be omitted from Models 2 and 4 in the estimation proce-

dure, but still kept in Models 1 and 3. The omission of  in Models 2 and 4 will not cause the

endogenous problem, as its effect will be captured by the individual effects in Models 2 and 4,

which are allowed to be correlated with the other regressors in . So the asymptotic analysis

below will continue to hold. Assumption A.1(v) essentially imposes conditions on the interactions

between the idiosyncratic error terms and the individual and time effects, whenever applicable, in

Models 2-4. A sufficient condition for it to hold is that both {} and {} have zero mean
and follow a version of weak law of large numbers. The zero mean condition is commonly assumed

in the panel data literature. Note that we allow the individual effects  and time effects  to be

random in the true model (if present) even if we treat them as fixed parameters in the estimation

procedure.

Assumption A.2(i) requires that {  ≥ 1} be weakly serially dependent such that 1


P
=1

P
=1P

=1 () has a finite limit. For example, the latter condition is satisfied by the Davydov

inequality if {  ≥ 1} is strong mixing with finite (2 + )−th moment and mixing coefficients
 (·) such that  () = − with min1≤≤   (2 + ) ; see, e.g., Bosq (1998, pp.19-20) or

the online supplement of Su, Shi, and Phillips (2016). Similarly, Assumption A.2(ii) requires that

{  ≥ 1} be weakly cross-sectionally dependent such that 1


P
=1

P
=1

P
=1 () has a

finite limit. Assumption A.2(iii)-(iv) can be verified under both weak serial and cross-sectional

correlations by the Chebyshev inequality and it is easily met in the absence of both serial and

cross-sectional correlations. In the online supplement, we demonstrate that the primitive con-

ditions to ensure Assumption A.2(iii)-(iv) are: (i) max1≤≤ 
°°° 1 P

=1

P
=1 

∗


°°°2 ≤  (ii)

max1≤≤ 
°°° 1 P

=1

P
=1 

∗


°°°2 ≤  and (iii) 1


P
=1

P
=1

P
=1

P
=1 | ()| ≤ 

where ∗ =  −  ()  Analogous conditions are frequently assumed in the panel data litera-

ture to control weak serial and cross-section dependence; see, e.g., Bai and Ng (2002). It is worth

mentioning that ̄21 = ̄2 if there is no serial correlation among {  ≥ 1}  and ̄22 = ̄2 if

there is no cross-sectional correlation among {  ≥ 1}  When serial correlation is present, ̄21
is generally different from ̄2; when cross-sectional correlation is present, ̄

2
2 is generally different

from ̄2

Assumption A.3 specifies conditions to ensure that the underfitted or misspecified models will

never be chosen asymptotically. The interpretations of the conditions in (2.5)-(2.9) are easy.

For example, when Model 2 is the true model, Models 1 and 3 are underfitted and misspecified,

respectively. In this case, (2.5) and (2.6) require that the individual effects  when stacked into

an  ×1 vector, should not lie in the column space spanned by the regressor matrix  in Model

1 and (3) in Model 3, respectively. Similarly, when Model 4 is the true model, Models 1, 2, and

3 are all underfitted. In this case, (2.9) requires that + when stacked into an  ×1 vector,
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should not lie in the column space spanned by the regressor matrix  in Model 1, (2.8) requires

that the time effects  should not lie in the column space spanned by 
(2) in Model 2, and (2.6)

requires that the individual effects  should not lie in the column space spanned by 
(3) in Model

3. In short, Assumption A.3 rules out asymptotic multicollinearity between the individual/time

effects and the regressors.

It is worth mentioning that we allow for both cross-sectional and serial dependence of unknown

form in {( )} despite the fact that some of the results derived below need further constraints.
We do not need identical distributions or homoskedasticity along either the cross-section dimension

or the time dimension, neither do we need to assume mean or covariance stationarity along either

dimension. In this sense, we say our results below are applicable to a variety of linear panel data

models in practice.

Given Assumptions A.1-A.3, we are ready to state our first main result.

Theorem 2.1 Suppose that Assumptions A.1-A.3 hold. Suppose that max
¡
̄21 ̄

2
2

¢
 2̄2

where ̄21 ̄
2
2 and ̄2 are defined in Assumptions 2(i), 2(ii), and 1(i), respectively. Then

 (̂ =  | Model  is the true model)→ 1 as ( )→∞ for  = 1  4

Remark 3. The proof of Theorem 2.1 is given in the appendix. To appreciate the above

result, we outline the main idea that underlines our proof. When Model 1 is true, all the other

models are overfitted, and we can show that  ( (1)   ())→ 1 for  = 2 3 4 by showing

that

 [ (2)−  (1)]
→ 2̄2 − ̄21  0

 [ (3)−  (1)]
→ 2̄2 − ̄22  0

( ∧  ) [ (4)−  (1)]
→ 2 (1 + ) ̄2 −

¡
̄21 + ̄22

¢
1 {1 ≥ 1}−

¡
̄21 + ̄22

¢
1 {1  1}  0

where  = lim( )→∞
¡


∧ 



¢
 and 1 = lim( )→∞ 


, and  ∧  = min ( )  When Model 2

is true, Models 1, 3 and 4 are underfitted, misspecified and overfitted, respectively, and we can

show that  ( (2)   ()) → 1 for  = 1 3 4 by showing that

 (1)−  (2)
→   0

 (3)−  (2)
→ 

 0

 [ (4)−  (2)]
→ 2̄2 − ̄22  0

When Model 3 is true, Models 1, 2 and 4 are underfitted, misspecified and overfitted, respectively,

and we can show that  ( (3)   ())→ 1 for  = 1 2 4 by showing that

 (1)−  (3)
→   0

 (2)−  (3)
→ 

 0

 [ (4)−  (3)]
→ 2̄2 − ̄21  0
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WhenModel 4 is true, all other models are underfitted, and we can show that  ( (4)   ())→
1 for  = 1 2 3 by showing that

 (1)−  (4)
→   0

 (2)−  (4)
→ 

 0

 (3)−  (4)
→ 

 0

As a result,  () has the minimal value among { ()   = 1  4} asymptotically only when
Model  is the true model.

Remark 4. Theorem 2.1 indicates that we can choose the correct model w.p.a.1 as ( )→
∞ In other words, our jackknife method can choose the correct model consistently as long as

the serial or cross-sectional correlation among the error terms is not strong enough to over-

take the average noise level as represented by ̄2. As remarked above, the additional condition

max
¡
̄21 ̄

2
2

¢
 2̄2 would be automatically satisfied in the absence of both serial and cross-

sectional correlation among the idiosyncratic error terms. Note that the above result does not

have any restriction on the degree of serial or cross-sectional correlation among {} as long as
Assumptions A.1(ii)-(v) are satisfied. More importantly, we do not need any relative rate con-

dition on how  and  pass to infinity. In fact, our theory allows  =  (ln) such that our

method may be applied to micro panels when  is typically small in comparison with  .

Remark 5. To see when the above additional condition can be met in Theorem 2.1, consider

the case where {  ≥ 1} follows a covariance-stationary AR(1) process with mean zero and vari-
ance 2 for each  and is independently and identically distributed (i.i.d.) along the cross-section

dimension. Let  ∈ (−1 1) denote the AR(1) coefficient. Then by straightforward calculations,




X
=1

 (̄·)2 =
1



X
=1


¡
2
¢
+
2



−1X
=1

X
=+1

 () = 2 +
22


−1X
=1

X
=+1

−

= 2

Ã
1 +

22


−1X
=1


¡
1− −+1

¢
1− 

!
→ 2

µ
1 +

2

1− 

¶
= ̄21

In this case, ̄2 = 2 and ̄21  2̄2 provided   1
3  Similarly, if {  ≥ 1} has mean zero and

variance 2 for each   such that Corr( ) = |−| for all    for some  ∈ (−1 1)  then





X
=1

 (̄·)2 → 2

µ
1 +

2

1− 

¶
= ̄22

and ̄22  2̄2 provided   1
3  We can also consider a stationary -dependent process for

{  ≥ 1} with mean zero and variance 2 for each  (assuming i.i.d. in the cross-section

dimension). In this case, we can show that

̄21 = lim
→∞

⎛⎝2 +
2( − 1)



X
=1

Cov (1 +1)

⎞⎠ =

⎡⎣1 + 2 X
=1

Corr (1 +1)

⎤⎦2
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So the condition ̄21  2̄2 is satisfied if
P

=1Corr(1 +1) 
1
2  Again, this means that we

cannot have too large time-series correlation. Note that this condition is always satisfied for an

invertible MA(1) process:  =  + −1 where ||  1 and {  ≥ 1} is a white noise with
mean 0 and variance 2, as in this case,

̄21 = lim
→∞

µ
1 +

 − 1


2

1 + 2

¶
2  2

2


where 2 = (1 + 2)2

The above calculations indicate that the serial or cross-sectional correlation among the error

terms cannot be moderately large in order for our jackknife method to work. In the next subsec-

tion, we consider the relaxation of such conditions. Since there is typically no natural ordering

among the individual units, we focus on the relaxation on the serial dependence along the time

dimension and propose a modified jackknife criterion function to handle strong or moderately

large degree of serial correlation.

2.3 A modified jackknife criterion function

In this subsection, we consider the panel data model with serially correlated errors and propose

a modified version of the jackknife criterion function. Note that if a generic ARMA process is

invertible, it can be written as an AR(∞) process and well approximated by an AR() process
for sufficiently large  For this reason, we assume that the error process {  ≥ 1} can be
approximated by an AR() process:

 =
∞X
=1

− +  =

⎛⎝ X
=1

−

⎞⎠+
⎛⎝ ∞X

=+1

− + 

⎞⎠
= ρ0−1 +  (2.10)

where  = 1    =  + 1   ρ =
¡
1  

¢0
is a vector of unknown parameters, −1 =

(−1  −)0,  =  +   is an innovation term, and  =
P∞

=+1 − signifies
the approximation error. If {  ≥ 1} is an autoregressive process of order  or less, then  = 0
and  = 

Let ̂
()
 =  − ̂

()0

()
 for  = 1 2 3 4 We propose to estimate the AR() coefficients

based on the residuals from Model 4 (the largest model), i.e., we run the following regression

̂
(4)
 = 1̂

(4)
−1 + 2̂

(4)
−2 + + ̂

(4)
− + ̃ = ρ0̂(4)−1 + ̃ (2.11)

where  = 1    = + 1   ̂
(4)
−1 = (̂

(4)
−1  ̂

(4)
−)

0 and ̃ = (̂
(4)
 − ) + ρ0(−1 −

̂
(4)
−1) +  Let ρ̂ =

¡
̂1 ̂2 ̂

¢0
denote the OLS estimator of ρ in the above regression. Let


−1 = (−1  −)

0 and ̂()
−1 = (̂

()
−1  ̂

()
−)

0 We modify the CV criterion function as

 ∗ () =
1

 ( − )

X
=+1

X
=1

h³
 − ρ̂0−1

´
−
³
̂
()
 − ρ̂0̂()−1

´i2
 (2.12)
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Let

̃ = argmin
1≤≤4

 ∗ ()  (2.13)

Ideally, when Model  is correctly specified, ( − ρ̂0−1) − (̂
()
 − ρ̂0̂()−1) will approximate

the true innovation term . As long as there is no serial correlation among {} or the serial
correlation is weak, ̃ is given by  w.p.a.1. when Model  is the true model.

Let

Φ () = 1− 1− 2
2 − · · ·− 



where  is the lag operator. Similarly, Φ (1) = 1 − 1 − 2 − · · · −  Let ̆
()
 = Φ ()

()
 for

 = +1   and  = 1 2 3 4 Note that ̆
(1)
 = Φ () ≡ ̆ Let ̄· = −1

P
=+1  for  =

1  and ̄· = −1P
=1  for  = +1  , where  = − Let −1 = (−1  −)0

and Γ =
1



P
=1

P
=+1 −1

0
−1

To state the next result, we add the following set of assumptions.

Assumption A.4. (i)
P∞

=1 
 6= 0 for any complex number  with || ≤ 1 P∞

=1

¯̄

¯̄
 ∞

32
¡
−1 + −1

¢
=  (1)  and min(Γ) is bounded away from zero in probability as ( )→∞

(ii)  () = 0 max1≤≤+1≤≤ 
¡
4
¢ ≤  and 1



P
=1

P
=+1 

2


→ ̄2  0

(iii) 1


P
=1

P
=+1  = 

¡
( )−12

¢
for  = 1 and ̆ and

°°° 1


P
=1

P
=+1 −1

°°° =


¡
()−12

¢


(iv) 1


P
=1

P
=+1  =  (1) and

1


P
=1

P
=+1 [Φ ()] =  (1) when Model

2, 3, or 4 is true and applicable.

Assumption A.5. (i)



P
=1 (̄·)

2 → ̄21  0

(ii) 


P
=+1 (̄·)

2 → ̄22  0

(iii) 1


P
=1 ̄·̄· = 

¡
−1 + ( )−12

¢


(iv) 1


P
=+1 ̄·̄· = 

¡
−1 + ( )−12

¢


Assumption A.6. (i) If Model 2 is the true model, there exist positive constants ∗ and ∗

such that

1



X
=1

X
=+1

h
Φ (1) − ̆0

¡
 0

¢−1
 0

i2 → ∗  0 and (2.14)

1



X
=1

X
=+1

∙
Φ (1) − ̆

(3)0


³
(3)0(3)

´−1
(3)0

¸2
→ ∗

 0 (2.15)

(ii) If Model 3 is the true model, there exist positive constants ∗ and ∗
such that

1



X
=1

X
=+1

h
Φ () − ̆0

¡
 0

¢−1
 0

i2 → ∗  0 and (2.16)

1



X
=1

X
=+1

∙
Φ () − ̆

(2)0


³
(2)0(2)

´−1
(2)0

¸2
→ ∗

 0 (2.17)
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(iii) If Model 4 is the true model, there exist positive constants ∗  
∗


 and ∗
such

that

1



X
=1

X
=+1

h
(Φ (1) +Φ ())− ̆0

¡
 0

¢−1
 0 (+)

i2 → ∗  0 (2.18)

and both (2.15) and (2.17) hold.

Assumption A.4(i) rules out unit root or explosive processes for {  ≥ 1}  Assumption
A.4(ii)-(iv) parallels Assumption A.1(i), (iii) and (v). Assumption A.5(i)-(iv) parallels Assump-

tion A.2(i)-(iv). Assumption A.6(i)-(iii) is analogous to Assumption A.3(i)-(iii). In the online

supplement (Section C.2), we verify Assumptions A.4 and A.5 under a set of sufficient primitive

conditions on {(   )} 

Theorem 2.2 Suppose that Assumptions A.1-A.2 and A.4-A.6 hold. Suppose that max(̄21 ̄
2
2) 

2̄2 Then

 (̃ =  | Model  is the true model)→ 1 as ( )→∞ for  = 1  4

Remark 6. Theorem 2.2 indicates that the modified jackknife criterion function helps us to

select the correct model w.p.a.1 as ( ) → ∞ under the weak side condition max(̄21 ̄
2
2) 

2̄2. Where there is no serial correlation among {  ≥ 1} such that Φ (1) = Φ () = 1 and

 =  then ̄21 = ̄21 = ̄2 = ̄2 and ̄22 = ̄22 This implies that the result in Theorem 2.2

coincides with that in Theorem 2.1 in this case. If there is no serial or cross-sectional correlation

among {} then ̄21 = ̄22 = ̄2 and max(̄
2
1 ̄

2
2)  2̄2 is automatically satisfied. More

generally, if {  ≥ 1} is an AR(∞) process, in the online supplement, we show that when →∞
under certain rate condition, the approximation error (=

P∞
=+1 −) is asymptotically

negligible so that ̄21 = ̄22 = ̄2 is always satisfied.

Remark 7. In the above analysis, we run the pooled AR() regression for ̂
(4)
  A close

examination of the proof of Theorem 2.2 indicates that only the consistency of the pooled OLS

estimator ρ̂ is used. Alternatively, one can allow heterogeneity in both the order of autoregression

and its coefficients. In this case, we use  and ρ  = 1  to denote the order and individual

coefficients in the autoregressive models and run the AR() regression for {̂(4)   ≥ 1} to estimate
ρ by ρ̂ for  = 1   Then we can modify the jackknife criterion function to be

 ∗ () =
1



X
=1

1

 − 

X
=+1

h³
 − ρ̂0−1

´
−
³
̂
()
() − ρ̂0̂()−1

´i2


Accordingly, we can modify Assumptions A.4-A.6 and establish a result similar to that in Theorem

2.2.
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Remark 8. Alternatively, we can rewrite the original model by including  lagged  and

 lagged  (excluding the constant) as additional () regressors via the standard Cochrane—

Orcutt procedure. Take Model 4 as an example. Let ̊ be the  excluding the constant term,

i.e.,  = (1 ̊
0
)
0 Correspondingly, let  = (1 ̊

0
)0 Then, Model 4

 = 0 +  +  +  = (1 ̊
0
)(1 ̊0)

0 +  +  + 

can be rewritten as

 =
¡
1− 1 − − 

¢
1 + ̊

0
̊ + 1−1 + + − −

³
1̊

0
̊−1 + + ̊

0
̊−

´
+
¡
1− 1 − − 

¢
 +

¡
 − 1−1 − − −

¢
+ 

= ̃
0
̃ + ̃ + ̃ + 

where ̃ =
³
1 ̊0 −1   − ̊

0
−1  ̊

0
−

´0
 ̃ is the new vector of regression coef-

ficients, ̃ =
¡
1− 1 − − 

¢
 and ̃ =

¡
 − 1−1 − − −

¢
 With the new regressor

̃ replacing , we can continue to apply the jackknife criterion function  () as in Section

2.1.

Remark 9. As mentioned above, we regard our AR() model as an approximation for the

error process {  ≥ 1} that does not need to follow the AR() process exactly. Note that our
original jackknife method in Section 2.1 works in the presence of weak serial correlation. Hence,

here it is sufficient to reduce and control the serial correlation among {  ≥ 1}  Despite this
fact, we need to choose the value of . In practice there are several approaches. First, we may

use a “rule of thumb” and let  increase with  e.g.,  = b 14c where b 14c is the nearest
integer less than or equal to  14. Alternatively, we can follow Lee, Okui, and Shintani (2018)

by setting max = b 14c and consider a general-to-specific testing procedure based on -statistic

until we reject the null. Third, we may apply the information criteria, such as AIC and BIC,

to the residuals obtained from Model 4 (̂
(4)
 ) to determine . For the implementation, see, e.g.,

Stock and Watson (2012, Section 14.5). In general, BIC gives a consistent estimator of  and

AIC tends to choose a relatively large  See Section D in the online supplement for more details.

Remark 10. As a referee points out, the standard jackknife (cross-validation) method is

originally designed for i.i.d. observations. For dependent time series data, various modifications

have been proposed in the literature. For example, Burman, Chow and Nolan (1994) consider

a -block cross-validation function by removing the th observation and the  observations on

its either side to estimate the regression parameter, which simplifies to the usual leave-one-out

cross-validation function when  = 0 Racine (2000) finds that the -block cross-validation is not

consistent in general and proposes to combine Shao’s (1993) solution of -blocking on independent

data with Burman, Chow and Nolan’s (1994) -blocking on dependent data to yield a -block

cross-validation for improved model-selection. Note that the -block cross-validation requires the

selection of one tuning parameter () while the -block cross-validation requires the choices of
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two tuning parameters ( and ) The minimum sample size ( in our notation) in Racine’s (2000)

simulations is 100 in order for his method to work reasonably well. But we usually do not have

so many time series observations in the panel setup. If  is only 5, 10, or at most 50 as in our

simulations, we do not know how these alternative methods work and whether it is possible to

justify their consistency in determining whether to include the individual or time effects into a

panel data model. At the minimum, our modified jackknife method offers an easy-to-implement

alternative solution to handle serial correlation in the error terms that only demands the choice

of a single tuning parameter () in practice.

3 Monte Carlo Simulations

In this section, we conduct Monte Carlo simulations to examine the finite sample performance

of our jackknife method and compare it with various information criteria (IC). We consider the

following three different cases: () static panel models with possibly serially correlated errors,

() dynamic panel models without exogenous regressors and () dynamic panel models with

exogenous regressors.

3.1 Implementation

As a comparison, we consider the commonly used information criterion (IC): AIC and BIC, though

to the best of our knowledge, there is no theoretical analysis of AIC and BIC in the context of

determining fixed effects. Here the number of parameters involved depends on  and  and goes

to infinity, thus the standard theory of AIC and BIC is not directly applicable here.

For Model   = 1 2 3 4 define the in-sample residual as ̂
()
 = − ̂

()0

()
  Then AIC

and BIC for Model  are defined respectively as

 () = ln

µ³
̂()

´2¶
+
2()




 () = ln

µ³
̂()

´2¶
+
log ( ) ()




where
³
̂()

´2
= 1



P
=1

P
=1

³
̂
()


´2
and () is the dimension of 

()
 in the th model.

Specifically, (1) =  (2) = +−1 (3) = + −1 and (4) = ++ −2We also consider
the modified BIC as

2 () = ln

µ³
̂()

´2¶
+
log (log ( )) ()




We choose the model by minimizing the above three ICs.6

6Following the standard analysis on the consistency of IC, we can show the following results: (1)  and 2

are consistent in selecting the individual or time effects under the restrictive condition that  and  pass to infinity

at the same rate; (2) the  is never consistent; and (3) neither  nor 2 is consistent in general when 

and  pass to infinity at different rates.
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For static panel models, we consider CV (defined in (2.3)) and CV∗ (defined in (2.12)). To take
into account the possible serial correlation, we also apply CV to the augmented regression with

additional  lagged  and  lagged  (excluding the constant), as discussed in Remark 8 above.

We denote it as CV∗∗. For dynamic panel models, we only consider CV, as serial correlation can
cause the endogenous problem and in general is not allowed in dynamic panel models. For all the

simulations, we consider different combinations of  and  : ( ) = (10 5)  (50 5)  (10 10) 

(50 10)  (10 50) and (50 50)  The number of replications is 1000.

3.2 Static panel models

We consider the following static fixed-effect data generating processes (DGPs):

DGP 1.1:  = 1 +  +  DGP 1.2:  = 1 +  +  + 

DGP 1.3:  = 1 +  +  +  DGP 1.4:  = 1 +  +  +  + 


where  = 1+++  and   and  are mutually independent  (0 1) random variables.

The error term  is generated as

 = −1 + 

where  is a  (0 1) random variable, and  takes different values: 0 14 
1
3 

1
2  and

3
4 
7 Here the

true models corresponding to DGPs 1.1-1.4 are Models 1-4, respectively.

Tables 1A, 1B, 1C, 1D and 1E present the simulation results for  = 0 1
4 

1
3 

1
2  and

3
4 

respectively. When  = 0 i.e., there is no serial correlation in the error term, our CV performs

best. For example, when  = 10 and  = 10 our CV can choose the correct model with a

probability close to 95%. When  is small ( = 5) and  is large ( = 50), the correct rate of

our CV is above 90%. Even when both  and  are small ( = 5 = 10) our CV can achieve

a reasonable correct rate above 70%. The performance of AIC is also good and comparable to

that of CV. CV∗ and CV∗∗ which are robust to possible serial correlation, perform slightly worse

than CV when  is relatively large ( = 10 or  = 50). The performance of BIC is poor. For

example, when the true model is Model 4 and ( ) = (10 50), BIC can only choose the correct

model with a probability of 4%. BIC2 outperforms BIC, but still underperforms CV and AIC.

Next, we consider  = 1
4  i.e., there is weak serial correlation in the error term. When  is

relatively large ( = 10 or  = 50), our CV∗ and CV∗∗ perform best overall, as suggested by

our theory. Between CV∗ and CV∗∗, it is not apparent which one dominates. For example, when
the true model is Model 1, CV∗∗ outperforms CV∗, but when the true model is Model 2, CV∗

outperforms CV∗∗ When  is small, CV∗∗ can perform poorly. CV also performs reasonably

well, as our theory suggests that CV can consistently select the correct model when the serial

correlation is weak (  1
3 for this DGP). When  is small ( = 5), CV can even outperform CV

∗

7Here the error terms are homoskedastic. We have also considered the DGPs with heteroskedasticy and find that

performances are similar. The details are available upon request.
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and CV∗∗. The performance of AIC is slightly worse than that of CV. Both BIC (e.g., when the
true model is Model 3 or 4) and BIC2 (e.g., when the true model is Model 3) perform poorly.

