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Abstract

Nash equilibrium can be interpreted as a steady state where players hold correct beliefs

about the other players’ behavior and act rationally. We experimentally examine the

process that leads to this steady state. Our results indicate that some players emerge

as “teachers” — those subjects who, by their actions, try to influence the beliefs of

their opponent and lead the way to a more favorable outcome — and that the presence

of teachers facilitates convergence to Nash equilibrium. In addition to our experiments,

we examine games, with different properties, from other experiments and show that

teaching plays an important role in these games. When teaching is made difficult,

convergence rates go down and any convergence that does occur is delayed.
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1 Introduction

It goes without saying that Nash equilibrium is an important concept in modern economic

analysis. Theoretically speaking, one can interpret a Nash equilibrium as a steady state of a
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game where players hold correct beliefs about the other players’ behavior and best respond

to these beliefs. An important question then is how do players achieve this steady state? Is

it a belief-led process in which people’s beliefs converge and then, through best-responding,

their actions follow, or do actions converge first and then pull beliefs? In this paper, we

experimentally examine this question.

Much of this literature studying this question depicts player behavior as a backward-

looking process in which beliefs are formed using historical data on the actions of one’s

opponent and actions are determine by a deterministic or stochastic best response to these

beliefs. In such a world, for convergence to a Nash equilibrium to occur, beliefs must lead

actions (since actions are a best response to beliefs). Examples of this kind of model in

microeconomics include Fudenberg and Levine (1998), Hopkins (2002), Erev and Roth (1998)

and Camerer and Ho (1999), while representative examples from macroeconomics include

Sargent and Marcet (1989), Cho, Williams, and Sargent (2002) and Sargent and Cho (2008).

In this paper we question whether convergence to equilibrium can be achieved via such

backward looking models, and suggest that, instead, one needs to examine forward-looking

models of behavior in order to explain the process of convergence. In such models, some

players (who we will call teachers) choose strategies so as to manipulate the future choices of

their (possibly myopic) opponent. An early example of such a model is Ellison (1997) who

shows that a single rational player interacting in a population of myopic players may be able

to move the population to a Nash equilibrium if she is patient enough and if myopic players

update quickly enough. More recently, Camerer, Ho, and Chong (2002) incorporate forward-

looking behavior by extending their earlier EWA model to include a fraction of sophisticated

players who use EWA to forecast the behavior of adaptive players.1 In their model, a teacher

is someone who takes into account the effects of current actions on future behavior. While

our results support many of the qualitative features of Camerer, Ho, and Chong (2002),2 our

results suggest a more nuanced view of forward-looking behavior.

In order to study the process of convergence, and the role of teaching in this process, we

initially conducted experiments in which subjects played a 3 × 3 normal form game for 20

periods in fixed pairs and then, after being re-matched, played another 3× 3 game also for

20 periods. One of the games was solvable via the iterated elimination of strictly dominated

actions, while the other game was not, though both games had a single pure strategy equi-

librium. In addition, in both games the pure strategy Nash equilibrium determined payoffs

on the Pareto frontier of the set of payoffs available. In our view, such games had the best

1Other discussions of sophisticated behaviour can be found in the last chapter of Fudenberg and Levine
(1998) as well as Crawford (2002) and Conlisk (1993a,b).

2For example, the presence of forward-looking players facilitates convergence, and in environments where
teaching is hard, convergence rates fall.
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shot of converging because the question of what to teach is fairly obvious (i.e., the Nash

equilibrium). Our results in these treatments demonstrate that many subjects are willing

to repeatedly choose their Nash equilibrium action for a number of periods, despite the fact

that it is not, at least initially, a best response to their stated beliefs. Such players we will

call teachers and such behavior we call teaching. Therefore, like Camerer, Ho, and Chong

(2002), we view teachers as those players who may accept lower short-run payoffs and not

best respond to current beliefs, in order to influence the opponent’s beliefs and teach her to

play some strategy which will lead to higher long-run payoffs. As we will presently show,

about half of the pairs in our baseline treatment converge to the pure strategy Nash equilib-

rium, and half do not. However, in many of the pairs that do not converge, we demonstrate

behavior consistent with a player trying to teach his opponent to play the Nash equilibrium,

before ultimately giving up.

This suggests to us that teaching is really a higher order learning process in which the

teacher actually learns about how the other player learns. While we do not provide a formal

model of teaching here, (see Hyndman, Terracol, and Vaksmann (2009) who sketch a stylized

empirical model of teaching that is also consistent with our results), the basic intuition for

the model, and also for our view of teaching, is that a teacher starts off believing that his

opponent updates her beliefs very quickly based on past actions. Given such a belief about

his opponent, it is may be optimal to choose the Nash action, even though it is not currently

a best response to stated beliefs. If the teacher’s belief about how fast a learner he faces

is substantiated, then the pair will converge. However, if the other player proves to be too

sluggish in her behavior, after a few periods, teaching may no longer be optimal, in which

case the teacher may “give up”.

While focusing on games with a unique pure strategy equilibrium and payoffs on the

Pareto frontier makes studying teaching relatively easy, because it is fairly clear that any

teaching will be to the Nash equilibrium, it creates a problem in that it is difficult to distin-

guish between the teaching of Nash equilibrium and the teaching of other focal points, such

as Stackelberg equilibrium. To address this issue, we analyzed data from other experiments

that follow a similar methodology as our paper. Specifically, we analyze data from Ter-

racol and Vaksmann (2009), Hyndman, Terracol, and Vaksmann (2009) and Fehr, Kübler,

and Danz (2009). In Terracol and Vaksmann (2009) the authors study a game with three

pure strategy Nash equilibria which are Pareto incomparable while Hyndman, Terracol, and

Vaksmann (2009) examined behavior in four games, each with two Pareto rankable pure

strategy equilibria and a (common) mixed strategy equilibrium. Fehr, Kübler, and Danz

(2009) study a game with a unique pure strategy equilibrium which is Pareto dominated by

another, non-equilibrium, strategy profile.
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These data reinforce our results that teaching is an important factor in the convergence

process, but also suggest that what subjects attempt to teach is context dependent, and

that their willingness to teach depends on the incentives to do so. For example, despite the

presence of a compromise equilibrium in which both subjects receive an intermediate payoff,

the subjects in Terracol and Vaksmann (2009) vigorously attempt to teach their preferred

equilibrium. Because of this conflict, convergence appears to be delayed. In Hyndman,

Terracol, and Vaksmann (2009), because the two Nash equilibria are Pareto rankable, the

question of what to teach is relatively moot — they teach the efficient equilibrium. However,

teaching is much more prevalent when the gains to successful teaching are large and the

short-run cost of teaching is small, than when teaching incentives are less favorable. Finally,

in Fehr, Kübler, and Danz (2009) there is again some uncertainty about what should be

taught: the Nash equilibrium, or the strategy profile that dominates it (i.e., the Stackelberg

equilibrium). Of those pairs who converge, about half converge to the Nash equilibrium and

half converge to the Stackelberg equilibrium. While teachers are present in both groups,

the results would seem to indicate that most teaching is done with an aim to reaching the

Stackelberg outcome, which Pareto dominates the Nash equilibrium payoffs.

As a further robustness check on the importance of teaching, we changed aspects of our

original games in order to make teaching more difficult. In particular, if teaching facilitates

convergence, then by making teaching more difficult, we should see less teaching behavior

and also less frequent convergence. We changed our original games in three ways. First, we

modified our 3 × 3 games by adding a strategy for each player. Our conjecture is that by

making the game more complex, teaching should be more difficult. Second, we took our orig-

inal 3× 3 games but employed a random matching protocol, rather than the fixed matching

of our original experiments. In this case, since subjects are anonymously rematched with

a different subject each period, the incentive to engage in long-run behavior is diminished.

Finally, we ran a treatment identical to our original 3 × 3 games with fixed matching, but

where players only had access to their own payoffs. In this treatment, because of their limited

information about payoffs, subjects could not compute the Nash equilibrium, which makes

teaching difficult since one does not know what to teach. As expected, the more difficult we

make teaching the less convergence we find. Note, however, that since the convergence rates

predicted by the backward looking models should be invariant to all of these changes, our

results present further evidence against these models.

The paper proceeds as follows. In the next section we describe our experimental design

and procedures in greater detail. Section 3 provides the results from our baseline treatments

where we highlight the important role of teaching in achieving convergence. In Section 4,

we reexamine the data generated by other experiments and also provide the results of our
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two treatments designed to make teaching more difficult. Finally, Section 5 provides some

concluding remarks.

2 Experimental Design, Procedures & Definitions

2.1 Experimental Design & Procedures

In order to answer the questions posed in the Introduction, we conducted a number of

different experiments, the details of which are given in Table 1. All experiments were run on

inexperienced subjects recruited from the undergraduate population at New York University.

