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Abstract

We develop a nonparametric approach that allows one to discriminate among alter-
native models of entry in �rst-price auctions. Three models of entry are considered:
Levin and Smith (1994), Samuelson (1985), and a new model in which the informa-
tion received at the entry stage is imperfectly correlated with valuations. We derive
testable restrictions that these three models impose on the quantiles of active bidders�
valuations, and develop nonparametric tests of these restrictions. We implement the
tests on a dataset of highway procurement auctions in Oklahoma. Depending on the
project size, we �nd no support for the Samuelson model, some support for the Levin
and Smith model, and somewhat more support for the new model.

1 Introduction

Sealed tenders are a widespread mechanism for procuring goods and services in the United
States. This is a large and important market, and understanding its workings is a topic of
general interest. A robust and well-documented feature of many real-world auctions is that
not all bidders who are eligible to submit a bid choose to do so, suggesting that entry into
the auction may be costly. In this paper, we develop nonparametric approaches that will
allow the empirical researcher to discriminate among di¤erent models of entry.

Most of the empirical auctions literature to date is based on the theoretical work of Levin
and Smith (1994) (LS hereafter). In their model, potential bidders are initially uninformed
about their valuations of the good, but may become informed and submit a bid at a cost. In
equilibrium, the potential entrants randomize their entry decisions and earn zero expected
pro�t.
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gratefully acknowledges the �nancial support of the SSHRC under grant 410-2007-1998. Artyom Shneyerov
gratefully acknowledges the �nancial support of the SSHRC under grants 12R27261 and 12R27788.
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Several empirical papers, most of them recent, estimated variants of this model. Bajari
and Hortacsu (2003) have studied entry and bidding in eBay auctions, within a common
value framework. A Bayesian estimation method is implemented using a dataset of mint
and proof sets of US coins. The magnitude of the entry cost is estimated, and expected
seller revenues are simulated under di¤erent reserve prices. Athey, Levin, and Seira (2004)
estimate a model of bidding in timber auctions with costly entry. The entry cost is assumed
to be private information of the potential bidders, who sort into the pool of entrants based
on their draws of the entry cost.

Li and Zheng (2005) study entry and bidding for lawn mowing contracts using the LS
model. To our knowledge, it is the �rst paper in the literature that utilizes the number of
planholders as a measure of potential competition in highway procurement. Li and Zheng
(2005) propose and implement a Bayesian estimation method and use their structural esti-
mates to investigate the e¤ect of restricting potential competition on the expected revenue.
In addition, Li (2005) develops a general parametric approach for auctions with entry. Kras-
nokutskaya and Seim (2006) study bid preference programs and bidder participation using
California data. Their paper also uses the LS model, and as in Athey, Levin, and Seira
(2004), the focus is on asymmetric equilibria. Bajari, Hong, and Ryan (2004) propose a
parametric likelihood-based estimation strategy in the presence of multiple equilibria, and
apply it to highway procurement auctions, using the LS model.

An alternative model of entry was developed in Samuelson (1985) (S hereafter). In this
model, bidders make their entry decisions after they have learned their valuations. The
entry cost is interpreted solely as the cost of preparing a bid, and bidders choose to enter if
their valuations exceed a certain cuto¤. The set of entrants is therefore a selected sample,
biased towards bidders with higher valuations. We are not aware of any published work
applying this model to data.1

Both LS and S models are stylized to capture the amount of information available to
bidders at the entry stage: no information is available in LS, while the information is perfect
in S. These polar assumptions lead to drastically di¤ering policy implications. One of the
most important and well-studied policy instruments in auctions is the reserve price. In
a seminal paper, Riley and Samuelson (1981) show that, when the entry costs are null,
the optimal policy for the seller is to set the reserve price above the level that he would
be willing to accept. Moreover, the optimal reserve price does not depend on the number
of potential bidders N . In the S model, while the optimal reserve price is also above the
seller�s willingness to accept, it increases with N . LS, on the other hand, reach a striking
conclusion that it is optimal to set the reserve price at the maximal willingness to accept
level.

Given that policy implications are so di¤erent, it is important to be able to discriminate
between these models empirically. We build on the insight in Haile, Hong, and Shum
(2003) (HSS hereafter) and propose to use exogenous variation in N as a basis for such a
test. Let F (v) denote the cumulative distribution function (CDF) of valuations, and let
F � (vjN) denote the CDF for those potential bidders that have submitted a bid. The CDF
F � (vjN) is a crucial parameter whose behavior across N allows us to discriminate among
the alternative models of entry. Following the approach of Guerre, Perrigne, and Vuong

1 In a recent working paper, Xu (2007) adopts Samuelson�s model to estimate the entry cost in Michigan
highway procurement auctions.
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(2000) (GPV hereafter) we show that this distribution can be nonparametrically identi�ed
in both models if the number of potential bidders and all bids in each auction are observed.
We show that, while F � (vjN) does not depend on N in the LS model, it does in the S
model. The intuition here is simply that, in the S model, the valuations of active bidders
are truncated by the entry cuto¤s v� (N) that depend on N , but all share the same parent
distribution across N . This imposes a restriction on F � (vjN) across. N . It is not too hard
to show that this restriction implies a stochastic dominance ordering for F � (vjN):

F � (vjN) � F �
�
vjN 0� for N 0 > N: (1)

In other words, as N becomes larger, the distribution become more tilted towards bidders
with higher valuations. This is of course an intuitive implication of selective entry. It is
also trivially satis�ed by the LS model, with equality signs for all N .

In this paper, we also propose a generalized model that allows for selective entry but
dispenses with the stark assumption that potential bidders perfectly know their valuations
at the entry stage as in S, thus sharing with the LS model a costly valuation discovery
stage. It formally nests the LS model. This model, which we refer to as an a¢ liated model
of entry (AME hereafter), is as follows. At the entry stage, the potential bidders each
observe a private signal correlated with their yet unknown valuation of the good. Based
on this private signal, a bidder may learn the valuation upon incurring an entry cost k.
The bidder who entered will only bid if the valuation exceeds the reserve price. The signals
may be informative about the valuations, however unlike in the S model, they are not
perfectly informative. Both LS and S models can be viewed as its limit cases: the LS
model corresponds to uninformative signals, while the S model corresponds to perfectly
informative signals.

Models similar to AME have been looked at in the literature. Hendricks, Pinkse, and
Porter (2003) estimate a model of bidding for o¤-shore oil. They sketch a model of entry
that is in some respects similar to ours, but with a common-value component. The focus
of their paper is however not on entry but on testing an equilibrium model of bidding. The
model is also outlined in the concluding section of Ye (2005).

To implement the tests, we follow the approach of GPV and show that the distribution
of entrants�valuations can be nonparametrically identi�ed from the data if N and all bids
in each auction are observed. This enables us to develop a nonparametric quantile-based
test of selective entry in the spirit of Haile, Hong, and Shum (2003).

Although our approach shares with Haile, Hong, and Shum (2003) the basic idea that
exogenous variation in the number of bidders can be used for testing the information envi-
ronment of the game, there is a number of important di¤erences. Haile, Hong, and Shum
(2003) consider a di¤erent model in which bidders�valuations may have a common com-
ponent. They propose a test for common values based on the variation in the number
of actual bidders, while we test for selective entry using the variation in the number of
potential bidders.

Our approach is also di¤erent in the implementation in that we use a direct quantile
estimation method. The method is easy to implement, does not require the computation
of pseudo values of GPV, and also allows arbitrary form of dependence on covariates. This
last feature is particularly important since the method of covariate control in Haile, Hong,
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and Shum (2003) is not applicable in the setting with entry considered in this paper.2

We make a number of observations about the identi�cation of model primitives in the
LS and S models. A standard reference for identi�cation in auctions is Athey and Haile
(2002).3 However, they do not address identi�cation in models with endogenous entry.
These observations are summarized in Table 1 in Section 3. In particular, if the reserve
price is binding and there is no variation in the number of potential bidders, the entry cost in
the LS model is not identi�ed.4 The reason is that data allow an equivalent interpretation as
being generated in a model with zero entry cost, and nonparticipation is simply explained
by the fact that some bidders draw valuations below the reserve price. Note that this
explanation was originally put forward in Paarsch (1997). If there is variation in the
number of potential bidders, then the entry cost may be identi�ed. We observe that a
su¢ cient condition for identi�cation is that the pattern of the probability of submitting a
bid has a �at initial segment followed by a decreasing segment,

p (N) = ::: = p (N�) < ::: < p
�
�N
�
:

On the �at segment, we are certain that bidders enter with probability 1 and nonpartic-
ipation is due to the truncating e¤ect of the reserve price only, and therefore are able to
identify F (r) = 1�p (N). On the decreasing segment, we are certain that bidders are indif-
ferent between entering or not, and are able to identify the entry cost from the indi¤erence
condition given the knowledge of F (r).

However, the estimate of the entry cost may be sensitive to model misspeci�cation. We
show that, if the data are generated according to a model with selective entry (either S or
our model), but the researcher uses the LS model, the estimated entry cost will be upward
biased. Moreover, we show by the way of an example that the bias may be severe. The
intuition for this result is the following. When the entry cost is estimated in the LS model,
it is assumed that each potential entrant is indi¤erent between entering or not, so that the
entry cost is equal to the expected pro�t of a bidder who will draw, so to speak, an average
valuation upon entry. In the models with selectivity, the S and AME, the entry cost is equal
to the expected pro�t of a marginal bidder. When the signals are positively correlated with
valuations, the valuation that a marginal bidder will draw may plausibly be less than the
average valuation.

In our empirical application, we use a dataset of auctions conducted by the Oklahoma
Department of Transportation (ODOT). In addition to all winning and losing bids and cer-
tain project characteristics, we also observe the number of �rms that obtained construction
plans, a variable that can serve as a reasonable proxy for the number of potential bidders.
We argue that, because the quali�cation process essentially selects bidders based on work-
ing capital requirements, the number of planholders may be assumed to be exogenous. The
empirical results are somewhat mixed, but we do have a number of �ndings. First, the S
model is robustly rejected. Second, there is some support for the LS model, but somewhat
more support for the AME model.

2See our discussion in Section 4.4.
3See also Athey and Haile (2005).
4 In a recent working paper, Xu (2007) develops a nonparametric estimator of the entry cost for the S

model.
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2 Three models of entry and their testable restrictions

2.1 The LS and S models of entry

The LS and S models share a common structure. There is an entry stage in which N
potential bidders contemplate entry into the auction. At the auction stage, a bidding game
transpires among those bidders that have entered. The auction is �rst-price sealed bid,
possibly with a reserve price r. Only the bidders with valuations above the reserve price
actually submit bids. We call them actual bidders. We assume the Independent Private
Values (IPV) environment. The bidders�valuations are distributed according to the CDF
F (�) that has support [v; �v], a corresponding density f (�) positive on the support. Entry
is costly; only the bidders that have incurred the entry cost k can bid in the auction.

The two models di¤er in the information available at the entry stage. The LS model
assumes that no information is available. Upon incurring the entry cost, the bidders learn
their valuations and proceed to the bidding stage. Only the entrants with v � r submit a
bid. Levin and Smith characterize a symmetric perfect-Bayesian equilibrium of this game
in which bidders submit a bid with probability p 2 [0; 1]. The equilibrium value of p as
a function of N is denoted as p (N). The equilibrium is characterized in the following
proposition. We assume that the reserve price is binding, but the result carries over with
minor changes to the case when it is not binding.

Proposition 1 (Levin and Smith, 1994; Milgrom, 2004) A symmetric equilibrium
is characterized by the probability of submitting a bid p and bidding strategy B (v). The
ex-ante equilibrium pro�t from bidding is equal to

�(p;N) =

Z �v

r
(1� F (v)) (1� p+ pF � (v))N�1 dv (2)

The equilibrium distribution of active bidders valuations is given by

F � (v) =
F (v)� F (r)
1� F (r)

and does not depend on N . Denote the equilibrium probability p as a function of N as
p (N). If �(1; N) > 0, then p (N) = 1, and if �(0; N) < k, then p (N) = 0. Otherwise
p (N) 2 (0; 1) is determined from the zero expected pro�t equation

�(p (N) ; N) = 0: (3)

There is a quali�cation to be added to the above proposition, as well as to similar results
for other models. Throughout the paper, we assume away the uninteresting case of the entry
cost so large that there is no entry, p (N) = 0. The equilibrium bidding strategy B (v) is
explicitly derived in LS. The LS model has the following implications (we will show later
in the paper that these implications are testable). First, since the pro�t function in (2) is
decreasing in the rival bidding probability p as well as in the number of potential rivals N ,
we can see that the equilibrium probability of submitting a bid is at least non-increasing,

p (N) � p
�
N 0� 8N < N 0; (4)
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with strict inequality if N 0 is su¢ ciently large. Second, the distribution of entrants valua-
tions coincides with the distribution of potential bidders valuations. The CDF of valuations
conditional on entry F � (v) has the support [r; �v] and is independent of N ,

F � (vjN) = F �
�
vjN 0� 8N;N 0: (5)

In the S model, the potential bidders know their valuations already at the entry stage.
In any symmetric equilibrium, a bidder whose valuation is at the lower end of the support,
v = v, is unable to win with a positive probability, and will not enter. Samuelson shows that
there is a cuto¤ v� (N) such that a bidder strictly prefers to enter if and only if v > v� (N),
so that the equilibrium probability of entry is p (N) = 1 � F (v� (N)). Note that, since
v� (N) � r, in the S model this is the same as the probability of submitting a bid. The
equilibrium is formally characterized in the following proposition.

Proposition 2 (Samuelson (1985)) The bidding stage has a unique symmetric equi-
librium, in which the bidding strategy B (v) is an increasing and continuous function.
The pro�t at the bidding stage of the marginal entrant with valuation v� (N) is given by
(v� (N)� r) (1� p (N))N�1, where p (N) = 1�F (v� (N)) is the probability of bidding. The
cuto¤ v� (N) is determined by the requirement that bidder with valuation v� (N) makes zero
expected pro�t:

k = (v� (N)� r) (1� p (N))N�1 : (6)

There is always entry with probability less than 1, i.e. v� (N) 2 (r; �v � k).