 = 1
3 is an interesting case, as  = 1

3 is the cut-off point for CV to work. In the dis-

cussion following Theorem 2.1, we show that when  = 1
3  ̄

2
1 = 2̄2 thus the key condition

max
¡
̄21 ̄

2
2

¢
 2̄2 is violated. In our proof, we show that in this case, when the true model is

Model 1,  [ (2)−  (1)]
−→ 0 and when the true model is Model 3,  [ (4)−  (3)]

−→
0 This suggests that CV cannot distinguish Model 1 and Model 2 when the true model is Model 1

and cannot distinguish Model 3 and Model 4 when the true model is Model 3. Our simulations con-

firm the theoretical analysis. For example, when the true model is Model 1 and ( ) = (50 50),

CV selects Model 1 and Model 2 with probabilities of 56% and 44%, respectively. In this case, CV,

AIC, BIC and BIC2 all break down. However, both CV
∗ and CV∗∗, which explicitly take serial

correlation into account, perform well in large samples, as suggested by our theory. For example,

when ( ) = (50 50)  both CV∗ and CV∗∗ can select the correct model with a probability close
to 100%. For this DGP, CV∗ slightly outperforms CV∗∗ as a whole. However, in general, for CV∗

and CV∗∗ to work well, a relatively large  is required.
When the serial correlation is high, such as  = 1

2 and
3
4  the performances of CV, AIC, BIC

and BIC2 are all poor. In general, CV
∗ and CV∗∗ perform well when the sample is large. For

this DGP, CV∗ outperforms CV∗∗ in general. For example, when ( ) = (50 50) and  = 1
2 or

3
4  CV

∗ can choose the correct model with a probability close to 100%. However, when the true
model is Model 4 and ( ) = (50 50)   = 3

4  CV
∗∗ can only choose the correct model with a

probability of 49%. Also, when  or  is small, CV∗ and CV∗∗ can perform poorly. This suggests
that when serial correlation is high, a large sample is required.

To examine the effect of model misspecification, in Table 4A, we compare the mean squared

errors (MSEs) of the estimator of the slope coefficient ( = 1) using the four different models

and the model selected by our CV when  = 08 It is clear that for this DGP, the correct model

achieves the smallest MSE. For example, when the true model is Model 1 and ( ) = (10 10) 

the MSE based on Model 4 is about 3.5 times as large as that based on Model 1. When  is

relatively large, the MSEs based on our selected models are almost the same as those based on

the true models. When  is small, our model selection can also achieve MSE reduction, compared

with say, the largest model, Model 4. Table 4B reports the performance of post-selection inference

by presenting the empirical coverage and length of the 95% confidence intervals (CI). We find that

for this DGP, the empirical coverage and length based on our selected model are similar to those

based on the true models, especially when  is relatively large.

In sum, for static panel models, when there is no serial correlation or serial correlation is

low, CV, CV∗, CV∗∗ and AIC all work well. In the absence of serial correlation, CV is the best
performer. When serial correlation is high, only CV∗ and CV∗∗ work in large samples and CV∗

generally outperforms CV∗∗ Also it is noted that a relatively large  is required for CV∗ and
8The results for  = 1

4
 1
3
 1
2
 and 3

4
are avaiable upon request.
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CV∗∗ to work well in the presence of high correlation.

3.3 Dynamic panel models without exogenous regressors

We consider the following dynamic panel DGPs:

DGP 2.1:  = 1 + −1 +  DGP 2.2:  = 1 + −1 +  + 

DGP 2.3:  = 1 + −1 +  +  DGP 2.4:  = 1 + −1 +  +  + 


where   and  are mutually independent  (0 1) random variables and  takes different

values: 14 
1
2 and

3
4 

Tables 2A, 2B, and 2C report the simulations results for  = 1
4 

1
2 and

3
4  respectively. For

most cases, our CV can select the correct method with a high probability and dominates other

methods. Despite its inconsistency, AIC performs slightly worse than CV. For example, when the

true model is Model 1,  = 1
2  ( ) = (10 10), CV and AIC choose the correct model with

probabilities of 84% and 80%, respectively. The performance of BIC is poor in many cases. For

example, when the true model is Model 2,  = 1
2  and ( ) = (50 10)  BIC selects the correct

model with zero probability. The performance of BIC2 is better than that of BIC, but still worse

than those of CV and AIC in general.

Table 4C shows the MSEs of estimator of  based on the four models and the selected model

by CV when  = 3
4 .
9 We consider both the non-bias corrected estimator and bias corrected

estimator. For the bias correction, we adopt the half panel jackknife method as proposed in

Dhaene and Jochmans (2015). For both types of estimators, the estimator based on the true

model has the smallest MSE. For example, when true model is Model 1 and ( ) = (10 10) 

the MSEs of the non-bias corrected estimator based on Model 4 is about 10 times as large as that

based on Model 1, and the MSE of the bias corrected estimator based on Model 4 is about 5 times

as large as that based on Model 1. The MSEs based on our selected models are close to those

based on the true models when  is large. When  is small, in general, our model selection can

also achieve a smaller MSE than a single fixed model. Table 4D shows that the empirical coverage

and length of the 95% CI based on our selected model are comparable to those based on the true

models, especially when  is large.

9The results for  = 1
4 and

1
2 are avaiable upon request.
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3.4 Dynamic panel models with exogenous regressors

We consider the following dynamic panel DGPs with 5 exogenous regressors:

DGP 3.1:  = 1 + −1 +
5X

=1

02 + 

DGP 3.2:  = 1 + −1 +
5X

=1

02 +  + 

DGP 3.3:  = 1 + −1 +
5X

=1

02 +  + 

DGP 3.4:  = 1 + −1 +
5X

=1

02 +  +  + 

where 1 = 1+++  and 2 3 4 5    and  are mutually independent

 (0 1) random variables, and  takes different values: 14 
1
2 and

3
4  Here the number of regressors

is  = 7 (including the constant)

Table 3A, 3B and 3C represent the frequency of the model selected for  = 1
4 

1
2 and

3
4 

respectively The simulation results are similar to those in the dynamic models without exogenous

regressors. In general, our CV performs best, followed by AIC. Both CV and AIC can select the

correct model with a high probability, especially when the sample size is large. For example, when

( ) = (50 50)  the correct probabilities are all close to 100%. BIC performs poorly when the

true model is Model 2 or Model 4. BIC2 outperforms BIC, but still underperforms CV and AIC.

4 Empirical Applications

In this section we consider three empirical applications that illustrate the usefulness of our method

in selecting individual or time effects in panel data models.

4.1 Application I: Crime rates in North Carolina

Cornwell and Trumbull (1994) study the crime rates using the panel data on 90 counties in North

Carolina over the period 1981 — 1987. The vector of explanatory variables  includes: (1) the

probability of arrest, measured by the ratio of arrests to offences, (2) the probability of conviction

given arrest, measured by the ratio of convictions to arrests, (3) the probability of a prison sentence

given a conviction, measured by the proportion of total convictions resulting in prison sentences,

(4) the average prison sentence in days, (5) the number of police per capita, (6) the population

density, measured by the county population divided by the county land area, (7) the percentage

of young male, measured by the proportion of the county’s population that is male and between

the ages of 15 and 24, and (8− 16) the average weekly wage in the county in the following nine
industries: () construction, () transportation, utilities and communication, () wholesale and
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retail trade, () finance, insurance and real estate, () services, () manufacturing, () federal

government, () state government and () local government. All the variables are in logarithm.

Hence we have a static panel with  = 90  = 7 and  = 17 (including the constant). The same

dataset is also used in Baltagi (2006) and Wu and Li (2014).

Table 5 presents the values of AIC, BIC, BIC2, CV, CV
∗, and CV∗∗ where the number of lags

 used in CV∗ and CV∗∗ is 1. All these methods determine that Model 4 (i.e., including both
individual and time fixed effects) is the correct model. We also apply AIC and BIC to determine

the number of lags , both of which choose  = 0 Table 5 also reports the estimates and 95% CIs

for the coefficient on the probability of arrest.10 We consider both the non-clustered and clustered

standard errors (SEs) where the clustered SEs are robust to the serial correlation in the error

terms. Based on the selected Model 4, the point estimate is around -0.355 and the coefficient is

significant at the 5% level.

4.2 Application II: Cross-country saving rates

Su, Shi, and Phillips (2016) use a dynamic panel data model to study the determinants of savings

rates. Following Edwards (1996), they let  be the ratio of savings to GDP for country  in year

, and let  include () its CPI-based inflation rate, () its real interest rate, () its per capita

GDP growth rate and () its lagged saving rate, i.e., −1 Their dataset includes 56 countries
over the period of 1995 — 2010. Hence, we have a dynamic panel data model with  = 56  = 15

and  = 5 (including the constant).

Table 6 shows the values of AIC, BIC, BIC2 and CV. AIC, BIC2 and CV all select Model

2, while BIC selects Model 1. Considering the poor performance of BIC in the simulations, we

conclude that Model 2 (i.e., including individual fixed effects only) is the correct model. Table 6

also present the estimation and inference results for the coefficient on the per capita GDP growth

rate.11 Given the dynamic specification, we report both the non-bias corrected and bias-corrected

results. The bias-correction is based on the half panel jackknife method as proposed in Dhaene

and Jochmans (2015). Based on the selected Model 2, the bias-corrected estimate is 0.178 with

the 95% CI of [0.074, 0.281].

4.3 Application III: Guns and crime in the U.S.

In the paper “Shooting down the ‘More Guns less Crime’ hypothesis”, Ayres and Donohue (2003)

consider how the “shall-issue” law affects the crime rates in the U.S., where the “shall-issue” law

refers to whether local authorities can issue a concealed weapon permit if the applicants meet

certain determinate criteria. So, here  is the crime rates for state  in year  Specifically, we

consider the logarithms of three measures of crime rates separately, namely, the violent crime

10The results for other coefficients are available upon request.
11The results for other coefficients are available upon request.
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rate, the murder rate and the robbery rate, which are measured by incidents per 100,000 members

of the population. The key regressor in  is the “shall-issue” variable, which is 1 if the state

has a shall-carry law in effect in that year and 0 otherwise. Other controls in  include () the

incarceration rate in the state in the previous year, which is measured by sentenced prisoners per

100,000 residents, () the population density per square mile of land area, divided by 1000, ()

the real per capita personal income in the state, in thousands of dollars, () the state population,

in millions of people, () the percentage of state population that is male with an age between

10 and 29, () the percentage of state population that is white with an age between 10 to 64

and () the percentage of state population that is black with an age between 10 and 64. The

dataset contains 50 US states and the District of Columbia ( = 51) over the period of 1977 —

1999 ( = 23). The dataset is also discussed in the textbook by Stock and Watson (2012).

We consider a static panel model, where the dimension of  is  = 9 (including constant).

Table 7 shows the results for three dependent variables separately. All the information criteria and

CV methods select Model 4 (i.e., including both individual and time fixed effects). The number

of lags  used in CV∗ and CV∗∗ is 1. We also apply AIC and BIC to determine the number of
lags . Both AIC and BIC determine the same value of  and choose  = 1 0 and 1 for the three

dependent variables (the violent crime rate, the murder rate and the robbery rate), respectively

In this application, the coefficient on the “shall issue” is often the parameter of interest. Table

7 also reports the estimation and inference results. We find that the effect of the “shall issue” is

not significant at the 5% level based on the selected Model 4. For example, when the dependent

variable is the logarithm of the violent crime rate, the estimate is -0.028 with the 95% CI of

[-0.106, 0.050] using the clustered SEs. In this application, whether to include individual fixed

effects makes a difference. If we do not include individual effects, the effects of the “shall issue”

are in general negative and significant at the 5% level. However, after including individual fixed

effects, the significance is gone.

5 Conclusion

In this paper, we propose a jackknife method to determine fixed effects in panel data models

based on the leave-one-out cross validation (CV) criterion function. We show that when the

serial correlation and cross-sectional dependence in the error terms are weak, our new method

can consistently select the correct model. We also modify the CV criterion function to take into

account the strong serial correlation in the error term. Our simulations suggest that our new

method outperforms the methods based on the information criteria such as AIC and BIC. We

provide three empirical applications on () the crime rates in North Carolina, () the determinants

of saving rates across countries, and () the relationship between guns and crime rates in the

U.S.

Several extension are possible. First, our method can be extended to multidimensional panel
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data models where there are many ways of incorporating fixed effects (see, e.g., Balazsi, Matyas,

and Wansbeek (2017) for a review). Therefore, it is even more imperative to select an appropriate

specification of fixed effects in multidimensional panels. Second, given the fact that there is no

natural ordering along the cross-section dimension in general, it is not easy to extend our jackknife

method as in Section 2.3 to allow for strong or moderate degree of cross-section dependence in

the standard two-way or one-way panel. If cross-section dependence is a concern, one can follow

Bai (2009) and consider the determination of individual effects, time effects, and interactive fixed

effects (IFEs) in the following model

 = 0 +  +  + 0 + 

where  is an  × 1 vector of factors and  is an  × 1 vector of factor loadings. The above
equation models the cross-section dependence explicitly. Conceptually, we can apply the jackknife

idea to the above models to select the number of factors and to determine the presence of  and/or

 simultaneously. The major difficulty lies in the fact that after deleting one observation, the

panel data becomes unbalanced, which is not easy to deal with due to the presence of unobservable

factors (see, e.g., Bai, Liao and Yang (2015)). When the regressors also share the factor structure

as in Pesaran (2006), we conjecture that we can augment Models 1-4 by the cross-sectional means

of the dependent and independent variables and then apply our jackknife method. Alternatively,

we could model cross-sectional dependence using certain metric of economic distance, as in Conley

(1999). We shall explore these topics in our future research.
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Appendix

A Proofs of the main results

Let  = −1+−1 To prove Theorem 2.1, we need the following six lemmas whose proofs can be found
in the online supplement.

Lemma A.1 Let  = () and = − (0)−10 If both 0 and  0 are nonsingular,

then

( 0
)

−1
=

Ã
∗ −∗ 0 (0)−1

− (0)−10∗ (0)−1 + (0)−10∗
0 (0)−1

!
where ∗ = (

0)
−1



Lemma A.2 Let  = () and  = (12) where 
0
12 = 0 If 

0
11 

0
22, and 

0 are all

nonsingular, then

( 0
)

−1
=

⎛⎜⎝ ∗ −∗1 −∗2
−0

1
∗
 (0

11)
−1
+0

1
∗
1 0

1
∗
2

−0
2
∗
 0

2
∗
1 (0

22)
−1
+0

2
∗
2

⎞⎟⎠
where ∗ = (

0)
−1
and  =  0 (

0
)

−1
for = 1 2

Lemma A.3 Suppose that Assumption A.1(iii) holds. Then

(i) 1


 0 (
0
)

−1
0
 =

1


P
=1 ̄

2
· − ̄2·· =

1


P
=1 ̄

2
· − (( )−1)

(ii) 1


 0 (
0
)

−1
0
 =

1


P
=1 ̄

2
· − ̄2·· =

1


P
=1 ̄

2
· − (( )−1)

(iii) 1


 0 (
0
)

−1
0
 = 1



P
=1 ̄

2
· +

1


P
=1 ̄

2
· − 2̄2·· = 1



P
=1 ̄

2
· +

1


P
=1 ̄

2
· −

 (( )−1)

Lemma A.4 Suppose that Assumptions A.1(iii) and A.2(iii)-(iv) holds. Then

(i) 1


 0 (
0
)

−1
0
 =

1


P
=1 ̄·̄· − ̄··̄·· =  (

−1 + ( )−12)
(ii) 1


 0 (

0
)

−1
0
 =

1


P
=1 ̄·̄· − ̄··̄·· =  (

−1 + ( )−12)
(iii) 1


 0 (

0
)

−1
0
 =

1


P
=1 ̄·̄· +

1


P
=1 ̄·̄· − 2̄··̄·· =  ( )

Lemma A.5 Let 
()
 = 

()0


¡
()0()

¢−1
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¢−1

()0 for  = 1 2 3 4 Suppose that Assumptions A.1(iii)-(iv) and A.2(iii)-(iv) hold.

Then
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(ii) 2 =
1

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2

¢
 4 −2 =

1


P
=1 ̄

2·+

¡
−2 + ( )−1

¢


and 4 − 3 =
1


P
=1 ̄

2
· +

¡
−2 + ( )−1

¢


Lemma A.6 Let 
()
 = 

()0


¡
()0()

¢−1

()
 for  = 1 2 3 4 and  =  0 (

0
)

−1
for  =

  and  Let max = max1≤≤1≤≤  Suppose that Assumption A.1(i), (ii) and (iv) holds. Then

(i) max 
(1)
 =  (( )

−12
)
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(ii) 
(2)
 = −1−1


+ ( −)

0
∗

( −) and max 
(2)
 =  (

−1 + ( )−12)
(iii) 

(3)
 = −1 −1


+ ( −)

0
∗

( −) and max 
(3)
 =  (

−1 + ( )−12)
(iv) 

(4)
 = −1−1


+−1 −1


+( −)

0
∗

( −) and max 
(4)
 = ( )

(v) 1


P
=1

P
=1 ( −)

0
∗

( −)
2
 =  (( )−1)

(vi) 1


P
=1

P
=1 ( −)

0
∗

( −)
2
 =  (( )−1)

(vii) 1


P
=1

P
=1 ( −)

0
∗

( −)
2
 =  (( )−1)

Proof of Theorem 2.1. Recall that ̂
()

=
¡
()0()

¢−1
()0 and ̂

()

 = (()0()−() 
()0
 )−1

×(()0 −
()
 ) By the updated formula for OLS estimation (e.g., Greene (2008, p.964)), we have for

 = 1 2 3 4

̂
()

 − ̂
()

= (()0() − 
()
 

()0
 )−1(() − 

()
 )− ̂

()

=

"³
()0()

´−1
+

1

1− 
()


³
()0()

´−1

()
 

()0


³
()0()

´−1#
(() − 

()
 )− ̂

()

=
−1

1− 
()


³
()0()

´−1

()
  +

1

1− 
()


³
()0()

´−1

()
 

()0


³
()0()

´−1
() (A.1)

where 
()
 = 

()0


¡
()0()

¢−1

()
  Below, we will use  to denote the  () when the true

model is given by Model  where  = 1 2 3 4 Let  = (1−() )−1 and  =  By Lemma

A.6, for  = 1 2 3 4 we have

max



()
 =  ( )  max


| − 1| =  ( ) and max


| − 1| =  ( +  )  (A.2)

where 1 = ( )
−12

 2 = −1 + ( )
−12

 3 = −1 + ( )
−12

 and 4 =  

Case 1: Model 1 is the true model. In this case, Models 2-4 are all overfitted and we will show that

 (11  1)→ 1 for  = 2 3 4 When Model 1 is true, we have

 = 0 +  = ()0() +  and ̂
() − () =

³
()0()

´−1
()0 ≡ 

()
 

where the true values correspond to the coefficients of the dummies  and  for  and  in ()

 = 2 3 4 are all zero. This, in conjunction with (A.1), implies that for  = 1 2 3 4


()0
 (̂

()

 − ()) = 
()0


"
(̂
() − ())− 1

1− 
()


³
()0()

´−1

()
 

+
1

1− 
()


³
()0()

´−1

()
 

()0
 

()


#

= 
()0
 

()
 − 

()


1− 
()


 +

()


1− 
()



()0
 

()


= − 
()


1− 
()


 +
1

1− 
()



()0
 

()
 

and

 − ̂
()
 =  − 

()0


³
̂
()

 − ()
´
= 

³
 − 

()0
 

()


´
 (A.3)
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It follows that 1 =
1


P
=1

P
=1

³
 − ̂

()


´2
= 1



P
=1

P
=1 

2


³
 − 

()0
 

()


´2
 We first

study 12 − 11 We make the following decomposition:

12 − 11 =
1



X
=1

X
=1

∙
22

³
 − 

(2)0
 

(2)


´2
− 21

³
 − 

(1)0
 

(1)


´2¸

=
1



X
=1

X
=1

¡
22 − 21

¢
2 +

1



X
=1

X
=1

∙
22

³

(2)0
 

(2)


´2
− 21

³

(1)0
 

(1)


´2¸

− 2



X
=1

X
=1

h
22

(2)0
 

(2)
 − 21

(1)0
 

(1)


i
≡ 1 +2 − 23 say.

For 1 we have

1 =
1



X
=1

X
=1

¡
22 − 21

¢
2

=
1



X
=1

X
=1

212

³
2− 

(1)
 − 

(2)


´³

(2)
 − 

(1)


´
2

=
1



X
=1

X
=1

212

³
2− 

(1)
 − 

(2)


´

(2)
 2 −

1



X
=1

X
=1

212

³
2− 

(1)
 − 

(2)


´

(1)
 2

≡ 11 −12 say.

For 11 we make the following decomposition:

11 =
1



X
=1

X
=1

212

³
2− 

(1)
 − 

(2)


´

(2)
 

2


=
2



X
=1

X
=1


(2)
 

2
 +

2



X
=1

X
=1

¡
212 − 1

¢

(2)
 

2
 −

1



X
=1

X
=1

212

³

(1)
 + 

(2)


´

(2)
 

2


≡ 111 +112 −13

By Lemma A.6(ii) and (v) we can readily show that

111 =
2



X
=1

X
=1

h
0 (

0
)

−1
 + ( −)

0
∗

( −)
i
2

= −1
 − 1


2



X
=1

X
=1

2 +
2



X
=1

X
=1

( −)
0
∗

( −)
2


= −1
2



X
=1

X
=1

2 + (( )−1)

This result, in conjunction with (A.2) and the dominated convergence theorem (DCT), implies that 112 =


¡
−1

¢
and 113 = 

¡
−1

¢
 For 12 we have by (A.2)

12 ≤ max


212|2− 
(1)
 − 

(2)
 |

1



X
=1

X
=1

0 (
0)−1 2

≤ 1


max


212|2− 
(1)
 − 

(2)
 |

∙
min

µ
1


 0

¶¸−1
1



X
=1

X
=1

kk2 2 = 

¡
( )−1

¢

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It follows that 1 = 2
−1 1



P
=1

P
=1 

2
 + 

¡
−1

¢
 For 2 we write

2 =
1



X
=1

X
=1

³

(2)0
 

(2)


´2
+

1



X
=1

X
=1

¡
22 − 1

¢ ³

(2)0
 

(2)


´2
− 1



X
=1

X
=1

21

³

(1)0
 

(1)


´2
≡ 21 +22 −23 say.

By Lemma A.5(ii), 21 =
1


P
=1 ̄

2
·+ (( )−1+−2) where the first term is  (

−1) This result,
in conjunction with (A.2) and the DCT, implies that 22 =  (

−1) By Lemmas A.5(i) and A.6(i),
23 = 

¡
( )−1

¢
 It follows that 2 =

1


P
=1 ̄

2
· +  (

−1) For 3 we have

3 =
1



X
=1

X
=1


(2)0
 

(2)
 +

1



X
=1

X
=1

¡
22 − 1

¢


(2)0
 

(2)


− 1



X
=1

X
=1


(1)0
 

(1)
 +

1



X
=1

X
=1

¡
1− 21

¢


(1)0
 

(1)


≡ 31 +32 −33 +34 say.

By Lemma A.5(i) and (ii), 31 =
1


P
=1 ̄

2
·+ (( )−1+−2) and 33 =  (( )−1) In addition,

|32| ≤ max


¯̄
22 − 1

¯̄ °°°°°
µ
1


(2)0(2)

¶−1°°°°°
°°°° 1


(2)

°°°° 1



X
=1

X
=1

°°°(2) 

°°°
= 

³
−1 + ( )−12

´
 (1) (( )−12) (1) =  (

−1) and

|34| ≤ max


¯̄
21 − 1

¯̄ °°°°°
µ
1


(1)0(1)

¶−1°°°°°
°°°° 1


(1)

°°°° 1



X
=1

X
=1

°°°(1) 

°°°
= 

³
( )−12

´
 (1) (( )−12) (1) =  (

−1)

So 3 =
1


P
=1 ̄

2
· +  (

−1) Combining the above results, we have

 [12 − 11] =
2



X
=1

X
=1

2 −




X
=1

̄2· +  (1)
→ 2̄2 − ̄21 (A.4)

where the convergence holds by Assumptions A.1(i) and A.2(i). Similarly, by using Lemma A.5(iii) and

Lemma A.6(i) and (iii), we can show that

 [13 − 11] = 2
1



X
=1

X
=1

2 −




X
=1

̄2· +  (1)
→ 2̄2 − ̄22 (A.5)

where the convergence holds by Assumptions A.1(i) and A.2(ii).