The experiments were programmed in z-Tree (Fischbacher, 2007) and conducted at the

Center for Experimental Social Science. Each session typically lasted 1 to 1.5 hours and

subjects’ mean payoffs were $19.14 across all treatments, not including a $7.00 show-up fee.3

Table 1: Summary of Experimental Treatments

Treatment Task Game(s) # Subj’s Matching Payoffs # Per’s
AP Beliefs/Actions DSG/nDSG 64 fixed both vis. 20/20†

AP4×4 Beliefs/Actions DSG/nDSG 20 fixed both vis. 20/20†

RM Beliefs/Actions DSG 20 random both vis. 20+40‡

RM Beliefs/Actions nDSG 20 random both vis. 20+40‡

OP Beliefs/Actions DSG/nDSG 72 fixed own vis. 20/20+40]

NB Actions DSG/nDSG 40 fixed both vis. 20/20†

† Subjects played one game for 20 periods and then (after being rematched) the other game for 20 periods.
‡ Subjects played for an initial 20 periods and were then asked to play 40 more periods.
] Subjects played one game for 20 periods, and then (after being rematched) the other game for 20+40 periods as in ‡.

In the first treatment, called the All Payoff (AP) Treatment, subjects played one of the

games depicted in Figure 1 for 20 periods with a fixed partner and with the payoffs of both

players visible. They were then randomly rematched and played the other game in Figure

1 for 20 periods. Figure 1.a depicts a dominance solvable game (DSG), with a unique Nash

equilibrium which is in pure strategies. In contrast, Figure 1.b presents a game which is not

dominance solvable (nDSG). This game actually has one pure strategy equilibrium and, two

mixed strategy equilibria.4

The games chosen had Nash payoffs that are on the Pareto frontier, and the Nash equilib-

rium payoffs were not symmetric. We chose games with these properties for several reasons.

3Instructions are available at http://faculty.smu.edu/hyndman/Research/EHOS-Instructions.pdf.
4One is strictly mixed with expected payoffs of (40.5, 58.2). The other puts no weight on the Nash actions

and has expected payoffs of (37.05, 69.86). We find no evidence for convergence to either mixed equilibrium.
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Figure 1: Games Used in the Experiments

A1 A2 A3
A1 51, 30 35, 43 93, 21
A2 35, 21 25, 16 32, 94
A3 68,72 45, 69 13, 62

(1.a) DSG

A1 A2 A3
A1 12, 83 39, 56 42, 45
A2 24, 12 12, 42 58,76
A3 89, 47 33, 94 44, 59

(1.b) nDSG

First, because our interest was in convergence, we wanted games with unique pure strategy

equilibria since we assumed that such games would facilitate convergence and avoid the co-

ordination problems inherent in games with multiple equilibria. Second, since the equilibria

are on the Pareto frontier, there is no way that subjects could jointly do better for themselves

by devising some out-of-equilibrium rotation strategy. In addition, there is no way a subject

can teach his or her opponent to play something other than Nash and do better for himself

if his opponent is an effective best responder. Of course, these two points also mean that our

games are not well-designed to address the question of where subjects converge to and what

players may attempt to teach their opponent (e.g., Stackelberg, Pareto efficiency, etc.). We

will use the games run by other experimenters to analyze these questions.

In each period, subjects were asked to make two decisions. The first was to choose the

action for that period. The second was to state their beliefs regarding their partner’s action

in that period.5 The action decision was rewarded according to the relevant game matrix,

while the belief reports were rewarded using a Quadratic Scoring Rule (QSR). All payoffs

from the action choices and the belief predictions were then summed up to give subjects

their final payoff. This treatment has two features: subjects could see both their and their

opponent’s payoffs and were matched in fixed pairs for the full 20 period length of the

experiment. The AP treatment serves as our baseline, and will be our main focus.

In addition to the AP treatment we also ran three others to help substantiate our con-

clusions. In the AP4×4 treatment, we followed the exact same procedures as in the main

treatment but instead subjects played a 4× 4 game as shown in Figure 2. Our belief is that

the larger the game, the more complex it is and, therefore, the more difficult should teaching

be.

We ran two Random Matching (RM) sessions (one for each game). In this treatment,

subjects were randomly matched each period over the 20 period horizon of the experiment

5Eliciting beliefs has become common in experimental economics. See, among others, Terracol and Vaks-
mann (2009), Costa-Gomes, Crawford, and Broseta (2001), Haruvy (2002), Costa-Gomes and Weizsäcker
(2008), Fehr, Kübler, and Danz (2009) Huck and Weizsäcker (2002) and Dufwenberg and Gneezy (2000).
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Figure 2: Games Used in the 4× 4 Experiments

A1 A2 A3 A4
A1 44, 72 51, 30 35, 43 93, 21
A2 36, 18 35, 21 25, 16 32, 94
A3 16, 65 68,72 45, 69 13, 62
A4 52, 68 58, 67 39, 78 11, 72

(2.a) DSG

A1 A2 A3 A4
A1 12, 83 39, 56 42, 45 47, 54
A2 24, 12 12, 42 58,76 49, 61
A3 61, 63 79, 24 21, 13 13, 81
A4 89, 47 33, 94 44, 59 31, 11

(2.b) nDSG

— however, they kept their same role, as row or column player throughout. They were

informed only of the outcome of their interaction at the end of each period.6 In contrast to

the AP treatment, subjects only played either the DSG or nDSG game. After the initial 20

periods were completed, we surprised the subjects and told them that the experiment would

last for 40 more periods. This was done to check if behavior would change if the horizon

was increased. In our third treatment, Own Payoff (OP), we replicated the conditions of the

original AP treatment except that subjects are only able to see their own payoffs and not

the payoffs of their opponent. As with the RM treatment, we surprised subjects after their

final 20 period interaction and asked them to play the game for 40 more periods.

As we mentioned in the introduction, these treatments were run in order to better isolate

the role of teaching. If teaching is important for convergence and we make it more difficult

to teach, then we should see less convergence. In contrast, since backward-looking learning

models do not rely on teaching, they should be immune to these changes. For example,

if our conjecture is correct, a random matching protocol, by reducing teaching incentives

and highlighting myopic play, should decrease the rate of convergence relative to the AP

treatment.7 Similarly for the OP treatment: for most of the popular learning theories (e.g.,

reinforcement learning, EWA, fictitious play, noisy fictitious play, etc.), the elimination of

one’s opponent’s payoffs should have no impact on behavior or convergence rates.8

Finally, there is a strand of the literature which studies whether or not the act of eliciting

beliefs changes the behavior of subjects.9 While the evidence on this front is mixed, Rutström

and Wilcox (2009) suggests that eliciting beliefs may encourage more strategic thinking in

games with asymmetric payoffs. To address this issue, we conducted one treatment in which

subjects only chose actions (i.e., we did not also elicit beliefs). This is our NB treatment.

6This is one of the three ways in which random matching feedback could be given (see Fudenberg and
Levine (1998, pg. 4–7) and Hopkins (2002)).

7As Fudenberg and Levine (1998, pg. 4) point out, with fixed pairs, subjects may think “that they can
‘teach’ their opponent to play a best response to a particular action by playing that action over and over.”

8For more on how behaviour is different when players do not have access to their opponent’s payoffs see
Partow and Schotter (1993), Mookherjee and Sopher (1994), Costa-Gomes, Crawford, and Broseta (2001)
as well as Fehr, Kübler, and Danz (2009) and the references cited therein.

9For a more detailed overview, see Rutström and Wilcox (2009) and the references cited therein.
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2.2 Definitions

We first give our definitions of convergence in actions and beliefs. We say that player i

has converged in actions in period tai ≤ 18 if, for all t ≥ tai , player i chooses his Nash

equilibrium action. We insist that the player chose the Nash action for at least 3 consecutive

periods before the end of the game so that we don’t count players as converging because

they randomly chose the Nash action in the final period. If player i converges in actions

in period tai , while his opponent converges in period taj , we say that the game converges in

period t̃a = max{tai , taj}.

To describe convergence in beliefs let bi(t) denote player i’s belief about player j’s period

t action choice. Define the Nash Best-Response Belief Set (NBRi) for player i as the set of

beliefs for which player i’s best response is to choose her Nash action. We say that player i

has converged in beliefs in period tbi if, for all t ≥ tbi , bi(t) ∈ NBRi.
10

These definitions are rather strict and make convergence difficult to achieve. We feel

they are less ad hoc than other possible definitions since, for any other definition we could

use, we would have to call a play path of actions convergent even if at some points along

the path subjects would not be playing their Nash actions. In our definition, once a game

converges it converges and no deviations are allowed.11

3 Results: The AP Treatments

In this section we describe the differences in the behavior of pairs of subjects whose play

converged to the Nash equilibrium in the AP treatment and those who did not. Our aim

is to demonstrate that teaching facilitates the process of convergence. After this descriptive

exercise, we present a more formal econometric analysis of a set of hypotheses about teaching

and convergence.

10Recall that nothing in the definition of a pure-strategy Nash equilibrium says that beliefs must be
degenerate on one’s opponent’s Nash action. All that is required is a set of beliefs for which it is a best
response to play one’s own Nash action.