The S model shares with the LS model restriction (4) that bidding probabilities are
non-increasing (they must actually be strictly decreasing in the S model). But it implies
a di¤erent restriction for the distribution of active bidders valuations F � (vjN). For v >
v� (N),

F � (vjN) =
F (v)� F (v� (N))
1� F (v� (N))

=
F (v)� (1� p (N))

p (N)
(7)

where we used the fact that the entry probability p (N) is equal to 1 � F (v� (N)). Since
the distribution F does not depend on N , a manipulation of (7) leads to the following
restriction of the S model:

p (N)F � (vjN) + 1� p (N) = p
�
N 0�F � �vjN 0�+ 1� p �N 0� 8N;N 0: (8)

2.2 The a¢ liated model of entry (AME)

A model of selective entry proposed in this paper occupies a middle ground between S and
LS. Speci�cally, it shares with S the assumption that information about the valuation is
available at the bidding stage, but dispenses with the stark assumption that this information
is perfect. The game begins with the entry stage in which N potential risk-neutral bidders
obtain preliminary estimates (signals) Si of their true values Vi; it is assumed that this
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information is available to them for free. Upon observing Si, a bidder may expend an entry
cost k; which results in observing the true value Vi and entering the auction. Only the
bidders that have learned Vi are eligible to submit a bid in the auction. Moreover, only
those with valuations at or above the reserve price r submit a bid.

We assume that the pairs (Vi; Si) are identically and independently distributed across
potential bidders i = 1; :::; N and are drawn from distribution F (v; s) with support [v; v]�
[0; 1] and density f (v; s). For convenience, we assume that the marginal distribution of the
signals is uniform on [0; 1]. Since the informational content of signals is preserved under a
monotone transformation, this assumption is without loss of generality.

The entry stage is followed by the bidding stage. Active bidders draw their values Vi,
and then simultaneously and independently submit sealed bids. Active bidders do not know
the number of active bidders, only the number of potential bidders N . The good is awarded
to the highest bidder who pays its bid. We assume that the signals are informative and that
higher signals are "good news". Formally, we assume a¢ liation, in the sense of Milgrom
and Weber (1982).

Assumption 1 For each bidder i, the variables (Vi; Si) are a¢ liated: for any z = (v; s)
and z0 = (v0; s0), f (max fz; z0g) f (min fz; z0g) � f (z) f (z0).

Note that both the LS and S models can be viewed as limit cases of the AME. The LS
model is formally nested since it corresponds to signals being independent of the valuations;
this would e¤ectively purify the mixed-strategy equilibrium. The S model corresponds
to the other extreme, namely the signals and valuations being perfectly correlated. But
because we assume existence of a joint density of valuations and signals f (v; s) ; the S model
is not nested.5

A symmetric equilibrium of the AME model can be characterized in a manner similar
to the LS model. This is done in the proposition below, whose proof is in the Appendix
(the proof also contains a formula for the bidding strategy). Once again, we assume that
the reserve price is binding, but the result carries over with minor changes to the case when
it is not binding.

Proposition 3 A symmetric equilibrium is characterized by a signal cuto¤ �s such that
only those potential bidders with Si � �s choose to enter. The equilibrium probability of
submitting a bid is

P (�s) = Pr fSi � �s; Vi � rg ; (9)

and the distribution of active bidders valuations is

F � (vj�s) = Pr fVi � vjSi � �s; Vi � rg :

For any bidder i with signal Si = s, the equilibrium pro�t from is equal to

�(s; �s;N) =

Z �v

r
(1� F (vjs)) (1� P (�s) + P (�s)F � (vj�s))N�1 dv � k: (10)

5An interesting question that we do not address is whether the equilibrium of the S model can be
supported as a limit point of our class of models.
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If �(0; 0; N) > 0, then �s = 0, and all potential bidders always enter. If �(0; 0; N) < 0,
then �s = 1 and there is no entry. Otherwise, the bidder with signal �s is indi¤erent between
entering or not so that �s is determined from

�(�s; �s;N) = 0: (11)

De�ne the cuto¤ �s a function of N as �s (N). If �s (N) 2 (0; 1) ; then �s (N 0) 2 (0; 1) also for
N 0 > N , and �s (N 0) > �s (N).

If the reserve price is non-binding, i.e. r < v, some modi�cations are necessary. In the
Appendix, we show that the entry equation (11) becomes

k = (1� P (�s))N�1 (v � r) +
Z �v

v
(1� F (vj�s)) (1� P (�s) + P (�s)F � (vj�s))N�1 dv; (12)

where the presence of the �rst term re�ects the fact that the bidder with type v makes
pro�t by bidding the reserve price r and winning the auction only when no one else enters.
The bidding strategy also needs to be modi�ed accordingly.

Since the cuto¤ �s (N) is non-decreasing in N , the probability of bidding

p (N) = P (�s (N))

is also a non-decreasing function of N . This is the restriction (4) that we have seen before.
It is shared with other models of entry considered in this paper. But the restriction on
active bidders�CDF F � (vjN) is di¤erent from either LS or S. To derive this condition,
note that F � (vjN) is equal to Pr fVi � vjSi � �s (N) ; Vi � rg. The a¢ liation assumption
1 implies that Pr fVi � vjSi � �s; Vi � rg is non-decreasing in �s (Theorem 23 in Milgrom
and Weber (1982)). Since the cuto¤ �s(N) is non-decreasing in N , the F � (vjN)�s are tilted
towards bidders with higher valuations:

F � (vjN) � F �
�
vjN 0� 8N < N 0 (13)

Note that this restriction is implied by restrictions (5) of the LS model as well as restriction
(8) of the S model, but is clearly weaker.

3 Nonparametric identi�cation

In order to be able to test the restrictions derived in the previous section without mak-
ing parametric assumptions, it is necessary to show that the required quantities are non-
parametrically identi�ed. This section is devoted to identi�cation of the models of entry
considered in this paper.

It is assumed that the econometrician can observe all the bids and therefore also the
number of active bidders n. An important additional information that is assumed to be also
available is the number of potential bidders N . In other words, we assume that the data
generating process identi�es p (N) and G� (�jN) where p (N) = E [njN ] =N is the probability
of submitting a bid and G� (bjN) is the distribution of entrants�bids conditional on N .
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We now show that in all models considered in this paper, the distribution F � (vjN)
can be recovered from the �rst-order conditions. Our identi�cation strategy follows GPV:
Consider �rst-order equilibrium conditions of the bidding game. A bidder with value v
who submits a bid b has a probability of winning over a given rival equal to 1 � p (N) +
p (N)G� (bjN). Since there are N � 1 identical rivals, it follows by independence that the
probability of winning is (1� p (N) + p (N)G� (bjN))N�1, and the expected pro�t is

~� (b; v) = (b� v) (1� p (N) + p (N)G� (bjN))N�1 :

Writing out the �rst-order condition, i.e. taking the derivative of e�(b; v) with respect to b
and setting it equal to 0, gives the inverse bidding strategy

� (bjN) = b+ 1� p (N) + p (N)G
� (bjN)

(N � 1) p (N) g� (bjN) : (14)

The inverse bidding strategy � (�jN) is identi�ed from the observables, and its inverse,
the bidding strategy B (vjN), is also identi�ed. Then the distribution of active bidders�
valuations F � (vjN) is identi�ed according to F � (vjN) = G� (B (v) jN).

It is interesting to note that, if there is no variation in N , the LS and AME models are
observationally equivalent. This is because, even if the true data generating process corre-
sponds to the AME model, the distribution F � (vjN) can be interpreted as the distribution
of valuations Vi conditional on Vi � r that would arise if the true model was LS. If the
reserve price is non-binding, r � v, then the S model is also observationally equivalent. If,
on the other hand, the reserve price is binding, r 2 (v; �v), then the S model is not observa-
tionally equivalent since the lower bound of the support of F � (�jN), identi�ed as � (bjN),
must be greater than r in the S model, but is equal to r in both LS and AME models.

Continuing to assume that N is �xed, a further interesting question if the model prim-
itives are identi�ed. In the AME model, the primitives are the entry cost k and the
distribution F (vjs). Neither is nonparametrically identi�ed. The reason is that the data
generating process only reveals the distribution of bidders� valuations, i.e. F � (vjN) =
Pr fVi � vjSi � �s (N) ; Vi � rg, but not F (vjs). The knowledge of F (vjs) would also be
needed to identify the entry cost according to (11).

The LS model is fully identi�ed if r < v and p (N) 2 (0; 1). The distribution F � (v) is
equal to the distribution of valuations of potential bidders, and since Pr fSi � sg = p (N) 2
(0:1), the entry cost is identi�ed from the indi¤erence condition

k = (1� p (N))N�1 (v � r) +
Z �v

v
(1� F � (v)) (1� p (N) + p (N)F � (v))N�1 dv: (15)

If r < v and p (N) = 1, then we can only conclude that the reserve price is bounded from
above by the expected pro�t that appears in the right-hand side of (15). Similarly, if the
reserve price is binding, r 2 (v; �v), the entry cost is not identi�ed. This is because now

k = (1� F (r))
Z �v

r
(1� F � (v)) (1� p (N) + p (N)F � (v))N�1 dv; (16)

p (N) = (1� F (r)) Pr fSi � �s (N)g ;
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and the model is observationally equivalent to the one with k = 0 so that Pr fSi � �s (N)g =
1 and the probability of bidding is equal to the probability of drawing Vi � r.

In the S model, the distribution of potential bidders�valuations is truncated (at v� (N) >
v) even if r < v. Since the probability of bidding is now equal to 1�F (v� (N)), and v� (N)
is identi�ed as � (bjN), it follows that we can identify F (v), but only for v � v� (N). On
the other hand, the entry cost is identi�ed,

k = (v� (N)� r) (1� p (N))N�1 . (17)

Note that for the identi�cation of the S model, whether or not the reserve price is binding
plays no role.

Now assume that the number of potential bidders N 2
�
N;N + 1; :::; �N

	
where N < �N .

In other words, there is variation in N . It is easy to show that the variation in N does
not lead to the identi�cation of the primitives of the AME model. In the LS model, this
variation can sometimes (but not always) lead to identi�cation of the entry cost even if
the reserve price is binding. Consider the following general pattern for the probabilities of
bidding p (N):

p (N) = ::: = p (N�) < ::: < p
�
�N
�

where N� 2 N . We allow for both N� = N and N� = �N . In the Appendix, we prove the
following proposition.

Proposition 4 In the LS model with a binding reserve price, r 2 (v; �v), k is identi�ed if
and only if N� 2

�
N + 1; : : : ; �N � 1

	
.

The intuition for this result is as follows. When N belongs to the �at segment, N � N�,
we are certain that bidders enter with probability 1 and nonparticipation is due to the
truncating e¤ect of the reserve price only, and therefore are able to identify F (r) = 1 �
p (N). When N belongs to the decreasing segment, N > N�, we are certain that bidders
are indi¤erent between entering or not, and are able to identify the entry cost from the
indi¤erence condition given the knowledge of F (r), according to (16).

Also note that in the S model, the only implication of the variation in N is that we
can identify the distribution F (�) for all v � v� (N). All these observations made about
identi�cation are summarized in Table 1.

Our �nal remark in this section concerns the bias in the estimation of the entry cost.
Suppose that the reserve price is non-binding and p (N) < 1, so that the entry cost is
identi�ed in the LS model. However, the data are generated according to AME, with strict
a¢ liation in the sense that

F (vjs) < F (vjs) , 8v 2 [v; �v] , s0 > s. (18)

For simplicity, assume that the number of potential bidders N is �xed (this is not crucial),
and that the researcher estimates the entry cost wrongly assuming that the data are gen-
erated according to the LS model, i.e. as if the cost was determined by equation (15). The
di¤erence from the correctly speci�ed model is that the researcher uses the wrong expres-
sion 1� F � (v) instead of the correct one 1� F (vj�s (N)), because the true cost is given by
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Table 1: Summary of identi�cation results

Non-binding reserve price, r < v Binding reserve price, r 2 (v; �v)

Fixed N

� LS S, and AME are
observationally equivalent
� LS: fully identi�ed
� S: k is identi�ed,
F (v) is identi�ed for v � v� (N)

� LS and AME are
observationally equivalent,
but S is not
� LS: k is not identi�ed,
F (v) is identi�ed for v � r
� S: k is identi�ed, F (v)
is identi�ed for v � v� (N)

Exogenous
variation in N

� LS, S and AME are not
observationally equivalent
� LS: k is not identi�ed,
F (v) is identi�ed for v � r
� S: k is identi�ed,
F (v) is identi�ed
for v � v� (N)

� LS, S and AME are not
observationally equivalent
� LS: k is identi�ed i¤
the condition in
Proposition 4 holds.
F (v) is identi�ed for v � r
� S: k is identi�ed, F (v)
is identi�ed for v � v� (N)

(12). But with the strict a¢ liation assumption (18), F � (vjN) > F (vj�s (N)), so that in the
case of misspeci�cation, true k is smaller than the one produced by (15).

The intuition for the existence of this bias is as follows. The entry cost in the LS
model is equal to the equilibrium expected pro�t of the average potential bidder, while it
is equal to the expected pro�t of the marginal potential bidder (with signal �s (N)) in our
model. Because the signals are positively related to the valuations, the marginal bidder
may plausibly have an entry cost on average smaller than the average bidder, so the entry
cost would be overestimated.

The same bias is present also when the data are generated according to the S model, so
that the true entry cost is given by equation (17). From (15), the estimated entry cost in
the misspeci�ed LS model is greater than the true k. The following example helps illustrate
that the bias may be very severe.

Example. Suppose that the valuations are uniformly distributed on [0; 1] and the re-
serve price is r = 0. The entry cost is k 2 (0; 1) and the true model is S. The cuto¤
v� (N) is determined by (17), and v� (N) = k1=N . Thus the distribution of active bid-
ders�valuations F � (vjN) is a truncated uniform [0; 1], with a truncation point given by
v� (N). The probability of submitting a bid is p (N) = 1 � v� (N). The researcher mis-
speci�es the model as LS and estimates the entry cost according to (15), substituting
F� (vjN) = (v � v� (N)) = (1� v� (N)) and v = v� (N). After evaluating the integral in
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(15), one obtains on the right hand side

k +
1

1� v� (N)

 
1� v� (N)N

N
� 1� v

� (N)N+1

N + 1

!
;

instead of k, where the second summand is the bias term. Observe that the bias can be
substantial when N is small, even if true cost is negligible. Since limk!0 v� (N) = 0, the
bias becomes 1= (N (N + 1)) when k ! 0

4 Econometric implementation

In what follows, we allow for auctions heterogeneity by introducing the vector of auctions
speci�c covariates x. We assume now that the distribution of valuations can change from
auction to auction depending on the value of x and is denoted by F (vjx). Similarly,
the distribution of valuations conditional on entry is now denoted as F � (vjN;x), and the
probability of submitting a bid as p (N;x). The model selection is also conditional on x,
i.e. di¤erent models may be true for di¤erent values of x.