By using Lemma A.5(iv) and Lemma A.6(i) and (iv), we can show that

14 − 11 =
1



X
=1

X
=1

∙
24

³
 − 

(4)0
 

(4)


´2
− 21

³
 − 

(1)0
 

(1)


´2¸

=
1



X
=1

X
=1

¡
24 − 21

¢
2 +

1



X
=1

X
=1

∙
24

³

(4)0
 

(4)


´2
− 21

³

(1)0
 

(1)


´2¸

− 2



X
=1

X
=1

h
24

(4)0
 

(4)
 − 21

(1)0
 

(1)


i
≡ 4 +5 − 26 say.
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As in the analysis of 1 we can apply Lemma A.5(iv) and Lemma A.6(i), (iv) and (vii) to show that

4 =
2



X
=1

X
=1

(
(4)
 − 

(1)
 )

2
 + 

¡
−1 + −1

¢
=

2



X
=1

X
=1

∙
 − 1


+
 − 1


+ ( −)
0
∗

( −)

¸
2 + 

¡
−1 + −1

¢
=

¡
−1 +−1

¢ 2



X
=1

X
=1

2 + (( )
−1
) + 

¡
−1 + −1

¢
=

¡
−1 +−1

¢ 2



X
=1

X
=1

2 + 
¡
−1 + −1

¢


5 =
1



X
=1

X
=1

³

(4)0
 

(4)


´2
+ 

¡
−1 + −1

¢
=
1



X
=1

̄2· +
1



X
=1

̄2· + 
¡
−1 + −1

¢


6 =
1



X
=1

X
=1


(2)0
 

(2)
 + 

¡
−1 + −1

¢
=
1



X
=1

̄2· +
1



X
=1

̄2· + 
¡
−1 + −1

¢


It follows that

( ∧  ) [14 − 11] = ( ∧  )
"¡
−1 +−1

¢ 2



X
=1

X
=1

2 −
1



X
=1

̄2· −
1



X
=1

̄2·

#
+  (1)

→ 2 (1 + ) ̄2 −
¡
̄21 + ̄22

¢
1 {1 ≥ 1}−

¡
̄21 + ̄22

¢
1 {1  1}  (A.6)

where  = lim( )→∞
¡


∧ 



¢
 1 = lim( )→∞ 


 and the convergence holds by Assumptions A.1(i) and

A.2(i)-(ii). Combining (A.4)-(A.6) yields  (11  1) → 1 for  = 2 3 4 provided max
¡
̄21 ̄

2
2

¢
 2̄2

Case 2: Model 2 is the true model. In this case, Models 1, 3 and 4 are underfitted, misspecified and

overfitted, respectively, and we will show that  (22  2)→ 1 for  = 1 3 4 Let  =  + 

and  = (11  1   1   )
0. Note that  =  +  where  = (1  −1)0

Following the steps to obtain (A.3), we can show that

 − ̂
(1)
 =  − 0

³
̂
(1)

 − (1)
´
= 1

³
 − 0

(1)


´
 (A.7)

where 
()


=
¡
()0()

¢−1
()0 for  = 1 2 3 4 Then

21 =
1



X
=1

X
=1

³
 − 0

(1)


´2
+

1



X
=1

X
=1

¡
21 − 1

¢ ³
 − 0

(1)


´2
≡ 7 +8 say.

It is easy to show that by Assumptions A.1 and A.3(i)

7 =
1



X
=1

X
=1

³
 − 0 (

0)−1 0+  − 0 (
0)−1 0

´2
=

1



X
=1

X
=1

³
 − 0 (

0)−1 0
´2
+

1



X
=1

X
=1

2 +  (1)
→  + ̄2.
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This result, in conjunction with (A.2) and the DCT, implies that 8 =  (1)  In addition, we can follow

the analysis in Case 1 and readily show that 22 =
1


P
=1

P
=1 

2
 +  (1)

→ ̄2. It follows that

21 − 22
→   0 (A.8)

To study 23 we observe that

 − ̂
(3)
 =  − 

(3)0


³
̂
(3)

 − (3)
´
= 3

³
 − 

(3)0
 

(3)


´
 (A.9)

and

23 =
1



X
=1

X
=1

³
 − 

(3)0
 

(3)


´2
+

1



X
=1

X
=1

¡
23 − 1

¢ ³
 − 

(3)0
 

(3)


´2
≡ 9 +10 say.

By Assumptions A.1(i), A.1(iii) and A.3(i), Lemmas A.4-A.5, and (A.2), we can readily show that

9 =
1



X
=1

X
=1

µ
 − 

(3)0


³
(3)0(3)

´−1
(3)0+  − 

(3)0
 

(3)


¶2

=
1



X
=1

X
=1

µ
 − 

(3)0


³
(3)0(3)

´−1
(3)0

¶2
+

1



X
=1

X
=1

2 +  (1)
→ 

+ ̄2

and 10 =  (1)  It follows that

23 − 22
→   0 (A.10)

To study 24 noting that

 − ̂
(4)
 =  − 

(4)0


³
̂
(4)

 − (4)
´
= 4

³
 − 

(4)0
 

(4)


´
 (A.11)

we have

24 − 22 =
1



X
=1

X
=1

∙
24

³
 − 

(4)0
 

(4)


´2
− 22

³
 − 

(2)0
 

(2)


´2¸

=
1



X
=1

X
=1

¡
24 − 22

¢
2 +

1



X
=1

X
=1

∙
24

³

(4)0
 

(4)


´2
− 22

³

(2)0
 

(2)


´2¸

− 2



X
=1

X
=1

h
24

(4)0
 

(4)
 − 22

(2)0
 

(2)


i
≡ 11 +12 − 213 say.

Following the analysis of 14−11 in Case 1 and applying Lemmas A.5(ii) and (iv) and A.6 and (A.2),
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we can readily show that

11 =
2



X
=1

X
=1

³

(4)
 − 

(2)


´
2 + 

¡
−1

¢
=

2



X
=1

X
=1

∙
 − 1


+ ( −)
0
∗

( −)− ( −)
0
∗

( −)

¸
2

+
¡
−1

¢
= −1

2



X
=1

X
=1

2 + 
¡
−1

¢


12 =
1



X
=1

X
=1

∙³

(4)0
 

(4)


´2
−
³

(2)0
 

(2)


´2¸
+ 

¡
−1

¢
=
1



X
=1

̄2· + 
¡
−1

¢
 and

13 =
1



X
=1

X
=1

h


(4)0
 

(4)
 − 

(2)0
 

(4)


i
+ 

¡
−1

¢
=
1



X
=1

̄2· + 
¡
−1

¢


It follows that

 [24 − 22] =
2



X
=1

X
=1

2 −




X
=1

̄2· +  (1)
→ 2̄2 − ̄22 (A.12)

where the convergence holds by Assumptions A.1(i) and A.2(ii).

By (A.8), (A.10), and (A.12), we have  (22  2)→ 1 as ( )→∞ for  = 1 3 4 provided

̄22  2̄
2


Case 3: Model 3 is the true model. This case parallels Case 2 and we can analogously show that

31 − 33
→   0

32 − 33
→   0

 [34 − 33]
→ 2̄2 − ̄21  0

provided ̄21  2̄
2
 Then  (33  3)→ 1 for  = 1 2 4

Case 4: Model 4 is the true model. In this case, Models 1-3 are underfitted and we will show that

 (44  4)→ 1 for = 1 2 3 Let  = +  = ++  = (11  1   1

  )
0 and  = (11  1   1   )

0. Note that  =  +  + 

where  = (1  −1)0 Let 
()


=
¡
()0()

¢−1
()0 and 

()


=
¡
()0()

¢−1
()0 for

 = 1 2 3 4 Following the steps to obtain (A.3), now we can show that

 − ̂
(1)
 =  − 0(̂

(1)

 − (1)) = 1

³
 − 0

(1)


´
 (A.13)

As in Case 2, we can show that by Assumptions A.1 and A.3(iii),

41 =
1



X
=1

X
=1

21

h
 − 0

(1)


i2
=

1



X
=1

X
=1

h
 +  − 0 (

0)−1 0 (+)
i2
+

1



X
=1

X
=1

2 +  (1)

→  + ̄2
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Similarly, we have by Assumptions A.1 and A.3(iii)

42 =
1



X
=1

X
=1

22

h
 − 

(2)0
 

(2)


i2
=

1



X
=1

X
=1

∙
 − 

(2)0


³
(2)0(2)

´−1
(2)0

¸2
+

1



X
=1

X
=1

2 +  (1)
→ 

+ ̄2

43 =
1



X
=1

X
=1

23

h
 − 

(3)0
 

(3)


i2
=

1



X
=1

X
=1

∙
 − 

(3)0


³
(3)0(3)

´−1
(3)0

¸2
+

1



X
=1

X
=1

2 +  (1)
→ 

+ ̄2

and

44 =
1



X
=1

X
=1

4

h
 − 

(4)0
 

(4)


i2
+

1



X
=1

X
=1

2 +  (1)
→ ̄2

Then  (44  4)→ 1 as ( )→∞ for  = 1 2 3 ¥

To prove Theorem 2.2, we introduce some notation and three new lemmas. The proofs of these lemmas

can be found in the online supplement. Let û = (̂+1  ̂ )
0 Û = (û01  û

0
 )

0
 ẑ = (̂  ̂−1)

0

and Ẑ = (ẑ01  ẑ
0
 )

0
 where ̂ = ̂

(4)
 = (̂

(4)
   ̂

(4)
−+1)

0 for  =    − 1 Let u = (+1   )0
U = (u01 u0 )

0
 z = (̈  ̈−1)0 and Z = (z01  z0 )

0
 where ̈ = (̈  ̈−+1)0 and ̈ =

 − ̄· − ̄· + ̄·· for  =    − 1 Let ̈ =  − ̄· − ̄· + ̄·· where ̄· ̄· and ̄·· are defined
analogously to ̄· ̄· and ̄·· Let ̆

()
 = 

()
 −()−1ρ where 

()
−1 = (

()
−1  

()
−) for  = 1 2 3 4

Lemma A.7 Suppose Assumptions A.1, A.2 and A.4 hold. Then kρ̂− ρk= ( ).

Lemma A.8 Let  =
1



P
=1

P
=+1 ̆

()0


¡
()0()

¢−1
()0 for  = 1 2 3 4 Suppose

that Assumptions A.1, A.2(iii)-(iv), A.4(iii), and A.5(iii)-(iv) hold. Then

(i) 1 = 

¡
( )−1

¢


(ii) 2 =
Φ(1)


P
=1

P
=+1 ̄· + (( )−1 + −2)

(iii) 3 =
1



P
=1

P
=+1 Φ()̄· + (( )

−1
+−2)

(iv) 4 = Φ(1)


P
=1

P
=+1 ̄· +

1


P
=1

P
=+1 Φ()̄· +  (

−2 + −2) 4 −
2 =

1


P
=1

P
=+1 Φ()̄·+ (( )−1+−2) and4−3 =

Φ(1)


P
=1

P
=+1 ̄·+

 (( )−1 + −2)

Lemma A.9 Let  =
1



P
=1

P
=+1

³
̆
()0


¡
()0()

¢−1
()0

´2
for  = 1 2 3 4 Suppose

that Assumptions A.1, A.2(iii)-(iv), A.4(iii), and A.5(iii)-(iv) hold. Then

(i) 1 = 

¡
( )−1

¢


(ii) 2 = (Φ(1))
2 1


P
=1 ̄

2
· +

¡
( )−1 + −2

¢


(iii) 3 =
1


P
=+1[Φ()̄·]

2 + (( )−1 +−2)

(iv) 4 = (Φ(1))
2 1


P
=1 ̄

2
·+

1


P
=+1[Φ()̄·]

2+

¡
−2 +−2

¢
 4−2 =

1


P
=+1

[Φ()̄·]2 +

¡
( )−1 +−2

¢
 and 4 − 3 = [Φ(1)]

2 1


P
=1 ̄

2
· +

¡
( )−1 + −2

¢

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Proof of Theorem 2.2. Noting that (− ρ̂0−1)−(̂
()
 −ρ̂0̂()−1) = (−ρ0−1)−(̂

()
 −ρ0̂()−1)

+(ρ̂− ρ)0(̂()
−1 − 

−1) we have

 ∗ () =
1



X
=1

X
=+1

h
( − ρ̂0−1)− (̂

()
 − ρ̂0̂()−1)

i2
=

1



X
=1

X
=+1

h
( − ρ0−1)− (̂

()
 − ρ0̂()−1)

i2
+
(ρ̂− ρ)0


X
=1

X
=+1

(̂()
−1 − 

−1)(̂
()

−1 − 
−1)

0(ρ̂− ρ)

+
2(ρ̂− ρ)0


X
=1

X
=+1

(̂()
−1 − 

−1)
h
( − ρ0−1)− (̂

()
 − ρ0̂()−1)

i
≡  ∗1 () +  ∗2 () + 2

∗
3 () 

As in the proof of Theorem 2.1, we will use  ∗ and  ∗ () to denote 
∗ () and  ∗ () when

the true model is Model . Note that  ∗ =
P3

=1
∗
 () 

Case 1: Model 1 is the true model. In this case, Models 2-4 are all overfitted models and we will show

that 
¡
 ∗11   ∗1

¢→ 1 for  = 2 3 4 When Model 1 is the true model, we have by (A.3)

( − ρ0−1)− (̂
()
 − ρ0̂()−1) = [ − 

()0
 

()
 ]−

X
=1

−[− − 
()0
−

()
 ]

= [ − ̆
()0
 

()
 ] +

X
=1

κ [− − 
()0
−

()
 ] (A.14)

where  = (1− 
()
 )−1 and κ = − − for  = 1 2 3 4 and  = 1   By Lemma A.6,

we have

max


|κ | =  ( ) for  = 1 2 3 4 and  = 1   (A.15)

Note that

 ∗1 (1) =
1



X
=1

X
=+1

2[ − ̆
()0
 

()
 ]2 +

1



X
=1

X
=+1

⎧⎨⎩
X

=1

κ [− − 
()0
−

()
 ]

⎫⎬⎭
2

+
2



X
=1

X
=+1

X
=1

κ [ − ̆
()0
 

()
 ][− − 

()0
−

()
 ]

≡  ∗1 (1 1) +  ∗1 (1 2) + 2
∗
1 (1 3)  say.

We first study  ∗12 (1)− ∗11 (1)  Following the study of 12−11 in the proof of Theorem 2.1, we
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can readily apply Lemmas A.8(i)-(ii) and A.9(i)-(ii), Assumptions A.4(ii) and A.5(i) to show that


£
 ∗12 (1 1)−  ∗11 (1 1)

¤
=

2



X
=1

X
=+1

2 +
Φ(1)

2



X
=1

̄2· −
2Φ(1)



X
=1

X
=+1

̄· +  (1)

=
2



X
=1

X
=+1

2 +
Φ(1)

2



X
=1

̄2· −
2Φ(1)



X
=1

̄·̄· +  (1)

=

Ã
2



X
=1

X
=+1

2 −




X
=1

̄2·

!
+





X
=1

[̄· −Φ(1)̄·]2 +  (1)

→ 2̄2 − ̄21

where we use the fact that ̄· = 1


P
=+1  =

1


P
=+1

¡
 − 0−1ρ

¢
= Φ(1)̄· +

¡
−1

¢
 Simi-

larly, using (A.15) and following the analysis of 12 − 11 we can readily show that [
∗
12 (1 2)−

 ∗11 (1 2)] =  (1) and 
£
 ∗12 (1 3)−  ∗11 (1 3)

¤
=  (1)  It follows that 

£
 ∗12 (1)−  ∗11 (1)

¤ →
2̄2 − ̄21

By (A.3) and (A.14),

 ∗1 (2) =
(ρ̂− ρ)0


X
=1

X
=+1

(̂()
−1 − 

−1)(̂
()

−1 − 
−1)

0(ρ̂− ρ)

=

X
1=1

X
2=1

(̂1 − 1)(̂2 − 2)1 (1 1 2)  and

 ∗1 (3) =
(ρ̂− ρ)0


X
=1

X
=+1

(̂()
−1 − 

−1)
h
( − ρ0−1)− (̂

()
 − ρ0̂()−1)

i
=

X
1=1

(̂1 − 1) {1 (2 1) +1 (3 1)} 

where

1 (1 1 2) =
1



X
=1

X
=+1

−1−2[−1 − 
()0
−1

()
 ][−2 − 

()0
−2

()
 ]

1 (2 1) =
1



X
=1

X
=+1

−1[−1 − 
()0
−1

()
 ]

h
 − ̆

()0
 

()


i


1 (3 1) =
1



X
=1

X
=+1

X
=1

−1κ [−1 − 
()0
−1

()
 ][− − 

()0
−

()
 ]

As in the analysis of 12−11 we can readily show that 12 (1 1 2)−11 (1 1 2) = 

¡
−1

¢
and 1 ( 1) = 

¡
( )−1

¢
for  = 2 3 uniformly in 1 2 = 1   Then by Lemma A.7


£
 ∗12 (2)−  ∗11 (2)

¤
=  kρ̂− ρk2 (1) =  (

32 ) =  (1)  and


£
 ∗12 (3)−  ∗11 (3)

¤
=
√
 kρ̂− ρk (1) =  (

32 ) =  (1) 
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In sum, we have


£
 ∗12 −  ∗11

¤
=

Ã
2



X
=1

X
=+1

2 −




X
=1

̄2·

!
+





X
=1

[̄· −Φ(1)̄·]2 +  (1)

→ 2̄2 − ̄21 (A.16)

Similarly, by using Lemma A.8(i) and (iii), Lemma A.9(i) and (iii), Assumptions A.4(ii) and A.5(ii) we can

show that


£
 ∗13 −  ∗11

¤
=

Ã
2



X
=1

X
=+1

2 −




X
=+1

̄2·

!
+





X
=+1

[̄· − Φ()̄·]2 +  (1)

→ 2̄2 − ̄22 (A.17)

where we use the fact that ̄· = 1


P
=1  =

1


P
=1 Φ () = Φ () ̄· By using Lemma A.8(iv) and

Lemma A.9(i) and (iv),

( ∧ ) [14 − 11] = ( ∧ )
(¡

−1 +−1
¢ 2



X
=1

X
=+1

2 −
1



X
=1

̄2· −
1



X
=+1

̄2·

)
+  (1)

→ 2 (1 + ) ̄2 −
¡
̄21 + ̄22

¢
1 {1 ≥ 1}−

¡
̄21 + ̄22

¢
1 {1  1}  (A.18)

where  = lim( )→∞
³


∧ 



´
and 1 = lim( )→∞ 


. Combining (A.16)-(A.18) yields 

¡
 ∗11   ∗1

¢
→ 1 for  = 2 3 4 provided max

¡
̄21 ̄

2
2

¢
 2̄2

Case 2: Model 2 is the true model. In this case, Model 1 is underfitted, Model 3 is misspecified, and

Model 4 is overfitted; and we will show that 
¡
 ∗22   ∗2

¢ → 1 for  = 1 3 4 Let  and  be

as defined in the proof of Theorem 2.1. Following the steps to obtain (A.7), we can show that

( − ̂
(1)
 )− ρ0(−1 − ̂(1)

−1) = 1[ − 0
(1)

]−

X
=1

−1[− − 0−
(1)

]

= 1[Φ(1) +  − ̆0
(1)

] +

X
=1

κ1 [− − 0−
(1)

](A.19)

where 
()


=
¡
()0()

¢−1
()0 for  = 1 2 3 4 Then

 ∗21 =
1



X
=1

X
=+1

21

h
Φ(1) +  − ̆0

(1)


i2
+

1



X
=1

X
=+1

⎧⎨⎩
X

=1

κ1 [− − 0−
(1)

]

⎫⎬⎭
2

+
2



X
=1

X
=+1

X
=1

1κ1 [Φ(1) +  − ̆0
(1)

][− − 0−

(1)

]

≡ 21 (1) +21 (2) + 221 (3)  say.

It is easy to show that by Assumptions A.1, A.4(ii)-(iv), and A.6(i)

21 (1) =
1



X
=1

X
=+1

h
Φ(1) − ̆0 (

0)−1 0
i2
+

1



X
=1

X
=+1

2 +  (1)
→ ∗ + ̄2
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In addition, 2 (2) =  (1) for  = 2 3 Thus 
∗
21 = ∗ + ̄2 Following the analysis in Case 1 and

noting that

( − ̂
(2)
 )− ρ0(−1 − ̂(2)

−1) = 2

h
 − 

(2)0
 

(2)


i
−

X
=1

−2
h
− − 

(2)0
−

(2)


i
= 2

h
 − ̆

(2)0
 

(2)


i
+

X
=1

κ2
h
− − 

(2)0
−

(2)


i


we can readily show that  ∗22 =
1



P
=1

P
=+1 

2
 +  (1)

→ ̄2. It follows that

 ∗21 −  ∗22
→ ∗  0 (A.20)

To study  ∗23 noting that

( − ̂
(3)
 )− ρ0(−1 − ̂(3)

−1) = 3[ − 
(3)0
 

(3)

]−

X
=1

−3[− − 
(3)0
−1

(3)

]

= 3[Φ(1) +  − ̆
(3)0
 

(3)

] +

X
=1

κ3 [− − 
(3)0
−

(3)

](A.21)

we can follow the analysis of  ∗21 and show that by Assumptions A.4(ii)-(iv) and A.6(i)

 ∗23 =
1



X
=1

X
=+1

h
( − ̂

(3)
 )− ρ0(−1 − ̂(3)

−1)
i2

=
1



X
=1

X
=+1

h
Φ(1) +  − ̆

(3)0
 

(3)


i2
+  (1)

=
1



X
=1

X
=+1

∙
Φ(1) − ̆

(3)0


³
(3)0(3)

´−1
(3)0

¸2
+

1



X
=1

X
=+1

2 +  (1)

→ ∗
+ ̄2

It follows that

 ∗23 −  ∗22
→ ∗

 0 (A.22)

To study  ∗24 noting that

( − ̂
(4)
 )− ρ0(−1 − ̂(4)

−1) = 4[ − 
(4)0
 

(4)
 ]−

X
=1

−4[− − 
(4)0
−

(4)
 ]

= 4[ − ̆
(4)0
 

(4)
 ] +

X
=1

κ4 [− − 
(4)0
−

(4)
 ] (A.23)
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we have

 ∗24 −  ∗22

=
1



X
=1

X
=+1

∙
24

³
 − ̆

(4)0
 

(4)


´2
− 22

³
 − ̆

(2)0
 

(2)


´2¸

+
1



X
=1

X
=+1

⎡⎢⎣
⎛⎝ X

=1

κ4 [− − 
(4)0
−

(4)
 ]

⎞⎠2

−
⎛⎝ X

=1

κ2 [− − 
(2)0
−

(2)
 ]

⎞⎠2
⎤⎥⎦

+
2



X
=1

X
=+1

X
=1



h
4κ4( − ̆

(4)0
 

(4)
 )(− − 

(4)0
−

(4)
 )

−2κ2( − ̆
(2)0
 

(2)
 )(− − 

(2)0
−

(2)
 )

i
≡ 24 (1) +24 (2) + 224 (3)  say.

For 24 (1)  we make further decomposition:

24 (1) =
1



X
=1

X
=+1

¡
24 − 22

¢
2 +

1



X
=1

X
=+1

∙
24

³
̆
(4)0
 

(4)


´2
− 22

³
̆
(2)0
 

(2)


´2¸

− 2



X
=1

X
=+1



h
24̆

(4)0
 

(4)
 − 22̆

(2)0
 

(2)


i
≡ 24 (1 1) +24 (1 2)− 224 (1 3)  say.