11There were three instances of subjects having a high frequency of Nash equilibrium play, with a final
period deviation that we labeled as convergent. There was also one pair that we labeled as non-convergent
because one of the pair members only chose his/her Nash action in periods 19 and 20, despite his/her
opponent having played the Nash action from period 1.
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3.1 Examples of Successful and Unsuccessful Teaching

3.1.1 A Successful Teaching Episode

To get a flavor for what (successful) teaching looks like, consider Table 2, which shows the

history of one convergent pair in the nDSG game. While the time series for other convergent

pairs look different, they all tell a similar story: teachers recognize the Nash equilibrium

fairly early and choose their part in it repeatedly in an effort to teach. The only question is

whether their opponent catches on quickly enough.

Table 2: Actions, Beliefs and Best Response: “Successful” Teaching
(Non-Dominance Solvable Game: Nash Equilibrium (A2, A3))

Row Player Column Player
Period Action Best Response Nash Played Action Best Response

1 A3 A3 A3 A2
2 A3 A3 A3 A2
3 A3 A3 A3 A2
4 A3 A2 A3 A2
5 A3 A2 A3 A2
6 A2 A2 A2 A2
7 A3 A3 A3 A2
8 A3 A2 A3 A2
9 A2 A2

√
A3 A3

10 A2 A2
√

A3 A3
11 A2 A2

√
A3 A3

12 A2 A2
√

A3 A3
13 A2 A2

√
A3 A3

14 A2 A2
√

A3 A3
15 A2 A2

√
A3 A3

16 A2 A2
√

A3 A3
17 A2 A2

√
A3 A3

18 A2 A2
√

A3 A3
19 A2 A2

√
A3 A3

20 A2 A2
√

A3 A3
Highlighted cells (in the “Action” column) indicate that the subject played his/her part of the Nash equi-
librium in that period. A

√
indicates that the Nash equilibrium was the observed outcome in that period.

For both the row and column players, for each period we note the action chosen as well as

the action that was a best response to his/her stated beliefs. Highlighted cells in the “Action”

column indicate that the player chose his/her part of the Nash equilibrium. Finally, in the

“Nash Played” column, a
√

indicates that the Nash equilibrium was the observed outcome

for that particular period.

Since this pair of subjects played the non-dominance solvable game, the Nash equilibrium
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is (A2, A3) where the row player chooses A2 and the column player chooses A3. There

are many interesting features of this interaction that are illustrative of our point. First,

according to our definition, this game converges in period 9. In this pair, the column player

is the teacher and starts to play his Nash action in period 1, despite the fact that it is not

a best response to his beliefs, and continues to do so until period 6, despite the fact that

the row player always chose his non-Nash action, A3. In period 6 he gives up and chooses

A2, which is a best response to his beliefs in that period. This might have ruined this pair’s

chances of convergence except for the fact that, in that period, the row player finally chose

his Nash action. Seeing this, the column player resumes teaching by choosing A3, despite

the fact that it is still not a best response to do so. Finally, in period 9 the game converges.

3.1.2 A Failed Teaching Episode

The above example showed that when a teacher is combined with a fast enough learner

convergence to the Nash equilibrium may occur.12 Of course, approximately half of our

pairs failed to converge. As we will argue below a failure to converge is more about beliefs

not being updated quickly enough and less about an inability to best respond.

Consider Table 3, which shows the actions and best responses to beliefs for a game that

did not converge. This table corresponds to the dominance solvable game, so the Nash

equilibrium is (A3, A1). In this pair, we say that the row player is the teacher since she

chose A3 in periods 1 through 10 despite the fact that it was a best response to beliefs in

only two of those periods. On the other hand, the column player appears to be a particularly

dim fellow. Despite the row player choosing A3 for 10 consecutive periods his beliefs never

actually updated sufficiently so that A1 — the Nash action — was a best response. Even

more striking is the fact that the column player actually chose the Nash action in periods 4,

7 and 8, yet somehow did not learn (fast enough) that continuing to play the Nash action

would be to his benefit. This mistake turns out to be quite costly for the column player. Had

he continued to play the Nash action from period 4 onwards, his earnings from the game

would have been 37% higher. Finally, after round 10 the row players gives up teaching and

basically plays a best response to his beliefs from then on.

12Of course, we cannot distinguish between a “fast enough” learner and a “patient enough” teacher, but
we will continue to use this terminology.
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Table 3: Actions, Beliefs and Best Response: A “Failed” Teaching Episode
(Dominance Solvable Game: Nash Equilibrium (A3, A1))

Row Player Column Player
Period Action Best Response Nash Played Action Best Response

1 A3 A1 A2 A2
2 A3 A3 A3 A2
3 A3 A1 A3 A2
4 A3 A1

√
A1 A2

5 A3 A1 A3 A2
6 A3 A1 A3 A3
7 A3 A1

√
A1 A2

8 A3 A1
√

A1 A2
9 A3 A3 A3 A2
10 A3 A1 A3 A2
11 A1 A1 A1 A2
12 A1 A1 A1 A2
13 A3 A1 A3 A2
14 A1 A1 A1 A2
15 A1 A1 A3 A2
16 A1 A1 A1 A2
17 A3 A1 A2 A2
18 A1 A1 A1 A2
19 A1 A1 A2 A2
20 A1 A1 A1 A2

Highlighted cells (in the “Action” column) indicate that the subject played his/her part of the Nash equi-
librium in that period. A

√
indicates that the Nash equilibrium was the observed outcome in that period.

3.2 Convergence and Teaching

3.2.1 The 3× 3 Games

We begin with a thorough analysis of the results from our AP treatment because, of all the

environments we considered, it is the most conducive to teaching.

Using the definition of convergence above, 17 of 32 pairs converged in the dominance

solvable game, while 16 of 32 pairs converged in the non-dominance solvable game. As can

be seen in Table 4, the frequency of Nash actions over the first 10 periods was 56.7% in the

DSG game and 45.8% in the nDSG game. These frequencies increased by slightly less than

10 percentage points over the last 10 periods of the game. As the frequency of Nash actions

increased, so too did the best response rate. Indeed, the improvement in the best response

rate was more dramatic than was the improvement in the frequency of Nash actions. Also,

note that those pairs who converged did so slightly faster in the DSG game than in the

nDSG game (5.1 vs. 7.2).
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Table 4: Convergence and Teaching in the AP Treatments

3× 3 Games 4× 4 Games
DSG nDSG DSG nDSG

% of Pairs Converging Periods 53.1 50 40 40

Frequency of Nash Actions
1-10 56.7 45.8 31.0 35.5
11-20 64.5 55.3 48.0 44.0

Frequency that Action was a Best
Response to Stated Beliefs

1-10 59.5 59.8 47.0 50.0
11-20 70.3 76.1 60.0 66.5

Frequency that Nash Action Chosen,
Conditional Upon it Not Being a Best
Response to Stated Beliefs

1-10 61.8 46.3 34.9 25.0
11-20 54.2 41.1 25.0 13.4

Of course, just by looking at convergence rates, we cannot say anything about whether

or not teaching was going on. As we have said, teachers are those subjects who are willing to

take suboptimal (in the short run) actions in order to influence the beliefs of their opponent

with the intention of leading them to a more desirable long run outcome. Therefore, if

teaching is going on, and if teachers are teaching the Nash equilibrium, then we would

expect to see, conditional upon subjects not best responding to their stated beliefs, a high

frequency of Nash action choices (i.e., higher than 1/3). Furthermore, since teaching is an

investment, we should see it decline in the latter half of the game. These results are on

display in Table 4 for both games. As can be seen, over the first 10 periods the frequency

that the Nash action was chosen despite it not being a best response was 61.8% in the DSG

game and 46.3% in the nDSG game — both of which are significantly greater than 1/3.13

Next observe that in both games, such behaviour declines in the latter half of the game, and,

indeed, for the nDSG game, we cannot reject that the frequency is equal to 1/3.14 Therefore,

it appears that, when subjects do not best respond, very often they choose the Nash action.

Such behaviour lends supports to our conjecture that some subjects are attempting to teach

their opponent the Nash equilibrium.

Next, observe that if some subjects are trying to teach their opponent to play the Nash

equilibrium, and if such teaching is ultimately successful, then it should be the case that

those subjects within a pair who converged first in actions should have actions which converge

before their beliefs converge. We turn to this now. In Table 5, we focus on those pairs that

converged to the Nash equilibrium and divide them into two subgroups: those subjects who,

within their pair, converged to the Nash equilibrium first (Early Convergers) and those who

13Respectively, for DSG1−10 and nDSG1−10, we have t61 = 6.53 and t63 = 2.97. Subscripts denote degrees
of freedom. The tests correct for clustering at the subject level.

14Specifically, t40 = 1.19.
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Table 5: Average Period of Convergence in Actions and Beliefs

3× 3 Games 4× 4 Games
DSG nDSG DSG nDSG

Early Late Early Late Early Late Early Late
Actions Convergence Period 3.38 7.69 5.67 8.71 4.75 9.5 2.25 5.75
Beliefs Convergence Period 7.33 8.38 8.83 8.57 8.00 9.25 5.00 7.75

Difference (Beliefs − Actions) 3.95 0.69 3.17 -0.14 3.25 -0.25 2.75 2.00
Number of Subjects 21 13 18 14 4 4 4 4

Mann-Whitney Test: Early
vs. Late Convergers

2.605 3.936 1.78 0.31

converged second (Late Convergers) .15 For each subgroup, we calculate the average period

of convergence in actions as well as convergence in beliefs.