4.1 Hypotheses

The previous section shows that the distributions of valuations conditional on bidding are
identi�ed for the three alternative models, and therefore in principle, model selection tests
can be formulated in terms of F � (vjN;x) or equivalently, in terms of quantiles of this
distribution, as suggested in Haile, Hong, and Shum (2003). De�ne

Q� (� jN;x) � F ��1 (� jN;x)

to be the � -th quantile of the distribution of entrants�valuations. Assume that N varies
between the lower bound N and the upper bound �N . In terms of the quantiles, the testable
restriction of the LS model is

HLS : Q
� (� jN;x) = ::: = Q�

�
� j �N;x

�
; 8� 2 [0; 1];

while the AME model implies the restriction

HAME : Q
� (� jN;x) � ::: � Q�

�
� j �N; x

�
; 8� 2 [0; 1]: (19)

The testable restriction (8) of the Samuelson model can also be expressed using the
quantiles function Q� (�jN;x) as follows. First, by the de�nition and since F has a compact
support, for any � 2 [0; 1], F (Q (� jx) jx) = � . Next, for those quantiles of F (�) that
correspond to valuations above the cuto¤s v�(N), i.e. for � > 1 � p (N;x), equation (7)
implies

F � (Q (� jx) jN;x) = � � (1� p (N;x))
p (N;x)

;
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which in turn implies that

Q (� jx) = Q�
�
� � (1� p (N;x))

p (N;x)
jN;x

�
: (20)

De�ne a function

� (� ;N; x) =
� � (1� p (N;x))

p (N;x)
:

The quantiles in the left-hand side of (20) do not depend on N because they correspond to
the distribution of potential bidders�valuations, and we then have that Q� (� (� ;N; x) jN;x)
must be constant across N�s for all � > 1� p

�
�N; x

�
:

HS : Q
� (� (� ;N; x) jN;x) = : : : = Q�

�
�
�
� ; �N;x

�
j �N;x

�
; 8� > 1� p

�
�N; x

�
:

The restriction in HS is limited to a particular range of ��s. A similar restriction,
however with � 2 [0; 1], can be obtained from (8) directly. De�ne a function

� (� ;N; x) = 1�
p
�
�N;x

�
p (N;x)

(1� �) :

Note that, since p
�
�N; x

�
� p (N;x), 0 � � (� ;N; x) � 1 for all � 2 [0; 1], and therefore can

be interpreted as a legitimate transformation of the quantile order � .6 The condition in (8)
implies that for all N ,

F � (vjN;x) = �
�
F �
�
vj �N; x

�
; N; x

�
,

and, by the same argument as before, we obtain the following restriction in terms of the
transformed quantiles:

H 0
S : Q

� (� (� ;N; x) jN;x) = : : : = Q�
�
�
�
� ; �N; x

�
j �N;x

�
; 8� 2 [0; 1]:

From the practical point of view, testing HS is similar to testing H 0
S ; however, the last one

does not require truncation of ��s. Therefore, we focus only on H 0
S . Note also that because

� (� ;N; x) is decreasing in N , the restrictions under HS and H 0
S are consistent with the

restriction of AME (19) on the quantiles Q� (� jN;x) without the transformation �, but are
stronger.

In this paper, we consider independent testing of HLS , HAME , and H 0
S against their

corresponding unrestricted alternatives. In addition, we also consider testing whether the
entry probabilities p (N;x) are non-increasing in N . The null hypothesis, for a given value
of x, is

Hp : 1 > p (N;x) � ::: � p
�
�N;x

�
> 0;

and it is also tested against its corresponding unrestricted alternative.
The last test is of independent interest. The fact that the equilibrium probabilities of

submitting a bid decline in the number of potential bidders is probably a common feature
of many other models of entry. Whenever a model with costly entry is brought to explain

6While any other �xed value of N can be used in the place of �N in the de�nition of �, the choice N = �N
ensures that � takes on values in the zero-one interval.
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why some potential bidders do not bid, one must confront an alternative explanation.
Namely, following Paarsch (1997), even if there is no entry cost, non-participation may still
be explained by the fact that some bidders draw their valuations below the reserve price.
But in that case, the probability of bidding is equal to Pr fVi � rg and therefore does not
depend on the number of potential bidders. Viewed this way, the above hypothesis Hp is a
testable restriction of costly versus costless entry.

4.2 The data generating process

We assume that a sample of L auctions is available, and index auctions by l = 1; ::; L.
Each auction is characterized by the vector of covariates xl 2 X . We assume that the
covariates xl are drawn independently for each auction from a distribution with density
' (�). Conditional on xl, the number of potential bidders, Nl, is drawn independently from
the distribution � (N jxl); it is assumed that � (�jxl) has support N =

�
N; :::; �N

	
.7 The

entry cost k (x) is assumed to be a deterministic function of x. There is a binding reserve
price rl and it is observable.

Conditional on xl = x and Nl = N , the valuations Vil of potential bidders i = 1; :::; Nl
are drawn independently from a distribution with density f (�jx) that does not depend onN .
The support of Vil is [v (x) ; �v (x)], where i = 1; : : : ; Nl. These valuations are unobservable.
The central to our approach is the assumption that the number of potential bidders N is
exogenous conditional on xl = x. This assumption allows us to use the variation in N for
the purpose of testing. In Section 6, we explain why this assumption is plausible in the
context of our empirical application.

Assumption 2 Vil and Nl are independent conditional on xl.

The bid bil corresponding to the valuation Vil is generated according to the bidding
strategy

bil = B (ViljNl; xl) .

The decisions to submit a bid, yil 2 f0; 1g, are generated according to the cuto¤ strategy

yil = 1 if Sil � �s (Nl; xl) and Vil � rl;

where the signals are uniformly distributed, Sil � U [0; 1]. The bidding strategy B and
the cuto¤ function �s depend on the model�s primitives f and k through the equilibrium
conditions of each model; neither B nor �s is available in closed form. The number of actual
bidders is given by nl =

PNl
i=1 yil. Note that nl is positively correlated with valuations if

the model is not LS.
Our formal assumptions guarantee that the distribution of bids has a density g� (bjN;x) :

Furthermore, the following lemma similar to Proposition 1 of GPV holds.

Lemma 1 Under Assumption 3(f), for all N 2 N and x 2 X , the distribution of bids has
the compact support

�
b (N;x) ; b (N;x)

�
, with b (N;x) = r if there is a binding reserve price,

7For simplicity, we assume that the support does not depend on x, but the results continue to hold even
without this assumption:
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and g� (�jN; �) has at least R+1 continuos partial derivatives on its interior. Furthermore,
g� (bjN;x) is bounded away from zero.

A full list of technical econometric assumption on the data generating process needed
for our results is given in the Appendix in Assumption 3.

4.3 Estimation of quantiles

In this section, we present our nonparametric estimation method for Q� (� jN;x). Our
estimation method is based on the fact that, since the bidding strategies are increasing, the
quantiles of valuations Q� (� jN;x) and bids

q� (� jN;x) = G��1 (� jN;x)
� inf fb : G� (bjN;x) � �g

are linked through the (inverse) bidding strategy,

Q� (� jN;x) = � (q� (� jN;x) jN;x) :

Since both � (�jN;x) and q� (� jN;x) can be estimated nonparametrically, we consider a
natural plug-in estimator

Q̂� (� jN;x) = �̂ (q̂� (� jN;x) jN;x) : (21)

The nonparametric estimators for �̂ and q̂� are constructed as follows. Recalling that
the inverse bidding strategy � (�jN;x) is given by

� (bjN;x) = b+ 1� p (N;x) + p (N;x)G
� (bjN;x)

(N � 1)p (N;x) g�(bjN;x) ;

our estimator �̂ (�jN;x) is obtained by replacing p (N;x), G� (bjN;x), and g�(bjN;x) with
nonparametric estimators, p̂ (N;x), Ĝ� (bjN;x), and ĝ�(bjN;x). The conditional quantile
q� (� jN;x) is estimated by inverting the nonparametric estimator for the CDF Ĝ (bjN;x):

q̂� (� jN;x) = inf
n
b : Ĝ (bjN;x) � �

o
:

The transformation � (� ;N; x) can be similarly estimated by using the estimators p̂ (N;x),

�̂ (� ;N; x) = 1�
p̂
�
�N;x

�
p̂ (N;x)

(1� �) ;

and the transformed quantiles estimated as Q̂�
�
�̂ (� ;N; x) jN;x

�
.

Our nonparametric estimators for the required input functions g� (bjN;x), G� (bjN;x),
and p (N;x) are based on the kernel method. Speci�cally, we use the following estimators:

�̂ (N jx) =

PL
l=1 1 fNl = Ng

Qd
k=1K

�
xkl�xk
h

�PL
l=1

Qd
k=1K

�
xkl�xk
h

� ; and
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p̂ (N;x) =

PL
l=1 nl1 fNl = Ng

Qd
k=1K

�
xkl�xk
h

�PL
l=1 1 fNl = Ng

Qd
k=1K

�
xkl�xk
h

� ,
where h is the bandwidth parameter, K is a kernel function satisfying Assumption 4 in
the Appendix, and nl =

PNl
i=1 yil is the number of actual bidders in auction l. Since

the probability of observing N conditional on x and the probability of submitting a bid
conditional on N and x can be written as � (N jx) = E [1 fNl = Ng jx] and p (N;x) =
E [njN;x] =N , their estimators are standard nonparametric regression estimators.

In Proposition 5 in the Appendix we show that the estimator of bid submission proba-
bility p̂ (N;x) is asymptotically normal and derive its asymptotic variance

Vp (N;x) =

�Z
K (u)2 du

�d p (N;x) (1� p (N;x))
N� (N jx)' (x) :

Moreover, we show that the estimators p̂ (N;x) are asymptotically independent for any
distinct N;N 0 2

�
N; ::: �N

	
and x; x0 2 X y.

The conditional bid densities and distributions are estimated by a kernel method, with
an adjustment needed to account for a random number of observations within each auction.
We estimate �rst the expected number of bid observations that correspond to N -bidder
auctions in the sample with covariates x as

ê(N;x) = p̂ (N;x) �̂ (N jx)NL:

The proposed estimators of g� and G� are

ĝ� (bjN;x) =

PL
l=1

PNl
i=1 yil1 fNl = NgK

�
bil�b
h

�Qd
k=1K

�
xkl�xk
h

�
hd+1ê(N;x)'̂ (x)

;

Ĝ� (bjN;x) =

PL
l=1

PNl
i=1 yil1 fNl = Ng 1 (bil � b)

Qd
k=1K

�
xkl�xk
h

�
hdê(N;x)'̂ (x)

:

where '̂ (x) is the standard multivariate kernel density estimator. The estimators ĝ� and Ĝ�

are essentially standard nonparametric conditional density and CDF estimators with the
number of bids observations

PL
l=1

PNl
i=1 yil1 fNl = Ng replaced by its estimated expected

value ê(N;x).

In the Appendix, we prove that the estimators Q̂� (� jN;x) and Q̂�
�
�̂ (� ;N; x) jN;x

�
are asymptotically normal. Speci�cally, we prove that, under certain technical but standard
econometric assumptions,

p
Lhd+1

�
Q̂� (� jN;x)�Q� (� jN;x)

�
is asymptotically normal with mean zero and variance

VQ (N; �; x) =

�Z
K (u)2 du

�d+1 (1� p (N;x) (1� �))2

(N � 1)2Np3 (N;x) g�3(q� (� jN;x) jN;x)� (N jx)' (x) :
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A consistent estimator V̂Q (N; �; x) can be obtained by replacing p (N;x), q� (� jN;x), and
other unknown functions by their estimators. We also show that

p
Lhd+1

�
Q̂�
�
�̂ (� ;N; x) jN;x

�
�Q� (� (� ;N; x) jN;x)

�
converges in distribution to a normal random variable with mean zero and variance
VQ (N; � (� ;N; x) ; x)). Moreover, for any distinct N;N 0 2

�
N; ::: �N

	
, � ; � 0 2 �, and

x; x0 2 X y, the estimators Q̂� (� jN;x) are asymptotically independent, as are the estimators
Q̂�
�
�̂ (� ;N; x) jN;x

�
. These results are contained in Proposition 6 in the Appendix.

4.4 Comparison with the estimation method of Haile, Hong, and Shum
(2003)

It is interesting to compare our estimator Q̂� (� jN;x) with that of HHS, who present their
method in a model di¤erent from ours in that they allow for common value e¤ects. Their
method is semiparametric and in the present context, reduces to the following.

One begins with removing the e¤ect of covariates on valuations by performing a prelim-
inary regression. The main assumption in HHS is that the valuations depend on covariates
additively, with the mean valuation speci�ed by some function � (xl; �) that depends on x
and a �nite-dimensional parameter �:

vil = � (xl; �) + "il: (22)

The error term "il is mean-zero and distributed independently of xl with CDF F" (�). It is
also assumed that the reserve price has the same additive form, rl = r0 + � (xl; �). One
can always write the bidding strategy as the valuation minus the markup, B (viljNl; xl) =
vil � m (vil; xl; Nl). HSS show that in their setting, the markup m (vil; xl; Nl) does not
depend on xl: m (vil; xl; Nl) = m0 ("il; Nl). It is then easy to show that the bids regression
takes the additive form

bil = � (Nl) + � (xl; �) + "
0
il; (23)

where � (Nl) = E [m0 ("il; Nl) jNl] and "
0
il = "il � m0 ("il; Nl) + � (Nl). The parameter �

can then be estimated by any nonlinear regression method, and the bids "homogenized"

according to b̂il = bil � �
�
xl; �̂

�
.

Next, the inverse bidding strategy � (bjN) is estimated nonparametrically, in essentially
the same way as in our method, and a pseudo sample of bids (cf. GPV) is formed according
to v̂il = �̂ (biljNl), trimmed appropriately to avoid biasing boundary e¤ects. Lastly, the
quantiles Q� (� jN) are estimated as sample quantiles of the trimmed sample. If desired,
the conditional quantiles can be estimated as Q̂� (� jN;x) = �

�
x; �̂
�
+ Q̂� (� jN).

This "homogenization" is not feasible in our setting, since even if one assumes the
additive form (22), the markup m (vil; xl; Nl) in general depends on xl. This is because,
unlike in the models considered in HSS, in our case the equation for the bidding strategy
(30) also contains the entry probability p (N;x), an unknown function of x. Therefore
the regression (23) produces inconsistent estimates of �. Our method e¤ectively changes
the order of steps of the HSS estimator. Unlike HHS, our treatment of covariates is fully
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nonparametric. We �rst nonparametrically estimate the quantiles of bids q (� jN;x) and
then insert them into the estimator �̂ (�jN;x) to obtain our conditional quantile estimator
Q̂� (� jN;x) = �̂ (q̂ (� jN;x) jN;x).