Following the analysis of  ∗14 −  ∗11 in Case 1 and that of 24 − 21 in the proof of Theorem 2.1,

and applying Lemmas A.8(ii) and (iv) and A.9, (A.2) and (A.15), we can readily show that

24 (1 1) = −1
2



X
=1

X
=+1

2 + 
¡
−1

¢


24 (1 2) =
1



X
=1

X
=+1

[(̆
(4)0
 

(4)
 )2 − (̆(2)0 

(2)
 )2] + 

¡
−1

¢
=
1



X
=+1

[Φ()̄·]
2 + 

¡
−1

¢


24 (1 3) =
1



X
=1

X
=+1

[̆
(4)0
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Similarly, we can show that 24 () = 
¡
−1

¢
for  = 2 3 Consequently, we have by Assumptions A.4(ii)

and A.5(ii)
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By (A.20), (A.22), and (A.24), we have 
¡
 ∗22   ∗2

¢ → 1 as ( ) → ∞ for  = 1 3 4 provided

̄22  2̄
2


Case 3: Model 3 is the true model. This case parallels Case 2 and we can follow the analysis in Case

2 and show that 
¡
 ∗33   ∗3

¢→ 1 for  = 1 2 4 The details are omitted for brevity.
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Case 4: Model 4 is the true model. In this case, Models 1-3 are underfitted and we will show that


¡
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¢→ 1 for  = 1 2 3 Let    and  be as defined in the proof of Theorem

2.1. Following the steps to obtain (A.14), now we can show that
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where 
()


=
¡
()0()

¢−1
()0 for  = 1 2 3 4 As in Case 2, we can show that by Assumptions
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Table 1A: Frequency of the model selected: static panels,  = 0

True M Model 1 Model 2 Model 3 Model 4

Selected M M1 M2 M3 M4 M1 M2 M3 M4 M1 M2 M3 M4 M1 M2 M3 M4

(N,T)

(10,5) .80 .06 .11 .03 .04 .74 .02 .20 .05 .01 .82 .13 .06 .05 .04 .86

(50,5) .90 0 .10 0 0 .84 0 .16 .01 0 .99 0 0 0 0 1

AIC (10,10) .90 .06 .04 .01 .01 .91 0 .08 .01 0 .90 .09 0 .01 .01 .98

(50,10) .96 0 .04 0 0 .93 0 .07 0 0 1 0 0 0 0 1

(10,50) .97 .03 0 0 0 1 0 0 0 0 .95 .05 0 0 0 1

(50,50) 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1

(10,5) .99 0 .01 0 .49 .46 .04 .01 .23 0 .77 0 .74 .02 .06 .18

(50,5) 1 0 0 0 .51 0 .49 0 .03 0 .97 0 .52 0 .48 0

BIC (10,10) 1 0 0 0 .14 .86 0 0 .20 0 .80 0 .74 .03 .01 .22

(50,10) 1 0 0 0 .41 .39 .20 0 0 0 1 0 .54 0 .41 .05

(10,50) 1 0 0 0 0 1 0 0 .35 .28 .37 0 .40 .56 0 .04

(50,50) 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1

(10,5) .44 .20 .17 .20 0 .59 .01 .41 .02 .02 .56 .40 0 .04 .01 .95

(50,5) .85 .01 .14 .01 0 .76 0 .24 0 0 .98 .02 0 0 0 1

BIC2 (10,10) .65 .13 .16 .06 0 .74 0 .26 0 0 .76 .24 0 0 0 1

(50,10) .93 0 .07 0 0 .90 0 .11 0 0 1 0 0 0 0 1

(10,50) .94 .06 0 0 0 1 0 0 0 0 .90 .10 0 0 0 1

(50,50) 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1

(10,5) .87 .03 .10 0 .08 .80 .03 .08 .07 .01 .90 .03 .15 .07 .08 .70

(50,5) .90 0 .10 0 0 .90 .01 .09 .01 0 1 0 0 0 .02 .98

CV (10,10) .93 .04 .03 0 .01 .96 0 .03 .01 0 .95 .04 .01 .02 .01 .96

(50,10) .96 0 .04 0 0 .97 0 .04 0 0 1 0 0 0 0 1

(10,50) .97 .03 0 0 0 1 0 0 0 0 .98 .02 0 0 0 1

(50,50) 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1

(10,5) .61 .26 .09 .04 .03 .83 .02 .12 .07 .04 .65 .24 .09 .11 .04 .77

(50,5) .79 .12 .08 .01 0 .89 0 .11 0 0 .87 .12 0 .01 0 .99

CV∗ (10,10) .81 .14 .04 .01 .01 .94 0 .05 .01 .01 .86 .13 .01 .02 .01 .96

(50,10) .94 .01 .05 0 0 .94 0 .06 0 0 .99 .01 0 0 0 1

(10,50) .96 .04 0 0 0 1 0 0 0 0 .96 .04 0 0 0 1

(50,50) 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1

(10,5) .79 .08 .12 .02 .35 .46 .12 .07 .15 .02 .75 .08 .17 .08 .41 .34

(50,5) .89 0 .11 0 .16 .49 .30 .06 .01 0 .99 0 .02 .01 .52 .46

CV∗∗ (10,10) .88 .08 .04 .01 .04 .90 .01 .04 .02 0 .90 .07 .02 .03 .12 .83

(50,10) .95 0 .05 0 0 .95 0 .05 0 0 1 0 0 0 .01 1

(10,50) .97 .03 0 0 0 1 0 0 0 0 .97 .04 0 0 0 1

(50,50) 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1
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Table 1B: Frequency of the model selected: static panels,  = 14

True M Model 1 Model 2 Model 3 Model 4

Selected M M1 M2 M3 M4 M1 M2 M3 M4 M1 M2 M3 M4 M1 M2 M3 M4

(N,T)

(10,5) .53 .31 .06 .10 .02 .78 .01 .20 .03 .02 .51 .43 .02 .05 .02 .91

(50,5) .69 .20 .06 .05 0 .82 0 .18 .01 0 .73 .26 0 0 0 1

AIC (10,10) .61 .32 .03 .04 .01 .89 0 .10 .01 0 .58 .42 0 .01 .01 .98

(50,10) .76 .19 .03 .02 0 .92 0 .09 0 0 .77 .24 0 0 0 1

(10,50) .72 .28 0 0 0 1 0 0 0 0 .63 .37 0 0 0 1

(50,50) .86 .15 0 0 0 1 0 0 0 0 .83 .17 0 0 0 1

(10,5) .98 .02 .01 0 .36 .61 .02 .01 .25 .01 .72 .03 .61 .04 .05 .30

(50,5) 1 0 0 0 .53 .01 .46 0 .03 0 .97 0 .55 0 .45 0

BIC (10,10) 1 0 0 0 .11 .89 0 0 .24 0 .75 .01 .65 .05 .01 .29

(50,10) 1 0 0 0 .31 .59 .10 0 0 0 1 0 .51 0 .33 .16

(10,50) 1 0 0 0 0 1 0 0 .37 .39 .24 0 .38 .60 0 .02

(50,50) 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1

(10,5) .20 .40 .07 .33 0 .58 0 .41 .01 .02 .23 .74 0 .03 0 .96

(50,5) .40 .41 .05 .14 0 .76 0 .24 0 0 .42 .58 0 0 0 1

BIC2 (10,10) .34 .43 .08 .16 0 .74 0 .26 0 0 .37 .63 0 0 0 1

(50,10) .59 .33 .04 .04 0 .89 0 .11 0 0 .59 .41 0 0 0 1

(10,50) .65 .35 0 0 0 1 0 .01 0 0 .54 .46 0 0 0 1

(50,50) .88 .12 0 0 0 1 0 0 0 0 .87 .13 0 0 0 1

(10,5) .67 .24 .06 .03 .04 .86 .02 .09 .05 .02 .69 .24 .09 .06 .05 .80

(50,5) .84 .08 .06 .01 0 .90 0 .10 .01 0 .90 .09 0 0 0 1

CV (10,10) .69 .27 .03 .01 .01 .95 0 .04 .01 .01 .71 .27 0 .02 .01 .97

(50,10) .84 .13 .03 .01 0 .95 0 .05 0 0 .87 .13 0 0 0 1

(10,50) .73 .27 0 0 0 1 0 0 0 0 .72 .28 0 0 0 1

(50,50) .87 .13 0 0 0 1 0 0 0 0 .87 .13 0 0 0 1

(10,5) .47 .41 .06 .06 .04 .82 .02 .12 .04 .06 .50 .39 .07 .10 .04 .80

(50,5) .51 .40 .04 .04 0 .90 0 .11 0 0 .56 .43 0 0 0 1

CV∗ (10,10) .74 .21 .04 .02 .01 .94 0 .05 .01 .01 .77 .21 .01 .02 .02 .95

(50,10) .90 .05 .05 0 0 .95 0 .05 0 0 .95 .05 0 0 0 1

(10,50) .95 .05 0 0 0 1 0 0 0 0 .95 .05 0 0 0 1

(50,50) 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1

(10,5) .75 .12 .11 .03 .46 .36 .12 .06 .12 .02 .75 .11 .13 .06 .53 .28

(50,5) .89 .01 .11 0 .33 .26 .37 .03 .01 0 .98 .01 .01 0 .75 .24

CV∗∗ (10,10) .86 .09 .04 .01 .18 .74 .04 .03 .02 .01 .89 .09 .02 .02 .35 .61

(50,10) .95 0 .05 0 .03 .87 .06 .05 0 0 1 0 0 0 .18 .82

(10,50) .96 .04 0 0 0 1 0 0 0 0 .96 .04 0 0 0 1

(50,50) 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1
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Table 1C: Frequency of the model selected: static panels,  = 13

True M Model 1 Model 2 Model 3 Model 4

Selected M M1 M2 M3 M4 M1 M2 M3 M4 M1 M2 M3 M4 M1 M2 M3 M4

(N,T)

(10,5) .41 .42 .05 .13 .01 .78 .01 .20 .03 .03 .38 .56 .02 .05 .01 .92

(50,5) .41 .46 .03 .10 0 .83 0 .17 0 0 .41 .59 0 0 0 1

AIC (10,10) .47 .44 .03 .06 .01 .89 0 .11 .01 0 .44 .55 0 .01 .01 .98

(50,10) .45 .49 .02 .04 0 .91 0 .09 0 0 .44 .56 0 0 0 1

(10,50) .57 .43 0 0 0 1 0 0 0 0 .48 .52 0 0 0 1

(50,50) .53 .47 0 0 0 1 0 0 0 0 .49 .51 0 0 0 1

(10,5) .95 .04 .01 0 .31 .66 .02 .01 .27 .01 .67 .05 .55 .05 .04 .36

(50,5) 1 0 0 0 .55 .02 .43 0 .04 0 .97 0 .57 0 .43 0

BIC (10,10) .99 .01 0 0 .10 .90 0 0 .27 .01 .70 .01 .61 .06 .01 .32

(50,10) 1 0 0 0 .28 .65 .07 0 0 0 1 0 .49 0 .29 .22

(10,50) 1 0 0 0 0 1 0 0 .38 .45 .17 0 .37 .61 0 .02

(50,50) 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1

(10,5) .14 .45 .05 .36 0 .58 0 .42 .01 .02 .16 .81 0 .03 0 .97

(50,5) .15 .63 .02 .20 0 .76 0 .24 0 0 .15 .85 0 0 0 1

BIC2 (10,10) .24 .52 .05 .20 0 .74 0 .25 0 0 .25 .75 0 0 0 1

(50,10) .28 .62 .02 .09 0 .89 0 .12 0 0 .28 .72 0 0 0 1

(10,50) .47 .52 .01 0 0 .99 0 .01 0 0 .41 .59 0 0 0 1

(50,50) .60 .40 0 0 0 1 0 0 0 0 .56 .44 0 0 0 1

(10,5) .55 .36 .05 .04 .03 .87 .01 .09 .05 .03 .57 .35 .07 .08 .04 .82

(50,5) .64 .29 .05 .03 0 .90 0 .11 .01 0 .68 .31 0 0 0 1

CV (10,10) .54 .42 .02 .02 .01 .94 0 .05 .01 .01 .57 .41 0 .02 .01 .97

(50,10) .55 .41 .02 .02 0 .95 0 .05 0 0 .58 .42 0 0 0 1

(10,50) .58 .42 0 0 0 1 0 0 0 0 .58 .43 0 0 0 1

(50,50) .56 .44 0 0 0 1 0 0 0 0 .56 .44 0 0 0 1

(10,5) .42 .47 .05 .07 .03 .84 .02 .12 .04 .06 .44 .47 .06 .09 .04 .81

(50,5) .38 .53 .03 .07 0 .89 0 .11 0 0 .41 .58 0 0 0 1

CV∗ (10,10) .69 .25 .04 .02 .02 .93 0 .05 .01 0 .73 .26 .01 .02 .02 .95

(50,10) .87 .08 .04 .01 0 .95 0 .05 0 0 .91 .09 0 0 0 1

(10,50) .95 .05 0 0 0 1 0 0 0 0 .94 .06 0 0 0 1

(50,50) 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1

(10,5) .73 .14 .11 .03 .48 .35 .12 .06 .11 .03 .74 .13 .11 .06 .55 .28

(50,5) .88 .01 .11 0 .38 .23 .37 .03 .01 0 .98 .01 .01 0 .79 .19

CV∗∗ (10,10) .84 .11 .04 .01 .25 .67 .05 .03 .01 .01 .88 .10 .02 .01 .45 .52

(50,10) .95 0 .05 0 .09 .75 .13 .03 0 0 1 0 0 0 .34 .66

(10,50) .96 .04 0 0 0 1 0 0 0 0 .96 .04 0 0 0 1

(50,50) 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1
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Table 1D: Frequency of the model selected: static panels,  = 12

True M Model 1 Model 2 Model 3 Model 4

Selected M M1 M2 M3 M4 M1 M2 M3 M4 M1 M2 M3 M4 M1 M2 M3 M4

(N,T)

(10,5) .18 .62 .02 .18 .01 .77 0 .22 .02 .03 .17 .78 .01 .05 .01 .94

(50,5) .02 .79 0 .19 0 .81 0 .19 0 0 .02 .98 0 0 0 1

AIC (10,10) .21 .68 .01 .10 .01 .87 0 .12 0 .01 .18 .81 0 .02 0 .98

(50,10) .04 .87 0 .09 0 .91 0 .09 0 0 .03 .97 0 0 0 1

(10,50) .27 .72 0 0 0 1 0 0 0 0 .22 .78 0 0 0 1

(50,50) .04 .96 0 0 0 1 0 0 0 0 .03 .97 0 0 0 1

(10,5) .78 .21 0 .01 .21 .77 .01 .02 .27 .04 .47 .22 .42 .08 .03 .47

(50,5) 1 0 0 0 .55 .16 .30 0 .05 0 .95 0 .62 0 .33 .05

BIC (10,10) .89 .11 0 0 .09 .91 0 0 .36 .04 .49 .10 .51 .12 .01 .36

(50,10) 1 0 0 0 .20 .78 .02 0 .01 0 1 0 .43 0 .16 .42

(10,50) .98 .02 0 0 0 1 0 0 .39 .58 .03 0 .37 .62 0 .01

(50,50) 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1

(10,5) .05 .55 .02 .39 0 .59 0 .41 0 .02 .05 .93 0 .02 0 .97

(50,5) 0 .75 0 .25 0 .75 0 .25 0 0 0 1 0 0 0 1

BIC2 (10,10) .08 .67 .02 .23 0 .74 0 .25 0 .01 .09 .90 0 .01 0 .99

(50,10) .01 .87 0 .12 0 .88 0 .13 0 0 .01 .99 0 0 0 1

(10,50) .22 .77 0 .01 0 .99 0 .01 0 0 .18 .82 0 0 0 1

(50,50) .06 .94 0 0 0 1 0 0 0 0 .04 .96 0 0 0 1

(10,5) .28 .63 .03 .07 .02 .89 0 .09 .04 .06 .30 .61 .03 .08 .02 .87

(50,5) .07 .82 .01 .11 0 .88 0 .12 0 0 .08 .92 0 .01 0 1

CV (10,10) .25 .69 .01 .05 .01 .93 0 .06 .01 .02 .28 .69 0 .03 .01 .97

(50,10) .06 .88 0 .06 0 .94 0 .06 0 0 .06 .94 0 0 0 1

(10,50) .28 .72 0 0 0 1 0 0 0 0 .29 .71 0 0 0 1

(50,50) .04 .96 0 0 0 1 0 0 0 0 .05 .95 0 0 0 1

(10,5) .28 .61 .04 .08 .03 .84 .01 .12 .03 .06 .31 .61 .04 .09 .04 .84

(50,5) .13 .76 .01 .10 0 .88 0 .12 0 0 .14 .85 0 0 0 1

CV∗ (10,10) .58 .36 .03 .03 .03 .91 0 .06 .01 .01 .61 .37 .01 .01 .03 .95

(50,10) .69 .26 .03 .01 0 .95 0 .05 0 0 .74 .27 0 0 0 1

(10,50) .91 .09 0 0 0 1 0 0 0 0 .90 .10 0 0 0 1

(50,50) 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1

(10,5) .67 .20 .10 .04 .50 .34 .11 .05 .08 .04 .70 .19 .09 .05 .58 .28

(50,5) .86 .03 .11 0 .49 .20 .29 .02 .01 0 .96 .04 .01 0 .82 .17

CV∗∗ (10,10) .81 .14 .04 .01 .42 .51 .05 .02 .01 .01 .84 .14 .01 .01 .58 .40

(50,10) .95 .01 .05 0 .31 .44 .23 .02 0 0 .99 .01 0 0 .69 .31

(10,50) .95 .05 0 0 0 1 0 0 0 0 .96 .04 0 0 .02 .98

(50,50) 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1
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Table 1E: Frequency of the model selected: static panels,  = 34

True M Model 1 Model 2 Model 3 Model 4

Selected M M1 M2 M3 M4 M1 M2 M3 M4 M1 M2 M3 M4 M1 M2 M3 M4

(N,T)

(10,5) .02 .77 0 .21 .01 .78 0 .21 0 .05 .02 .93 0 .05 0 .94

(50,5) 0 .80 0 .20 0 .80 0 .20 0 0 0 1 0 0 0 1

AIC (10,10) .01 .84 0 .14 0 .85 0 .15 0 .03 .01 .96 0 .03 0 .97

(50,10) 0 .87 0 .13 0 .87 0 .13 0 0 0 1 0 0 0 1

(10,50) .02 .95 0 .03 0 .97 0 .03 0 .01 .01 .98 0 .01 0 .99

(50,50) 0 .98 0 .02 0 .98 0 .02 0 0 0 1 0 0 0 1

(10,5) .20 .77 0 .03 .05 .91 0 .04 .11 .16 .10 .63 .13 .18 .01 .68

(50,5) .52 .48 0 .01 .06 .93 .01 .01 .06 .01 .44 .50 .10 .02 .03 .86

BIC (10,10) .24 .75 0 .01 .04 .95 0 .01 .19 .36 .08 .38 .19 .38 .01 .42

(50,10) .47 .53 0 0 .01 .99 0 0 .02 0 .42 .56 .06 .01 0 .94

(10,50) .47 .53 0 0 0 1 0 0 .25 .76 0 0 .23 .77 0 0

(50,50) .77 .23 0 0 0 1 0 0 0 0 .74 .26 0 0 0 1

(10,5) .01 .61 0 .38 0 .62 0 .38 0 .02 .01 .97 0 .02 0 .98

(50,5) 0 .75 0 .25 0 .75 0 .25 0 0 0 1 0 0 0 1

BIC2 (10,10) 0 .74 0 .26 0 .74 0 .26 0 .01 .01 .98 0 .01 0 .99

(50,10) 0 .84 0 .16 0 .84 0 .16 0 0 0 1 0 0 0 1

(10,50) .01 .94 0 .05 0 .95 0 .05 0 .01 .01 .99 0 .01 0 1

(50,50) 0 .98 0 .02 0 .98 0 .02 0 0 0 1 0 0 0 1

(10,5) .04 .85 0 .11 .01 .88 0 .11 .01 .08 .04 .87 .01 .08 .01 .91

(50,5) 0 .87 0 .13 0 .87 0 .13 0 0 0 1 0 0 0 1

CV (10,10) .02 .90 .01 .08 0 .92 0 .08 .01 .06 .03 .91 0 .06 0 .94

(50,10) 0 .91 0 .09 0 .91 0 .09 0 0 0 1 0 0 0 1

(10,50) .02 .96 0 .02 0 .98 0 .02 0 .02 .03 .95 0 .02 0 .98

(50,50) 0 .98 0 .02 0 .98 0 .02 0 0 0 1 0 0 0 1

(10,5) .10 .77 .01 .12 .02 .84 .01 .13 .01 .07 .11 .81 .02 .08 .03 .88

(50,5) 0 .87 0 .12 0 .88 0 .12 0 0 0 1 0 0 0 1

CV∗ (10,10) .30 .63 .02 .04 .04 .90 0 .07 .01 0 .32 .68 0 .01 .05 .94

(50,10) .15 .79 .01 .05 0 .94 0 .06 0 0 .17 .83 0 0 0 1

(10,50) .71 .29 0 0 .01 .99 0 0 0 0 .68 .32 0 0 0 1

(50,50) .96 .04 0 0 0 1 0 0 0 0 .96 .04 0 0 0 1

(10,5) .56 .31 .08 .06 .49 .36 .09 .06 .06 .05 .61 .29 .06 .05 .58 .31

(50,5) .66 .22 .09 .03 .52 .30 .15 .04 0 0 .76 .23 0 .01 .69 .30

CV∗∗ (10,10) .66 .29 .03 .02 .53 .41 .04 .02 .01 0 .73 .26 .01 0 .64 .36

(50,10) .87 .09 .04 0 .65 .23 .11 .01 0 0 .91 .09 0 0 .82 .19

(10,50) .92 .08 0 0 .32 .68 0 0 0 0 .93 .07 0 0 .52 .48

(50,50) 1 0 0 0 .16 .84 0 0 0 0 1 0 0 0 .51 .49
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Table 2A: Frequency of the model selected: dynamic panels without exogenous regressors,  = 14

True M Model 1 Model 2 Model 3 Model 4

Selected M M1 M2 M3 M4 M1 M2 M3 M4 M1 M2 M3 M4 M1 M2 M3 M4

(N,T)

(10,5) .66 .19 .08 .08 .04 .74 0 .21 .05 .01 .65 .29 0 .05 .04 .91

(50,5) .88 .03 .08 .01 0 .85 0 .15 0 0 .95 .04 0 0 0 1

AIC (10,10) .85 .10 .04 .02 .01 .91 0 .09 .01 0 .85 .15 0 .01 0 .99

(50,10) .96 0 .04 0 0 .93 0 .07 0 0 .99 .01 0 0 0 1

(10,50) .95 .05 0 0 0 1 0 0 0 0 .92 .08 0 0 0 1

(50,50) 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1

(10,5) .99 0 0 0 .71 .27 .01 .01 .21 0 .79 0 .14 .04 .56 .27

(50,5) 1 0 0 0 1 0 0 0 .03 0 .97 0 .02 0 .98 0

BIC (10,10) 1 0 0 0 .41 .59 0 0 .11 0 .89 0 .07 .05 .31 .57

(50,10) 1 0 0 0 1 0 0 0 0 0 1 0 0 0 1 0

(10,50) 1 0 0 0 0 1 0 0 .08 0 .92 0 0 .08 0 .92

(50,50) 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1

(10,5) .28 .34 .10 .28 0 .60 0 .40 .01 .01 .36 .62 0 .02 0 .98

(50,5) .71 .15 .09 .05 0 .78 0 .22 0 0 .79 .21 0 0 0 1

BIC2 (10,10) .57 .22 .12 .09 0 .76 0 .24 0 0 .65 .34 0 0 0 1

(50,10) .92 .02 .06 0 0 .89 0 .11 0 0 .97 .03 0 0 0 1

(10,50) .93 .07 0 0 0 1 0 0 0 0 .89 .12 0 0 0 1

(50,50) 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1

(10,5) .79 .12 .08 .02 .09 .80 .01 .10 .07 .01 .81 .12 .01 .07 .13 .79

(50,5) .91 .01 .08 0 0 .92 0 .08 .01 0 .99 .01 0 0 .01 .99

CV (10,10) .89 .08 .03 .01 .01 .95 0 .04 .01 0 .91 .08 0 .01 .01 .98

(50,10) .96 0 .04 0 0 .96 0 .04 0 0 1 0 0 0 0 1

(10,50) .96 .05 0 0 0 1 0 0 0 0 .96 .05 0 0 0 1

(50,50) 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1

Table 2B: Frequency of the model selected: dynamic panels without exogenous regressors,  = 12

