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Abstract

This paper proposes the GMM estimation of the spatial dynamic panel data model with �xed e¤ects
when n is large, and T can be large, but small relative to n. By eliminating �xed e¤ectsto begin with,
we investigate asymptotic properties of the estimators, where exogenous and predetermined variables are
used as instruments. For the spatial dynamic panel data model, as compared with the dynamic panel
data model, we have not only more linear moment conditions due to spatial e¤ects, but also quadratic
moment conditions. We stack up the data and construct the best linear and quadratic moment conditions.
An alternative approach is to use separate moment conditions for each period, which gives rise to many
moment estimation. We show that these estimators are pnT consistent, asymptotically normal, and can
be relatively e¢ cient. We compare these approaches on their �nite sample performance by Monte Carlo.

JEL classi�cation: C13; C23; R15
Keywords: Spatial autoregression, Dynamic panels, Fixed e¤ects, Generalized method of moment,

Many moments



1 Introduction

Dynamic panel data has been studied extensively in recent decades in the literature. It can not only

capture dynamics of economic activities but also enable researchers to control unobservable heterogeneity

across units. When the number of cross section units n is large, with �xed e¤ects for units, we encounter the

incidental parameter problem in Neyman and Scott (1948). As a result, the maximum likelihood estimator

(MLE) of the autoregressive coe¢ cient, which is also known as the within estimator, is biased and inconsistent

when n tends to in�nity but T remains �nite (Nickell, 1981; Hsiao, 1986). By taking time di¤erences to

eliminate �xed e¤ects in the dynamic equation, the estimation method of instrumental variables (IV) is

popular (see Anderson and Hsiao, 1981; Arellano and Bond, 1991; Arellano and Bover, 1995; Blundell and

Bond, 1998; Bun and Kiviet, 2006, etc).

When T is �nite, the IVs from all the available lag variables may improve, in principle, the asymptotic

e¢ ciency of the estimators. When T is moderate or large, however, the many moment issue with a prolif-

eration of IVs will appear. In the literature on IV and generalized method of moments (GMM) estimation

with many moment conditions, e.g., in nonlinear simultaneous equations models or conditional moments

restrictions models, many moments decrease the variances of the IV or GMM estimates, but increase their

biases (see Bekker, 1994; Donald and Newey, 2001; Chao and Swanson, 2005; Han and Phillips, 2006, etc).

In the simple dynamic panel data model with �xed e¤ects, when T is moderately large, but small relative to

n, Alvarez and Arellano (2003) study the many IV estimation and its asymptotic properties. Okui (2009)

investigates how to choose the number of instruments to minimize the mean square error (MSE) by extending

Donald and Newey (2001) to dynamic panel data models.

Recently, there is a growing literature on spatial panel data models and dynamic panel data models with

spatial correlations. By including spatial e¤ects into panel models or dynamic panel models, one can take into

account the cross section dependence from contemporaneous or lagged cross section interactions. Kapoor et

al. (2007) extend the method of moments estimation to a spatial panel model with error components. Baltagi

et al. (2007) consider the testing of spatial and serial dependence in an extended error components model,

where serial correlation on each spatial unit over time and spatial dependence across spatial units are in the

disturbances. Su and Yang (2007) study the dynamic panel data with spatial error and random e¤ects. These

panel models specify spatial correlations by including spatially correlated disturbances and have emphasized

error components. In the �xed e¤ects setting, Korniotis (2008) studies a time-space recursive model, where

individual time lag and spatial time lag are present, by the least square dummy regression approach. Yu

et al. (2007, 2008) and Yu and Lee (2010) study the quasi maximum likelihood (QML) estimation for,

respectively, the spatial cointegration, stable, and unit root spatial dynamic panel data (SDPD) models,
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where individual time lag, spatial time lag and contemporaneous spatial lag are all included.

For the stable SDPD model with �xed e¤ects, the asymptotics of the QML estimation in Yu et al. (2008)

is developed under T ! 1 where T cannot be too small relative to n. In empirical applications, we might

have data sets where n is large while T is relatively small. This motivates our study of GMM estimation of

the SDPD model in order to cover the scenario that both n and T can be large, but T is small relative to

n. The reason for considering the asymptotic with T ! 1 instead of a �nite T is that, in this framework,

we have the best IV or best GMM estimation with proper designs of IVs and moment conditions.1 In the

QML approach considered in Yu et al (2008), all the parameters including individual �xed e¤ects are jointly

estimated, which apparently gives rise to asymptotic biases. In the present paper, we eliminate individual

�xed e¤ects �rst and then consider the IV and GMM estimation of the resulting equation. Speci�cally, this

paper extends the GMM estimation of dynamic panel data models to SDPD models, where we have more

linear moment conditions and additional quadratic moment conditions due to spatial e¤ects.