4.5 Tests

In view of the results of Section 4.3, quantile restrictions derived from the LS, S, and
AME models can be tested in a standard manner as equality or inequality constraints. We
implement the tests using a �nite set of ��s from (0; 1) interval, � = f�1; �2; : : : ; �kg. The
tests of HLS and H 0

S are based on the corresponding statistics T
LS (x) and TS (x) that

measure deviations of the estimated quantiles Q̂� (� jN;x) and Q̂�
�
�̂ (� ;N; x) jN;x

�
from

their means:8

TLS (x) = Lhd+1min
�2R

X
N2N ;�2�

�
Q̂� (� jN;x)� �

�2
V̂Q (N; �; x)

;

TS (x) = Lhd+1min
�2R

X
N2N ;�2�

�
Q̂�
�
�̂ (� ;N; x) jN;x

�
� �

�2
V̂Q

�
N; �̂ (� ;N; x) ; x

� :

By the results of Proposition 6, Q̂� (� jN;x) and Q̂�
�
�̂ (� ;N; x) jN;x

�
are approximately

normal in the large samples and independent across N ; therefore, the LS model is rejected
at level � for the auctions with covariates� values x whenever TLS (x) > �2(#N�1)k;1��,

where �2(#N�1)k;1�� denotes the 1�� quantile of the chi-square distribution with degrees of
freedom (#N � 1) k, where#N denotes the number of elements inN . Similarly, one rejects
H 0
S if T

S (x) > �2(#N�1)k;1��. Note that due to asymptotic normality and independence

of the quantile estimators, TLS (x) and TS (x) can be also viewed as likelihood ratio (LR)
statistics.

We now turn to testing of the AME model. In this case, the distance or LR statistic is

TAME (x) = min
yN;��:::�y �N;� ;�2�

Lhd+1
X

N2N ;�2�

�
Q̂� (� jN;x)� yN;�

�2
V̂Q (N; �; x)

, (24)

and one rejects the null of AME in favor of the general alternative when TAME (x) takes
on large values.

The AME model does not determine uniquely the null distribution of the TAME (x)
statistic; however, we show in Proposition 7 in the Appendix that the probability of type
I error is maximized when all inequalities are replaced with the equalities, i.e. the same
restrictions as in the LS model. This proposition also shows that, under the restriction of
the LS model, the statistic TAME (x) is asymptotically equivalent to the random variable

8Recall that Q� (� jN;x) is the same for all N under HLS , and Q� (� (� ;N; x) jN;x) is the same for all N
under H 0

S .
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de�ned by
T AME (x) =

X
�2�

min
f�: 
1=2(�;x)��0g

kZ� � �k2 : (25)

where Z� � N (0; I#N�1) and independent across ��s, 
 (� ; x) = RVQ (� ; x)R0, VQ (� ; x) =
diag

�
VQ (N; �; x) ; : : : ; VQ

�
�N; �; x

��
, and R is the (#N � 1)� (#N ) di¤erencing matrix

R =

0BB@
1 �1 0 � � � 0
0 1 �1 � � � 0
� � � � � � � � � � � � � � �
0 0 � � � 1 �1

1CCA :
Consequently, a test that rejectsHAME when TAME (x) > c (x)AME;1��, where c (x)AME;1��
is the 1� � quantile of the distribution of T AME (x), has asymptotic size �.

The distribution of T AME (x) depends on asymptotic variances of the quantile estima-
tors; however, the critical values can be simulated as follows. First, from the estimated
asymptotic variances V̂Q (N; �; x) ; : : : ; V̂Q

�
�N; �; x

�
construct the matrices V̂Q (� ; x) and


̂ (� ; x) for �1; : : : ; �k. Second, for m = 1; : : : ;M , generate independent N (0; I#N�1) vec-
tors Z�1;m : : : ; Z�k;m, and compute T̂ AME

m (x) as de�ned in (25), but with Z� replaced
by Z�;m, and 
 replaced with 
̂. The simulated critical value for a test with asymp-
totic size �, denoted by ĉ (x)AME;1��, is then computed as the 1 � � sample quantile
of
n
T̂ AME
m (x) : m = 1; : : : ;M

o
. One should reject the null of AME when TAME (x) >

ĉ (x)AME;1��.
Testing whether the entry probabilities are non-increasing in N , the Hp hypothesis, can

be performed similarly to testing HAME . De�ne

T p (x) = min
yN�:::�y �N

Lhd
X
N2N

(p̂ (N;x)� yN )2

V̂p (N;x)
:

One should reject Hp whenever T p (x) > c (x)p;1��, where c (x)p;1�� is the 1 � � quantile
of T p (x) = min



1=2
p (x)��0 kZ � �k

2, 
p (x) = RVp (x)R0, Vp (x) is a diagonal matrix with

the main diagonal elements Vp (N;x) ; : : : ; Vp
�
�N;x

�
, and Z � N (0; I#N�1). Such a test

has asymptotic size � and is consistent. As in the case of TAME (x), the critical values for
the T p (x) test can be simulated following the steps described above.

5 Monte-Carlo experiment

In this section we present a Monte-Carlo study of the small sample properties of the tests.
In particular, we are interested how the choice of quantiles � a¤ects size and power of the
tests. In our simulations, we focus on testing the AME model without covariates x.

We simulate the random signals S and valuations V using the Gaussian copula. Let
(Z1; Z2) be bivariate normal with zero means, variances equal to one, and the correlation
coe¢ cient �. Let � denote the standard normal CDF. A pair (S; V ) is generated as S =
�(Z1), and V = �(Z2). Nonzero values of � correspond to the case of informative signals
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and selective entry; while � = 0 corresponds to the case of the LS model.
The details of the computation of the distributions F (vjS) and F � (vjN) that are needed

in order to solve for the equilibrium of the auction are as follows. First, recall that Z2jZ1 �
N
�
�z1; 1� �2

�
, and, consequently, the conditional distribution of V given S is given by

F (vjS) = P (V � vjS)
= P

�
Z2 � ��1 (v) j��1 (S)

�
= �

 
��1 (v)� ���1 (S)p

1� �2

!
:

Next, note that the marginal distribution of S is uniform on the [0; 1] interval, and

F � (vjN) = F (vjS � �s (N))

=
1

1� �s

Z 1

�s(N)
�

 
��1 (v)� ���1 (s)p

1� �2

!
ds;

where the cuto¤ signal �s (N) can be found, given the value of N , as a solution to equation
(11). Lastly, for S � �s (N), the bids are computed according to the bidding strategy (30).

In our simulations, we set L = 250, N = f2; 3; 4; 5g, � (N) = 1=4 for all N 2 N ,
and k = 0:17. The number of Monte Carlo replications is 1,000; in each replication,
the critical values for the TAME test are obtained using 999 replications. We use the
triweight kernel function K (u) = (35=32)

�
1� u2

�3
1 fjuj � 1g for nonparametric kernel

estimation. To re�ect the fact that the number of active bidders varies from auction to
auction depending on the number of potential bidders in the auction N and p (N), we
decided to use a bandwidth that depends on N . Speci�cally, we used h = (LNp̂ (N))�2=5.

Table 2 reports the results of size simulations for � = 0; 0:5, and the following sets of
quantiles: f0:5g, f0:3; 0:5; 0:7g, and f0:3; 0:4; 0:5; 0:6; 0:7g. While the asymptotic approxi-
mation works reasonable well for a small number quantiles, the �nite sample size properties
of the test deteriorate when the number of quantiles used to construct the test increases.
For example, the TAME test over rejects the null when � = 0 and � 2 f0:3; 0:4; 0:5; 0:6; 0:7g:
for the nominal size of 10%, 5%, and 1% the simulated rejection rates are approximately
16%, 10% and 4% respectively. Note also that the rejection rates for � = 0:5 are smaller
than for � = 0:5 and below the nominal rejection rates. This re�ects the fact that the
probability of type I error is maximized at � = 0.

Table 3 reports the size corrected power results (the critical values are computed from
the simulated distribution of the test statistic under the null). To address the power issue,
it is necessary to come up with an alternative. Ideally, this would be achieved by consid-
ering a structural model. Absent a structural model, however, we are allowed to consider
any con�guration of bidding quantiles, in particular we may reverse their order, making
decreasing as opposed to increasing in N . To do this in the simplest fashion possible, we
multiply each quantile by minus one and then add a constant to all quantiles to assure that
they are positive.

Table 3 shows that the power increases with the distance from the null. The power also
increases when we use quantiles 0.3 and 0.7 in addition to the median. However, we also
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observe that in some cases the size corrected power decreases with the number of quantiles,
when the number of quantiles used to construct the test is large. For example, in the case
of f0:3; 0:5; 0:7g quantiles, � = 0:9, and the nominal size of 5%, the simulated rejection rate
is about 20%; however, when we use in addition the quantiles 0.4 and 0.6, the rejection rate
is only about 18%. In practice, given samples of moderate size, a rule of thumb would be
to use 3 �xed quantiles in order to maintain good size and reasonable power.

6 Empirical application

Our dataset consists of 547 auctions for surface paving and grading contracts let by Ok-
lahoma Department of Transportation (ODOT) during the period of January, 2002 to
December, 2005.910 The available data items include all bids, the engineer�s estimate, the
time length of the contract (in days), the number of items in the proposal and the length of
the road. The ODOT implements a policy under which all bids over 7% of the engineer�s
estimate are typically rejected, so there is a binding reserve price. In reality, we do observe
bids above the reserve price (although extremely few winning bids were above the reserve
price). We treat these bids as non-serious. They are only used in the estimation of bidding
probabilities, but are otherwise eliminated from the sample of bids.

Importantly, we observe the list of eligible bidders (planholders) for each auction. In
the vocabulary of this paper, these eligible bidders are the potential bidders. The list
of planholders is published on the ODOT website prior to bidding. A �rm becomes a
planholder through the following process. All projects to be auctioned are advertised by
the ODOT 4 to 10 weeks prior to the letting date. These advertisements include the
engineer�s estimate, a brief summary of the project, location of the work and the type of
the work involved. But the advertisements lack detailed schedules of work items which are
only revealed in construction plans.

Interested �rms can then submit a request for plans and bidding proposals, the doc-
uments that contain the speci�cs of the project (in particular, the items schedule). An
important feature of the quali�cation process is that only eligible �rms are allowed access
to these documents. A �rm is deemed eligible if it satis�es certain quali�cation require-
ments. The goal of the quali�cation process is to ensure that the winning �rm will have
su¢ cient expertise and capacity to undertake the project. While the expertise part is typ-
ically determined at the pre-quali�cation stage (in most cases, once per year), the capacity
part is project-speci�c. An important requirement is that the prospective bidder is not
quali�ed for the aggregate amount of work that exceeds 212 times its current working cap-
ital.11 Given that the bidders know the sizes of all projects to be let but not the project
speci�cs, it is plausible that the decision of a �rm to request the plan for a particular project
is primarily determined by the project size as well as the sizes of other projects for which
it is pre-quali�ed, in relation to the available capacity of the �rm. The capacity may be

9The data were obtained from the ODOT website, http://www.okladot.state.ok.us/.
10Our choice of surface paving and grading contracts is motivated by the fact that Hong and Shum (2002),

in their study of highway procurement auctions in New Jersey, �nd little support for common values for
this type of contracts. See also De Silva, Dunne, Kankanamge, and Kosmopoulou (2007). This is important
because in this paper, we assume independent private values (costs).
11This requirement is explicitly stated in the ODOT rule OAC 730:25.
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determined by a number of factors, such as for example the amount of resources committed
to other projects, including but not limited to those previously contracted with ODOT.

Before turning to our nonparametric tests, we investigate the importance of various
observable covariates on bid levels and the decisions to submit a bid with the help of usual
OLS and logit regressions. The variables used in the regressions are described in Table 4.12

The results of the entry logit regression and OLS bidding regression are presented in Table
5. In the OLS regression, the dependent variable is log(bid), where bid is the amount of
bid in millions of dollars. The size of the project has a strongly positive e¤ect on the bids.
Clearly, it is the most important variable in the OLS regression. Using it alone produced
R2 of about 0:79, so the impact of the other variables is much smaller. In the order of
importance, the next variable is the number of potential bidders N ; if it is included in the
regression, R2 increases to about 0:94. We also mention that the project size has a negative
(but not statistically signi�cant) e¤ect on the probability of submitting a bid.

The e¤ect of the number of potential bidders is statistically signi�cant in all regressions.
Having more potential bidders reduces the bid submission rate: increasing N by 1 reduces
the odds of submitting a bid by about 4%. Having more bidders also results in lower bids.
This is of course consistent with the models considered in this paper. The logit regression
also shows that project size has a negative e¤ect on the probability of bidding. This e¤ect,
however, is not statistically signi�cant.

The complexity of the project is captured by the number of items in the construction
plan. This is the variable Nitems. Table 4 shows that there is a substantial variation in
Nitems; the mean is 72 and the standard deviation is 71 item. One might expect that the
cost of preparing a bid is an increasing function of Nitems, even controlling for the size
of the project. The conjectured e¤ect of Nitems is therefore to reduce the probability of
submitting a bid. The estimate of the Nitems coe¢ cient in the logit regression con�rms
this conjecture. However, the e¤ect is quite small: increasing Nitems by one standard
deviation, i.e. adding about 70 pay items, reduces the odds by only about 1%.

Included in both regressions are dummy variables for 20 �rms that appear on the plan-
holders list most frequently. The other �rms are treated as fringe �rms. Observe that even
though not all �rms enter at the same rate and bid similarly, the empirical evidence of
asymmetries is strong only for out-of-state �rms (the �rms with headquarters outside the
state of Oklahoma) that enter less frequently and also bid less, and for the following three
�rms: Broce Construction, Glover Construction and Becco Contractors. Since our model
assumes bidder symmetry, we decided to exclude the auctions in which either out-of-state
�rms or these three �rms were on the planholders list.

In the practical implementation of our estimators, we are confronted with the usual
bias and variance trade-o¤. Including more variables will reduce the bias, but at the same
time will increase the sample variability of our estimators. Given the preliminary regression
results, we only condition on the project size.