True M Model 1 Model 2 Model 3 Model 4

Selected M M1 M2 M3 M4 M1 M2 M3 M4 M1 M2 M3 M4 M1 M2 M3 M4

(N,T)

(10,5) .56 .27 .06 .11 .06 .73 .01 .21 .04 .02 .54 .40 .01 .04 .06 .90

(50,5) .78 .12 .07 .03 0 .85 0 .15 0 0 .84 .15 0 0 0 1

AIC (10,10) .80 .14 .04 .02 .01 .91 0 .09 .01 0 .78 .22 0 .01 .01 .99

(50,10) .94 .02 .04 0 0 .93 0 .07 0 0 .98 .02 0 0 0 1

(10,50) .95 .05 0 0 0 1 0 0 0 0 .92 .09 0 0 0 1

(50,50) 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1

(10,5) .98 .01 0 0 .82 .17 .01 .01 .21 0 .78 .02 .15 .03 .65 .18

(50,5) 1 0 0 0 1 0 0 0 .02 0 .98 0 .02 0 .98 0

BIC (10,10) 1 0 0 0 .76 .24 0 0 .12 0 .88 0 .10 .02 .64 .24

(50,10) 1 0 0 0 1 0 0 0 0 0 1 0 0 0 1 0

(10,50) 1 0 0 0 0 1 0 0 .09 0 .92 0 0 .07 0 .93

(50,50) 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1

(10,5) .19 .42 .07 .32 0 .60 0 .40 .01 .02 .25 .73 0 .02 .01 .97

(50,5) .48 .35 .07 .10 0 .77 0 .23 0 0 .53 .47 0 0 0 1

BIC2 (10,10) .51 .28 .09 .12 0 .76 0 .24 0 0 .55 .45 0 0 0 1

(50,10) .88 .05 .06 .01 0 .90 0 .10 0 0 .94 .06 0 0 0 1

(10,50) .92 .08 0 0 0 1 0 0 0 0 .87 .13 0 0 0 1

(50,50) 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1

(10,5) .70 .20 .07 .04 .13 .75 .02 .09 .06 .02 .73 .20 .01 .07 .22 .70

(50,5) .88 .04 .08 0 .03 .89 .01 .07 0 0 .97 .03 0 0 .05 .95

CV (10,10) .84 .12 .03 .01 .01 .95 0 .04 .01 0 .88 .11 0 .01 .03 .96

(50,10) .95 .01 .04 0 0 .96 0 .04 0 0 .99 .01 0 0 0 1

(10,50) .95 .05 0 0 0 1 0 0 0 0 .95 .05 0 0 0 1

(50,50) 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1
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Table 2C: Frequency of the model selected: dynamic panels without exogenous regressors,  = 34

True M Model 1 Model 2 Model 3 Model 4

Selected M M1 M2 M3 M4 M1 M2 M3 M4 M1 M2 M3 M4 M1 M2 M3 M4

(N,T)

(10,5) .37 .45 .04 .15 .09 .70 .01 .20 .03 .03 .34 .60 .01 .05 .08 .87

(50,5) .44 .44 .05 .07 .01 .84 0 .15 0 0 .45 .54 0 0 .01 .99

AIC (10,10) .63 .30 .03 .03 .05 .87 0 .08 .01 0 .61 .39 0 0 .05 .95

(50,10) .83 .12 .03 .02 0 .93 0 .08 0 0 .85 .16 0 0 0 1

(10,50) .92 .08 0 0 0 1 0 0 0 0 .89 .12 0 0 0 1

(50,50) 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1

(10,5) .97 .03 0 0 .87 .12 0 0 .20 .01 .76 .04 .15 .02 .71 .12

(50,5) 1 0 0 0 1 0 0 0 .03 0 .98 0 .02 0 .98 0

BIC (10,10) 1 0 0 0 .95 .05 0 0 .12 0 .87 .01 .09 .01 .85 .05

(50,10) 1 0 0 0 1 0 0 0 0 0 1 0 0 0 1 0

(10,50) 1 0 0 0 .08 .92 0 0 .09 0 .91 0 .03 .05 .08 .84

(50,50) 1 0 0 0 .91 .10 0 0 0 0 1 0 0 0 .90 .10

(10,5) .09 .52 .03 .36 0 .60 0 .40 0 .02 .10 .88 0 .03 0 .97

(50,5) .13 .65 .02 .20 0 .77 0 .23 0 0 .14 .86 0 0 0 1

BIC2 (10,10) .33 .45 .05 .17 .01 .75 0 .24 0 0 .35 .65 0 0 .01 .99

(50,10) .66 .26 .04 .04 0 .90 0 .10 0 0 .68 .33 0 0 0 1

(10,50) .89 .11 0 0 0 1 0 0 0 0 .84 .17 0 0 0 1

(50,50) 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1

(10,5) .54 .36 .05 .05 .20 .69 .03 .08 .05 .03 .58 .34 .02 .07 .29 .63

(50,5) .70 .21 .07 .02 .09 .83 .01 .07 0 0 .78 .21 0 0 .12 .88

CV (10,10) .71 .26 .02 .01 .08 .88 0 .04 .01 0 .76 .23 0 .01 .14 .85

(50,10) .89 .07 .03 .01 .01 .95 0 .04 0 0 .92 .08 0 0 .01 .99

(10,50) .93 .07 0 0 0 1 0 0 0 0 .93 .07 0 0 0 1

(50,50) 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1

Table 3A: Frequency of the model selected: dynamic panels with exogenous regressors,  = 14

True M Model 1 Model 2 Model 3 Model 4

Selected M M1 M2 M3 M4 M1 M2 M3 M4 M1 M2 M3 M4 M1 M2 M3 M4

(N,T)

(10,5) .59 .18 .11 .13 .09 .62 .04 .26 .05 .02 .60 .33 .04 .05 .11 .80

(50,5) .87 .03 .09 .01 .01 .77 .02 .20 0 0 .96 .04 0 0 .05 .95

AIC (10,10) .81 .11 .05 .03 .01 .88 .01 .11 0 0 .80 .20 .01 .01 .02 .96

(50,10) .95 0 .04 0 0 .91 0 .09 0 0 1 0 0 0 0 1

(10,50) .94 .06 0 0 0 1 0 0 0 0 .91 .09 0 0 0 1

(50,50) 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1

(10,5) .99 .01 .01 0 .78 .18 .03 .02 .26 0 .72 .02 .49 .02 .36 .13

(50,5) 1 0 0 0 .96 0 .04 0 .03 0 .97 0 .09 0 .92 0

BIC (10,10) 1 0 0 0 .68 .32 0 0 .23 0 .77 0 .71 .01 .17 .11

(50,10) 1 0 0 0 1 0 0 0 0 0 1 0 .02 0 .98 0

(10,50) 1 0 0 0 0 1 0 0 .38 .28 .33 0 .79 .18 0 .03

(50,50) 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1

(10,5) .26 .29 .10 .36 .01 .49 .01 .48 .02 .02 .32 .65 0 .03 .02 .95

(50,5) .72 .11 .12 .06 0 .71 0 .29 0 0 .81 .19 0 0 0 1

BIC2 (10,10) .55 .21 .12 .13 0 .71 0 .28 0 0 .62 .38 0 0 0 1

(50,10) .91 .01 .07 0 0 .87 0 .13 0 0 .98 .02 0 0 0 1

(10,50) .92 .08 0 0 0 1 0 0 0 0 .87 .13 0 0 0 1

(50,50) 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1

(10,5) .79 .10 .09 .02 .31 .54 .07 .08 .10 .01 .79 .10 .16 .07 .35 .43

(50,5) .92 0 .08 0 .10 .73 .10 .08 .01 0 .99 0 0 0 .27 .73

CV (10,10) .91 .06 .02 .01 .03 .93 .01 .03 .01 .01 .92 .06 .03 .02 .09 .86

(50,10) .96 0 .04 0 0 .96 0 .04 0 0 1 0 0 0 0 1

(10,50) .95 .05 0 0 0 1 0 0 0 0 .95 .05 0 0 0 1

(50,50) 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1
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Table 3B: Frequency of the model selected: dynamic panels with exogenous regressors.  = 12
True M Model 1 Model 2 Model 3 Model 4

Selected M M1 M2 M3 M4 M1 M2 M3 M4 M1 M2 M3 M4 M1 M2 M3 M4
(N.T)
(10.5) .50 .25 .09 .16 .11 .59 .04 .26 .05 .03 .50 .43 .03 .05 .13 .79
(50.5) .81 .08 .08 .03 .04 .71 .03 .22 0 0 .87 .12 0 0 .07 .92

AIC (10.10) .77 .14 .05 .04 .04 .85 .01 .11 0 0 .76 .24 .01 .01 .06 .93
(50.10) .95 .01 .04 0 0 .90 0 .10 0 0 .99 .01 0 0 0 1
(10.50) .94 .06 0 0 0 1 0 0 0 0 .90 .10 0 0 0 1
(50.50) 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1
(10.5) .97 .02 .01 0 .83 .14 .02 .01 .27 .01 .70 .03 .42 .02 .44 .12
(50.5) 1 0 0 0 .99 0 .01 0 .03 0 .97 0 .05 0 .95 0

BIC (10.10) 1 0 0 0 .87 .13 0 0 .24 0 .76 0 .63 .01 .29 .07
(50.10) 1 0 0 0 1 0 0 0 0 0 1 0 .01 0 .99 0
(10.50) 1 0 0 0 .01 1 0 0 .40 .27 .33 0 .92 .06 0 .02
(50.50) 1 0 0 0 0 1 0 0 0 0 1 0 0 0 .01 .99
(10.5) .19 .34 .07 .40 .02 .48 .01 .49 .01 .02 .23 .73 0 .03 .02 .94
(50.5) .56 .22 .09 .13 0 .68 0 .32 0 0 .62 .38 0 0 .01 .99

BIC2 (10.10) .50 .26 .10 .14 0 .71 .01 .28 0 0 .55 .45 0 0 .01 .99
(50.10) .89 .03 .07 .01 0 .86 0 .14 0 0 .95 .05 0 0 0 1
(10.50) .91 .09 0 0 0 1 0 0 0 0 .87 .14 0 0 0 1
(50.50) 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1
(10.5) .75 .13 .08 .04 .37 .48 .07 .08 .10 .02 .75 .13 .14 .07 .40 .40
(50.5) .90 .01 .08 0 .23 .58 .10 .09 .01 0 .98 .01 0 0 .39 .61

CV (10.10) .87 .10 .02 .01 .08 .88 .01 .03 .01 .01 .88 .10 .03 .02 .18 .78
(50.10) .96 0 .04 0 0 .95 0 .04 0 0 1 0 0 0 .01 .99
(10.50) .95 .05 0 0 0 1 0 0 0 0 .95 .05 0 0 0 1
(50.50) 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1

Table 3C: Frequency of the model selected: dynamic panels with exogenous regressors,  = 34
True M Model 1 Model 2 Model 3 Model 4

Selected M M1 M2 M3 M4 M1 M2 M3 M4 M1 M2 M3 M4 M1 M2 M3 M4
(N,T)
(10,5) .37 .38 .06 .20 .14 .56 .04 .26 .04 .04 .35 .57 .02 .06 .14 .78
(50,5) .59 .25 .06 .10 .10 .64 .02 .24 0 0 .61 .39 0 0 .11 .89

AIC (10,10) .64 .27 .03 .06 .13 .76 .01 .10 0 0 .61 .38 .01 .01 .14 .84
(50,10) .88 .07 .03 .02 .04 .85 0 .11 0 0 .89 .11 0 0 .05 .95
(10,50) .93 .08 0 0 0 1 0 0 0 0 .88 .12 0 0 0 1
(50,50) 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1
(10,5) .95 .04 .01 0 .86 .11 .01 .01 .27 .01 .66 .06 .35 .02 .53 .11
(50,5) 1 0 0 0 1 0 0 0 .03 0 .97 0 .04 0 .96 0

BIC (10,10) 1 0 0 0 .96 .04 0 0 .26 0 .74 0 .48 .01 .49 .03
(50,10) 1 0 0 0 1 0 0 0 0 0 1 0 .01 0 .99 0
(10,50) 1 0 0 0 .38 .62 0 0 .44 .24 .32 0 .98 .01 0 .01
(50,50) 1 0 0 0 1 0 0 0 0 0 1 0 0 0 1 0
(10,5) .11 .41 .05 .45 .02 .48 .01 .49 .01 .03 .13 .83 0 .04 .03 .93
(50,5) .23 .47 .04 .27 .01 .64 0 .35 0 0 .24 .76 0 0 .01 .99

BIC2 (10,10) .36 .39 .07 .18 .02 .69 .02 .27 0 0 .37 .63 0 0 .04 .96
(50,10) .75 .16 .05 .04 .01 .83 0 .16 0 0 .78 .22 0 0 .01 .99
(10,50) .89 .11 0 0 0 1 0 0 0 0 .84 .17 0 0 0 1
(50,50) 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1
(10,5) .65 .23 .07 .05 .41 .45 .06 .07 .09 .04 .66 .21 .10 .07 .44 .39
(50,5) .82 .08 .08 .02 .36 .48 .07 .09 0 0 .89 .10 0 0 .47 .53

CV (10,10) .78 .19 .02 .01 .24 .71 .01 .03 .01 .01 .81 .17 .03 .01 .37 .59
(50,10) .93 .03 .03 0 .08 .85 .01 .06 0 0 .96 .04 0 0 .13 .87
(10,50) .93 .07 0 0 0 1 0 0 0 0 .93 .07 0 0 0 1
(50,50) 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1
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Table 4A: MSEs×1000: static panels,  = 0
Adopted Model M1 M2 M3 M4 Selected by CV

True Model
N=10 T=5 8.03 14.56 11.41 29.77 9.83
N=50 T=5 1.45 2.82 2.05 5.23 1.61

M1 N=10 T=10 3.79 6.32 5.83 13.16 4.16
N=50 T=10 0.71 1.23 1.02 2.31 0.73
N=10 T=50 0.68 1.03 0.99 2.16 0.69
N=50 T=50 0.14 0.21 0.21 0.41 0.14
N=10 T=5 165.85 14.56 300.24 29.77 36.35
N=50 T=5 148.68 2.82 262.69 5.23 5.11

M2 N=10 T=10 145.62 6.32 295.26 13.16 6.99
N=50 T=10 130.7 1.23 259.24 2.31 1.31
N=10 T=50 128.66 1.03 287.75 2.16 1.03
N=50 T=50 117.76 0.21 258.94 0.41 0.21
N=10 T=5 94.25 250.15 11.41 29.77 14.62
N=50 T=5 82.01 223.07 2.05 5.23 2.05

M3 N=10 T=10 102.06 245.89 5.83 13.16 6.66
N=50 T=10 94.97 235.31 1.02 2.31 1.02
N=10 T=50 109.93 249.80 0.99 2.16 1.01
N=50 T=50 107.42 246.93 0.21 0.41 0.21
N=10 T=5 427.81 250.15 300.24 29.77 103.77
N=50 T=5 404.04 223.07 262.69 5.23 9.38

M4 N=10 T=10 440.18 245.89 295.26 13.16 17.93
N=50 T=10 422.87 235.31 259.24 2.31 2.31
N=10 T=50 448.25 249.80 287.75 2.16 2.16
N=50 T=50 441.74 246.93 258.94 0.41 0.41

Table 4B: Coverages and length of 95% CIs: static panels,  = 0

Coverages Length
Adopted Model M1 M2 M3 M4 CV M1 M2 M3 M4 CV

True Model
N=10 T=5 0.93 0.90 0.92 0.88 0.91 0.32 0.39 0.37 0.54 0.32
N=50 T=5 0.96 0.91 0.94 0.91 0.94 0.15 0.18 0.17 0.25 0.15

M1 N=10 T=10 0.93 0.92 0.92 0.90 0.92 0.23 0.28 0.26 0.38 0.23
N=50 T=10 0.96 0.93 0.95 0.94 0.96 0.10 0.13 0.12 0.17 0.10
N=10 T=50 0.94 0.95 0.94 0.94 0.94 0.10 0.12 0.12 0.17 0.10
N=50 T=50 0.95 0.95 0.95 0.95 0.95 0.05 0.06 0.05 0.08 0.05
N=10 T=5 0.13 0.90 0.07 0.88 0.81 0.40 0.39 0.45 0.54 0.40
N=50 T=5 0.00 0.91 0.00 0.91 0.89 0.19 0.18 0.21 0.25 0.19

M2 N=10 T=10 0.05 0.92 0.02 0.90 0.91 0.29 0.28 0.32 0.38 0.28
N=50 T=10 0.00 0.93 0.00 0.94 0.93 0.13 0.13 0.15 0.17 0.13
N=10 T=50 0.00 0.95 0.00 0.94 0.95 0.13 0.12 0.14 0.17 0.12
N=50 T=50 0.00 0.95 0.00 0.95 0.95 0.06 0.06 0.07 0.08 0.06
N=10 T=5 0.34 0.17 0.92 0.88 0.89 0.38 0.46 0.37 0.54 0.37
N=50 T=5 0.11 0.04 0.94 0.91 0.94 0.18 0.21 0.17 0.25 0.17

M3 N=10 T=10 0.09 0.03 0.92 0.90 0.91 0.28 0.33 0.26 0.38 0.27
N=50 T=10 0.01 0.00 0.95 0.94 0.95 0.13 0.15 0.12 0.17 0.12
N=10 T=50 0.00 0.00 0.94 0.94 0.94 0.13 0.15 0.12 0.17 0.12
N=50 T=50 0.00 0.00 0.95 0.95 0.95 0.06 0.07 0.05 0.08 0.05
N=10 T=5 0.01 0.17 0.07 0.88 0.66 0.41 0.46 0.45 0.54 0.49
N=50 T=5 0.00 0.04 0.00 0.91 0.89 0.19 0.21 0.21 0.25 0.24

M4 N=10 T=10 0.00 0.03 0.02 0.90 0.88 0.29 0.33 0.32 0.38 0.38
N=50 T=10 0.00 0.00 0.00 0.94 0.94 0.13 0.15 0.15 0.17 0.17
N=10 T=50 0.00 0.00 0.00 0.94 0.94 0.13 0.15 0.14 0.17 0.17
N=50 T=50 0.00 0.00 0.00 0.95 0.95 0.06 0.07 0.07 0.08 0.08
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Table 4C: MSEs×1000: dynamic panels without exogenous regressors,  = 34
Non-bias correction Bias correction

Adopted M M1 M2 M3 M4 CV M1 M2 M3 M4 CV
True M

N=10 T=5 11.78 208.92 11.13 214.24 124.20 12.47 88.12 11.64 98.40 55.41
N=50 T=5 1.90 174.56 1.87 174.77 51.53 1.96 19.85 1.93 19.96 8.95

M1 N=10 T=10 5.55 57.34 5.40 58.74 30.10 5.41 25.20 5.52 28.49 13.30
N=50 T=10 0.95 45.78 0.94 45.91 6.53 0.94 4.69 0.95 4.80 1.71
N=10 T=50 0.84 2.48 0.92 2.64 1.25 0.85 1.51 0.94 1.69 0.95
N=50 T=50 0.17 1.61 0.17 1.62 0.17 0.17 0.32 0.17 0.32 0.17
N=10 T=5 47.88 208.92 49.05 214.24 200.23 47.28 88.12 48.72 98.40 84.22
N=50 T=5 47.65 174.56 47.88 174.77 167.70 47.51 19.85 47.80 19.96 23.21

M2 N=10 T=10 46.82 57.34 48.10 58.74 60.86 46.54 25.20 47.92 28.49 24.83
N=50 T=10 47.76 45.78 48.00 45.91 46.19 47.71 4.69 47.98 4.80 4.97
N=10 T=50 46.77 2.48 48.04 2.64 2.48 46.86 1.51 48.11 1.69 1.51
N=50 T=50 47.74 1.61 47.98 1.62 1.61 47.75 0.32 47.99 0.32 0.32
N=10 T=5 38.70 261.27 11.13 214.24 116.90 62.42 201.05 11.64 98.40 55.80
N=50 T=5 23.14 235.57 1.87 174.77 49.00 40.55 142.49 1.93 19.96 8.60

M3 N=10 T=10 20.31 79.86 5.40 58.74 28.02 24.37 56.13 5.52 28.49 13.06
N=50 T=10 13.41 72.01 0.94 45.91 6.38 17.73 39.64 0.95 4.80 1.72
N=10 T=50 3.16 5.09 0.92 2.64 1.34 3.85 4.59 0.94 1.69 1.05
N=50 T=50 2.41 4.35 0.17 1.62 0.17 3.02 3.56 0.17 0.32 0.17
N=10 T=5 37.69 261.27 49.05 214.24 192.47 35.79 201.05 48.72 98.40 89.18
N=50 T=5 38.03 235.57 47.88 174.77 165.80 36.60 142.49 47.80 19.96 23.82

M4 N=10 T=10 36.30 79.86 48.10 58.74 63.45 36.09 56.13 47.92 28.49 28.45
N=50 T=10 37.51 72.01 48.00 45.91 46.21 37.25 39.64 47.98 4.80 5.10
N=10 T=50 36.75 5.09 48.04 2.64 2.64 37.13 4.59 48.11 1.69 1.69
N=50 T=50 37.62 4.35 47.98 1.62 1.62 37.87 3.56 47.99 0.32 0.32

Table 4D: Coverages and length of 95% CIs (bias-corrected): dynamic panels without exogenous regressors,  = 34

Coverages Length
Adopted Model M1 M2 M3 M4 CV M1 M2 M 3 M4 CV

True Model
N=10 T=5 0.91 0.70 0.91 0.66 0.75 0.37 0.62 0.36 0.62 0.45
N=50 T=5 0.94 0.67 0.93 0.66 0.83 0.16 0.28 0.16 0.28 0.19

M1 N=10 T=10 0.93 0.72 0.91 0.70 0.84 0.26 0.36 0.26 0.36 0.29
N=50 T=10 0.94 0.77 0.94 0.76 0.91 0.12 0.16 0.12 0.16 0.12
N=10 T=50 0.95 0.88 0.94 0.88 0.94 0.12 0.12 0.12 0.12 0.12
N=50 T=50 0.96 0.88 0.96 0.89 0.96 0.05 0.06 0.05 0.06 0.05
N=10 T=5 0.01 0.70 0.01 0.66 0.50 0.14 0.62 0.13 0.62 0.49
N=50 T=5 0.00 0.67 0.00 0.66 0.59 0.06 0.28 0.06 0.28 0.26

M2 N=10 T=10 0.00 0.72 0.00 0.70 0.68 0.10 0.36 0.09 0.36 0.34
N=50 T=10 0.00 0.77 0.00 0.76 0.76 0.04 0.16 0.04 0.16 0.16
N=10 T=50 0.00 0.88 0.00 0.88 0.88 0.04 0.12 0.04 0.12 0.12
N=50 T=50 0.00 0.88 0.00 0.89 0.88 0.02 0.06 0.02 0.06 0.06
N=10 T=5 0.57 0.50 0.91 0.66 0.77 0.42 0.62 0.36 0.63 0.44
N=50 T=5 0.36 0.29 0.93 0.67 0.83 0.19 0.28 0.16 0.28 0.19

M3 N=10 T=10 0.64 0.49 0.91 0.70 0.84 0.29 0.36 0.26 0.36 0.28
N=50 T=10 0.30 0.27 0.94 0.76 0.91 0.13 0.16 0.12 0.16 0.12
N=10 T=50 0.68 0.66 0.94 0.88 0.93 0.12 0.12 0.12 0.12 0.12
N=50 T=50 0.36 0.36 0.96 0.89 0.96 0.05 0.06 0.05 0.06 0.05
N=10 T=5 0.12 0.50 0.01 0.66 0.42 0.18 0.62 0.13 0.63 0.45
N=50 T=5 0.01 0.29 0.00 0.67 0.57 0.08 0.28 0.06 0.28 0.25

M4 N=10 T=10 0.03 0.49 0.00 0.70 0.63 0.13 0.36 0.09 0.36 0.32
N=50 T=10 0.00 0.27 0.00 0.76 0.76 0.06 0.16 0.04 0.16 0.16
N=10 T=50 0.00 0.66 0.00 0.88 0.88 0.06 0.12 0.04 0.12 0.12
N=50 T=50 0.00 0.36 0.00 0.89 0.89 0.03 0.06 0.02 0.06 0.06
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Table 5: Application I: Crime rates in North Carolina (N=90, T=7, k=17)

Inference for

Model selection the coefficient on the “probability of arrest”

Model AIC BIC BIC2 CV CV∗ CV∗∗ Estimates 95% CI1 95% CI2

Model 1 -2.121 -2.001 -2.125 0.124 0.094 0.028 -0.530 [-0.655, -0.406] [-0.785, -0.276]

Model 2 -3.773 -3.025 -3.796 0.025 0.023 0.026 -0.385 [-0.473, -0.297] [-0.500, -0.270]

Model 3 -2.124 -1.962 -2.129 0.124 0.094 0.027 -0.521 [-0.646, -0.396] [-0.778, -0.264]

Model 4 -3.823 -3.032 -3.847 0.024 0.022 0.025 -0.355 [-0.441, -0.269] [-0.470, -0.240]

Selected M4 M4 M4 M4 M4 M4 -0.355 [-0.441, -0.269] [-0.470, -0.240]

Notes: CI1 and CI2 stand for the CIs based on the non-clustered and clustered standard errors, respectively.