Compared to dynamic panel data models where serial correlation occurs in the time dimension, the SDPD

model has correlation in the time dimension as well as spatial correlation across units. In one approach, we

stack up the data and use moment conditions in a systematic setting where the IVs have a �xed column

dimension for all the periods. In another, we can use separate moment conditions for each time period, which

result in many moments. Those many moments not only come from time lags, but are also designed for

spatial lags. We focus on the design of estimation methods that can have some asymptotic e¢ cient properties.

Normalized asymptotic distributions of IV estimators in the �nite moments approaches are properly centered

at the true parameter vector. In the many moment approach, normalized asymptotic distributions of IV

estimates might not be properly centered or an IV estimator might not be consistent due to the many IV

moments (but not directly due to the �xed e¤ects). In contrast to the asymptotics in Yu et al. (2008) where

there are ratio conditions on how T and n go to in�nity in order that estimates can be consistent or their

normalized asymptotic distributions are properly centered, such ratio conditions may no longer be needed

with the proposed �nite moments estimation methods in the present paper. In the many IVs estimation

method, the ratio condition concerns about the number of IVs or moments relative to the total sample size

nT , but not directly the ratio of T and n. However, if the total number of IVs is essentially a function of T ,

then n and T ratio conditions would appear; but in that case, the ratio condition requires that T shall be

small relative to n. Thus, the many IVs approach is complementary to the QML approach. In other words,

the proposed estimation methods can be applied to some scenarios where the T is small relative to n, while

the QML method might not be, in theory.

The paper is organized as follows. Section 2 introduces the model and discusses moment conditions.

1This might not be possible for a �xed e¤ects model when T is assumed to be �nite.
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Section 3 derives the consistency and asymptotic distribution of GMM estimators when we use �nite moment

conditions in a systematic setting. Under the framework of T being large, optimal moment conditions can

be designed. Section 4 derives the asymptotic properties of GMM estimators when we use many moment

conditions. In both Sections 3 and 4, we discuss the asymptotic e¢ ciency of the proposed estimators. Section

5 extends the analysis to the model with also �xed time e¤ects in addition to individual e¤ects. Monte Carlo

results for various estimators are provided in Section 6. Section 7 concludes the paper and summarizes the

contributions relative to the GMM estimation of the dynamic panel data model and also the QML estimation

of similar SDPD models. Some lemmas and proofs are collected in the Appendices.

2 The Model and Moment Conditions

2.1 The Model

The model we consider in this paper is the SDPD model

Ynt = �0WnYnt + 
0Yn;t�1 + �0WnYn;t�1 +Xnt�0 + cn0 + Vnt; t = 1; 2; :::; T , (1)

where Ynt = (y1t; y2t; :::; ynt)0 and Vnt = (v1t; v2t; :::; vnt)0 are n� 1 column vectors, and vit�s are i:i:d: across

i and t with zero mean and variance �20. The Wn is an n� n spatial weights matrix, which is nonstochastic

and generates the dependence of yit�s across spatial units. Xnt is an n�kx matrix of nonstochastic regressors

and cn0 is an n�1 column vector of individual e¤ects. The initial values in Yn0 are assumed to be observable.

When n is large, to avoid the incidental parameter problem caused by individual e¤ects, they are elim-

inated by a data transformation. Let [FT;T�1; 1p
T
lT ] be the orthonormal matrix of the eigenvectors of

JT = (IT � 1
T lT l

0
T ), where FT;T�1 is the T � (T � 1) eigenvectors matrix corresponding to the eigenvalues of

one and lT is the T -dimensional vector of ones. The n�T matrix of dependent variables [Yn1; Yn2; � � � ; YnT ]

can be transformed into the n � (T � 1) matrix [Y �n1; Y �n2; � � � ; Y �n;T�1] = [Yn1; Yn2; � � � ; YnT ]FT;T�1; and,

also, [Y (�;�1)n0 ; Y
(�;�1)
n1 ; � � � ; Y (�;�1)n;T�2 ] = [Yn0; Yn1; � � � ; Yn;T�1]FT;T�1. It is important to note that Y (�;�1)n;t�1