Figure 1 shows the empirical frequencies (i.e. the histogram) of project sizes. The
pattern is highly skewed towards smaller projects: the average project size is about $3.6
million (from Table 4), but the projects for which there are at least 10 auctions in the dataset

12The covariates are basically the same as in other papers on procurement auctions (e.g. Bajari and Ye
(2003); Pesendorfer and Jofre-Bonet (2003); Krasnokutskaya (2003); Krasnokutskaya and Seim (2006); Li
and Zheng (2005)).
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have sizes not exceeding $2.5 million. Since we need a moderate number of observations
to implement our nonparametric tests, we have chosen the set of project sizes X to be the
equal partition of the interval [0; 2:5], i.e. in millions of dollars, X = f0:5; 1; 1:5; 2; 2:5g:

The projects of larger size may be, other things equal, more attractive to the bidder.
For example, this would be so if there are economies of scale. There is some evidence of
this in the data. Table 6 shows estimated conditional probabilities � (N jx), where as before
N is the number of potential bidders and x is the size of the project as measured by the
engineer�s estimate. One can see that the estimated mean E[N jx] increases with x from
E[N jx = 2] = 4:69 to E[N jx = 2:5] = 7:97, and the di¤erences E[N jx] � E[N jx0], x > x0,
are statistically signi�cant for all x 2 X:

Table 6 also shows that there still remains a substantial variation in the number of
potential bidders even after controlling for project size. This variation will important for
our tests. Equally important is that the variation in the number of planholders is likely to
be exogenous, uncorrelated with unobservable project characteristics since the latter only
become available in the plans.

Another practical issue is that, as is well known, nonparametric estimators su¤er from
substantial loss of precision when sample size is very small. When we tried to include all
auctions, the estimates of the quantiles Q (� jN;x) were highly erratic. The problem is that,
because the data is sparse, for some (N;x) pairs the estimated probability �̂ (N jx) is very
close to 0. To make our estimators stable, we decided to exclude those pairs (N;x) where
the number of observations that Nl = N and xl 2 [x � h; x + h] is less than 15. The
working sample ultimately consisted of 258 auctions, and all the results discussed below
were obtained using this smaller sample.

The tests are performed conditional on project size x 2 X.13 We �rst test the prediction
shared by all models considered in this paper, namely that bid submission probabilities
p (N;x) are declining in the number of potential bidders N for each x. Refer to Table 7,
where the estimated bidding probabilities p (N;x) as well as the results of the tests are
reported. The average rate of bid submission is about 62%. Except for relatively large
projects, x = $2:5 mil., there is a strongly declining pattern over N . For example, for
moderately sized projects, x = $1:5 mil., the probability of bidding p (N;x) falls from a
relatively large value of 0:56 when there are 3 potential bidders, to about half of that, 0:28
when there are 9 potential bidders. For other values of x 2 Xn f2:5g, the pattern is less
pronounced, but the formal tests of the monotonicity restrictions still do not reject the null
at the conventional 5% signi�cance level.

We now turn to the tests of the models: LS, S, and AME. First note that, because the
procurement auctions are low-bid, the null hypothesis that corresponds to the AME model
must be changed accordingly, i.e. the quantiles must decreasing rather than increasing.
Also, the inverse strategy is now

� (bjN;x) = b� 1� p (N;x)G� (bjN;x)
(N � 1) p (N;x) g� (bjN;x) ;

13The bandwidth was chosen according to the same rule as in Section 5.
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and the asymptotic variances of the quantiles are

VQ (N; �; x) =

�Z
K (u)2 du

�d+1 (1� p (N;x) �)2

(N � 1)2Np3 (N;x) g�3(q� (� jN;x) jN;x)� (N jx)' (x) ;

but all other aspects of estimation are unchanged.
The results of the tests are presented in Table 10. Consider �rst the results for just one

quantile, the median (Tables 8 and 9 report the estimated median and transformed median
costs respectively and their standard errors). The AME model is rejected for relatively
small projects, x = $0:5 and x = $1 mil., but it is not rejected for larger projects. Neither
LS models are rejected for most project sizes. Since the �ndings are somewhat counter
intuitive; but recall that our Monte-Carlo studies have shown that the power of the tests
can be increased substantially if we increase the number of quantiles from one to three.
When 0:3, 0:5 and 0:7 quantiles are simultaneously considered, the support for the S model
disappears completely at 5% signi�cance for all project sizes. The largest p-value of the
test is 0.02. The LS model fairs better, but it too is rejected for all projects but the largest
ones, with x = $2:5 mil. The AME model, on the other hand, is now rejected also for x = 1
mil., but similarly to the one quantile case, is not rejected for project sizes x = $2:0 and
x = $2:5 mil.

Increasing the number of quantiles from three to �ve (we have chosen the quantiles 0.3,
0.4; 0.5, 0.6 and 0.7) leads to the same results: the S model is robustly rejected, the LS
model is rejected for all but the largest projects. The AME model is not rejected for the
two largest project sizes we considered. The reason that all models are rejected for the
small project can be as follows. It is possible that for small projects, �rms coordinate their
decisions to request plans and become potential bidders, while these decisions are made
independently for larger projects. Con�rming this hypothesis empirically is likely to be
di¢ cult in view of potentially confounding e¤ects of unobserved project heterogeneity.

The fact that the S model is always rejected is probably not very surprising. Recall that
the entry cost in the S model is solely the cost of preparing a bid rather than the joint cost
that also includes information acquisition. Even for small projects, �rms may face uncer-
tainty about the exact level of their construction costs that can only be resolved through
costly information acquisition, so it is only natural that this is con�rmed empirically. The
empirical evidence regarding the LS model can also be explained intuitively. It is plausible
that project complexity increases with project size. Our inability to reject the LS model
for large projects may be due to the fact that for these projects, the information received
by the bidders before the plans are available is relatively less precise.

7 Concluding remarks

In this paper, we have proposed nonparametric tests to discriminate among alternative
models of entry in �rst-price auctions. The models considered are: (a) the Levin and
Smith (1994) model with randomized entry strategies, (b) the Samuelson (1985) model
that assumes that bidders are perfectly informed about their valuations at the entry stage,
and select into the pool of entrants based on this information, and (c) a new model that
allows for selective entry but in a less stark form than Samuelson (1985). Speci�cally, our
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model assumes that bidders receive signals that are informative about their valuations and
make their entry decisions based on these signals.

In the empirical application, we have tested the restrictions of each model against the
unrestricted alternatives using a dataset of highway procurement auctions from the Okla-
homa Department of Transportation (ODOT). We have found strong evidence for selective
entry according to our model. While these �ndings are encouraging and the testing frame-
work can be used in other applications, this research could be extended in a number of
directions.

One important extension would be developing more powerful tests. One could improve
power by considering tests based on a continuum of quantiles rather than a �nite set. HSS
have pursued this approach, developing a Kolmogorov-Smirnov type test. As we have al-
ready discussed, their estimation method cannot be directly transferred to our setting. This
would be an important extension of our approach left for future work. Similar hypotheses
are considered in the recent literature on tests of stochastic dominance and monotonicity
(see, for example, Lee, Linton, and Whang (2006)); however, their approach cannot be
applied directly in our case, since private valuations are unobservable, and our statistics
are based on kernel density estimators.

Our testing framework is quite general and the empirical �ndings are by and large
intuitive. But there is also an important limitation that the future research should address.
In auction datasets, one typically �nds that the variation in bids is only partially explained
by their variation within auctions. The between-auction variation is typically present. It
is also observed in our dataset. This pattern can be explained within the IPV framework
only by unobserved project heterogeneity. Recently, Krasnokutskaya (2003) has developed
a structural estimation method that can be applied even in the presence of unobserved
heterogeneity. She assumes that the heterogeneity enters into the speci�cation of valuations
as a multiplying factor. Her method relies on the fact that the same multiplicative structure
carries over to the bids. Unfortunately, this is not true for the models with entry considered
in this paper, for reasons largely similar to those described in Section 4.4.

Alternatively, one can explain between-auction variation using a model with a¢ liated
private values (APV), as in Li, Perrigne, and Vuong (2002). Note however that the theo-
retical models of entry that we build on are all within the IPV setting. It is known that the
APV model can lead to qualitatively di¤erent predictions (Pinkse and Tan (2005)), so it
is an open question if it can lead to testable implications similar to those considered here.
We leave this for future research.

Another extension would be to allow bidder asymmetries (e.g., a recent working paper
by Krasnokutskaya and Seim (2006)). The obvious di¢ culty here would the necessity to
deal with multiple equilibria. Bajari, Hong, and Ryan (2004) obtain a number of identi�-
cation results in this direction and estimate a parametric model with multiple equilibria for
highway procurement auctions. Finally, incorporating dynamic features as in Pesendorfer
and Jofre-Bonet (2003) is also left for future research.
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8 Appendix

8.1 Details of the entry models

The following lemma is used for the proof of Proposition 3.

Lemma 2 The function �(s; �s;N) is a non-decreasing function of s. Further, the function
�(�s; �s;N) is a continuous and increasing function of �s. For �s 2 [0; 1), �(�s; �s;N) is a
decreasing function of N , and constant in N if �s = 1.

Proof. Substituting P (�s) and F � (~vj�s) from (27) and (28) respectively into (31) gives after
some manipulation the following expression for �(s; �s;N):Z �v

r
(1� F (vjs)) (1� Pr fSi � �s; Vi � rg+ Pr fSi � �s; Vi 2 [r; V ]g)N�1 dv: (26)

Note that by the a¢ liation of Vi and Si, F (vjs) is non-increasing in s (Theorem 23 in
Milgrom andWeber (1982)), so 1�F (vjs) is non-decreasing in s and consequently�(s; �s;N)
is non-decreasing in s. Also, the term within the second parentheses in (26) is increasing
in �s when v 2 (v; �v):

d

d�s
[Pr fSi � �s; Vi 2 [r; V ]g � Pr fSi � �s; Vi � rg]

=
d

d�s

�Z 1

�s
[F (vj�s)� F (rj�s)] d~s�

Z 1

�s
F (rj�s) d~s

�
= F (rj�s)� F (vj�s) + [1� F (rj�s)]
= 1� F (vj�s) > 0;

because F (vj�s) 2 (0; 1) if v 2 (v; �v). It follows that �(�s; �s;N) is a continuous and increasing
function of �s on [0; 1). Also observe that for any �s 2 [0; 1), the term within the second
parentheses

1� Pr fSi � �s; Vi � rg+ Pr fSi � �s; Vi 2 [r; V ]g 2 [0; 1);

so that �(�s; �s;N) is a decreasing function of N . �

Proof of Proposition 3. Fix bidder i and assume that his rivals follow their equilibrium
strategies represented by a cuto¤ �s. From bidder i�th viewpoint, conditional on entry he
is participating in a �rst-price auction with a random number of bidders. Speci�cally, the
number of his rivals follows a binomial distribution with parameters N and the probability
of bidding equal to

P (�s) = Pr fSi � �s; Vi � rg : (27)

(we suppress the dependence of �s on N for now), and the rivals have iid distributed valua-
tions according to

F � (~vj�s) = Pr fVi � vjSi � �s; Vi � rg : (28)

Note that if �s = 1, then P (�s) = 0 and F � (~vj�s) is not de�ned. Assuming existence of a
bidding equilibrium in which all bidders use the same bidding strategy B : [v; �v] ! R+,
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an increasing function, a bidder wins against a given potential rival either if the rival does
not bid, or bids but his valuation conditional on bidding is less than v. This probability is
equal to 1�P (�s)+P (�s)F � (vj�s). By independence, the probability of winning the auction
for a bidder with valuation v is

(1� P (�s) + P (�s)F � (vj�s))N�1 : (29)

Standard envelope-theorem argument implies that i�th pro�t conditional on receiving the
signal Si = s at the bidding stage is equal toZ v

r
(1� P (�s) + P (�s)F � (~vj�s))N�1 d~v;

Assuming provisionally that an equilibrium given by a cuto¤ �s exists, the bidding strategy
B (v) can be found from the alternative expression for this pro�t,

(v �B (v)) (1� P (�s) + P (�s)F � (vj�s))N�1 ;

which gives the equilibrium bidding strategy

B (v) = v �
R v
r (1� P (�s) + P (�s)F

� (~vj�s))N�1 d~v
(1� P (�s) + P (�s)F � (vj�s))N�1

: (30)

Standard arguments (e.g. Milgrom (2004)) imply that B (�) is an increasing function, and
is indeed a best response.

The expected pro�t at the entry stage

�(s; �s;N) =

Z �v

r
f (vjs)

Z v

r
(1� P (�s) + P (�s)F � (~vj�s))N�1 d~vdv � k

=

Z �v

r
(1� F (vjs)) (1� P (�s) + P (�s)F � (~vj�s))N�1 d~v � k; (31)

where the last line follows by integration by parts.
If the reserve price is binding, then the bidder with the lowest active type is the one

with the lowest type possible, i.e. v. Unlike in the binding reserve price case, this bidder
now makes a positive pro�t and winning the auction in the event when no one else chooses
to enter, i.e. with probability (1� P (�s))N�1 (v � r). Application of the Envelope Theorem
now results in

�(s; �s;N) = (1� P (�s))N�1 (v � r)+
Z �v

r
(1� F (vjs)) (1� P (�s) + P (�s)F � (~vj�s))N�1 d~v�k;

and the bidding strategy must be modi�ed accordingly.
The crucial quantity will be the marginal bidder�s pro�t �(�s; �s;N), i.e. when bidder i

has a signal equal to the equilibrium cuto¤ �s. Note that �(�s; �s;N) de�ned even if �s = 1
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(no rivals enter), in which case it does not depend on N :

�(1; 1; N) =

Z �v

r
(1� F (vjs)) d~v � k:

Next, note that in view of Lemma 2, for a given N � 2, either �(0; 0; N) > 0, so that
an equilibrium with cuto¤ �s = 0 exists, or �(1; 1; N) < 0 so that an equilibrium with cuto¤
�s = 1 (no entry) exists, or an equilibrium such that a bidder with �s 2 (0; 1) that solves the
indi¤erence equation �(�s; �s;N) = 0 exists. This implicitly de�nes the equilibrium cuto¤ �s
as a function of N , �s (N). Refer to Figure 2. Since �(�s; �s;N) is an increasing continuous
function of s and a decreasing function of N , taking on the same value for all N if �s = 1,
it follows that if �s (N) 2 (0; 1), then also �s (N) 2 (0; 1) for N 0 > N , and �s (N 0) > �s (N). �

Proof of Proposition 4. Consider the only if part �rst. There are two cases to consider.
First, suppose that p (N) < ::: < p

�
�N
�
. Denote for future reference within this proof

T (N) =

Z �v

r
(1� F � (v)) (1� p (N) + p (N)F � (v))N�1 dv:

We know that for N > N , �s (N) 2 (0; 1) and the marginal bidder is indi¤erent between
entering or not,

k = [1� F (r)]T (N) 8N > N; (32)

For N = N , it may be either that �s (N) = 0, so that bidders enter with probability 1, or
�s (N) 2 (0; 1) : The key observation is that the quantity 1� F (r) is not identi�ed, so that
(32) cannot be used to identify k. We only know that

1� F (r) = p (N)

Pr fSi � �s (N)g
� p (N) ;

with strict equality only if �s (N) = 0, and the weak inequality if �s (N) 2 (0; 1).
Now, suppose that p (N) = ::: = p

�
�N
�
. In this case, �s (N) = 0 so that 1�F (r) = p (N)

8N 2 N , (in particular, 1� F (r) is identi�ed). We can only put an upper bound on k:

k � [1� F (r)]T (N)
� [1� F (r)]T

�
�N
�
:

where the last inequality follows from the fact that [1� F (r)]T (N) is the pro�t if a po-
tential bidder when each rival enters with probability 1:

We now prove the "if" part. If N < N� < �N , then by the same logic as in case 2 above,
1� F (r) is identi�ed since

1� F (r) = p (N) ;

while by the same logic as in case 1 above, k is identi�ed from (32) since for N = N� + 1,
bidders enter with probability �s (N) 2 (0; 1) and therefore are indi¤erent between entering
or not. �
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8.2 Details of the estimation method

We make the following assumptions concerning the data generating process.