We now argue that, among those pairs of subjects that converged to the equilibrium,

the subject who converged first demonstrates behavior consistent with that of a teacher,

while the subject who converged later, demonstrates behavior more consistent with that of a

follower. Support for this is on display in Table 5 where we show the period of convergence

for both actions and beliefs, broken up by whether the subject converged (in actions) first

or second. As can be seen, in the dominance solvable game, the difference between belief

and action convergence for early convergers is approximately 3.95 periods, while for the

non-dominance solvable game, it is 3.17 periods. On the other hand, for late convergers,

the difference between the period of convergence in actions and beliefs is not distinguishable

from zero. Note that for both games, the Mann-Whitney Rank Sum Test allows us to reject

the null hypothesis that early convergers and late convergers come from the same population

in favor of the alternative that early convergers have beliefs which converge after actions,

while late convergers do not.

While obviously one subject is likely to converge in actions before the other, the fact

that actions converge before beliefs for early convergers, combined with the fact that actions

and beliefs converge simultaneously for late convergers, suggests that there is a fundamental

difference between these two subgroups of players. In particular, this result is consistent

with our claim that early convergers were, in fact, teachers, while late convergers were more

passive followers.

Another interesting fact is that teachers appear to be born and not raised. That is,

amongst the subjects whom we labeled as early convergers, for the DSG game, 15 out of 21

15There are some pairs who converged in actions simultaneously. These subjects are qualitatively identical
to early convergers in the strict sense, and so, have been placed in the “ Early” group.
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subjects actually chose their Nash action in the first period as opposed to only 3 of the 13

late convergers. In the nDSG game, the corresponding numbers were 10 out of 18 as opposed

to 3 out of 14. For both the DSG and nDSG games, a two-sample proportions test reject

the null hypothesis that the frequency of Nash actions in period 1 is the same for early and

late convergers: ZDSG = 2.745 (p < 0.01) and ZnDSG = 1.95 (p = 0.051), respectively.

3.2.2 The 4× 4 Games

We ran one session with 20 subjects in which they first played a 4 × 4 dominance solvable

game and then, after being re-matched, played a 4 × 4 non-dominance solvable game. The

experimental procedures were exactly the same as those in the AP treatment. The games

played were as in Figure 2. As was the case for the 3 × 3 games, each game had a single

pure strategy Nash equilibrium. For the dominance solvable game, this was the unique

equilibrium, while for the non-dominance solvable game there were also two mixed strategy

Nash equilibria. Notice also that the games used are identical to the 3 × 3 games but for

the addition of another strategy for each player.16 We now examine whether this additional

complexity makes teaching more difficult.

For both the dominance solvable and non-dominance solvable game, 4 of the 10 pairs

converged to the Nash equilibrium according to our definition, which is slightly lower than

the approximately 50% of the pairs that converged in the 3 × 3 games (the difference is

not statistically significant). In terms of teaching behavior, the results are similar, though

somewhat less pronounced than in the 3× 3 games. For example, from Table 5 we see that

there is a similar difference between early and late convergers in the 4× 4 games. For both

the DSG and nDSG games, those who converge to the Nash equilibrium first have actions

which converge strictly before beliefs (on average 3 periods before). For late convergers,

actions and beliefs converge nearly simultaneously for the DSG game, while for the nDSG

game, actions actually converge before beliefs. This suggests that the late convergers may

not have been entirely convinced that their partner had, in fact, converged in the nDSG

game, and so they too have actions converging before beliefs.

3.2.3 Does Belief Elicitation Influence Behavior?

As we mentioned above, it has been noted in the literature that the act of eliciting beliefs may

encourage players to think more strategically, which may lead to different convergence rates

than if we did not elicit beliefs. To examine this issue, we ran our NB (No Beliefs) treatment.

16For the dominance solvable game, delete the fourth row and the first column to recover the 3× 3 game.
Similarly, for the non-dominance solvable game, delete the third row an fourth column.
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Table 6: Behaviour in the No Beliefs Treatment

Periods DSG nDSG
% of Pairs Converging 65.0 25.0
Period of Convergence 6.46 7.70

Frequency of Nash Actions
1-10 56.5 30.8
11-20 75.0 36.0

Detailed results from this treatment are given in Table 6. As can be seen, in the DSG game

65% of the pairs converged to the equilibrium, which is actually slightly higher than the

convergence rate with belief elicitation, though the difference is not statistically different

(p = 0.4). On the other hand, for the nDSG game, the convergence rate of 25% is lower than

the 50% convergence rate when we elicit beliefs, though this difference is not significant at

the 5% level (p = 0.074). Hence, there is no systematic bias in terms of convergence rates.

One can see that there is also no systematic bias in terms of the period of convergence to the

Nash equilibrium. Comparing Table 5 with Table 6, we see that subjects converged to the

Nash equilibrium slightly later in the NB treatment, though for neither game is the difference

statistically distinguishable (DSG: p = 0.2; nDSG: p = 0.7). Given this evidence, we believe

that the act of eliciting beliefs did not change behavior in a meaningful or systematic fashion.

3.3 Non-Convergence

Until now we have spent our time on convergence and the role that teachers play in fostering

it. However, half of our pairs in the AP treatment failed to converge so it would be interesting

to discover why. It is our claim that a failure to converge is a failure of belief formation and

not of an inability to best respond. In particular, what non-convergers do wrong is to update

too sluggishly. Therefore, when paired with a teacher trying to lead the way to equilibrium,

it will take many periods for one’s beliefs to enter the Nash Best Response Belief Set and

this protracted delay may cause the teacher to give up before convergence occurs.

3.3.1 Failed Teaching

As we have said, teachers are those subjects who are willing to take sub-optimal actions

in the short run in order to influence the beliefs of their opponent and drive them to a

“better” long-run outcome. Of course, there is no reason to expect that all teachers are

ultimately successful. Therefore, if we look at those subjects who did not converge, we

would expect to see some instances where one player attempts to teach the other player the

Nash equilibrium before ultimately giving up. In Table 3 we gave one such example. Here
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we seek to understand whether such behavior is prevalent.

Indeed, such behavior is not uncommon amongst those players who did not converge. If

we define a failed teaching episode as one in which a player chose her Nash action for three or

more consecutive periods, then there are a total of 22 such episodes by 20 different players.

Of these 22 episodes, 16 of them were true teaching episodes in the sense that the beliefs of

the failed teacher were outside the Nash best response set when teaching began. If we are

more conservative and insist that the Nash action be chosen for 4 or more periods, then there

are only 12 such instances, and 9 of them began when the player was not best responding

to her beliefs. The left panel of Figure 3 plots a histogram of the length of failed teaching

episodes. As can be seen, most such episodes were only 3 or 4 periods in duration, though

some were much longer, suggesting that these players were extremely patient. The average

length of a failed teaching episode was 5.64 periods.

Figure 3: Histograms: Length of Failed Teaching Episodes & Difference in
Convergence Period Between Early and Late Convergers (AP Treatment)
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Our earlier analysis showed that among the pairs that converged, one of the players took

the role of a teacher. The current analysis shows that teachers are present even in pairs that

do not converge. Therefore, one important factor in determining whether a pair converges

would seem to be the “quickness” of the follower. Among the 33 pairs that converged to

the Nash equilibrium, 27 pairs had one subject converge strictly before the other. The right
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panel of Figure 3 shows the difference in the period of convergence between the early and

the late converger for each of these 27 pairs. As can be seen, for 19 of 27 pairs, the difference

is convergence period is 3 or fewer periods and the average difference in convergence period

is 3.15 periods. Formally a t-test rejects the hypothesis that the length of failed teaching

episodes is identical to the difference in convergence period (t47 = 2.48, p = 0.017). In other

words, when a teacher is paired with a follower capable of learning quickly it is unlikely that

the teacher will have to teach for more than 3 periods before convergence occurs. The fact

that some teaching episodes lasted substantially more than 3 periods suggests that excessive

sluggishness is an important part of the explanation for non-convergence.

Remark 1. Before moving on, we note that there were a number of instances in which players

took the same (non-Nash) action repeatedly. However, what is striking about such behaviour

is that it does not appear that there was an underlying teaching motive. In particular, of the

50 instances in which a player chose the same non-Nash action for 4 or more consecutive

periods, in 36 of them the action was initially a best response to their stated beliefs. In

contrast, in only 3 of the 12 instances in which the Nash action was chosen for four or more

consecutive periods was it initially a best response to stated beliefs. This suggests that there

is actually something special about the Nash action to a certain subset of players which leads

them to choose it repeatedly despite it not being a best response.

3.3.2 Hypotheses

As we said above, it is our belief that those subjects that do not converge do so largely

because of a failure of beliefs to update quickly enough. To demonstrate this, we must

show two things. First, that there is no difference in the frequency of best response between

convergent and non-convergent players. Second, we must show that those subjects who do

not converge do, in fact, update their beliefs more sluggishly. We consider the former first

and state it formally as:

Non-Convergence Hypothesis: Subjects who do not converge to Nash equilibrium best

respond with at least as great a frequency as do those subjects who do converge to Nash

equilibrium.