and Y �n;t�1 are not equal. Similarly, de�ne [X
�
n1;k; � � � ; X�

n;T�1;k] = [Xn1;k; � � � ; XnT;k]FT;T�1 where Xnt;k
is the kth column of the n � kx matrix Xnt and [V �n1; � � � ; V �n;T�1] = [Vn1; � � � ; VnT ]FT;T�1. Denote X�

nt =

[X�
nt;1; � � � ; X�

nt;kx
]. As l0TFT;T�1 = 0, it follows [cn0; � � � ; cn0]FT;T�1 = 0 so that individual e¤ects are

eliminated by the orthonormal transformation. Thus,2

Y �nt = �0WnY
�
nt + (
0In + �0Wn)Y

(�;�1)
n;t�1 +X�

nt�0 + V
�
nt, t = 1; � � � ; T � 1. (2)

2Because Y (�;�1)n;t�1 is not Y �n;t�1, (2) does not form a SDPD process by itself. For this reason, an ML or QML approach for
(2) is not be feasible.
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As (V �0n1; � � � ; V �0n;T�1)0 = (F 0T;T�1 
 In)(V 0n1; � � � ; V 0nT )0, E(V �0n1; � � � ; V �0n;T�1)0(V �0n1; � � � ; V �0n;T�1) = �20In(T�1)

because F 0T;T�1FT;T�1 = IT�1. Hence, v
�
it�s are uncorrelated where v

�
it is the ith element of V

�
nt. However,

we note that Y (�;�1)n;t�1 is correlated with V �nt. For this reason, in order to estimate (2) where individual e¤ects

are eliminated, IVs are needed for Y (�;�1)n;t�1 and WnY
(�;�1)
n;t�1 for each t (and also for WnY

�
nt). For this purpose,

a convenient selection of FT;T�1 is the Helmert transformation. When the Helmert transformation is used,

V �nt = (
T�t
T�t+1 )

1
2 [Vnt� 1

T�t
PT

h=t+1 Vnh] and Y
(�;�1)
n;t�1 = ( T�t

T�t+1 )
1
2 [Yn;t�1� 1

T�t
PT�1

h=t Ynh] depend on current

and future variables, but not on the past ones. Thus, in addition to all strictly exogenous variables Xns for

s = 1; � � � ; T � 1, the time lag variables Yn0; � � � ; Yn;t�1 can also be used to construct IVs for Y (�;�1)n;t�1 as in

the literature of dynamic panel data models (Alvarez and Arellano, 2003, etc). Correspondingly, we may use

WnXns for s = 1; � � � ; T � 1 and WnYns for s = 0; :::; t� 1 as IVs for WnY
(�;�1)
n;t�1 .

2.2 Moment Conditions

For the estimation of (2), e¤ective IVs and moment conditions are needed for WnY
�
nt in addition to those

for Y (�;�1)n;t�1 and WnY
(�;�1)
n;t�1 . To motivate the moment conditions for this spatial aspect of the SDPD model,

we brie�y review the GMM estimation of the cross section spatial autoregressive (SAR) model in order

to highlight the particular feature of quadratic moments. For models with spatial interactions, quadratic

moments have an important role in e¢ cient estimation.3

For the cross section SAR model Yn = �0WnYn + Xn�0 + Vn, the reduced form equation is Yn =

S�1n (Xn�0 + Vn) where Sn = In � �0Wn and, hence, WnYn = GnXn�0 + GnVn where Gn = WnS
�1
n . The

deterministic part GnXn�0 = E(WnYnjXn) is the best IV for a 2SLS approach (Lee, 2003). However, the

stochastic component GnVn can also be important. One can �nd IV functions which are correlated with

GnVn (and hence WnYn) but uncorrelated with Vn. Lee (2007) shows that the best moment function for this

purpose is (Gn� tr(Gn)
n In)Vn when elements in Vn are i:i:d:N(0; �20). Lee (2007) proposes the GMM approach

based on the linear and quadratic moment conditions E((GnXn�0)
0Vn) = 0 and E(V 0n(Gn�

tr(Gn)
n In)Vn) = 0.

The derived GMM estimator is shown to be asymptotically as e¢ cient as the MLE of the SAR model when

the disturbances are normally distributed. When the disturbances are non-normal, best linear and quadratic

moments also exist, but the expressions can be complicated (see, Liu et al., 2009). To have consistent

(but not necessary e¢ cient) estimates, simpler linear and quadratic moments may be used. Kelejian and

Prucha (1998) and Kelejian et al. (2004) suggest the use of IVs such as Xn, WnXn and W 2
nXn, etc., which

approximate GnXn in the estimation. One may also use V 0nWnVn and/or V 0n(W
2
n �

tr(W 2
n)

n In)Vn, which are

the leading components in the series expansion of V 0n(Gn� trGn

n In)Vn, to form quadratic moments. As shown

3The use of quadratic moments is motivated by the the likelihood function of the SAR model under normality disturbances
(Lee, 2007), as well as the Moran test statistic (Moran, 1950).
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in Lee (2007), with Pn being the class of n � n constant matrices with zero traces, any �nite number of

matrices in Pn can be used in quadratic moment conditions for consistent estimation.