Assumption 3 (a) f(Nl; xl) : l = 1; : : : ; lg are i.i.d.

(b) The marginal PDF of xl; '; is strictly positive, continuous on its compact support
X � Rd, and admits at least R � 2 continuous and bounded partial derivatives on
Interior (X ).

(c) The distribution of Nl conditional on xl; � (N jx) ; has support N =
�
N; :::; �N

	
for all

x 2 X , N � 2:

(d) Vil and Nl are independent conditional on xl.

(e) fVil : i = 1; : : : Nl; l = 1; : : : ; Lg are i.i.d. conditional on (Nl; xl)

(f) For all x 2 X , the density of valuations f (�j�) is strictly positive and bounded away
from zero on its support, a compact interval [v (x) ; v (x)] � R+, and admits at least
R continuous and bounded partial derivatives its interior.

(g) � (N j�) admit at least R � 2 continuous bounded derivatives on Interior (X ) for all
N 2 N .

(h) The entry probability conditional on (N;x), p (N;x), is strictly positive for all N 2 N
and x 2 X , and p (N; �) admits at least R � 2 continuous derivatives bounded away
from 0 on an open subset X y 2 Interior (X ) and all N 2 N .

Assumption 3(a) is the usual iid assumption on the data generating process for the
covariates. Assumptions 3(b), (f), and smoothness of functions in (g) and (h) are standard
in the nonparametric auctions literature (see, for example, GPV). Assumption 3(c) de�nes
the support of the distribution of Nl conditional on the covariates. Assumption 3(d) is one
of the most important assumptions; it asserts that in the number of potential bidders N is
exogenous conditional on xl = x, which allows us to use the variation in N for the purpose
of testing. In Section 6, we explain why this assumption is plausible in the context of our
empirical application. Assumption 3(e) is the IPV assumption.

For kernel estimation, we use kernel functions K satisfying the following standard as-
sumption (see, for example, Newey (1994)).

Assumption 4 The kernel K has at least R � 2 continuous and bounded derivatives on
R, compactly supported on [�1; 1] and is of order R:

R
K (u) du = 1,

R
ujK (u) du = 0 for

j = 1; :::; R� 1.

The standard nonparametric regression arguments imply that the estimator of entry
probabilities p̂ (N;x) is asymptotically normal as well (see, for example, Pagan and Ullah
(1999), Theorem 3.5, page 110):
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Proposition 5 Suppose that x 2 X y. Assume that the bandwidth h satis�es as L ! 1:
Lhd !1 and

p
LhdhR ! 0. Then, under Assumptions 3 and 4,

p
Lhd (p̂ (N;x)� p (N;x))

is asymptotically normal with mean zero and variance

Vp (N;x) =
p (N;x) (1� p (N;x))
N� (N jx)' (x)

�Z
K (u)2 du

�d
:

Moreover, the estimators p̂ (N;x) are asymptotically independent for any distinct N;N 0 2�
N; ::: �N

	
and x; x0 2 X y.

Since the distribution of values and, consequently, the distribution bids have compact
supports, the estimator of the density g� is asymptotically biased near the boundaries. Our
quantile approach allows one to avoid the problem by considering only inner intervals of the
supports. Speci�cally, let [v (N;x) ; �v (N;x)] denote the support of F � (vjN;x), and let �
be some compact inner interval, � (N;x) = [v1 (N;x) ; v2 (N;x)] � [v (N;x) ; �v (N;x)]. The
quantile orders corresponding to v1 and v2 are given by � i (N;x) = F � (vi (N;x) jN;x) for
i = 1; 2. Hence, we consider quantile orders in �(N;x) = [�1 (N;x) ; �2 (N;x)]. Next, the
corresponding inner interval of the support of G� is given by the values between the �1 and
�2 quantiles: �(N;x) = [b1 (N;x) ; b2 (N;x)], where bi (N;x) = q� (� i (N;x) jN;x), i = 1; 2.
Similarly, we de�ne the interval of quantile orders for transformed quantiles: �� (N;x) =h
��1 (N;x) ; �

�
2 (N;x)

i
such that ��1 (N;x) = finf � j� (� ;N; x) � �1 (N;x) ; � 2 [0; 1]g and

��2 (N;x) = sup f� j� (� ;N; x) � �2 (N;x) ; � 2 [0; 1]g.

Lemma 3 Under Assumptions 3 and 4, for all x 2 Interior (X ) and N 2 N ,

(a) '̂ (x)� ' (x) = Op
��

Lhd

logL

��1=2
+ hR

�
.

(b) �̂ (N jx)� � (N jx) = Op
��

Lhd

logL

��1=2
+ hR

�
.

(c) p̂ (N;x)� p (N;x) = Op
��

Lhd

logL

��1=2
+ hR

�
.

(d) supb2[b(N;x);�b(N;x)] jĜ
� (bjN;x)�G� (bjN;x) j = Op

��
Lhd

logL

��1=2
+ hR

�
.

(e) sup�2�(N;x) jq̂� (� jN;x)� q� (� jN;x) j = Op
��

Lhd

logL

��1=2
+ hR

�
.

(f) supb2�(N;x) jĝ� (bjN;x)� g� (bjN;x) j = Op
��

Lhd+1

logL

��1=2
+ hR

�
.

(g) sup�2�(N;x) jQ̂� (� jN;x)�Q� (� jN;x) j = Op
��

Lhd+1

logL

��1=2
+ hR

�
.

(h) sup�2[0;1]
����̂ (� ;N; x)� � (� ;N; x)��� = Op�� LhdlogL

��1=2
+ hR

�
.
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(i) sup�2��(N;x) jQ̂�
�
�̂ (� ;N; x) jN;x

�
�Q� (� (� ;N; x) jN;x) j = Op

��
Lhd+1

logL

��1=2
+ hR

�
.

Proof of Lemma 3. Parts (a)-(c) of the lemma follow from Lemma B.3 of Newey (1994).
For part (d), de�ne a function

G�0 (b;N; x) = Np (N;x)� (N jx)G� (bjN;x)' (x) ;

and its estimator as

Ĝ�0 (b;N; x) =
1

hdL

LX
l=1

NlX
i=1

yil1 fNl = Ng 1 (bil � b)K�h (xl � x) ;

where

K�h (xl � x) =
1

hd
Kd

�
xl � x
h

�
, and

Kd

�
xl � x
h

�
=

Qd
k=1K

�
xkl � xk
h

�
: (33)

Next,

EĜ�0 (b;N; x) = E

 
1 fNl = NgK�h (xl � x)

NlX
i=1

yil1 (bil � b)
!

= NE (1 fNl = NgK�h (xl � x) yil1 (bil � b))
= NE (E (1 (bil � b) jN;xl; yil = 1) yil1 fNl = NgK�h (xl � x))
= NE (G� (bjN;xl) p (N;xl)� (N jxl)K�h (xl � x))

= N

Z
G� (bjN;u) p (N;u)� (N ju)K�h (x� u)' (u) du

=

Z
G�0 (b;N; x+ hu)Kd

�u
h

�
du:

By Lemma 1, G� (bjN; �) admits at least R+1 continuous derivatives. Then, as in the proof
of Lemma B.2 of Newey (1994), Assumptions 3(b), (g) and (h) imply that there exists a
constant c > 0 such that���G�0 (b;N; x)� EĜ�0 (b;N; x)��� � chR�Z ���Kd �uh���� kukR du

�vec �DRxG�0 (b;N; x)� ;
where k�k denotes the Euclidean norm, and DRxG�0 denotes the R-th partial derivative of
G�0 with respect to x. It follows then that

sup
b2[b(N;x);�b(N;x)]

���G�0 (b;N; x)� EĜ�0 (b;N; x)��� = O �hR� : (34)
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Now, we show that

sup
b2[b(N;x);�b(N;x)]

jĜ�0 (b;N; x)� EĜ�0 (b;N; x) j = Op

 �
Lhd

logL

��1=2!
: (35)

We follow the approach of Pollard (1984). Consider, for given N 2 N and x 2 Interior (X ),
a class of functions Z indexed by h and b, with a representative function

zl (b;N; x) =

NlX
i=1

yil1 fNl = Ng 1 (bil � b)hdK�h (xl � x) :

By the result in Pollard (1984) (Problem 28), the class Z has polynomial discrimination.
Theorem 37 in Pollard (1984) (see also Example 38) implies that for any sequences �L, �L
such that L�2L�

2
L= logL!1, Ez2l (b) � �

2
L,

��1L �
�2
L sup

b2[b(N;x);�b(N;x)]
j 1
L

LX
l=1

zl (b;N; x)� Ezl (b;N; x) j ! 0 (36)

almost surely. We claim that this implies�
Lhd

logL

�1=2
sup

b2[b(N;x);�b(N;x)]
jĜ�0 (b;N; x)� EĜ�0 (b;N; x) j:

is bounded as L!1 almost surely. This implies that

sup
b2[b(N;x);�b(N;x)]

jĜ�0 (b;N; x)� EĜ�0 (b;N; x) j = Op

 �
Lhd

logL

��1=2!
:

The proof is by contradiction. Suppose not. Then there exist a sequence L ! 1 and a
subsequence of L such that along this subsequence

sup
b2[b(N;x);�b(N;x)]

jĜ�0 (b;N; x)� EĜ�0 (b;N; x) j � L
�
Lhd

logL

��1=2
: (37)

on a set of events 
0 � 
 with a positive probability measure. Now if we let �2L = hd and
�L = (

Lhd

logL)
�1=2

1=2
L , then the de�nition of z implies that, along the subsequence, on a set

of events 
0,

��1L �
�2
L sup

b2[b(N;x);�b(N;x)]
j 1
L

LX
l=1

zl (b;N; x)� Ezl (b;N; x) j

=

�
Lhd

logL

�1=2

�1=2
L h�d sup

b2[b(N;x);�b(N;x)]
j 1
L

LX
l=1

zl (b;N; x)� Ezl (b;N; x) j
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=

�
Lhd

logL

�1=2

�1=2
L sup

b2[b(N;x);�b(N;x)]
jĜ�0 (b;N; x)� EĜ�0 (b;N; x) j

�
�
Lhd

logL

�1=2

�1=2
L L

�
Lhd

logL

��1=2
= 

1=2
L !1;

where the inequality follows by (37), a contradiction to (36). This establishes (35), so that
(34), (35) and the triangle inequality together imply that

sup
b2[b(N;x);�b(N;x)]

jĜ�0 (b;N; x)�G�0 (b;N; x) j = Op

 �
Lhd

logL

��1=2
+ hR

!
: (38)

To complete the proof, recall that, from the de�nitions of G�0 (b;N; x) and Ĝ
�
0 (b;N; x),

G� (bjN;x) = G�0 (b;N; x)

p (N;x)� (N jx)' (x) ; and Ĝ
� (bjn; x) = Ĝ�0 (b;N; x)

p̂ (N;x) �̂ (N jx) '̂ (x) ;

so that by the mean-value theorem,

���Ĝ� (bjN;x)�G� (bjN;x)��� � ~C (b;N; x)


0BB@
Ĝ�0 (b;N; x)�G�0 (b;N; x)

p̂ (N;x)� p (N;x)
�̂ (N jx)� � (N jx)
'̂ (x)� ' (x)

1CCA
 ; (39)

where ~C (b;N; x) is given by���� 1

~p (N;x) ~� (N;x) ~' (x)

����

 
1;
~G�0 (b;N; x)

~p (N;x)
;
~G�0 (b;N; x)

~� (N;x)
;
~G�0 (b;N; x)

~' (x)

! ;
and

� ~G0 �G0; ~p� p; ~� � �; ~'� '� � �Ĝ0 �G0; p̂� p; �̂ � �; '̂� '� for all (b;N; x).
Further, by Assumption 3(b), (c) and (h), and the results in parts (a)-(c) of the lemma,
with the probability approaching one ~p, ~� and ~' are bounded away from zero. The desired
result follows from (38), (39) and parts (a)-(c) of the lemma.

For part (e) of the lemma, since Ĝ� (�jN;x) is monotone by construction,

P (q̂� (�1 (N;x) jN;x) < b (N;x)) = P

�
inf
b

n
b : Ĝ� (bjN;x) � �1 (N;x)

o
< b (N;x)

�
= P

�
Ĝ� (b (N;x) jN;x) > �1 (N;x)

�
= o (1) ;

where the last equality is by the result in part (d). Similarly,

P
�
q̂� (�2 (N;x) jN;x) > b (N;x)

�
= P

�
Ĝ
�
b (N;x) jN;x

�
< �2 (N;x)

�
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= o (1) :

Hence, for all x 2 Interior (X ) and N 2 N , with the probability approaching one,
b (N;x) � q̂� (�1 (N;x) jN;x) < q̂� (�2 (N;x) jN;x) � b (N;x). Since the distribution
G� (bjN;x) is continuous in b, G� (q� (� jN;x) jN;x) = � , and, for � 2 �(N;x), we can
write the identity

G� (q̂� (� jN;x) jN;x)�G� (q� (� jN;x) jN;x) = G� (q̂� (� jN;x) jN;x)� � : (40)

Using Lemma 21.1(ii) of van der Vaart (1998), and by the de�nition of Ĝ�,

0 � Ĝ� (q̂� (� jN;x) jN;x)� � � 1

p̂ (N;x) �̂ (N jx) '̂ (x)NLhd ;

and by the results in (a)-(c),

Ĝ� (q̂� (� jN;x) jN;x) = � +Op
��
Lhd

��1�
(41)

uniformly over � . Combining (40) and (41), and applying the mean-value theorem to the
left-hand side of (40), we obtain

q̂� (� jN;x)� q� (� jN;x)

=
G� (q̂� (� jN;x) jN;x)� Ĝ� (q̂� (� jN;x) jN;x)

g� (eq� (� jN;x) jN;x) +Op

��
Lhd

��1�
; (42)

where eq� lies between q̂� and q� for all (� ;N; x). Now, by Lemma 1, g� (bjN;x) is bounded
away from zero, and the result in part (e) follows from (42) and part (d) of the lemma.