As evidence in favour of this hypothesis, note that in the DSG game, those subjects who

converged best responded 45.1% of the time (up to and including the period of convergence),

while those subjects who did not converge actually best responded 52% of the time. Using

a two sample proportions test, we are unable to reject the hypothesis that convergent and

non-convergent players have the same best response rate (ZDSG = 1.56, p = 0.118). For the

nDSG game, those subjects who converged best responded 48% of the time, while those who
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did not converge did so 60% of the time. In this game, there is a statistically significant

difference between convergent and non-convergent players, but it actually goes is the opposite

direction. That is, subjects who do not converge actually have a higher best response rate

(ZnDSG = 3.13, p < 0.01). Although we cannot conclusively say that an inability to best

respond does not contribute to non-convergence, the fact that subjects who do not converge

best responded with at least as high a frequency as those who did converge, suggests that

the primary explanation for non-convergence lies elsewhere.

We will go into more detail about this in the next subsection but before we do let us

pause and take a look at the beliefs of subjects who did and did not converge. Consider

Figure 4 where we present the simplex of beliefs and the time paths of beliefs of two subjects

— one that did not converge to the Nash equilibrium, while the other did converge to the

Nash equilibrium. The subjects depicted both played the nDSG game and were in the role of

the column player. In both subfigures, the point (0,0) represents the case in which a player

holds degenerate beliefs that her opponent will play his Nash strategy. The beliefs on the

two non-Nash actions are then given by a point in the (x, y) plane and the area enclosed

by the dashed line represents the Nash Best-Response Set. That is, if beliefs lie inside this

set, it is a best response for the player to choose her Nash action. The numbers beside each

point denote the period in which the subject held those particular beliefs.

As can be seen, for the player who did not converge, her beliefs actually never entered

the Nash Best Response Set. In other words, if subjects are capable of best responding and

best respond to the beliefs we elicited, then this is clear proof that failure to converge is a

result of a failure in beliefs and not in actions. In contrast, the bottom panel of Figure 4

shows the sequence of beliefs for a typical subject that did converge. Here, after some initial

periods outside the Nash Best Response Set, the beliefs of the subjects enter the set and

very shortly become degenerate.

The subjects depicted in these figures are the rule and not the exception: there is a

dramatic difference in the frequency with which beliefs enter the Nash Best Response Set

when comparing pairs that converged to those that did not. For convergent pairs their beliefs

were in the Nash Best Response Set 79.7% and 68.0% of the time in the DSG and nDSG

games, respectively, while for non-convergent pairs these same percentages were 18.7% and

12.5%, respectively. This is strong evidence that the beliefs of those players who do not

converge to Nash equilibrium spent very little time inside the Nash Best Response Set.

Also interesting is the fact that beliefs, once inside the Nash Best Response Belief Set, are

often degenerate on their opponent’s Nash action for convergent pairs (DSG: 78.0%, nDSG:

80.1%), while beliefs are much less often degenerate for non-convergent pairs (DSG: 39.0%,

nDSG: 35.2%).
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Figure 4: Sequence of Beliefs for a Non-Converging Player and a
Converging Player
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(a) A Non-Converging Player
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(b) A Converging Player
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3.4 A Formal Analysis of Convergence and Non-Convergence

The results above indicate that the belief formation process is a key element in whether

player pairs converge. What appears to be important for convergence is a teacher along with

a follower who updates quickly. In order to test this hypothesis, we must first define a metric

for how quickly subjects update their beliefs.

The simplest metric one can use for measuring how quickly subjects update their beliefs

upon receiving new information is due to Cheung and Friedman (1997). In that paper,

the authors assume that subjects form beliefs based on historical data with geometrically

declining weights. That is, more recent information is weighted more heavily than is older

information. More formally, we denote by Γki (t + 1) play i’s belief that his opponent will

choose strategy k in period t+ 1, and we write this as:

Γki (t+ 1) =
1t(a

j
k) +

∑t−1
u=1 γ

u1t−u(a
k
j )

1 +
∑t−1

u=1 γ
u

. (1)

Here 1t(a
j
k) is an indicator function which takes on the value of 1 when j plays action k in

period t and 0 otherwise.

The lone parameter, which we will estimate below, γ, captures the rate at which new

information is incorporated into a player’s belief. Specifically, when γ = 0, player i believes

that his opponent will choose the same action in period t + 1 as she did in period t. Such

extreme beliefs are called Cournot beliefs, and as the reader can see, a subject with such

beliefs discards all but the most recent observation when forming his beliefs. At the other

extreme, when γ = 1, we have that beliefs about any given strategy are simply given by

the empirical frequency with which that strategy has been chosen in the past and each

observation is given equal weight. These beliefs are called fictitious-play beliefs. Therefore,

the closer γ is to 1, the more slowly do beliefs respond to new information, while the closer

γ is to 0, the more quickly do beliefs respond to new information.

To explain the relationship between the γ and pair convergence consider a teacher playing

the Nash equilibrium for a couple of periods. If her opponent has a relatively low γ, her

opponent’s beliefs will update rather quickly and rapidly enter the best response set. If her

opponent also best responds to his beliefs, then the game will converge. On the other hand,

suppose that the teacher’s opponent has a relatively high γ. In this case, his beliefs will

update only very slowly in response to teaching and may not enter the Nash Best Response

Set before the teacher finally gives up teaching. In such a case the game will not converge.

Since many games, including those that do not converge, have teachers, one might conjecture

that what separates successful from unsuccessful teaching is the γ of the follower in the pair.
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Figure 5: Empirical Distributions of γ: AP Treatment
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If the follower has a low γ and the teacher is persistent, then we expect convergence while

if the follower has a sluggish reaction to what he sees, a high γ, then we expect convergence

to be less likely. These facts allow us to state our first convergence hypothesis:

Convergence Hypothesis 1a — The γ distribution: The distribution of γ’s for non-

convergers stochastically dominates the distribution of γ’s for followers (late convergers).

To estimate the γ used by each subject we take the sequence of elicited beliefs {bi,t}20
t=1

for each player i over the 20 period horizon of the experiment and compare it to what that

sequence would have been if the subject formed their beliefs using the Cheung-Friedman

γ-historical belief model which would produce, for a given γ, a sequence of beliefs denoted

as {bi,t(γ)}20
t=1. We estimate γ by searching for that γ that minimizes the sum of squared

prediction errors. That is, given a sequence of choices, {bi,t}20
t=1 we can find the γ ∈ [0, 1]

that minimizes:

SSE(γ) =
20∑
t=1

3∑
k=1

(bki,t − bki,t(γ))2 (2)

where we sum over all periods t = 1, . . . , 20 and all three possible actions k = 1, 2, 3.17

In Figure 5, we present the cumulative distributions of our estimates of γ for each subject.

17To obtain our estimates, we used the Differential Evolution optimization procedure, as implemented in
MATLAB, proposed by Storn and Price (1997).
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Table 7: Hypothesis Tests for the Estimates of γ

DSG Game nDSG Game
Non-Convergers Followers Non-Convergers Followers

Test of Means
µ 0.556 0.848 0.617 0.848
|t| 3.57∗∗∗ 3.33∗∗∗

Mann-Whitney |z| 2.91∗∗∗ 2.71∗∗∗

Kolmogorov-Smirnov D 0.480∗∗ 0.388∗
∗∗∗ significant at 1%; ∗∗ significant at 5%; ∗ significant at 10%

The results are separated by game (DSG and nDSG) and also by players’ status as either

a non-converger or a follower (late converger). First observe that, for both games, when

comparing the distributions of γ for followers and non-convergers, there is a clear pattern

of first-order stochastic dominance. Indeed, the distribution of γ is skewed towards much

higher values for non-convergers. Moreover, for both the DSG and the nDSG game, there is

a mass of subjects with γ estimated to be 1. Table 7 presents the results of three different

tests (mean, Mann-Whitney and Kolmogorov-Smirnov) comparing the γ’s for non-convergers

and for followers. As can be seen, the only case in which we cannot reject the hypothesis

that the populations of non-convergers and followers are different at the 5% level is with

the Kolmogorov-Smirnov test in the nDSG game. In all other cases, we easily reject the

hypothesis that the two populations are the same. We take this as substantial evidence in

favour of Convergence Hypothesis 1a.

While we prefer to focus on individual level data, we can also conduct a similar exercise

pooling across players and estimate γ jointly with the subjects’ stochastic best response

precision. Since we also argue that a failure to converge is not a failure of best responding,

we estimate a model of γ-weighted beliefs with stochastic best response (henceforth the γ/λ-

model). More precisely, using the beliefs defined by (1), if we define the expected utility of

choosing action k in period t as Et[π(ak, a−i)] + εk, for k = 1, 2, 3, where εk has a Type I

extreme value distribution, with εi and εj for i 6= j independently distributed, then we can

define the probability that action k will be chosen in period t as:

Pr[At = k] =
exp(λEtπ[(ak, a−i)])∑
j exp(λEt[π(aj, a−i)])

(3)

where λ measures the precision with which this player best responds.

Our convergence hypothesis can then be restated and expanded to include both γ and λ.