Table 6: Application II: Cross-country saving rates (N=56, T=15, k=5)

Inference for the coefficent on the “GDP growth”

Model selection Non-bias correction Bias correction

Model AIC BIC BIC2 CV Estimates 95% CI Estimates 95% CI

Model 1 2.547 2.576 2.547 12.844 0.190 [0.108, 0.273] 0.192 [0.107, 0.277]

Model 2 2.505 2.843 2.498 12.459 0.188 [0.088, 0.288] 0.178 [0.074, 0.281]

Model 3 2.555 2.663 2.553 12.953 0.160 [0.072, 0.248] 0.163 [0.073, 0.253]

Model 4 2.512 2.929 2.504 12.584 0.149 [0.039, 0.258] 0.146 [0.031, 0.262]

Selected M2 M1 M2 M2 0.188 [0.088, 0.288] 0.178 [0.074, 0.281]

Table 7: Application III: Guns and crime in the U.S. (N=51, T=23, k=9)

Inference for

Model selection the coefficient of the “shall issue”

Model AIC BIC BIC2 CV CV∗ CV∗∗ Estimates 95% CI1 95% CI2

log (violent crime rate)

M1 -1.6911 -1.6522 -1.6914 0.1860 0.0165 0.0073 -0.368 [-0.436, -0.301] [-0.589, -0.148]

M2 -3.6072 -3.3523 -3.6094 0.0274 0.0080 0.0072 -0.046 [-0.084, -0.008] [-0.127, 0.035]

M3 -1.7198 -1.5859 -1.7210 0.1816 0.0140 0.0061 -0.288 [-0.359, -0.217] [-0.526, -0.050]

M4 -3.8653 -3.5154 -3.8684 0.0211 0.0063 0.0059 -0.028 [-0.065, 0.009] [-0.106, 0.050]

Selected M4 M4 M4 M4 M4 M4 -0.028 [-0.065, 0.009] [-0.106, 0.050]

log (murder rate)

M1 -1.6202 -1.5813 -1.6205 0.1991 0.1234 0.0560 -0.313 [-0.383, -0.244] [-0.505, -0.122]

M2 -2.9845 -2.7296 -2.9867 0.0510 0.0457 0.0452 -0.061 [-0.113, -0.009] [-0.132, 0.011]

M3 -1.7012 -1.5673 -1.7024 0.1844 0.1144 0.0550 0.198 [-0.267, -0.130] [-0.385, -0.012]

M4 -3.1243 -2.7744 -3.1274 0.0443 0.0413 0.0421 -0.015 [-0.066, 0.037] [-0.088, 0.058]

Selected M4 M4 M4 M4 M4 M4 -0.015 [-0.066, 0.037] [-0.088, 0.058]

log (robbery rate)

M1 -0.9853 -0.9464 -0.9856 0.3748 0.0375 0.0164 -0.529 [-0.628, -0.429] [-0.840, -0.218]

M2 -3.0239 -2.7690 -3.0261 0.0490 0.0167 0.0156 -0.008 [-0.058, 0.043] [-0.115, 0.099]

M3 -1.1079 -0.9740 -1.1091 0.3338 0.0305 0.0137 -0.341 [-0.436, -0.246] [-0.642, -0.040]

M4 -3.2181 -2.8682 -3.2212 0.0403 0.0135 0.0130 0.027 [-0.021, 0.075] [-0.073, 0.127]

Selected M4 M4 M4 M4 M4 M4 0.027 [-0.021, 0.075] [-0.073, 0.127]

Notes: CI1 and CI2 stand for the CIs based on the non-clustered and clustered standard errors, respectively.
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This supplement is composed of three parts. Section B contains the proofs of the technical lemmas in the

above paper. Section C provides some primitive conditions to verify Assumptions A.2(iii)-(iv) and A.4-

A.5 in the paper. Section D discusses how to choose  in our modified jackknife and contains additional

simulation results.

B Proofs of the Technical Lemmas

Proof of Lemma A.1. Noting that  0
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µ
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0 0
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The result then follows from Assumption A.1(iii).

(ii) The proof is analogous to that of (i) and thus omitted. The main difference is that one now applies
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where the second equality follows from the results in (i)-(ii) and the last equality follows by Assumption

A.1(iii). ¥

Proof of Lemma A.4. (i) Following the proof of Lemma A.3(i), we have
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(ii) The proof is analogous to that of (i) and thus omitted.
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(ii) By Lemma A.1 with  = , we have

2 =
1


( 0 0)

µ
∗

−∗


−0

∗


(0
)

−1 +0

∗


¶µ
 0
0


¶
=

1



³
 0∗

−  0
0

∗


− 0∗
 +  0 (

0
)

−1
+  0

0

∗




´µ
 0
0


¶
=

1



³
 0∗

 0 − 2 0
0

∗


 0 +  0 (
0
)

−1
0
 +  0

0

∗



0

´

≡ 21 − 222 + 23 + 24 say,
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where  =  0 (
0
)

−1
 As in (i), we can show that 21 =  (( )

−1
) by Assumption A.1(iii)-

(iv). By Lemma A.4(i) and Assumptions A.1(iii)-(iv) and A.2(iii) and using ∗
= ( 0)

−1


21 =
1


 0

0

∗


 0

=
1


 0 (

0
)

−1
0


µ
1


 0

¶−1
1


 0

=

Ã
1



X
=1

̄·̄· − ̄··̄··

!0
 (1)

³
( )−12

´
= 

³
−1 + ( )−12

´


³
( )−12

´
= 

¡
( )−1 + −2

¢
 and

24 =
1


 0

0

∗



0


=
1


 0 (

0
)

−1
0


µ
1


 0

¶−1
1


 0 (

0
)

−1
0


=

Ã
1



X
=1

̄·̄· − ̄··̄··

!0µ
1


 0

¶−1Ã
1



X
=1

̄·̄· − ̄··̄··

!
= 

³
−1 + ( )−12

´
 (1)

³
−1 + ( )−12

´
= 

¡
−2 + ( )−1

¢


By Lemma A.3(i),

23 =
1


 0 (

0
)

−1
0
 =

1



X
=1

̄2· − ̄2·· =
1



X
=1

̄2· − (( )−1)

It follows that 2 =
1


P
=1 ̄

2
· + (

−2 + ( )−1)

(iii) The proof is analogous to that of (ii) and thus omitted.

(iv) By Lemma A.2

4 =
1


 0(4)

³
(4)0(4)

´−1
(4)0

=
1


( 0 0 

0)

×
⎛⎝ ∗

−∗
 −∗



−0

∗


(0
)

−1 +0

∗


 0

∗




−0

∗


0

∗


 (0
)

−1
+0


∗




⎞⎠⎛⎝  0
0


0


⎞⎠
=

1



n
 0∗

 0 +  0

³
(0

)
−1
+0


∗




´
0


+ 0

³
(0

)
−1
+0


∗




´
0
 − 2 0

0

∗


 0

−2 0
0

∗


 0 + 2 0
0

∗



0

ª

≡ 41 + 42 + 43 − 244 − 245 + 246 say,

where  = () and  =  0 (
0
)

−1
for  =   By Assumption A.1(iii)-(iv),

41 ≤
°°°°°
µ
1


 0

¶−1°°°°°
°°°° 1


 0

°°°°2 =  (( )−1)

3



By Lemmas A.3(i) and A.4(i) and Assumption A.1(iii),

42 =
1


 0 (

0
)

−1
0
 +

1


 0

0

∗



0


=
1


 0 (

0
)

−1
0
 +

1


 0

0


µ
1


 0



¶−1
1




0


=

Ã
1



X
=1

̄2· − ̄2··

!
+

³
−1 + ( )−12

´
 (1)

³
−1 + ( )−12

´
=

1



X
=1

̄2· +

¡
−2 + ( )−1

¢


By Lemmas A.3(ii) and A.4(ii) and Assumption A.1(iii),

43 =
1


 0 (

0
)

−1
0
 +

1


 0

0


µ
1


 0

¶−1
1




0


=

Ã
1



X
=1

̄2· − ̄2··

!
+

³
−1 + ( )−12

´
 (1)

³
−1 + ( )−12

´
=

1



X
=1

̄2· +

¡
−2 + ( )−1

¢


In addition, by Lemma A.4(i)-(ii) and Assumption A.1(iii)-(iv), we have

44 =
1


 0

0


µ
1


 0

¶−1
1


 0

=  (
−1 + ( )−12) (1) (( )−12) =  (

−2 + ( )−1)

45 =
1


 0

0


µ
1


 0



¶−1
1


 0

=  (
−1 + ( )−12) (1) (( )−12) =  (

−2 + ( )−1)

46 =
1


 0

0


µ
1


 0

¶−1
1




0


=  (
−1 + ( )−12) (1) (

−1 + ( )−12) =  (
−2 + −2)

It follows that 4 =
1


P
=1 ̄

2
·+

1


P
=1 ̄

2
·+

¡
−2 + −2

¢
 In addition, we can show that 4 −

2 =
1


P
=1 ̄

2· + (
−2 + ( )−1) and 4 − 3 =

1


P
=1 ̄

2
· + (

−2 + −2) ¥

Proof of Lemma A.6. (i)max 
(1)
 = max 

0
 (

0)−1  ≤
h
min

³
( )−1 0

´i−1
( )−1max

kk2 =  (( )−12) by Assumption A.1(ii) and (iv).

(ii) Let 0 denote a typical row of  such that  = (11  1   1   )
0 Then


(2)
 = 

(2)0


³
(2)0(2)

´−1

(2)


=
¡
0 

0


¢µ  0  0

0
 0



¶−1µ



¶
=

¡
0 

0


¢µ ∗
−∗



−0

∗


(0
)

−1
+0


∗




¶µ



¶
= 0 (

0
)

−1
 + 0

∗


 − 0
0

∗


 − 0
∗


 + 0
0

∗




= 0 (
0
)

−1
 + ( −)

0
∗

( −)  (B.2)
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For  ≤ −1  contains 1 in one place and zeros elsewhere, implying that 0
¡
−1 − 1


−10−1

¢


= 1− 1

= −1


for any  ≤  − 1 and  = 1   . When  =  we have

0

µ
−1 − 1


−10−1

¶
 = 0−1

µ
−1 − 1


−10−1

¶
−1 =

 − 1


for  = 1  

These observations, in conjunction with (B.1), imply that

0 (
0
)

−1
 = −10

µ
−1 − 1


−10−1

¶
 = −1

 − 1


for all   (B.3)

Next, notice that

max

( −)

0
∗

( −) ≤ 1 max


1


( −)

0 ( −)

≤ 1 max


2



n
kk2 + 0

0


o


where 1 =
£
min

¡
1


 0

¢¤−1

=  (1) by Assumption A.1(iv). By Assumption A.1(ii) and

Markov inequality,

max


1


kk2 = 1


 (( )

12
) =  (( )

−12
)

For 1


0
0
 we have

max


1


0

0


= max


1


tr
n
0 (

0
)

−12 h
(0

)
−12

0
 0 (

0
)

−12i
(0

)
−12



o
≤ max


0 (

0
)

−1


1


tr
³
(0

)
−12

0
 0 (

0
)

−12´
= −1

 − 1


1


tr
³
 0 (

0
)

−1
0


´
≤ −1

 − 1


1


tr ( 0) = 

¡
−1

¢


where the last inequality follows from the fact that  (
0
)

−1
0
 is a projection matrix with maximum

eigenvalue 1. It follows that 
(2)
 = −1−1


+ ( −)

0
∗

( −) and max 
(2)
 =

 (( )
−12

+ −1)

(iii) Let 0 denote a typical row of  such that  = (11  1   1   )
0 Following

the analysis in (ii), we can show that


(3)
 = 0 (

0
)

−1
 + ( −)

0
∗

( −) (B.4)

and

0

µ
−1 − 1


−10−1

¶
 =

 − 1


for all   (B.5)

Noting that

0
 = 

¡
−1 + −10−1

¢
and (0

)
−1
= −1

µ
−1 − 1


−10−1

¶
 (B.6)
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we have

0 (
0
)

−1
 = −1

 − 1


 (B.7)

In addition, following the arguments as used in the analysis of ( −)
0
∗

( −) and

(B.6) we have

max


( −)
0
∗

( −) ≤ 2 max


2



³
kk2 + 0

0


´
=  (( )−12+−1)

where 2 =
£
min

¡
1


 0

¢¤−1

=  (1) by Assumption A.1(iv). It follows that 
(3)
 = −1 −1


+

( −)
0
∗

( −) and max 
(3)
 =  (( )−12 +−1).

(iv) Let 0 denote a typical row of  such that  = (11  1   1   )
0

Following the analysis in (ii), we can show that


(4)
 = 0 (

0
)

−1
 + ( −)

0
∗

( −)  (B.8)

Noting that  = () and 0
 = 0 we have

(0
)

−1
=

µ
(0

)
−1

(0
)

−1

¶


Then

0 (
0
)

−1
 = 0 (

0
)

−1
 + 0 (

0
)

−1


= −1
 − 1


+−1
 − 1


for all   (B.9)

In addition, following the arguments as used in the analysis of ( −)
0
∗

( −) and

(B.9), we can show that

max

( −)

0
∗

( −) ≤ 3 max


2



n
kk2 + 0

0


o
=  (( )

−12
+−1 + −1) =  (

−1 + −1)

where 3 =
£
min

¡
1


 0
¢¤−1

=  (1) by Assumption A.1(iv). It follows that 
(4)
 = −1−1


+

−1 −1

+ ( −)

0
∗

( −) and max 
(4)
 =  (

−1 + −1)

(v) Note that

1



X
=1

X
=1

( −)
0
∗

( −)
2


≤ 21



(
1



X
=1

X
=1

0
2
 +

1



X
=1

X
=1

0
0


2


)
≡ 21


(1 + 2)  say.

Note that 1 =  (1) by Assumption A.1(i)-(ii) and Markov and Jensen inequalities. For 2 observing
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that  0 (
0
)

−1
 = ̄· − ̄·· we have by Assumption A.1(i)-(ii)

2 ≤ 1



X
=1

X
=1

0 (
0
)

−1
0
 0 (

0
)

−1


2


=
1



X
=1

X
=1

(̄· − ̄··)
0 (̄· − ̄··)2

≤
(
1



X
=1

k̄· − ̄··k4
)12(

1



X
=1

X
=1

4

)12
=  (1)

because we can readily show that 1


P
=1 k̄· − ̄··k4 ≤ 8



P
=1 k̄·k4+8 k̄··k4 =  (1) under Assump-

tion A.1(ii). It follows that 1


P
=1

P
=1 ( −)

0
∗

( −)
2
 =  (( )−1)

(vi) The proof of (vi) is analogous to that of (v). The major difference is now we need to apply the

fact that  0 (
0
)

−1
 = ̄· − ̄··

(vii) Note that

1



X
=1

X
=1

( −)
0
∗

( −)
2


≤ 23



(
1



X
=1

X
=1

0
2
 +

1



X
=1

X
=1

0
0


2


)
≡ 23


(1 + 3)  say.

We know that 1 =  (1) For 3 observing that 
0 (

0
)

−1
 = ̄· + ̄· − 2̄·· we have

by Assumption A.1(i)-(ii)

2 ≤ 1



X
=1

X
=1

0 (
0
)

−1
0
 0 (

0
)

−1


2


=
1



X
=1

X
=1

(̄· + ̄· − 2̄··)0 (̄· + ̄· − 2̄··)2

≤ 3



X
=1

X
=1

³
k̄·k2 + k̄·k2 + 4 k̄··k2

´
2 =  (1) 

Consequently, 1


P
=1

P
=1 ( −)

0
∗

( −)
2
 =  (( )−1)¥

Proof of Lemma A.7. Let kksp denotes the spectral norm of  Note that

ρ̂− ρ =
³
Ẑ0Ẑ

´−1
Ẑ0Û− ρ

=

∙³
Ẑ0Ẑ

´−1
− (Z0Z)−1

¸
Ẑ0Û+ (Z0Z)−1

³
Ẑ0Û− Z0U

´
+
h
(Z0Z)−1 Z0U− ρ

i
 (B.10)

It suffices to show that (i) 1


°°°Ẑ0Ẑ− Z0Z°°°
sp
=  ( ) (ii)

°°° 1


Z0Z−Γ
°°°
sp
=  (1) (iii)

1


°°°Ẑ0Û− Z0U°°°
=  (

12 ) and (iv)
°°°(Z0Z)−1 Z0U− ρ°°° =  (

12 ). To see this, note that the last term in (B.10)
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is bounded the desired probability order by (iv). The second term in (B.10) is bounded above by°°°(Z0Z)−1 ³Ẑ0Û− Z0U´°°° ≤
°°°(Z0Z)−1°°°

sp

°°°Ẑ0Û− Z0U°°°
=

∙
min

µ
1


Z0Z

¶¸−1
1



°°°Ẑ0Û− Z0U°°°
≤

∙
min (Γ) +

°°°° 1


Z0Z−Γ

°°°°¸−1 1



°°°Ẑ0Û− Z0U°°°
=  (1) (

12 ) =  (
12 )

where the second inequality follows from the eigenvalue stability inequality, and the last line follows from

the fact that min (Γ) is bounded away from zero in probability. For the first term in (B.10), we have°°°°∙³Ẑ0Ẑ´−1 − (Z0Z)−1¸ Ẑ0Û°°°° ≤
°°°°°
µ

1


Ẑ0Ẑ

¶−1
−
µ

1


Z0Z

¶−1°°°°°
sp

1



n
kZ0Uk+

°°°Ẑ0Û− Z0U°°°o
=  ( ) (1 + 12 ) =  ( )

where we use the fact that by (i)-(iii),°°°°°
µ

1


Ẑ0Ẑ

¶−1
−
µ

1


Z0Z

¶−1°°°°°
sp

=

°°°°°
µ

1


Ẑ0Ẑ

¶−1
1



³
Ẑ0Ẑ− Z0Z

´µ 1


Z0Z

¶−1°°°°°
sp

≤
∙
min

µ
1


Ẑ0Ẑ

¶
min

µ
1


Z0Z

¶¸−1
1



°°°Ẑ0Ẑ− Z0Z°°°
sp

=  (1) ( )

and that 1


kZ0Uk =  (1) under Assumption A.4. Next, we show (i)-(iv) in turn.

To show (i), we reparametrize Model 4 as

 = ∗0
∗ + ∗ +  + 

where ∗ and ∗ correspond to  and  after one removes the constant term, and ∗ incorporates the

intercept term now. Let ̈∗ = ∗− ̄∗·− ̄∗·+ ̄∗·· where ̄∗· ̄
∗· and ̄∗·· are defined analogously to ̄· ̄·

and ̄·· Let ̈ = (̈1  ̈ )0 and ̈ = (̈1  ̈ )
0
 Define ̈ ̈ ̈ and ̈ analogously. After eliminating

the individual and time effects ∗ and  from the above regression through the within and time-demeaned

transformation, we can obtain the two-way within estimator of ∗ given by ̂
∗
=
³
̈ 0̈

´−1
̈ 0̈  Then ̂(4)

can be equivalently represented as

b̈ = ̈ − ̂
∗0
̈∗ = ̈ − (̂∗ − ∗)0̈∗ (B.11)

Under Assumptions A.1(iii)-(iv) and A.2(iii)-(iv), we can readily show that ̂
∗ − ∗ =  ( ) Recall
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that ̈ = (̈  ̈−+1)0 Let b̈ = (b̈ b̈−+1)0 Then
1


(Ẑ0Ẑ− Z0Z) =

1



X
=1

X
=+1

³b̈b̈0 − ̈̈
0


´

=
1



X
=1

X
=+1

³b̈ − ̈

´³b̈ − ̈

´0
+

1



X
=1

X
=+1

³b̈ − ̈

´
̈0

+
1



X
=1

X
=+1

̈

³b̈ − ̈

´0
≡ 1 + 2 + 3 say.

Noting that b̈ − ̈ = −̈∗(̂
∗ − ∗) where ̈∗ = (̈∗  ̈

∗
−+1)

0 we have

k1k ≤
°°°̂∗ − ∗

°°°2 °°°°° 1



X
=1

X
=+1

̈∗̈
∗0


°°°°° =  (
2
 )

For 2 we have

k2k2 =
1

()
2

°°°°°
X
=1

X
=+1

̈∗(̂
∗ − ∗)̈0

°°°°°
2

=
1

()
2

X
=1

X
=+1

X
1=1

X
1=+1

tr
n
(̂
∗ − ∗)̈0̈11(̂

∗ − ∗)0̈∗011 ̈
∗


o
= (̂

∗ − ∗)0Θ2(̂
∗ − ∗)

where Θ2 =
1

()
2

P
=1

P
=+1

P
1=1

P
1=+1

̈0̈11 ̈
∗0
 ̈
∗
11

 Observe that under Assumption A.1(i)-

(ii)

 kΘ2ksp ≤ tr (Θ2) =
1

()
2

−1X
=0

−1X
=0

X
=1

X
=+1

X
1=1

X
1=+1


¡
̈− ̈11− ̈

∗0
−̈

∗
11−

¢
= 

¡
2
¢


It follows that kΘ2ksp = 

¡
2
¢
and k2k ≤

°°°̂∗ − ∗
°°° kΘ2k12sp =  ( )  Similarly, k3k = k2k =

 ( ) [When  is strictly exogenous, we can show that tr(Θ2) = 
¡
2

¢
and then k3k =

k2k ≤
°°°̂∗ − ∗

°°° kΘ2k12sp = 

¡
2

¢
=  (

12 )] Then (i) follows.

To show (ii), we note that 1


Z0Z = 1


P
=1

P
=+1 ̈−1̈

0
−1 where ̈−1 = (̈−1  ̈−)

0

Noting that ̈ =  − ̄· − ̄· + ̄·· for each ( )  the ( ) th element of 1


Z0Z is given by

1


[Z0Z] =

1



X
=1

X
=+1

̈− ̈−

=
1



X
=1

X
=+1

(− − ̄·) (− − ̄·)− 1



X
=+1

(̄·− − ̄··) (̄·− − ̄··)

=
1



X
=1

X
=+1

−− + [2] ≡ [1] + [2] 
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where [2] = − 1


P
=1

P
=+1 − ̄·− 1



P
=1

P
=+1 ̄·−+

1


P
=1 ̄

2
·− 1



P
=+1 ̄·− ̄·−

+ 1


P
=+1 ̄·− ̄·· +

1


P
=+1 ̄··̄·− − (̄··)2  [] denotes the ( )th element of  for  = 1 2

and ’s are implicitly defined. It is easy to show that k2k = 

¡
−1

¢
 Consequently, we have°°°° 1


Z0Z−Γ

°°°° =
°°°°° 1



X
=1

X
=+1

̈−1̈
0
−1 − Γ

°°°°° ≤ k2k = 

¡
−1

¢
=  (1) 

The analysis of (iii) is similar to that in (i) and thus omitted.