To prove part (f), by Lemma 1, g� (�jN; �) admits at least R + 1 continuous bounded
partial derivatives. Let

g�0 (b;N; x) = p (N;x)� (N jx)' (x) g� (bjN;x) ; and (43)

ĝ�0 (b;N; x) = p̂ (N;x) �̂ (N jx) '̂ (x) ĝ� (bjN;x) : (44)

By Lemma B.3 of Newey (1994), ĝ�0 (b;N; x) is uniformly consistent over b 2 �(N;x):

sup
b2�(N;x)

jĝ�0 (b;N; x)� g�0 (b;N; x) j = Op

 �
Lhd+1

logL

��1=2
+ hR

!
: (45)

By the results in parts (a)-(c), the estimators p̂ (N;x), �̂ (N jx) and '̂ (x) converge at the
rate faster than that in (45). The desired result follows by the same argument as in the
proof of part (d), equation (39).

Next, we prove part (g). By Lemma 1, g� (bjN;x) > cg > 0. Then���Q̂� (� jN;x)�Q� (� jN;x)���
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� jq̂� (� jN;x)� q� (� jN;x)j+ 2 jĝ
� (q̂� (� jN;x) jN;x)� g� (q� (� jN;x) jN;x)j

p (N;x) ĝ� (q̂� (� jN;x) jN;x) cg

+
jp̂ (N;x)� p (N;x)j

p̂ (N;x) p (N;x) ĝ� (q̂� (� jN;x) jN;x)

�
�
1 +

2 supb2�(N;x) j@g� (bjN;x) =@bj
p (N;x) ĝ� (q̂� (� jN;x) jN;x) cg

�
jq̂ (� jn; x)� q (� jn; x)j

+2
jĝ� (q̂� (� jN;x) jN;x)� g� (q̂� (� jN;x) jN;x)j

p (N;x) ĝ� (q̂� (� jN;x) jN;x) cg

+
jp̂ (N;x)� p (N;x)j

p̂ (N;x) p (N;x) ĝ� (q̂� (� jN;x) jN;x) : (46)

De�ne an event

EL (N;x) = fq̂� (�1 (N;x) jN;x) � b1 (N;x) ; q̂� (�2 (N;x) jN;x) � b2 (N;x)g ;

and let �L =
�
Lhd+1+2k

logL

�1=2
+ h�R. By the result in part (e), P (EcL (N;x)) = o (1). Hence,

it follows from part (e) of the lemma the estimator ĝ� (q̂� (� jN;x) jN;x) is bounded away
from zero with the probability approaching one. Consequently, it follows by Lemma 1 and
part (e) of this lemma that the �rst summand on the right-hand side of (46) is Op

�
��1L

�
uniformly over �(N;x). Next,

P

 
sup

�2�(N;x)
�L jĝ� (q̂� (� jN;x) jN;x)� g� (q̂� (� jN;x) jN;x)j > M

!

� P

 
sup

�2�(N;x)
�L jĝ� (q̂� (� jN;x) jN;x)� g� (q̂� (� jN;x) jN;x)j > M;EL (x)

!
+P (EcL (x))

� P

 
sup

b2�(N;x)
�L jĝ� (bjN;x)� g� (bjN;x)j > M

!
+ o (1) : (47)

The result of part (g) follows from parts (c) and (f) of the lemma and (47).
For part (h), by Assumption 3(h) and part (c) of the lemma, �̂ (� ;N; x)!p � (� ;N; x)

for all � , N , and x. The result of part (h) follows since � is linear in � (see Andrews (1992);
also Theorems 21.9 and 21.10 on pages 337-339 of Davidson (1994)).

Lastly, we prove part (i). We have

sup
�2��(N;x)

���q̂� ��̂ (� ;N; x) jN;x�� q� (� (� ;N; x) jN;x)���
= q̂�

�
�̂ (� ;N; x) jN;x

�
� q�

�
�̂ (� ;N; x) jN;x

�
+q�

�
�̂ (� ;N; x) jN;x

�
� q� (� (� ;N; x) jN;x)

� sup
�2�(N;x)

jq̂� (� jN;x)� q� (� jN;x)j+Op

 �
Lhd

logL

��1=2
+ hR

!
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= Op

 �
Lhd

logL

��1=2
+ hR

!
; (48)

where the inequality follows from part (h) of the lemma and Lemma 1. The result of part
(i) follows from the de�nition of Q̂� in (21) and (48). �

Lemma 4 Let �(N;x) be as in Lemma 3. Suppose that Assumptions 3 and 4 hold, and
that the bandwidth h is such that Lhd+1 !1,

p
Lhd+1hR ! 0. Then

p
Lhd+1 (ĝ� (bjN;x)� g� (bjN;x))!d N (0; Vg (b;N; x))

for b 2 �(N;x), x 2 Interior (X ), and N 2 N , where Vg (b;N; x) is given by

Vg (N; b; x) =
g� (bjN;x)

Np (N;x)� (N jx)' (x)

�Z
K (u)2 du

�d+1
:

Furthermore, ĝ� (bjN1; x) and ĝ� (bjN2; x) are asymptotically independent for all N1 6= N2,
N1;N2 2 N .

Proof of Lemma 4. Consider g�0(b; n; x) and ĝ
�
0(b; n; x) de�ned in (43) and (44) respec-

tively. It follows from parts (a)-(c) of Lemma 3,
p
Lhd+1 (ĝ� (bjN;x)� g� (bjN;x))

=
1

p (N;x)� (N jx)' (x)
p
Lhd+1 (ĝ�0 (b;N; x)� g�0 (b;N; x)) + op(1): (49)

Furthermore, as in Lemma B2 of Newey (1994), Eĝ�0 (b;N; x) � g�0 (b;N; x) = O
�
hR
�
uni-

formly in b 2 �(N;x) for all x 2 Interior (X ) and N 2 N . Thus, it remains to establish
asymptotic normality of

p
Lhd+1 (ĝ�0 (b;N; x)� Eĝ�0 (b;N; x)).

De�ne

wil;N =

r
1

hd+1
yil1 fNl = NgK

�
bil � b
h

�
Kd

�
xl � x
h

�
;

wL;N =
1

NL

LX
l=1

NlX
i=l

wil;N ;

where Kd is de�ned in (33). With above de�nitions we have that
p
NLhd+1 (ĝ�0 (b;N; x)� Eĝ�0 (b;N; x)) =

p
NL (wL;N � EwL;N ) : (50)

Then, by the Liapunov CLT (see, for example, Corollary 11.2.1 on page 427 of Lehman and
Romano (2005)),

p
NL (wL;N � EwL;N ) =

q
NLV ar (wL;N )!d N (0; 1) ; (51)
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provided that Ew2il;N <1, and for some � > 0,

lim
L!1

1

L�=2
E jwil;N � Ewil;N j2+� = 0:

The last condition follows from the Liapunov�s condition (equation (11.12) on page 427 of
Lehman and Romano (2005)) and because wil;N are iid Next, Ewil;N is given byr

1

hd+1
E

�
p (N;xl)� (N jxl)

Z
K

�
u� b
h

�
g� (ujN;xl) duKd

�
xl � x
h

��
=

r
1

hd+1

Z Z
p (N; y)� (N jy)K

�
u� b
h

�
g� (ujN; y)Kd

�
y � x
h

�
' (y) dudy

=
p
hd+1

�
Z Z

p (N;x+ hy)� (N jx+ hy)K (u) g� (b+ hujN;x+ hy)Kd (y)' (x+ hy) dudy

! 0:

Further, Ew2il;N is given by

1

hd+1

Z Z
p (N; y)� (N jy)K2

�
u� b
h

�
g� (ujN; y)K2

d

�
y � x
h

�
' (y) dudy

=

Z Z
p (N;x+ hy)� (N jx+ hy)K2 (u) g� (b+ hujN;x+ hy)K2

d (y)' (x+ hy) dudy

< 1:

Hence,

NLV ar (wL;N )! p (N;x)� (N jx) g� (bjN;x)' (x)
�Z

K2 (u) du

�d+1
du: (52)

Next, E jwil;N j2+� is bounded by

1

h(d+1)(1+�=2)

Z Z ����K �u� bh
�����2+� g� (ujN; y) ����Kd�y � xh

�����2+� ' (y) dudy
=

1

h(d+1)�=2

Z Z
jK (u)j2+� g� (b+ hujN;x+ hy) jKd (y)j2+� ' (x+ hy) dudy

� 1

h(d+1)�=2
sup

u2[�1;1]
jK (u)j(d+1)(2+�) sup

x2X
' (x) sup

b2�(N;x)
g� (bjN;x)

=
C

h(d+1)�=2
:

Lastly,

1

L�=2
E jwil;N � Ewil;N j2+� � 21+�

L�=2
E jwil;N j2+�
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� 21+�C

(Lhd+1)
�=2

! 0; (53)

since Lhd+1 ! 1 by the assumption. The �rst result of the lemma follows now from
(49)-(53).

Next, note that the asymptotic covariance of wL;N1 and wL;N2 involves a product of the
two indicator functions, 1 fNl = N1g 1 fNl = N2g, which is zero for all N1 6= N2. The joint
asymptotic normality and asymptotic independence of ĝ� (bjN1; x) and ĝ (bjN2; x) follows
then by the Cramér-Wold device. �

Proposition 6 Suppose that � 2 (0; 1) and x 2 X y. Assume that the bandwidth h satis�es
as L!1: Lhd+1 !1 and

p
Lhd+1hR ! 0. Then, under Assumptions 3 and 4,

p
Lhd+1

�
Q̂� (� jN;x)�Q� (� jN;x)

�
!d N (0; VQ (N; �; x)) ;

p
Lhd+1

�
Q̂�
�
�̂ (� ;N; x) jN;x

�
�Q� (� (� ;N; x) jN;x)

�
!d N (0; VQ (N; � (� ;N; x) ; x))) ;

where

VQ (N; �; x) =

�
1� p (N;x) (1� �)

(N � 1)p (N;x) g�2(q� (� jN;x) jN;x)

�2
Vg (N; q

� (� jN;x) ; x) ;

and Vg (N; �; x) is de�ned in Lemma 4. Moreover, for any distinct N;N 0 2
�
N; ::: �N

	
,

� ; � 0 2 �, and x; x0 2 X y, the estimators Q̂� (� jN;x) are asymptotically independent, as
well as the estimators Q̂�

�
�̂ (� ;N; x) jN;x

�
.

Proof of Proposition 6. First, by Lemma 3 (c), (e) and (f), and the mean-value theorem,

Q̂� (� jN;x) = Q� (� jN;x)� 1� p (N;x) (1� �)
(N � 1)p (N;x) eg�2(q� (� jN;x) jN;x)

� (ĝ� (q� (� jN;x))� g� (q� (� jN;x))) + op
�

1p
Lhd+1

�
; (54)

where eg� is a mean-value between g� and ĝ� for b = q� (� jN;x). The result follows then by
Lemma 4. �

Proposition 7 Let x 2 X y. Assume that Lhd ! 1 and
p
LhdhR ! 0 as L ! 1, and

Assumptions 3 and 4 hold. Then

supPHAME

�
TAME (x) > c

�
= PHLS

�
TAME (x) > c

�
(55)

! P
�
T AME (x) > c

�
; (56)

where PHAME
and PHLS denotes probabilities under the inequality restrictions of AME and

equality restrictions of LS respectively, and T AME (x) is de�ned in (25).
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Proof of Proposition 7. The result in (55) follows by Lemma 8.2 of Perlman (1969). In
order to show (56), consider �rst the case of k = 1. By the results in Chapter 21.3.3 of
Gourieroux and Monfort (1995), TAME (x) is asymptotically equivalent to

~TAME (x) = min

1=2(�;x)��0

Lhd+1 k̂ � �k2 ;

where
p
Lhd+1̂ !d N (0; I#N�1); however,

~TAME (x) = min

1=2(�;x)�=

p
Lhd+1�0

pLhd+1̂ � �2
= min


1=2(�;x)��0

pLhd+1̂ � �2 ;
and the result follows by the Continuous Mapping Theorem. Extension to the case of k > 1
is straightforward since there are no cross � restrictions in (24), and the quantile estimators
are asymptotically independent across � . �

References

Andrews, D. W. K. (1992): �Generic Uniform Convergence,�Econometric Theory, 8(2),
241�257.

Athey, S., and P. A. Haile (2002): �Identi�cation of Standard Auction Models,�Econo-
metrica, 70(6), 2107�2140.

(2005): �Nonparametric Approaches to Auctions,�Handbook of Econometrics, 6.

Athey, S., J. Levin, and E. Seira (2004): �Comparing Sealed Bid and Open Auctions:
Theory and Evidence from Timber Auctions,�Department of Economics, Stanford Uni-
versity.

Bajari, P., H. Hong, and S. Ryan (2004): �Identi�cation and Estimation of Discrete
Games of Complete Information,�NBER Working paper.

Bajari, P., and A. Hortacsu (2003): �Winner�s Curse, Reserve Prices and Endogenous
Entry: Empirical Insights from eBay Auctions,� RAND Journal of Economics, 34(2),
329�355.

Bajari, P., and L. Ye (2003): �Deciding Between Competition and Collusion,�Review
of Economics and Statistics, 85(4), 971�989.

Davidson, J. (1994): Stochastic Limit Theory. Oxford University Press, New York.

De Silva, D., T. Dunne, A. Kankanamge, and G. Kosmopoulou (2007): �The Im-
pact of Public Information on Bidding in Highway Procurement Auctions,�forthcoming,
European Economic Review.

39



Gourieroux, C., and A. Monfort (1995): Statistics and Econometric Models. Cam-
bridge University Press, Cambridge.