Before stating our hypothesis or discussing results, it is important to make clear our purpose

with this exercise. Our underlying theme throughout the paper is that two features help

convergence: First, the presence of a player who understands the Nash equilibrium and tries
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to influence the beliefs of his/her opponent, even if it means choosing actions which are not a

best response to static beliefs. Such players we have called teachers. Second, the opponent of

the teacher must be a sufficiently fast learner for, if not, the teacher will give up and return

to static best responses before the game has converged. Our above analysis has shown that

there are teachers present in virtually all games that converged and also in many of the

games that did not converge. Therefore, if our conjectures are correct, then what separates

those who converge from those who do not is the speed at which beliefs are updated. Thus,

it makes sense for us to examine the behavior of two groups: followers (aka late convergers)

and non-convergers. In order to be consistent with our conjectures, we would expect to find

that γ is lower for followers than for non-convergers (i.e., followers update their beliefs more

quickly than non-convergers) and that λ is the same for both groups (i.e., both followers

and non-convergers best respond equally as well). We state this formally as:

Convergence Hypothesis 1b — The joint γ/λ hypothesis: The estimate, γFOL, for

followers should be less than the estimate, γNC, for non-convergent players. Moreover, the

estimated λ’s should not be different.

We test this hypothesis on the pooled data of all subjects in each treatment. However,

there is some question about what the appropriate sample to use in the estimation is. After a

pattern of convergence has been well established, virtually all subjects are best responding to

their stated beliefs. Therefore, when comparing λ between convergent and non-convergent

players, we feel that it doesn’t make sense to include a lot of post-convergence periods.

Therefore, for this comparison, we estimate the model using only data up to and including

two periods after convergence.18 On the other hand, the dependence on history of beliefs,

and hence on γ, still seems important, even after convergence has occurred. Therefore, for

this comparison, we will make use of the full sample.

The reader can see that Table 8 lends support to Convergence Hypothesis 1b. Pooling the

data across both followers and non-convergers, we are able to conduct a series of likelihood

ratio tests on the estimated parameters. First, compare the estimates of λ for followers and

non-convergers. For the DSG game, a likelihood ratio test gives a test statistic of χ2
1 = 0.925,

while for the nDSG game, the same test statistic is 0.075. Therefore, in both games, we see

that the estimates λ are statistically indistinguishable.19

18Although two periods post convergence is somewhat arbitrary, we feel that it gives subjects time to
recognize that convergence has been achieved, but is still short enough so that the estimates of λ are not
inflated by a lot of post-convergence best responses. Also, since some subjects converge very early in the
game, if we used only data up to convergence, we would not be able to identify very strongly behaviour for
these subjects. Whether we use data up to convergence or two periods post-convergence, the results do not
qualitatively differ.

19If we use all the data to compare the estimates of λ, then, not surprisingly, we find a statistically
distinguishable difference between followers and non-convergers. Specifically, for the DSG and nDSG games,
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Table 8: Estimates of γ & λ: γ-weighted beliefs with Stochastic BR†, ‡

DSG (FOL)
DSG (NC)

nDSG (FOL)
nDSG (NC)

conv. + 2 all data conv. + 2 all data

λ
0.043 0.098 0.033 0.051 0.096 0.048

(0.0091) (0.0269) (0.0036) (0.0111) (0.0134) (0.0037)

γ
0.423 0.503 0.913 0.497 0.608 0.727

(0.1210) (0.0876) (0.0788) (0.0799) (0.0550) (0.0567)

n 126 260 600 151 280 640
LL -126.41 -216.15 -623.9 -137.91 -187.44 -620.28

† Standard Errors are generated via a jack-knife procedure: For each of 150 replications, we randomly drew
(without replacement) a sample of approximately 70% of the players and estimated the model for γ and λ.
‡ NC: non-convergent pairs; FOL: followers.

Now consider the estimates for γ. First observe that, whether we use the full sample or

only the restricted sample, for both games the estimate of γ for followers is less than the

estimate for non-convergers. In terms of statistical significance, using the full sample, for the

DSG game, we have a likelihood ratio test statistic of 8.02, which is highly significant. In

contrast, for the nDSG game, the same test statistic is only 2.22, which is not significant at

the 5% level. Interestingly, if we use only the restricted sample, then the difference between

non-convergers and followers is also significant (χ2
1 = 4.05) at the 5% level. This would seem

to be due to the fact that γ is actually smaller when we use the restricted sample, though

we do not have an adequate explanation for why this would be so.

4 Robustness: Other Treatments & Experiments

4.1 Games Used in Other Experiments

We now investigate the robustness of our findings, and show that our results are transferable

to other environments, by using data from experiments run by other investigators using an

experimental design similar to ours but employed on games with different structures. We

first present the games we will discuss and then analyze them using our teaching hypothesis.

Terracol and Vaksmann (2009). As we have said, one of the most closely related

papers to ours is Terracol and Vaksmann (2009). In their experiment subjects played the

game in Figure 6 for 30 rounds in fixed pairs. This game has three pure strategy equilibria,

which are marked in bold. Notice that the equilibrium in which both players choose X is in

weakly dominated strategies, but that this equilibrium can be seen as a kind of compromise

respectively, we have χ2
1(DSG) = 40.04 and χ2

1(nDSG) = 26.51.
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since both players receive there second highest equilibrium payoff. Hence, this game is

fundamentally different from the 3× 3 games used in our experiment.

Figure 6: The Terracol and Vaksmann Game

X Y Z
X 40,52 22, 46 40, 52
Y 35, 40 10, 20 44,46
Z 40, 52 30,60 40, 52

Hyndman, Terracol and Vaksmann (2009). In a follow-up paper to ours and Terracol

and Vaksmann (2009), Hyndman, Terracol, and Vaksmann (2009) systematically study the

incentives that subjects have to teach their opponent to play a particular Nash equilibrium.

They study four different 2×2 coordination games, each with two Pareto rankable equilibria

and a mixed strategy equilibrium. The games are on display in Figure 7. The incentives

for the row player to teach are varied on two dimensions, while those of the column player

are held constant. The two dimensions studied are the so-called teaching premium and the

teaching cost. The teaching premium represents the gain to a player by moving from the

inefficient to the efficient equilibrium, while the teaching cost captures the loss to a player

who chooses action X (i.e., the action associated with the efficient Nash equilibrium) despite

it not being a best response. In Figure 7, the first letter below each game indicates whether

the teaching premium was high or low, while the second letter indicates whether the teaching

cost was high or low. The hypothesis of Hyndman, Terracol, and Vaksmann (2009) is that

the prevalence of teaching should be increasing in the teaching premium and decreasing in

the teaching cost.

Figure 7: Games From Hyndman, Terracol and Vaksmann (2009)

X Y
X 40,45 8, 37
Y 39, 0 12,32

X Y
X 40,45 0, 37
Y 37, 0 12,32

(HL) (HH)

X Y
X 20,45 8, 37
Y 19, 0 12,32

X Y
X 20,45 0, 37
Y 17, 0 12,32

(LL) (LH)
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Fehr, Kübler and Danz (2009). In a recent paper, Fehr, Kübler, and Danz (2009)

employ a similar experimental design to ours to study the evolution of strategic behavior in a

repeated game, which is given in Figure 8. Notice that this game has a unique pure strategy

Nash equilibrium at (X,X), which is attainable through the iterated deletion of strictly

dominated actions. Unlike our dominance solvable game, however, the Nash equilibrium is

Pareto dominated by (Z,Z),which we placed in a darkened cell.

Figure 8: The Fehr, Kübler and Danz Game

X Y Z
X 78,68 72, 23 12, 20
Y 67, 52 59, 63 78, 49
Z 21, 11 62, 89 89, 78

4.2 Results From Other Experiments

As can be seen, the above six games used in the other experiments have very different

characteristics than the games we chose to study. As such, by studying their data, we can

hope to see whether teaching is present in games with other properties and, if so, whether

what subjects attempt to teach differs across these games.

Tables 9 and 10 replicate our earlier analysis of the AP treatments for these six games.

Examining convergence rates, we see that after 20 periods, very few pairs managed to con-

verge to a Nash equilibrium in Terracol and Vaksmann (2009), while after 30 periods, almost

half of the subjects converged to an equilibrium. Thus, the presence of multiple Pareto in-

comparable equilibria seems to make convergence more difficult. In the Hyndman, Terracol,

and Vaksmann (2009) games, we see that the highest convergence rate (to the efficient equi-

librium) was achieved when teaching was easiest (low cost, high premium), and the lowest

convergence rate was achieved when teaching was most difficult (low premium, high cost).

In terms of convergence to the inefficient equilibrium, the highest convergence rate (40%)

occurs when teaching is most difficult. Finally, in Fehr, Kübler, and Danz (2009), only about

26% of pairs converged to the Nash equilibrium, while another 22% converged (but for a

last period deviation) to the Stackelberg equilibrium, which Pareto dominated the Nash

equilibrium payoffs.

Just by looking at convergence rates, it is difficult to say that teaching was going on.