Lastly, we show (iv) Let ̄· = ̄· − ρ0̄·−1 where ̄·−1 = (̄·−1  ̄·−)0 Noting that ̈ =

 − ̄· − ̄· + ̄·· and ̈−1 = −1 − ̄· − ̄·−1 + ̄·· we have

̈ − ρ0̈−1 =
¡
 − ρ0−1

¢−Φ (1) ̄· − ¡̄· − ρ0̄·−1¢+Φ (1) ̄··
=  −Φ (1) ̄· − ̄· +Φ (1) ̄··

Then

(Z0Z)−1 Z0U− ρ =

Ã
X
=1

X
=+1

̈−1̈
0
−1

!−1
X
=1

X
=+1

̈−1̈ − ρ

=

Ã
X
=1

X
=+1

̈−1̈
0
−1

!−1
X
=1

X
=+1

̈−1 [ −Φ(1)̄· − ̄· +Φ(1)̄··]

=

Ã
X
=1

X
=+1

̈−1̈
0
−1

!−1
X
=1

X
=+1

̈−1

−Φ(1)
Ã

X
=1

X
=+1

̈−1̈
0
−1

!−1
X
=1

X
=+1

̈−1̄·

where the third equality follows from the fact that
P

=1 ̈ = 0 for each  Noting that
P

=1 ̈ = 0 for each

 we can readily apply Assumptions A.1(i), (iii) and A.2(iii)-(iv) and show that
°°° 1


P
=1

P
=+1 ̈−1̄·

°°°
= 

¡
12−1

¢
 For example, the first element of 1



P
=1

P
=+1 ̈−1̄· is

1



X
=1

X
=+1

̈−1̄· =
1



X
=1

Ã
X
=1

̈ −
−1X
=1

̈ − ̈

!
̄·

=
−1


X
=1

−1X
=1

̈̄· − 1



X
=1

̈ ̄· = 

¡
−1

¢


Similarly, we can show that
°°° 1


P
=1

P
=+1 ̈−1

°°° = °°° 1


P
=1

P
=+1 −1

°°°+

¡
12

¢
= 

¡
12

¢
under Assumptions A.1(iii), A.4(iii), and A.5(i)-(ii). Then we have

°°°(Z0Z)−1 Z0U− ρ°°° =
 (

12 )¥

Proof of Lemma A.8. (i) Noting that ̆
(1)
 = −−1ρ = Φ () ≡ ̆ where −1 = (−1  −)

we can readily apply Assumptions A.1(iv)-(v) and A.4(iii) to show that

1 =
1



X
=1

X
=+1

̆
0


µ
1


 0

¶−1
1


 0

= 

³
( )−12

´
 (1)

³
( )−12

´
= 

¡
( )−1

¢

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(ii) Note that ̆
(2)
 = 

(2)
 − 

(2)
−1ρ =

³¡
 − −1ρ

¢0

¡
 − −1ρ

¢0´0 ≡ ³
̆0 ̆

0


´0
where

−1 = (−1  −) By Lemma A.1 with  = , we have

2 =
1



X
=1

X
=+1

̆
(2)0


³
(2)0(2)

´−1
(2)0

=
1



X
=1

X
=+1



³
̆0 ̆

0


´µ ∗
−∗



−0

∗


(0
)

−1
+0


∗


¶µ
 0
0


¶

=
1



X
=1

X
=+1



n
̆0

∗


 0 − ̆0
0

∗


 0 − ̆0
∗



0
 + ̆0 (

0
)

−1
0


+̆0
0

∗



0

o

≡ 21 −22 −23 +24 +25 say.

As in (i), we can show that21 =  (( )
−1
) by Assumption A.1(iv)-(v). Observing that 0 (

0
)

−1

×0
 = (̄· − ̄··)

0
for each ( )  we have

1



X
=1

X
=+1

̆
0


0
 =

1



X
=1

X
=+1


¡
 − −1ρ

¢0
(0

)
−1

0


=
Φ (1)



X
=1

X
=+1

 (̄· − ̄··)
0 =  (

−1 + ( )−12)

by Assumptions A.4(iii) and A.5(iii). It follows that

22 ≤
°°°°° 1



X
=1

X
=+1

̆
0


0


°°°°°
°°°°°
µ
1


 0

¶−1°°°°°
°°°° 1


 0

°°°°
=  (

−1 + ( )−12) (1) (( )−12) =  (
−2 + ( )−1)

Similarly, we can show that

23 ≤
°°°°° 1



X
=1

X
=+1

̆
0


°°°°°
°°°°°
µ
1


 0

¶−1°°°°°
°°°° 1




0


°°°°
=  (( )

−12
) (1) (

−1 + ( )
−12

) =  (
−2 + ( )

−1
)

25 ≤
°°°°° 1



X
=1

X
=+1

̆
0


0


°°°°°
°°°°°
µ
1


 0

¶−1°°°°°
°°°° 1




0


°°°°
=  (

−1 + ( )−12) (1) (
−1 + ( )−12) =  (

−2 + ( )−1)

and

24 =
1



X
=1

X
=+1

̆
0
 (

0
)

−1
0
 =

Φ (1)

+1

X
=1

X
=+1

 (̄· − ̄··)

=
Φ(1)



X
=1

X
=+1

̄· + (( )
−1
)
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It follows that 2 =
Φ(1)
+1

P
=1

P
=+1 ̄· + (( )

−1
+ −2).

(iii) The proof is analogous to that of (ii). The major difference is that we need to use the ex-

pression ̆
(3)
 = 

(3)
 − 

(3)
−1ρ =

³¡
 − −1ρ

¢0

¡
 − −1ρ

¢0´0 ≡ ³
̆0 ̆

0


´0
with −1 =

(−1  −) and the fact that 0 (
0
)

−1
0
 = (̄· − ̄··)

0
for each ( ) to obtain

1



X
=1

X
=+1

̆
0


0
 =

1



X
=1

X
=+1


¡
 − −1ρ

¢0
(0

)
−1

0


=
1



X
=1

X
=+1



h
(̄· − ̄··)

0 − ρ0 ¡̄·−1 − ̄··0
¢0i



where ̄·−1 = (̄·−1  ̄·−) The dominant term then becomes

1



X
=1

X
=+1

̆
0
 (

0
)

−1
0
 =

1



X
=1

X
=+1


£
(̄· − ̄··)− ρ0

¡
̄·−1 − ̄··

¢¤
=

1



X
=1

X
=+1

Φ()̄· + (( )
−1
+−2)

where ̄·−1 = (̄·−1  ̄·−)
0

(iv) The proof is a combination of (ii)-(iii) as in that of Lemma A.5. ¥

Proof of Lemma A.9. (i) Noting that ̆
(1)
 =  − −1ρ ≡ ̆ we can readily apply Assumptions

A.1(iv)-(v) and A.4(i) to show that

1 =  0 ( 0)−1
1



X
=1

X
=+1

̆̆
0
 (

0)−1 0

≤
°°°°°
µ
1


 0

¶−1°°°°°
2 °°°° 1


 0

°°°°2
°°°°° 1



X
=1

X
=+1

̆̆
0


°°°°° = 

¡
( )−1

¢


(ii) By Lemma A.1 with  =  and using ̆
(2)
 ̆

(2)0
 =

Ã
̆̆

0
 ̆̆

0


̆̆
0
 ̆̆

0


!
, we have

2 =  0(2)
³
(2)0(2)

´−1 1



X
=1

X
=+1

̆
(2)
 ̆

(2)0


³
(2)0(2)

´−1
(2)0

= ( 0 0)

µ
∗

−∗


−0

∗


(0
)

−1
+0


∗


¶
1



X
=1

X
=+1

̆
(2)
 ̆

(2)0


×
µ

∗
−∗



−0

∗


(0
)

−1
+0


∗


¶µ
 0
0


¶
=

¡
 01 

0
2

¢ 1



X
=1

X
=+1

̆
(2)
 ̆

(2)0


µ
1
2

¶

=  01
1



X
=1

X
=+1

̆̆
0
1 +  02

1



X
=1

X
=+1

̆̆
0
2 + 2

0
1

1



X
=1

X
=+1

̆̆
0
2

≡ 21 + 22 + 223 say,
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where 1 = ∗0
 0−∗0


0
 and 2 = −0


∗0


 0+(0
)

−1
0
+0


∗0



0
 It is easy

to show that 21 =  (( )
−1
+ −2) by Assumptions A.1(iv)-(v) and Lemma A.4(i). For 22

22 =  0∗


1



X
=1

X
=+1

̆̆
0


0

∗0


 0

+ 0 (
0
)

−1 1



X
=1

X
=+1

̆̆
0
 (

0
)

−1
0


+ 0
0

∗




1



X
=1

X
=+1

̆̆
0


0

∗0



0


−2 0∗


1



X
=1

X
=+1

̆̆
0
 (

0
)

−1
0


−2 0∗


1



X
=1

X
=+1

̆̆
0


0

∗0



0


+2 0 (
0
)

−1 1



X
=1

X
=+1

̆̆
0


0

∗0



0


≡ 221 + 222 + 223 − 2224 − 2225 + 2226 say.

Noting that ̆0
0
 = ̆0 (

0
)

−1
0
 = Φ(1) (̄· − ̄··)

0
 we have



1



X
=1

X
=+1

̆̆
0


0
 = Φ(1)

2 1



X
=1

(̄· − ̄··) (̄· − ̄··)
0
=  (1) 

This result, in conjunction with Assumption A.1(iv)-(v) and Lemma A.5(i), implies that

221 ≤
°°°°°

1



X
=1

X
=+1

̆̆
0


0


°°°°°
°°°°°
µ
1


 0

¶−1°°°°°
2 °°°° 1


 0

°°°°2 =  (( )−1)

223 ≤
°°°°°

1



X
=1

X
=+1

̆̆
0


0


°°°°°
°°°°°
µ
1


 0

¶−1°°°°°
2 °°°° 1




0


°°°°2 =  (
−2 + ( )

−1
)

Noting that ̆0 (
0
)

−1
0
 = Φ(1) (̄· − ̄··)  we have

222 =  0 (
0
)

−1 1


X
=1

X
=+1

̆̆
0
 (

0
)

−1
0
 = Φ(1)

2 1



X
=1

(̄· − ̄··)
2

= Φ(1)2
1



X
=1

̄2· + (( )−1)

Analogously, we can show that 22 =  (
−2 + ( )

−1
) for  = 4 5 6 and 23 =  (

−2 +

( )−1) It follows that 2 = Φ(1)
2 1


P
=1 ̄

2
· +

¡
( )−1 + −2

¢


(iii) The proof is analogous to that of (ii) with the major difference as outlined in the proof of Lemma

A.8(iii).

(iv) The proof is a combination of (ii) and (iii) as in that of Lemma A.5(iv) and thus omitted. ¥
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C Verification of Some Assumptions

In this section, we verify Assumptions A.2(iii)-(iv) and A.4-A.5 based on some primitive conditions.

C.1 Verification of the rate conditions in Assumption A.2(iii)-(iv)

In this subsection, we verify the rate conditions in Assumption A.2(iii)-(iv). Recall that we use  to denote

a generic positive constant whose value can change across lines. Let ∗ =  − (). To verify the rate

conditions in Assumption A.2(iii)-(iv), we add the following assumptions.

Assumption A.2∗ (i) max1≤≤ 
°°° 1 P

=1

P
=1 

∗


°°°2 ≤ ;

(ii) max1≤≤ 
°°° 1 P

=1

P
=1 

∗


°°°2 ≤ ;

(iii) 1


P
=1

P
=1

P
=1

P
=1 | ()| ≤ 

The conditions of the above type are frequently assumed in the panel data literature to control weak

serial and cross-section dependence; see, e.g., Bai and Ng (2002). Below we first show that Assumption A.2*,

in conjunction with Assumption A.1(i)-(ii), is sufficient for Assumptions A.2(iii)-(iv), and then give more

primitive conditions to ensure Assumption A.2*(i). Similar primitive conditions can ensure Assumption

A.2*(ii) by relying upon some mixing conditions in random field to handle weak cross-sectional dependence.

First, we verify Assumption A.2(iii): 1


P
=1 ̄·̄· =  (

−1 + ( )
−12

). Let ̄∗· = ̄· − (̄·)

Then

1



X
=1

̄·̄· =
1



X
=1

 (̄·) ̄· +
1



X
=1

̄∗·̄· ≡ 1 +2 say.

For 1 we have 1 =
1


P
=1

P
=1 (̄·). Note that  (1) = 0 and

 k1k2 =
1

2 2

X
=1

X
=1

X
=1

X
=1

 (̄·)
0
 (̄·) ()

≤ 

2 2

X
=1

X
=1

X
=1

X
=1

| ()| = (( )
−1
)

where the last equality follows from Assumption A.2*(iii). Then 1 =  (( )−12) by Chebyshev

inequality. For 2 we apply the Jensen inequality and Assumption A.2*(i) to obtain


h
k2k2

i
= 

⎡⎣Ã 1


X
=1

1

 2

X
=1

X
=1

∗

!2⎤⎦ ≤ 1



X
=1



⎡⎣Ã 1

 2

X
=1

X
=1

∗

!2⎤⎦ ≤ 

 2


It follows that 2 = 

¡
−1

¢
by Chebyshev inequality. In sum, we have shown 1



P
=1 ̄·̄· =  (

−1+

( )−12)

Next, we verify Assumption A.2(iv): 1


P
=1 ̄·̄· =  (

−1 + ( )
−12

) Let ̄∗· = ̄· − (̄·)

Then

1



X
=1

̄·̄· =
1



X
=1

 (̄·) ̄· +
1



X
=1

̄∗·̄· ≡ 3 +4 say.
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For 3 we have 3 =
1


P
=1

P
=1 (̄·). Note that  (3) = 0 and


³
k3k2

´
≤ 1

2 2

X
=1

X
=1

X
=1

X
=1

 (̄·)
0
 (̄·) ()

≤ 

2 2

X
=1

X
=1

X
=1

X
=1

| ()| = (( )−1) by Assumption A.2*(iii).

Hence 3 = 

¡
( )−12

¢
by Chebyshev inequality. For 4 we have by Jensen inequality and Assump-

tion A.2∗(ii)


h
k4k2

i
= 

⎛⎝ 1


X
=1

1

2

X
=1

X
=1

∗

⎞⎠ ≤ 1



X
=1



⎛⎝ 1

2

X
=1

X
=1

∗

⎞⎠2

≤ 

2


It follows that 4 = 

¡
−1

¢
by Chebyshev inequality. In sum, we have that 1



P
=1 ̄·̄· =  (

−1+

( )
−12

)

Now, we provide a set of sufficient primitive conditions for Assumption A.2∗(i).

Assumption A.2∗ (i.a) max kk4(1+)   and max ||4(1+) ∞ for some   0;

(i.b) For each  = 1   {( )  ≥ 1} is a strong stationary strong mixing process with mixing
coefficients  (·) such that max

P
=1 

2 ()
(1+)

  for some  ∞

Assumption A.2*(i.a) strengthens the moment conditions in Assumption A.1(i)-(ii) slightly for the

application of Davydov inequality. Assumption A.2∗(i.b) requires that {( )  ≥ 1} be strong mixing.
This condition is a standard condition assumed for dynamic panels when the individual effect is assumed

to be fixed. For example, for a dynamic panel autoregressive process of order one (PAR(1)), it is strong

mixing with the mixing coefficient  () decaying to zero at a rate proportional to || as long as the
autoregressive coefficient  is strictly less than 1 in absolute value. In this case, Assumption A.2*(i.b) is

automatically satisfied for all  ∈ (−1 1)  If the individual effect is random, then we can replace the strong
mixing condition by the corresponding conditional mixing condition: {( )  ≥ 1} is conditionally
strong mixing with mixing coefficients  (·) given the individual effect. See Prakasa Rao (2009) for the
definition of conditional strong mixing, and Hahn and Kuersteiner (2011) and Su and Chen (2013) for the

applications of conditional strong mixing in dynamic panels.

We now show that Assumption A.2∗(i.a)-(i.b) is sufficient for Assumption A.2*(i). By Cauchy-Schwarz

inequality,

max




°°°°° 1
X
=1

X
=1

∗

°°°°°
2

≤ 2max




°°°°° 1
X
=1

∗

°°°°°
2

+ 2max




°°°°°° 1
X

1≤6=≤
∗

°°°°°°
2



It is easy to see that under Assumption A1(i)-(ii), the first term on the right hand side of the above equation

is bounded from the above by

max


2



X
=1

 k∗k2 ≤ 2max


 k∗k2 ≤ 
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For the second term, by straightforward moment calculations for second-order degenerate U-statitics (see,

e.g., Lemma A.2(ii) in Gao (2007, p.194)), we have 2max
°°° 1 P1≤ 6=≤ ∗

°°°2 ≤  under Assumption

A.2∗(i.a)-(i.b). Consequently, max
°°° 1 P

=1

P
=1 

∗


°°°2 ≤  for some  ∞

C.2 Verification of Assumptions A.4 and A.5

In this subsection, we verify the conditions in Assumption A.4(ii)-(iv) and A.5(i)-(iv) under some primitive

conditions when {  ≥ 1} is a generic stationary and invertible ARMA process. For simplicity, we focus
on the case where ’s are independent along the cross-section dimension.

The invertibility of the ARMA process implies that we can write {  ≥ 1} as an AR(∞) process and
approximate it by an AR() process for sufficiently large  :

 =
∞X
=1

− +  =

⎛⎝ X
=1

−

⎞⎠+
⎛⎝ ∞X
=+1

− + 

⎞⎠
= ρ0−1 + 

where ρ =
¡
1  

¢0
 −1 = (−1  −)0  =  +   =

P∞
=+1 − signifies the

approximation error, and  is the error term with mean zero and variance 2. Note that  = 0 if

{  ≥ 1} is an autoregressive process of order  or less. Let  = (1  )
0
and  = (1  )

0


Let  (0 1  −1) denote the th order joint cumulant of
¡
0 1  −1

¢
where 1  −1 and 

are integers. Let Φ (·) be defined as in Section 2.3.

Assumption A.4∗ (i)
P∞

=1 
 6= 0 for any complex number  with || ≤ 1P∞=1 ¯̄ ¯̄ ∞ 32(−1+

−1) =  (1)  and ( )12
P∞

=+1

¯̄

¯̄
=  (1) 

(ii) For each  {  ≥ 1} is strictly stationary and ergodic such that  (|F−1) = 0 where F−1 =
 (−1 −2   −1) is the -field generated by {−1 −2   −1} 

¡
2
¢
= 2 and maxP∞

1=−∞ 
P∞

−1=−∞  (0 1  −1)   for  = 2 3 4; {  } are independent along the indi-
vidual dimension; 1



P
=1 

2
 → ̄2 as  →∞.

(iii)  () = 0  (|−1 −2   −1 ) = 0 (4 ) ≤  and (4 ) ≤ 

Assumption A.4*(i) is similar to Assumption A.4(i) except that now we do not impose any condition

on min (Γ) but require ( )12
P∞

=+1

¯̄

¯̄
=  (1)  Following Lee, Okui and Shintani (2018, LOS

hereafter), we can easily show that the condition on min (Γ) is satisfied under Assumption A.4*(i)-(ii). The

condition ( )
12P∞

=+1

¯̄

¯̄
=  (1) is weaker than the requirement that ( )

12P∞
=+1

¯̄

¯̄
=  (1)

in LOS because we do not consider bias correction in our setup. Assumption A.4∗(ii) imposes that ’s are

independent along the individual dimension and a martingale difference sequence (m.d.s.) along the time

dimension. The independence assumption can be relaxed to allow for certain weak form cross-sectional

dependence at more lengthy arguments. The m.d.s. sequence is also assumed in Gonçalves and Kilian

(2007) in the time series setup and it is weaker than the i.i.d. requirement in Lewis and Reinsel (1985)

and LOS. Note that Assumption A.4*(ii) implies that {  ≥ 1} is a stationary process for each  and

can be represented by an infinite order moving average (MA(∞)) process, and the approximation error
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 =
P∞

=+1 − is well behaved in the sense of mean square errors. Assumption A.4*(iii) is used to

verify A.4(iv).

First, we verify Assumption A.4(ii). Assumption A.4*(i)-(ii) ensures that {} has mean zero and finite
fourth moment and  () =

P∞
=+1  (−) +  () = 0 Let  =

P∞
=+1

¯̄

¯̄
 Then  = 0

if  = 0 Without loss of generality, we assume that   0 Note that Assumption A.4*(i) implies that

 = (( )−12) =  (1) and
P∞

=+1

¯̄

¯̄4 ≤ max≥+1 ¯̄ ¯̄3  ≤ 4 =  (1)  Then by Jensen inequality

max


(4) = max




⎛⎝ ∞X
=+1

−

⎞⎠4

≤ 4max




⎛⎝ 1



∞X
=+1

¯̄

¯̄ |− |

⎞⎠4

≤ 3max


∞X
=+1

¯̄

¯̄4
(4−) ≤ 3

∞X
=+1

¯̄

¯̄4
= (1)

It follows that max(
4
) ≤ 8max(4) + 8max(4) ≤  ∞ In addition, by the law of large

numbers, we have 1


P
=1

P
=+1 

2
 = ̄2 +  (1), where ̄

2
 = lim→∞ 1



P
=1 

2
 So in this case,

̄2 = ̄2

Next, we verify Assumption A.4(iii) for  = ̆ as the case for  = 1 is easier. Noting that

̆ =  − −1ρ, we have

1



X
=1

X
=+1

̆ =
1



X
=1

X
=+1

̆ +
1



X
=1

X
=+1

̆ ≡ 11 + 12 say.

Note that

 k11k ≤ 1



X
=1

X
=+1

 k̆k ≤ 1



X
=1

X
=+1

n
 k̆k2

o12 ©

°°2°°ª12

≤ 

∞X
=+1

¯̄

¯̄
= 

³
( )−12

´
where we use the fact that

max


 k̆k2 = 2max


 kk2 + 2max



°°−1ρ°°2 ≤ 2max


 kk2 + 2max



X
=1

X
1=1

1(
0
−−1)

≤ 2max


 kk2
⎧⎪⎨⎪⎩1 +

⎛⎝ ∞X
=1

¯̄

¯̄⎞⎠2

⎫⎪⎬⎪⎭ ≤  ∞

and that by Assumption A.4*(i),

max


(2) = max


∞X
=+1

∞X
0=+1

0(−−0) ≤ 

⎛⎝ ∞X
=+1

¯̄

¯̄⎞⎠2

= 
¡
( )−1

¢


It follows that 11 = 

¡
( )−12

¢
by Markov inequality For 12, we have  (12) = 0 and for any
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nonrandom vector  ∈ R with kk = 1

Var (012) =
1

()
2

0
X
=1

Var

Ã
X

=+1

̆

!
 =

1

()
2

0
X
=1

X
=+1

X
=+1

 (̆̆
0
)

=
1

()
2

0
X
=1

X
=+1


¡
̆̆

0


2


¢
 = (()

−1
)

Then 12 = 

¡
( )−12

¢
by Chebyshev inequality. Consequently, we have shown that 1



P
=1

P
=+1

̆ = 

¡
( )−12

¢
 Analogously, we can verify the last condition in A.4(iii).

Next, we verify Assumption A.4(iv). Note that

1



X
=1

X
=+1

 =
1



X
=1

X
=+1

 +
1



X
=1

X
=+1

 ≡ 21 + 22

By Assumption A.4*(iii), we have  (22) = 0 and Var(22) =
1

()
2

P
=1

³P
=+1 

´2
= 

¡
−1

¢


So 22 =  (1). 21 =  (1) by Markov inequality and the fact that

 |21| ≤ 1



X
=1

X
=+1

 || ≤ 1



X
=1

X
=+1

©

¡
2
¢
(2)

ª12 ≤ 

∞X
=+1

¯̄

¯̄
=  (1) 

Similarly, we have

1



X
=1

X
=+1

[Φ ()] =
1



X
=1

X
=+1

[Φ ()] +
1



X
=1

X
=+1

[Φ ()] ≡ 31 + 32

Following the analysis of 21 we can readily show that 31 =  (1) by Markov inequality. For 32 we

have  (32) = 0 and

Var (32) =
1

2 2

X
=1

X
1=1

X
=+1


¡
1[Φ ()]

2
¢
= 

¡
−1

¢


So 32 =  (1) 

Next, we verify that Assumption A.5(i) is satisfied with ̄21 = ̄2. Noting that ̄· =
1


P
=+1 ( + ) =

̄· + ̄· with ̄· = 1


P
=+1  and ̄· = 1



P
=+1  we have





X
=1

(̄·)
2
=





X
=1

(̄·)
2
+





X
=1

̄2· +
2


X
=1

̄·̄· ≡ 11 + 12 + 13 say.