Guerre, E., I. Perrigne, and Q. Vuong (2000): �Optimal Nonparametric Estimation
of First-Price Auctions,�Econometrica, 68(3), 525�74.

Haile, P., H. Hong, and M. Shum (2003): �Nonparametric Tests for Common Values
at First-Price Sealed-Bid Auctions,�NBER Working Paper 10105.

Hendricks, K., J. Pinkse, and R. H. Porter (2003): �Empirical Implications of Equi-
librium Bidding in First-Price, Symmetric, Common Value Auctions,�Review of Eco-
nomic Studies, 70(1), 115�145.

Hong, H., and M. Shum (2002): �Increasing Competition and the Winner�s Curse: Evi-
dence from Procurement,�Review of Economic Studies, 69(4), 871�898.

Krasnokutskaya, E. (2003): �Identi�cation and Estimation in Highway Procurement
Auctions under Unobserved Auction Heterogeneity,�Working Paper, University of Penn-
sylvania.

Krasnokutskaya, E., and K. Seim (2006): �Bid Preference Programs and Participation
in Highway Procurement Auctions,�Working paper, University of Pennsylvania.

Lee, S., O. Linton, and Y. Whang (2006): �Testing for Stochastic Monotonicity,�
Working Paper, LSE.

Lehman, E. L., and J. P. Romano (2005): Testing Statistical Hypotheses. Springer, New
York.

Levin, D., and J. L. Smith (1994): �Equilibrium in Auctions with Entry,�The American
Economic Review, 84(3), 585�599.

Li, T. (2005): �Econometrics of �rst-price auctions with entry and binding reservation
prices,�Joural of Econometrics, 126(1), 173�200.

Li, T., I. Perrigne, and Q. Vuong (2002): �Structural Estimation of the A¢ liated
Private Value Auction Model,�The RAND Journal of Economics, 33(2), 171�193.

Li, T., and X. Zheng (2005): �Procurement Auctions with Entry and an Uncertain
Number of Actual Bidders: Theory, Structural Inference, and an Application,�Working
Paper, Indiana University.

Milgrom, P. (2004): Putting Auction Theory to Work. Cambridge University Press.

Milgrom, P., and R. Weber (1982): �A Theory of Auctions and Competitive Bidding,�
Econometrica, 50(5), 1089�1122.

Newey, W. K. (1994): �Kernel Estimation of Partial Means and a General Variance
Estimator,�Econometric Theory, 10, 233�253.

40



Paarsch, H. J. (1997): �Deriving an estimate of the optimal reserve price: An application
to British Columbian timber sales,�Journal of Econometrics, 78(2), 333�357.

Pagan, A., and A. Ullah (1999): Nonparametric Econometrics, Themes in Modern
Econometrics. Cambridge University Press, New York.

Perlman, M. D. (1969): �One-Sided Testing Problems in Multivariate Analysis,� The
Annals of Mathematical Statistics, 40(2), 549�567.

Pesendorfer, M., and M. Jofre-Bonet (2003): �Estimation of a Dynamic Auction
Game,�Econometrica, 71(5), 1443�1489.

Pinkse, J., and G. Tan (2005): �The A¢ liation E¤ect in First-Price Auctions,�Econo-
metrica, 73(1), 263�277.

Pollard, D. (1984): Convergence of Stochastic Processes. Springer-Verlag, New York.

Riley, J., and W. Samuelson (1981): �Optimal auctions,� The American Economic
Review, 71, 58�73.

Samuelson, W. (1985): �Competitive Bidding with Entry Costs,� Economics Letters,
17(1), 2.

van der Vaart, A. W. (1998): Asymptotic Statistics. Cambridge University Press, Cam-
bridge.

Xu, P. (2007): �Estimation of the truncated density function at its unknown truncation
point with application to estimation of the entry cost in �rst-price auctions,�Working
Paper, UBC.

Ye, L. (2005): �Indicative bidding and a theory of two-stage auctions,�Games and Eco-
nomic Behavior.

41



50

60

70

80

Figure 1: Sample frequencies of project sizes

0

10

20

30

40

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8 8.5 9 9.5 10

Project size ($ mil.)



( )( ) sNss cutoffoffunction a as ,,profit Expected  :2 Figure Π

( )N,1,1Π

( )Nss ,,Π

( )',, NssΠ

( )'N( )N ( )'Ns 1 s( )Ns



nominal size 0.5 0.3, 0.5, 0.7 0.3, 0.4, 0.5, 0.6, 0.7

rho=0

0.10 0.0760 0.1520 0.1580
0 05 0 0310 0 0730 0 1030

Table 2:  Size of the AME test

Quantiles

0.05 0.0310 0.0730 0.1030
0.01 0.0070 0.0200 0.0360

rho=0.5

0.10 0.0420 0.0660 0.0640
0.05 0.0240 0.0350 0.0310
0.01 0.0010 0.0130 0.0100



nominal size 0.5 0.3, 0.5, 0.7 0.3, 0.4, 0.5, 0.6, 0.7

rho=0.5

0.10 0.1622 0.2800 0.2683
0.05 0.0941 0.2030 0.1812
0 01 0 0210 0 0630 0 0651

Quantiles

Table 3:  Size-corrected power of the AME test

0.01 0.0210 0.0630 0.0651

rho=0.9

0.10 0.2693 0.3624 0.4124
0.05 0.1842 0.2853 0.2983
0.01 0.0661 0.1231 0.1552



Variable Description Mean Std. Dev Min Max

EngEst The engineer's estimate for the project, in 3.647 4.488 0.066 24.800
mil. Dollars

Bid Bid divided by the engineer's estimate 1.067 0.173 0.385 2.106

Nitems Number of pay items in the project ad 71.736 70.704 1.000 363.000

Ndays Number of business days to complete the 195.995 142.370 10.000 681.000

Table 4: Description of Variables

Ndays Number of business days to complete the 195.995 142.370 10.000 681.000
project

Length Length of the road (in miles) 4.699 4.794 0.000 36.63

Distance Distance in miles from the headquarters of 344.237 382.469 0.000 1702.016
the firm of the bidding firm to the project site

Backlog The total amount of unfinished work on a 0.219 0.297 0.000 1.000
given day and normalized by the bidder-
specific maximum, the value is between 0
and 1

Npotential number of planholders 8.299 4.244 2.000 26.000

Nactual number of actual bidders 3.451 1.428 0.000 7.000

out-of-state dummy =1 if the firm has headquarters 0.136 0.343 0 1
outside the state of Oklahoma



Variable Coefficient s.e. Coefficient s.e.

Intercept 3.565 1.148 0.497 0.123
Log(EngEst) -0.010 0.034 0.970 0.010
Npotential -0.043 0.019 -0.008 0.002
Length 0.009 0.012 0.001 0.001
Ndays 0.000 0.001 0.000 0.000
Nitems -2.700E-04 0.000 4.580E-04 0.000

Distance 0.000 0.000 0.000 0.000
Backlog 0.137 0.170 0.019 0.019

Out-of-state -0.359 0.166 -0.034 0.020

Fringe firm 0.250 0.175 0.027 0.034

Firm
APAC-OKLAHOMA, INC. 0.303 0.497 0.013 0.025
THE CUMMINS CONST. CO., INC. 0.266 0.385 0.005 0.023

0 206 0 351 0 028 0 023

Table 5: Logit and OLS regressions

Logit OLS

HASKELL LEMON CONST. CO. -0.206 0.351 0.028 0.023
BROCE CONSTRUCTION CO., INC. -1.803 0.313 0.052 0.029
WESTERN PLAINS CONSTRUCTION COMPANY -1.338 0.756 -0.011 0.031
BELLCO MATERIALS, INC. -0.672 0.411 -0.086 0.277
OVERLAND CORPORATION -0.726 0.399 0.057 0.029
GLOVER CONST. CO., INC. -0.919 0.395 0.061 0.003
T & G CONSTRUCTION, INC. -0.974 0.992 -0.036 0.028
TIGER INDUSTRIAL TRANS. SYS., INC. -0.061 0.479 -0.004 0.029
HORIZON CONST. CO., INC. -0.181 0.473 0.009 0.033
CORNELL CONST. CO., INC. -0.481 0.450 0.007 0.030
SEWELL BROTHERS, INC -0.075 0.472 -0.018 0.034
BECCO CONTRACTORS, INC. -1.818 0.876 -0.068 0.033
EVANS & ASSOC. CONST. CO., INC. -0.228 0.582 -0.044 0.036
SHERWOOD CONST. CO., INC. -0.561 0.416 0.006 0.035
VANTAGE PAVING, INC. -1.619 0.962 0.030 0.047
ALLEN CONTRACTING, INC. 0.245 0.493 0.014 0.035
DUIT CONSTRUCTION CO., INC. 1.275 0.707 0.027 0.037
MUSKOGEE BRIDGE CO., INC. -1.122 0.809 0.006 0.037

Observations 4485 1860
Log-Likelihood -1543.750
R2 0.983

Notes: Significant coefficients (at 5% level) are marked in bold. The dependent variables 
were: for the logit regression, the indicator variable equal to 1 if the bid is submitted; for the 
OLS regression, the amount of bid in $ mil.



N π(N|x) s.e. π(N|x) s.e. π(N|x) s.e. π(N|x) s.e. π(N|x) s.e.

2 0 07 0 02 0 04 0 02 0 02 0 02 0 01 0 02 0 00 0 00

Table 6: Estimated probability π(N|x) of N conditional on project size x

Project size ($ mil.)

x=0.5 x=1 x=1.5 x=2 x=2.5

2 0.07 0.02 0.04 0.02 0.02 0.02 0.01 0.02 0.00 0.00
3 0.26 0.04 0.21 0.04 0.14 0.04 0.07 0.04 0.01 0.02
4 0.22 0.04 0.22 0.04 0.16 0.04 0.10 0.05 0.12 0.06
5 0.15 0.03 0.17 0.04 0.18 0.05 0.13 0.05 0.06 0.04
6 0.17 0.03 0.15 0.03 0.19 0.05 0.26 0.07 0.18 0.07
7 0.02 0.01 0.04 0.02 0.05 0.03 0.11 0.05 0.20 0.07
8 0.05 0.02 0.06 0.02 0.08 0.03 0.11 0.05 0.12 0.06
9 0.02 0.01 0.04 0.02 0.07 0.03 0.08 0.04 0.07 0.05
10 0.01 0.01 0.03 0.02 0.06 0.03 0.06 0.04 0.04 0.03
11 0.01 0.01 0.01 0.01 0.02 0.02 0.04 0.03 0.08 0.05
12 0.01 0.01 0.01 0.01 0.01 0.01 0.00 0.00 0.02 0.03
13 0.00 0.00 0.02 0.02 0.04 0.03
14 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.03 0.03
15 ` 0.01 0.02 0.02 0.04 0.03

E[N|x] 4.69 0.02 5.23 0.02 5.95 0.03 6.84 0.04 7.97 0.04



N P(N,x) s.e. P(N,x) s.e. P(N,x) s.e. P(N,x) s.e. P(N,x) s.e.

2

Table 7: Estimated probability of bidding P(N,x)

x=0.5 x=1 x=1.5 x=2 x=2.5

Project size ($ mil.)

2
3 0.49 0.05 0.53 0.06 0.56 0.09 0.47 0.17
4 0.45 0.05 0.45 0.05 0.45 0.07 0.56 0.12
5 0.39 0.05 0.40 0.05 0.38 0.06 0.33 0.09
6 0.37 0.04 0.36 0.05 0.34 0.05 0.30 0.06 0.27 0.08
7
8 0.30 0.06 0.31 0.06 0.27 0.07
9 0.28 0.07 0.35 0.09 0.45 0.11
10
11 0.21 0.08

Test statistic 0.00 0.00 0.01 4.73 19.74
P value 0.99 1.00 1.00 0.17 0.00



N median s.e. median s.e. median s.e. median s.e. median s.e.

2

x=2.5

Table 8: Estimated medians of costs

Project size ($ mil.)

x=0.5 x=1 x=1.5 x=2

2
3 0.79 0.15 0.78 0.18 0.83 0.22 0.84 0.33
4 0.89 0.07 0.89 0.08 0.90 0.11 0.94 0.10
5 0.90 0.08 0.89 0.09 0.84 0.18 0.69 0.45
6 0.90 0.06 0.90 0.06 0.88 0.07 0.87 0.08 0.84 0.13
7
8 0.90 0.07 0.92 0.07 0.93 0.09
9 0.76 0.22 0.82 0.08 0.80 0.03
10
11 0.81 0.11



N
transformed 

median s.e.
transformed 

median s.e.
transformed 

median s.e.
transformed 

median s.e.
transformed 

median s.e.

x=2.5

Table 9: Estimated transformed medians of costs

Project size ($ mil.)

x=0.5 x=1 x=1.5 x=2

2
3 0.85 0.14 0.85 0.16 0.86 0.20 0.84 0.33
4 0.92 0.07 0.91 0.08 0.93 0.11 0.95 0.10
5 0.91 0.07 0.92 0.08 0.89 0.14 0.69 0.45
6 0.91 0.06 0.91 0.06 0.90 0.07 0.87 0.08 0.85 0.13
7
8 0.90 0.07 0.92 0.07 0.93 0.09
9 0.76 0.22 0.82 0.08 0.84 0.07
10
11 0.81 0.11



Project Size ($ mil.) AME statistic AME p-value LS statistic LS p-value S statistic S p-value

0.5 9.56 0.02 9.56 0.05 8.35 0.08
1.0 9.21 0.02 9.21 0.06 5.85 0.21
1.5 6.84 0.11 12.69 0.03 12.24 0.03
2.0 4.68 0.19 17.04 0.00 20.03 0.00

Table 10: Test results

Quantiles: 0.5

2.5 0.04 0.67 1.26 0.53 3.95 0.14

0.5 30.45 0.00 30.47 0.00 41.77 0.00
1.0 31.77 0.00 31.77 0.00 41.57 0.00
1.5 20.44 0.02 32.10 0.01 46.46 0.00
2.0 12.89 0.12 44.32 0.00 62.33 0.00
2.5 1.02 0.73 3.82 0.70 15.65 0.02

0.5 50.55 0.00 50.57 0.00 65.13 0.00
1.0 54.21 0.00 54.21 0.00 61.78 0.00
1.5 37.96 0.00 57.69 0.00 64.57 0.00
2.0 19.49 0.14 72.63 0.00 104.08 0.00
2.5 1.61 0.85 5.50 0.86 24.11 0.01

Quantiles: 0.3, 0.5, 0.7

Quantiles: 0.3, 0.4, 0.5, 0.6, 0.7