Therefore, in Table 10, we report the frequency with which subjects chose a particular action

despite it not being a best response to their stated beliefs. For Terracol and Vaksmann

(2009), we report the frequency that subjects chose their preferred Nash equilibrium action

despite it not being a best response; for Hyndman, Terracol, and Vaksmann (2009) we report
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Table 9: Results From Other Experiments: Convergence

TV HTV‡ FKD
Periods HL HH LL LH Nash Stack†,∗

% of Pairs Converging (20 Per) 17.6 52.9 37.5 42.1 26.7 25.9 22.2
% of Pairs Converging (30 Per) 52.9 na na na na na na

Frequency of Nash Actions
1-10 40.6 52.4 57.2 58.2 53.0 24.1 43.7
11-20 40.3 61.8 55.3 58.9 42.0 30.7 43.5
21-30 42.9 na na na na na na

‡ We report only convergence to the Pareto efficient equilibrium. For each treatment, respectively, 17.6%, 25%, 15.8%
and 40% of the pairs converged to the Pareto inefficient equilibrium.
† In all groups, the column player had a last-period deviation to the static best-response.
∗ Stack = Stackelberg.

Table 10: Results From Other Experiments: Teaching

TV† HTV‡ FKD
Periods HL HH LL LH

Frequency That Action was
a Best Response to Stated
Beliefs

1-10 52.9 63.3 71.6 74.7 71.3 59.4
11-20 62.4 75.3 85.7 82.9 85.7 64.8
21-30 70.6 na na na na na

Frequency That Nash
Action Chosen, Conditional
Upon it Not Being a Best
Response to Stated Beliefs

Nash Stack∗

1-10 52.5 92.0 94.5 84.4 74.4 14.2 69.4
11-20 45.3 90.5 88.7 78.5 74.4 10.5 77.9
21-30 51.0 na na na na na na

‡ We report the frequency with which subjects chose the efficient Nash action (i.e., Action X) despite it not being a best
response.
† This refers to the frequency with which subjects chose their preferred Nash equilibrium action (i.e., Action Y ) despite
it not being a best response.
∗ Stack = Stackelberg.

the frequency with which subjects chose the efficient equilibrium action despite it not being

a best response; finally, for Fehr, Kübler, and Danz (2009), we report both the frequency

that subjects chose the Nash action or the Stackelberg action despite it not being a best

response to stated beliefs. The results here indicate that subjects are willing to take statically

suboptimal actions in order to influence the ultimate outcome of the game. The results also

shed light on the question of what subjects try to teach, which we now turn to.

4.3 What do Teachers Try to Teach?

Since our games had a unique pure-strategy Nash equilibrium on the Pareto frontier, the fact

that our subjects engaged in teaching offers us little insight into what they were attempting

to teach: what else would one teach but Nash? Hence, there was no way for a teacher to

benefit from trying to teach her opponent to play in a non-equilibrium manner (e.g., be a

Stackelberg leader) or to alternate between cells in a way to increase her payoff. Such was
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not the case in the experiments performed in the three outside studies we discussed. Here,

because the payoffs were either not on the Pareto frontier or because of the existence of

multiple equilibria, there were more opportunities to teach, more varied things to teach, and

therefore more opportunities for us to gain insights into the motives of teachers.

One might hypothesize that there are two motivations for teaching. In one, the teacher

is a payoff maximizer who uses teaching to convince her opponent that she is committed to

choosing an action which either yields her preferred equilibrium outcome (if many equilibria

exist) or to establish herself as a Stackelberg leader hoping to influence the beliefs of her

opponent and show that she is committed to playing Stackelberg equilibrium. Under this

motive the point of teaching is to alter beliefs in a self-serving manner or to build a reputation.

An alternative might be to lead one’s opponent to an outcome that is preferred on ethical

grounds, such as fairness or efficiency, as in Fehr, Kübler, and Danz (2009) where a non-

equilibrium Pareto superior payoff exists. Here teaching attempts to make one’s opponent

aware of the existence of this “preferred” outcome and show a willingness choose it.

The data generated by the three external experiments tend to support the former hypoth-

esis that teaching is self-serving and aimed at influencing the expectations of one’s opponent.

For example, in the Terracol and Vaksmann (2009) experiments, one might imagine that the

equilibrium (X,X) is attractive on two grounds: it maximizes the sum of equilibrium payoffs

and each player gets his/her middle equilibrium payoff, making it fair in some sense. However,

it was never the case that players converged to this equilibrium: Four times convergence was

to column’s Stackelberg outcome and 5 times it was to Row’s Stackelberg outcome. That is,

people appear to teach the equilibrium which is most attractive to themselves, rather using

teaching to lead to the compromise payoff (X,X).

In the Fehr, Kübler, and Danz (2009) experiments the strategic dilemma for the players

is the fact that while there is a unique Nash equilibrium (X,X) in pure strategies, the

outcome (Z,Z) Pareto dominates it, so a logical teaching strategy might be to try to teach

one’s opponent to play Z in exchange for her reciprocation. In terms of game outcomes,

we see that 7 of 27 pairs converged to the Nash equilibrium, while 6 of 27 pairs essentially

converged to the Stackelberg equilibrium (in all cases, the column player had a last period

deviation to action Y ). However, in terms of teaching, Table 10 indicates that subjects spend

most of their efforts trying to lead the way to the Stackelberg equilibrium.20

Finally, in the Hyndman, Terracol, and Vaksmann (2009) experiment, we have a clear

case where what to teach should be obvious – subjects should teach each other to play the

20To be sure, there is some bias in these numbers. Stackelberg teaching in the Fehr, Kübler, and Danz
(2009) game, if successful, will always be suboptimal in the static sense for the column player. In contrast,
in our games, since convergence is to a Nash equilibrium, the teacher’s actions will eventually be a best
response to stated beliefs post-convergence.
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equilibrium which Pareto dominates the other. This is exactly what they do, though they

respond to incentives, with teaching being most prevalent when the teaching premium is

high and the teaching cost is low and being least prevalent under opposite conditions.

The punch line, therefore, seems to be that subjects teach to alter the beliefs of their

opponents in an effort to increase their payoff. When, as in our original 3 × 3 games, the

unique Nash equilibrium is also Pareto optimal, they teach Nash. When Stackelberg-like

equilibria exist, those are taught to the exclusion of more equitable Nash outcomes while if

there is a joint Pareto best equilibrium, it is what is selected.

4.4 The RM & OP Treatments

The results presented in Section 3 showed the importance of teaching in facilitating conver-

gence to Nash equilibrium in the two games we have considered when teaching is relatively

easy. The analysis so far in Section 4 have demonstrated that teaching plays an important

role in games with other properties, such as multiple equilibria (either Pareto rankable or

not) or a game with a unique, Pareto inefficient equilibrium. In this section we study be-

havior in other environments in which teaching should be more difficult. If teaching plays a

role in facilitating convergence, then if we make teaching difficult, we should see less of it.

To do this we turn to the RM and OP treatments.

For both the RM and OP treatments, we expect teaching to be difficult. In the RM

experiment, subjects were randomly rematched each period, dramatically reducing the in-

centives to teach.21 Thus, while teaching may be more difficult in the RM treatment, it need

not be impossible. In contrast, in the OP treatment subjects did not know their opponent’s

payoffs so that they were unable to calculate the Nash equilibrium. Clearly, this makes

teaching virtually impossible since a subject does not necessarily know what to teach or

even how to interpret his opponent’s response. Note that standard backward looking models

would not predict that convergence rates differ in these treatments from those seen in our

AP Treatment.

The evidence presented in Table 11 is consistent with our hypothesis that teaching fa-

cilitates convergence to a unique Nash equilibrium. As can be seen, after 20 periods the

frequency of Nash actions is lower for both the RM and OP treatments and in both the DSG

and nDSG games. In all cases, a proportions test shows the difference is highly statistically

significant (in all cases p � 0.01). Next, if we look at the frequency that subjects chose a

best response to their stated beliefs, we see that in periods 1 – 10, there are no substantial

differences; in fact, in all but one case, subjects in our RM and OP treatments actually best

21See, however, Ellison (1997) who shows that a single rational player interacting in a population of myopic
players may be able to move the population to a Nash equilibrium if she is patient enough.
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responded slightly more often than in the AP treatment. However, over periods 11 – 20, the

best response rate increased much more in the AP treatments, likely owing to the greater

convergence to equilibrium. Finally, if we look at the frequency of times that subjects chose

the Nash action despite it not being a best response to stated beliefs, we see that, in all cases

(and particularly for the nDSG game) it is lower in the RM and OP treatments than in the

AP treatment. This also suggests that subjects are not attempting to teach their opponent

to play the Nash equilibrium.

Recall that we ran our OP and RM treatments for an additional 40 periods to see if we

observe delayed convergence (i.e., it might take subjects longer to converge when teaching

is difficult). Table 11 also has these results. In the OP treatment, there was more frequent

Nash play after 60 periods but the frequencies were still below those of the corresponding

20-period frequencies from the AP treatment. In the RM treatment, for the non-dominance

solvable game, increasing the length of play had no effect on convergence, while for the

dominance solvable game, in the final 10 periods of play, the Nash action was chosen 93% of

the time.