11 =  (1) by Markov inequality and the fact that

 (11) =




X
=1



Ã
1



X
=+1



!2
≤ 1



X
=1

X
=+1


¡
2

¢ ≤  max


(2)

≤ 

⎛⎝√ ∞X
=+1

¯̄

¯̄⎞⎠2

=  (1) 
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By Assumption A.4*(ii),  (12) =
1



P
=1

P
=+1

¡
2
¢
= 1



P
=1 

2
 = ̄2 + (1) and

Var (12) =


2
Var

⎧⎨⎩
X
=1

Ã
1



X
=+1



!2⎫⎬⎭ =
1

2

X
=1

Var

⎧⎨⎩
Ã

X
=+1



!2⎫⎬⎭ = 
¡
−1

¢


It follows that 12 = ̄2 +  (1) By the Cauchy-Schwarz inequality, 13 ≤ 2 (1112)12 =  (1)  Then



P
=1 (̄·)

2 = ̄2 +  (1)

Next, we verify that Assumption A.5(ii) is satisfied with ̄22 = ̄2. Noting that ̄· =
1


P
=1 ( + ) =

̄· + ̄· with ̄· = 1


P
=1  and ̄· = 1



P
=1  we have





X
=+1

(̄·)
2 =





X
=+1

(̄·)
2 +





X
=+1

̄2· +
2



X
=+1

̄·̄· ≡ 21 + 22 + 23 say.

21 =  (1) by Markov inequality and the fact that

 (21) =




X
=+1



Ã
1



X
=1



!2
≤ 1



X
=1

X
=+1


¡
2

¢ ≤  max


(2)

≤ 

⎛⎝√ ∞X
=+1

¯̄

¯̄⎞⎠2

=  (1) 

By Assumption A.4*(ii),  (22) =
1



P
=1

P
=+1

¡
2
¢
= 1



P
=1 

2
 = ̄2 + (1) and

Var (22) =


 2
Var

⎧⎨⎩
X

=+1

Ã
1



X
=1



!2⎫⎬⎭ =
1

 2

X
=+1

Var

⎧⎨⎩
Ã

X
=1



!2⎫⎬⎭ = 
¡
−1

¢


It follows that 22 = ̄2 +  (1) By Cauchy-Schwarz inequality, 23 ≤ 2 (2122)
12

=  (1)  Then



P
=+1 (̄·)

2 = ̄2 +  (1)

To verify Assumption A.5(iii), note that

1



X
=1

̄·̄· =
1

 2

X
=1

X
=1

X
=1

 ()  +
1

 2

X
=1

X
=1

X
=1

∗ ≡ 31 + 32 say.

For 31 we have

31 =
1

 2

X
=1

X
=1

X
=1

 ()  +
1

 2

X
=1

X
=1

X
=1

 ()  ≡ 311 + 312 say.

Under Assumption A.4*(i)-(ii), we can readily show that 312 = 

¡
( )−12

¢
by Chebyshev inequality.

For 311 we have

 |31| ≤ 1

 2

X
=1

X
=1

X
=1

k ()k | ()| ≤ max


£

°°2°°¤12 = (( )−12)

Then 31 = 

¡
( )−12

¢
 For 32 we have

32 =
1

 2

X
=1

X
=1

X
=1

∗ +
1

 2

X
=1

X
=1

X
=1

∗ ≡ 321 + 322 say.
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Following the verification of Assumption A.2(iii), we can readily show that 322 = 

¡
−1

¢
 For 321

we have

 k321k ≤ 1

 2

X
=1

X
=1

X
=1

k (∗)k ≤ max


X
=1

X
=1

X
=1

£
(2)

¤12 ≤ 

∞X
=+1

¯̄

¯̄
= (( )−12)

It follows that 32 = 

¡
( )−12 + −1

¢
and 1



P
=1 ̄·̄· = 

¡
( )−12 + −1

¢


To verify Assumption A.5(iv), note that

1


̄·̄· =

1

2

X
=+1

X
=1

X
=1

 ()  +
1

2

X
=+1

X
=1

X
=1

∗ ≡ 41 + 42 say.

For 41 we have

41 =
1

2

X
=+1

X
=1

X
=1

 ()  +
1

2

X
=+1

X
=1

X
=1

 ()  ≡ 411 + 412 say.

Following the analysis of 21 we can readily show that 412 = 

¡
( )−12

¢
by Chebyshev inequality.

For 411 we have

 |41| ≤ 1

2

X
=+1

X
=1

X
=1

k ()k | ()| ≤ max


£

°°2°°¤12 = (( )−12)

Then 41 = 

¡
( )−12

¢
 For 42 we have

42 =
1

2

X
=+1

X
=1

X
=1

∗ +
1

2

X
=+1

X
=1

X
=1

∗ ≡ 421 + 422 say.

Following the verification of Assumption A.2(iv), we can readily show that 422 = 

¡
−1

¢
 For 421

we have

 k421k ≤ 1

2

X
=+1

X
=1

X
=1

 (∗) ≤ 
1

2

X
=+1

X
=1

X
=1

£
(2)

¤12
≤ 

∞X
=+1

¯̄

¯̄
= (( )−12)

It follows that 42 = 

¡
( )−12 + −1

¢
and 1


̄·̄· = 

¡
( )−12 +−1

¢


D Choice of  in the Modified Jackknife

As discussed in Remark 9 in the main paper, there are several practical approaches to choose  in the

modified jackknife method.

First, we can use a “rule of thumb” and let  increase with  e.g.,  = b 14c where b 14c is the
nearest integer less than or equal to  14.
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Second, we can follow Lee, Okui, and Shintani (2018) by setting max = b 14c and consider a general-
to-specific testing procedure based on -statistic until we reject the null. Specifically, we first run the

following auxiliary regression using the pooled OLS

̂
(4)
 = 1̂

(4)
−1 + 2̂

(4)
−2 + + max ̂

(4)
−max + ̃

and test max = 0 using t-statistics. If it is rejected, we conclude that  = max If we fail to reject it,

we eliminate the maxth lag and run the regression with max − 1 lags, and test max−1 = 0 We continue
this procedure until we reject the null. Note that here ̂

(4)
 ’s are estimated. To take this into account,

Wooldridge (2010, p. 311) argues that for the pooled OLS, we should use the fully robust standard errors

(robust to both heteroskedasticity and serial correlation, see equation (7.26) in Wooldridge (2010, p. 171)).

Another issue is that we need to choose the nominal level to decide whether to reject. In our simulations

below, we choose the conventional 5% level.

Third, we can apply the information criteria, such as AIC and BIC, to the residuals obtained from

Model 4 (̂
(4)
 ) to determine . For the implementation, see, e.g., Stock and Watson (2012, Section 14.5).

In general, BIC gives a consistent estimator of  and AIC tends to choose a relatively large 

We conduct simulations to examine the finite sample performance of four methods above, labelled as

rule of thumb, testing, AIC, and BIC, respectively. We consider three DGPs which are the same as those

in Section 3.2 except that now the errors follow AR(1)  MA(1) and ARMA(1 1) processes, respectively.

Specifically,  is generated respectively as

DGP D.1:  = 05−1 + 

DGP D.2:  =  + 05−1 and

DGP D.3:  = 075−1 +  + 05−1

where  is an  (0 1) random variable.

Tables D1-D3 present the simulations results for DGPs D.1-D.3, respectively. For DGPs D.1 and D.2

with AR(1) and MA(1) errors respectively, both CV∗ and CV∗∗ work well. For the ARMA errors, CV∗

works well when  is large and outperforms CV∗∗ in general. This suggests that CV∗∗ which is based on the

Cochrane—Orcutt procedure relies on the AR() assumption more. Among the four methods of selecting 

there is no dominant one. When the sample size is large and CV∗ is used, all four methods can select the

true model with a high probability.
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Table D1: Frequency of the model selected with selected  (DGP D.1:  = 05−1 + )

Selection

of lag p True M Model 1 Model 2 Model 3 Model 4

in CV∗ Selected M M1 M2 M3 M4 M1 M2 M3 M4 M1 M2 M3 M4 M1 M2 M3 M4

and CV∗∗ (N,T)

(10,10) .21 .68 .01 .10 .01 .87 0 .12 0 .01 .18 .81 0 .02 0 .98

AIC (50,10) .04 .87 0 .09 0 .91 0 .09 0 0 .03 .97 0 0 0 1

(10,50) .27 .72 0 0 0 1 0 0 0 0 .22 .78 0 0 0 1

(50,50) .04 .96 0 0 0 1 0 0 0 0 .03 .97 0 0 0 1

(10,10) .89 .11 0 0 .09 .91 0 0 .36 .04 .49 .10 .51 .12 .01 .36

BIC (50,10) 1 0 0 0 .20 .78 .02 0 .01 0 1 0 .43 0 .16 .42

(10,50) .98 .02 0 0 0 1 0 0 .39 .58 .03 0 .37 .62 0 .01

(50,50) 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1

(10,10) .08 .67 .02 .23 0 .74 0 .25 0 .01 .09 .90 0 .01 0 .99

BIC2 (50,10) .01 .87 0 .12 0 .88 0 .13 0 0 .01 .99 0 0 0 1

(10,50) .22 .77 0 .01 0 .99 0 .01 0 0 .18 .82 0 0 0 1

(50,50) .06 .94 0 0 0 1 0 0 0 0 .04 .96 0 0 0 1

(10,10) .25 .69 .01 .05 .01 .93 0 .06 .01 .02 .28 .69 0 .03 .01 .97

CV (50,10) .06 .88 0 .06 0 .94 0 .06 0 0 .06 .94 0 0 0 1

(10,50) .28 .72 0 0 0 1 0 0 0 0 .29 .71 0 0 0 1

(50,50) .04 .96 0 0 0 1 0 0 0 0 .05 .95 0 0 0 1

(10,10) .58 .36 .03 .03 .03 .91 0 .06 .01 .01 .61 .37 .01 .01 .03 .95

CV∗ (50,10) .69 .26 .03 .01 0 .95 0 .05 0 0 .74 .27 0 0 0 1

rule (10,50) .87 .13 0 0 0 1 0 0 0 0 .87 .13 0 0 0 1

of (50,50) .99 .01 0 0 0 1 0 0 0 0 .99 .01 0 0 0 1

thumb (10,10) .81 .14 .04 .01 .42 .51 .05 .02 .01 .01 .84 .14 .01 .01 .58 .40
 14


CV∗∗ (50,10) .95 .01 .05 0 .31 .44 .23 .02 0 0 .99 .01 0 0 .69 .31

(10,50) .93 .07 0 0 .01 .99 0 0 0 0 .95 .06 0 0 .09 .91

(50,50) 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1

(10,10) .25 .69 .01 .05 .01 .93 0 .06 .01 .02 .28 .69 0 .03 .01 .96

CV∗ (50,10) .06 .88 0 .06 0 .94 0 .06 0 0 .06 .94 0 0 0 1

(10,50) .90 .10 0 0 0 1 0 0 0 0 .90 .10 0 0 0 1

AIC (50,50) 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1

(10,10) .25 .69 .01 .05 .01 .93 0 .06 .01 .02 .28 .69 0 .03 .01 .96

CV∗∗ (50,10) .06 .88 0 .06 0 .94 0 .06 0 0 .06 .94 0 0 0 1

(10,50) .95 .05 0 0 0 1 0 0 0 0 .95 .05 0 0 .02 .98

(50,50) 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1

(10,10) .31 .63 .02 .05 .01 .92 0 .06 .01 .02 .34 .64 .01 .02 .01 .96

CV∗ (50,10) .06 .88 0 .06 0 .94 0 .06 0 0 .06 .94 0 0 0 1

(10,50) .91 .09 0 0 0 1 0 0 0 0 .90 .10 0 0 0 1

BIC (50,50) 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1

(10,10) .32 .62 .02 .05 .09 .84 .01 .06 .01 .02 .35 .63 .01 .02 .11 .87

CV∗∗ (50,10) .06 .88 0 .06 0 .93 0 .06 0 0 .06 .94 0 0 .01 .99

(10,50) .95 .05 0 0 0 1 0 0 0 0 .96 .04 0 0 .02 .98

(50,50) 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1

(10,10) .56 .38 .03 .03 03 .91 0 .06 .01 0 .58 .40 .01 .01 03 .95

CV∗ (50,10) .69 .26 .03 .01 0 .95 0 .05 0 0 .74 .27 0 0 0 1

(10,50) .90 10 0 0 0 1 0 0 0 0 .89 .11 0 0 0 1

Testing (50,50) 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1

(10,10) .74 .21 .04 .02 .40 .52 .05 .03 .01 0 .77 .22 .01 .01 .55 .43

CV∗∗ (50,10) .95 .01 .05 0 .31 .44 .23 .02 0 0 .99 .01 0 0 .69 .31

(10,50) .94 .06 0 0 0 1 0 0 0 0 .95 .05 0 0 .03 .97

(50,50) 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1

.
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Table D2: Frequency of the model selected with selected  (DGP D.2:  =  + 05−1)

Selection

of lag p True M Model 1 Model 2 Model 3 Model 4

in CV∗ Selected M M1 M2 M3 M4 M1 M2 M3 M4 M1 M2 M3 M4 M1 M2 M3 M4

and CV∗∗ ( )

(10,10) .55 .36 .04 .05 .01 .88 0 .11 .01 .01 .53 .45 .01 .01 .01 .97

AIC (50,10) .59 .35 .02 .04 0 .92 0 .09 0 0 .58 .42 0 0 0 1

(10,50) .65 .35 0 0 0 1 0 0 0 0 .57 .43 0 0 0 1

(50,50) .73 .27 0 0 0 1 0 0 0 0 .70 .30 0 0 0 1

(10,10) .99 .01 0 0 .16 .84 0 0 .35 .01 .63 .01 .75 .05 .01 .19

BIC (50,10) 1 0 0 0 .46 .44 .11 0 0 0 1 0 .64 0 .29 .07

(10,50) 1 0 0 0 0 1 0 0 .49 .43 .08 0 .47 .53 0 0

(50,50) 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1

(10,10) .29 .47 .06 .18 0 .74 0 .26 0 0 .31 .68 0 0 0 1

BIC2 (50,10) .41 .49 .03 .07 0 .88 0 .12 0 0 .42 .58 0 0 0 1

(10,50) .57 .43 0 0 0 .99 0 .01 0 0 .49 .51 0 0 0 1

(50,50) .78 .22 0 0 0 1 0 0 0 0 .75 .25 0 0 0 1

(10,10) .62 .33 .03 .02 .01 .94 0 .05 .01 .01 .65 .33 .02 .03 .01 .94

CV (50,10) .68 .27 .03 .02 0 .94 0 .06 0 0 .72 .28 0 0 0 1

(10,50) .66 .34 0 0 0 1 0 0 0 0 .66 .34 0 0 0 1

(50,50) .75 .25 0 0 0 1 0 0 0 0 .75 .25 0 0 0 1

(10,10) .82 .12 .04 .01 .04 .91 0 .05 .01 0 .86 .13 .02 .01 .04 .93

CV∗ (50,10) .94 .01 .05 0 0 .94 0 .06 0 0 .99 .01 0 0 0 1

rule (10,50) .86 .14 0 0 0 1 0 0 0 0 .87 .13 0 0 0 1

of (50,50) .99 .01 0 0 0 1 0 0 0 0 .99 .01 0 0 0 1

thumb (10,10) .91 .04 .05 0 .46 .45 .07 .02 .01 0 .95 .04 .02 .01 .67 .31
 14


CV∗∗ (50,10) .94 0 .06 0 .33 .27 .39 .01 0 0 1 0 0 0 .84 .16

(10,50) .91 .09 0 0 0 1 0 0 0 0 .91 .09 0 0 0 1

(50,50) 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1

(10,10) .62 .33 .03 .02 .01 .94 0 .05 .01 .01 .65 .33 .02 .03 .01 .94

CV∗ (50,10) .68 .27 .03 .02 0 .94 0 .06 0 0 .72 .28 0 0 0 1

(10,50) .92 .08 0 0 0 1 0 0 0 0 .92 .08 0 0 0 1

AIC (50,50) .86 .14 0 0 0 1 0 0 0 0 .86 .14 0 0 0 1

(10,10) .62 .33 .03 .02 .01 .94 0 .05 .01 .01 .65 .33 .02 .03 .01 .94

CV∗∗ (50,10) .68 .27 .03 .02 0 .94 0 .06 0 0 .72 .28 0 0 0 1

(10,50) .93 .07 0 0 0 1 0 0 0 0 .93 .07 0 0 0 1

(50,50) .86 .14 0 0 0 1 0 0 0 0 .86 .14 0 0 0 1

(10,10) .62 .33 .03 .02 .01 .93 0 .06 .01 .01 .64 .34 .02 .02 .01 .95

CV∗ (50,10) .68 .27 .03 .02 0 .94 0 .06 0 0 .72 .28 0 0 0 1

(10,50) .89 .11 0 0 0 1 0 0 0 0 .90 .10 0 0 0 1

BIC (50,50) .99 .01 0 0 0 1 0 0 0 0 .99 .01 0 0 0 1

(10,10) .64 .31 .04 .02 .05 .88 .01 .05 .01 .01 .67 .31 .02 .02 .08 .88

CV∗∗ (50,10) .68 .27 .03 .02 0 .94 0 .06 0 0 .72 .28 0 0 0 1

(10,50) .93 .07 0 0 0 1 0 0 0 0 .93 .07 0 0 0 1

(50,50) 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1

(10,10) .80 .15 .04 .01 .04 .91 0 .05 .01 0 .84 .15 .02 .01 .04 .93

CV∗ (50,10) .94 .01 .05 0 0 .94 0 .06 0 0 .99 .01 0 0 0 1

(10,50) .86 .14 0 0 0 1 0 0 0 0 .87 .13 0 0 0 1

Testing (50,50) .99 .01 0 0 0 1 0 0 0 0 .99 .01 0 0 0 1

(10,10) .86 .09 .05 .01 .43 .49 .06 .03 .01 0 .91 .08 .02 .01 .61 .36

CV∗∗ (50,10) .94 0 .06 0 .33 .27 .39 .01 0 0 1 0 0 0 .84 .16

(10,50) .91 .09 0 0 0 1 0 0 0 0 .91 .09 0 0 0 1

(50,50) 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1
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Table D3: Frequency of the model selected with selected  (DGP D.3:  = 075−1 +  + 05−1)

Selection

of lag p True M Model 1 Model 2 Model 3 Model 4

in CV∗ Selected M M1 M2 M3 M4 M1 M2 M3 M4 M1 M2 M3 M4 M1 M2 M3 M4

and CV∗∗ ( )

(10,10) 0 .83 0 .16 0 .84 0 .16 0 .17 0 .82 0 .17 0 .82

AIC (50,10) 0 .87 0 .14 0 .87 0 .14 0 0 0 1 0 0 0 1

(10,50) .01 .95 0 .04 0 .97 0 .04 0 .32 .01 .67 0 .32 0 .68

(50,50) 0 .97 0 .03 0 .97 0 .03 0 0 0 1 0 0 0 1

(10,10) .14 .85 0 .01 .06 .93 0 .01 .17 .66 .01 .17 .15 .68 0 .17

BIC (50,10) .16 .84 0 0 .02 .98 0 0 .05 .05 .10 .80 .08 .05 0 .87

(10,50) .37 .63 0 0 .03 .97 0 0 .27 .73 0 0 .26 .74 0 0

(50,50) .52 .48 0 0 0 1 0 0 .20 .50 .18 .12 .27 .56 0 .17

(10,10) 0 .74 0 .26 0 .74 0 .26 0 .07 0 .93 0 .07 0 .93

BIC2 (50,10) 0 .84 0 .17 0 .84 0 .17 0 0 0 1 0 0 0 1

(10,50) .01 .93 0 .06 0 .94 0 .07 0 .21 .01 .78 0 .21 0 .79

(50,50) 0 .98 0 .02 0 .98 0 .02 0 0 0 1 0 0 0 1

(10,10) .01 .88 0 .11 0 .89 0 .11 0 .27 .01 .72 .01 .27 0 .72

CV (50,10) 0 .90 0 .11 0 .90 0 .11 0 0 0 1 0 0 0 1

(10,50) .02 .96 0 .02 0 .98 0 .02 0 .42 .01 .56 0 .43 0 .57

(50,50) 0 .98 0 .02 0 .98 0 .02 0 0 0 1 0 0 0 1

(10,10) .37 .56 .03 .05 .14 .79 .01 .06 .01 0 .41 .58 0 .01 .14 .85

CV∗ (50,10) .41 .51 .03 .05 .01 .90 0 .08 0 0 .46 .54 0 0 .01 .99

rule (10,50) .47 .52 0 0 .02 .97 0 .01 0 0 .48 .52 0 0 .01 .99

of (50,50) .63 .37 0 0 0 .99 0 .01 0 0 .62 .38 0 0 0 1

thumb (10,10) .76 .19 .04 .02 .72 .22 .04 .02 0 0 .81 .19 0 0 .79 .20
 14


CV∗∗ (50,10) .92 .03 .05 0 .87 .04 .09 0 0 0 .97 .03 0 0 .97 .03

(10,50) .82 .18 0 0 .49 .51 0 0 0 0 .82 .18 0 0 .64 .37

(50,50) .96 .04 0 0 .46 .54 0 0 0 0 .97 .03 0 0 .71 .29

(10,10) .29 .61 .02 .08 .10 .79 .01 .10 .01 .01 .33 .65 0 .02 .10 .88

CV∗ (50,10) .38 .53 .03 .06 .01 .89 0 .09 0 0 .42 .58 0 0 .01 .99

(10,50) .52 .48 0 0 .03 .96 0 .01 0 0 .52 .48 0 0 .01 .99

AIC (50,50) .79 .21 0 0 0 1 0 0 0 0 .78 .22 0 0 0 1

(10,10) .62 .30 .03 .05 .59 .33 .03 .05 0 .01 .67 .31 0 .01 .66 .33

CV∗∗ (50,10) .73 .21 .04 .03 .69 .21 .07 .03 0 0 .77 .23 0 0 .77 .23

(10,50) .85 .15 0 0 .56 .44 0 0 0 0 .85 .15 0 0 .69 .31

(50,50) .97 .03 0 0 .73 .27 0 0 0 0 .98 .02 0 0 .84 .16

(10,10) .17 .72 .02 .10 .05 .83 .01 .11 0 0 .21 .79 0 0 .06 .94

CV∗ (50,10) .04 .85 0 .11 0 .88 0 .12 0 0 .04 .96 0 0 0 1

(10,50) .48 .52 0 0 .02 .97 0 .01 0 0 .49 .51 0 0 .01 .99

BIC (50,50) .63 .37 0 0 0 .99 0 .01 0 0 .62 .38 0 0 0 1

(10,10) .56 .37 .03 .04 .50 .43 .03 .04 0 0 .64 .36 0 0 .60 .40

CV∗∗ (50,10) .54 .40 .04 .03 .41 .49 .07 .03 0 0 .59 .41 0 0 .53 .47

(10,50) .84 .16 0 0 .53 .47 0 0 0 0 .84 .16 0 0 .67 .33

(50,50) .96 .04 0 0 .47 .53 0 0 0 0 .97 .03 0 0 .71 .29

(10,10) .37 .56 .03 .05 .14 .79 .01 .06 .01 0 .41 .58 0 .01 .14 .85

CV∗ (50,10) .41 .51 .03 .05 .01 .90 0 .08 0 0 .46 .54 0 0 .01 .99

(10,50) .47 .52 0 0 .02 .97 0 .01 0 0 .48 .52 0 0 .01 .99

Testing (50,50) .63 .37 0 0 0 .99 0 .01 0 0 .62 .38 0 0 0 1

(10,10) .76 .19 .04 .02 .72 .22 .04 .02 0 0 .81 .19 0 0 .79 .20

CV∗∗ (50,10) .92 .03 .05 0 .87 .04 .09 0 0 0 .97 .03 0 0 .97 .03

(10,50) .82 .18 0 0 .49 .51 0 0 0 0 .82 .18 0 0 .64 .37

(50,50) .96 .04 0 0 .46 .54 0 0 0 0 .97 .03 0 0 .71 .29
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