Table 11: Behavior in Other Treatments: Convergence & Teaching

AP OP RM
Periods DSG nDSG DSG nDSG DSG nDSG

Frequency of Nash Actions

1-10 56.7 45.8 29.2 18.6 28.5 14.5
11-20 64.5 55.3 32.9 17.9 36.0 7.0
21-30 na na 33.7 17.6 52.0 4.5
31-40 na na 37.6 22.6 72.5 7.0
41-50 na na 46.6 23.5 89.5 3.5
51-60 na na 48.7 24.4 93.0 6.0

Frequency That Action
Chosen was a Best
Response to Stated Beliefs

1-10 59.5 59.8 56.9 63.2 69.0 61.0
11-20 70.3 76.1 62.1 68.1 57.5 64.5
21-30 na na 62.1 65.9 68.5 65.5
31-40 na na 60.3 73.8 74.5 61.0
41-50 na na 62.4 76.2 81.0 61.5
51-60 na na 65.3 75.6 84.0 57.5

Frequency That Nash
Action Chosen, Conditional
Upon it Not Being a Best
Response to Stated Beliefs

1-10 61.8 46.3 50.3 37.4 67.7 33.3
11-20 54.2 41.1 42.9 31.7 56.5 18.3
21-30 na na 41.7 29.3 69.8 13.0
31-40 na na 36.4 28.1 58.8 17.9
41-50 na na 46.2 24.7 57.9 7.8
51-60 na na 39.4 19.3 59.4 14.1

Thus when teaching is more difficult, as is the case with the RM and OP treatments,

convergence rates go down. However, it appears to be true that, given enough time, in some
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environments convergence rates may rise even when teaching is difficult. This is particularly

true of the dominance solvable game in the RM treatment.

Although some teaching may be present, as evidenced by the high frequency of Nash

action choices that were not best responses to stated beliefs, we believe that the high con-

vergence rate found there is due to subjects learning over time how to iteratively delete

dominated strategies. To illustrate the iterative dominance principle at work, consider Fig-

ure 9, which shows the frequency of actions taken by row and column players each period in

the DSG game.

Figure 9: Frequency of Action Choices (Random Matching: DSG)
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Looking at Figure 9 we see that this sequence is actually followed over time. For example,

A2 for row is supposed to be the first strategy eliminated. As we see that row players virtually

never play that strategy over the course of the experiment. The next strategy to be eliminated

is A3 for column. As we see, by period 13 the mean use of strategy A3 for column drops

below all the other strategies and stays there throughout the rest of the game. Clearly it is

the second strategy eliminated. This leads to the Row Player’s strategy A2 being eliminated
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by period 40 etc. A similar pattern can be seen for the beliefs of the subjects. 22

While convergence was achieved via iterated deletion of dominated actions in the DSG

game, no such possibility was present in the nDSG game. As Table 11 shows, subjects

almost never chose the Nash action. Moreover, there is no evidence that teaching was taking

place: over periods 1 – 10, the frequency of Nash actions that were not also best responses to

stated beliefs was only 33.3%, which would be consistent with random choice. In all other 10

period ranges, the corresponding frequency was never more than 20%. Clearly, there is very

little evidence of Nash play or attempted Nash teaching. The question remains as to what

explains subjects’ behavior. If we estimate the γ/λ model described in Section 3.4, we obtain

λ = 0.09 and γ = 0.84. A likelihood ratio test on λ gives a test statistic of 250.9, which

indicates a highly significant coefficient. Moreover, one can see that the average frequency of

play corresponds very closely to a quantal response equilibrium (with λ ≈ 0.8). Therefore,

it seems that a model of stochastic best response to stated beliefs, where beliefs update

according to the past history of observed actions is the leading explanation of behavior in

this treatment.

5 Conclusions

This paper has attempted an investigation of the process through which people playing

games converge to an equilibrium — a state where their beliefs about the actions of their

opponents are confirmed. The results of our experiments show that, at least in the class

of games that we study, teaching plays an important role in the process of convergence to

Nash equilibrium. More precisely, in the two person, 3× 3 games we used, those pairs that

successfully converged did so through a process quite different from the backward looking

process described in much of the learning literature. Rather, convergence seems to be an

action led process where one player, the teacher, takes it upon herself to lead the way to

the Nash equilibrium by repeatedly choosing her Nash action despite the fact that it is

not a best response to her beliefs. Successful convergence matches such a teacher with a

fast learner, i.e., someone who places sufficient weight on recent history. Non-convergence

appears, predominantly, to be the result of beliefs updating too sluggishly, rather than an

inability of subjects to best respond.

While our experiments focuses on games with a single pure strategy Nash equilibrium

with payoffs on the Pareto frontier, we also examined data from other experiments, whose

games had different properties than our own. The results here show that teaching also has

22The corresponding figure which shows the same iterative process for beliefs is available from the authors
upon request.
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an important role in the process of convergence. However, these games also demonstrate

that what subjects attempt to teach depend on the properties of the game being played.

When the game has multiple, Pareto rankable equilibria, teaching is exclusively towards the

efficient Nash equilibrium, though the extent of teaching depends on the strength of the

incentives to do so. When games have multiple, Pareto incomparable equilibria, players try

to teach their most preferred equilibrium. Finally, when the game has an equilibrium which

is Pareto dominated by another strategy profile, a non-negligible subset of players try to

teach their opponent to play Pareto dominating strategy profile, while others are content

to teach their way to the Nash equilibrium, even though it is inefficient. These last two

games suggest that one cannot ignore Stackelberg equilibria when studying the process of

convergence and teaching.

We also examined the robustness of our results with a series of other experiments. In

particular, if teaching plays an important role in the process of convergence, then if teaching is

made more difficult, we should see less, and possibly delayed, convergence. In one treatment

we increased the strategy space, in another we only showed players their own payoffs (OP

treatment) and, lastly, we had a treatment with random matching (RM treatment). What

we found is that as teaching becomes more difficult convergence becomes rarer. This is

interesting because, according to a large segment of the learning literature, these treatments

are expected to have either no impact (in the OP treatment) on the convergence rates

of many backward looking processes or actually enhance it (in the RM treatment). Our

results are strongest for the non-dominance solvable game, where convergence rates after 60

periods were still well below the 20-period convergence rate of our baseline. Interestingly, in

the dominance solvable game for the RM treatment subjects were able to converge after 60

periods, though the procedure they used appeared to follow an iterative deletion of dominated

actions process rather than a teaching process, which may explain why it took so long for

convergence to occur.

There is still a lot of work to be done. If what we have uncovered here is replicated,

investigators may want to span a wider set of games and environments to see if teaching is

relevant in all, some or none of them. For example, in multi-person games the ability of a

player to teach is diluted by the actions of others. Still environments with different feedback

or communication rules may foster teaching and hence convergence.
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Huck, S., and G. Weizsäcker (2002): “Do players correctly estimate what others do?

Evidence of conservatism in beliefs,” Journal of Economic Behavior & Organization, 47(1),

71–85.

Hyndman, K., A. Terracol, and J. Vaksmann (2009): “Learning and Sophistication

in Coordination Games,” Experimental Economics, 12(4), 450–472.

Mookherjee, D., and B. Sopher (1994): “Learning Behavior in an Experimental Match-

ing Pennies Game,” Games and Economic Behavior, 7(1), 62–91.

Partow, Z., and A. Schotter (1993): “Does Game Theory Predict Well for the Wrong

Reasons: An Experimental Investigation,” Working Paper 93-46, C.V. Starr Center for

Applied Economics, New York University.

Rutström, E. E., and N. T. Wilcox (2009): “Stated beliefs versus inferred beliefs:

A methodological inquiry and experimental test,” Games and Economic Behavior, 67,

616–632.

Sargent, T., and A. Marcet (1989): “Convergence of Least Squares Learning Mech-

Convergence of Least Squares Learning Mechanisms in Self-Referential Linear Stochastic

Models,” Journal of Economic Theory, 48(2), 337–368.

Sargent, T. J., and I.-K. Cho (2008): “Self-Confirming Equilibrium,” in The New

Palgrave Dictionary of Economics, ed. by S. Durlauf, and L. Blume.

Storn, R., and K. Price (1997): “Differential Evolution — A Simple and Efficient Heuris-

tic for Global Optimization over Continuous Spaces,” Journal of Global Optimization, 115,

341–359.

Terracol, A., and J. Vaksmann (2009): “Dumbing Down Rational Players: Learning

and Teaching in an Experimental Game,” Journal of Economic Behavior & Organization,

70, 54–71.

35


	Introduction 
	Experimental Design, Procedures & Definitions 
	Experimental Design & Procedures
	Definitions 

	Results: The AP Treatments 
	Examples of Successful and Unsuccessful Teaching
	A Successful Teaching Episode 
	A Failed Teaching Episode 

	Convergence and Teaching 
	The 3 3 Games
	The 4 4 Games
	Does Belief Elicitation Influence Behavior?

	Non-Convergence
	Failed Teaching
	Hypotheses

	A Formal Analysis of Convergence and Non-Convergence 

	Robustness: Other Treatments & Experiments 
	Games Used in Other Experiments 
	Results From Other Experiments 
	What do Teachers Try to Teach?
	The RM & OP Treatments 

	Conclusions 