For the GMM estimation of the SDPD model, proper linear moment and quadratic moment conditions

for the time and spatial lags, namely, Y (�;�1)n;t�1 , WnY
(�;�1)
n;t�1 and WnY

�
nt, can be revealed from (2). For the

linear moments, we can stack up the data and construct moment conditions in a systematic setting. Denote

Qn;T�1 = (Q0n1; � � � ; Q0n;T�1)0 as the IV matrix for the system, where Qnt has a �xed column dimension

greater than or equal to kx+3 for all t, e.g., Qnt could be [Yn;t�1;WnYn;t�1;W
2
nYn;t�1; X

�
nt;WnX

�
nt]. Then,

by denoting V�
n;T�1 = (V �0n1; � � � ; V �0n;T�1)0, the linear empirical moments are Q0

n;T�1V
�
n;T�1. In another

approach, we may use separate moments for each period, where the number of moments might increase over

time. Denote Hnt as an IV matrix at t consisting of predetermined variables till t� 1 and all the exogenous

variables. For example, Hnt can be (hnt;Wnhnt; � � � ;W pn
n hnt) where hnt = (Yn0; � � � ; Yn;t�1; Xn1; � � � ; XnT )

with the integer power pn � 1. Then, the linear empirical moments are H 0
ntV

�
nt for t = 1; � � � ; T � 1. For the

quadratic moments, they are designed for the disturbance of WnY
�
nt in (2). From (2), it follows that

WnY
�
nt = Gn(
0In + �0Wn)Y

(�;�1)
n;t�1 +GnX

�
nt�0 +GnV

�
nt, t = 1; � � � ; T � 1.

This suggests that, in addition to the linear moment conditions, the quadratic moment condition can be

EV�0
n;T�1[IT�1
 (Gn�

tr(Gn)
n In)]V

�
n;T�1 = 0. As these moments involve unknown parameters in Gn, initial

consistent estimates can be obtained from some simpler moment conditions. These generalize the GMM

approach for the estimation of dynamic panel data and cross section SAR models to the SDPD model.

Denote � = (�; 
; �; �0)0 and V �nt(�)= (In � �Wn)Y
�
nt�(
In + �Wn)Y

(�;�1)
n;t�1 �X�

nt�. Thus, V
�
n;T�1(�) =

(V �0n1(�); � � � ; V �0n;T�1(�))0. In one approach, we propose the following �nite moments in the systematic setting:

gnT (�) =
�
V�0
n;T�1(�)Pn;T�1;1V

�
n;T�1(�); � � � ;V�0

n;T�1(�)Pn;T�1;mV
�
n;T�1(�);V

�0
n;T�1(�)Qn;T�1

�0
; (3)

and, another approach may use separate linear moments for each period, which allows an increasing number

of IVs over time:

gnT (�) =
�
V�0
n;T�1(�)Pn;T�1;1V

�
n;T�1(�); � � � ;V�0

n;T�1(�)Pn;T�1;mV
�
n;T�1(�);V

�0
n;T�1(�)Diag(Hn1; � � � ;Hn;T�1)

�0
;

(4)

where Diag(Hn1; � � � ;Hn;T�1) is a block diagonal matrix with diagonal blocks Hnt�s. Here, each Pn;T�1;l for

l = 1; � � � ;m is an n(T � 1)-dimensional nonstochastic square matrix selected from Pn;T�1, where Pn;T�1 =

IT�1 
Pn with Pn being a class of n� n matrices with a zero trace. For analytical tractability, we assume

that Pn in Pn is uniformly bounded in row and column sums in absolute value (for short, UB).4 These
4We say a (sequence of n � n) matrix Pn is uniformly bounded in row and column sums if supn�1 kPnk1 < 1 and

supn�1 kPnk1 < 1, where kPnk1 � sup1�i�n
Pn
j=1 jpij;nj is the row sum norm and kPnk1 = sup1�j�n

Pn
i=1 jpij;n j is the

column sum norm.
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settings provide general frameworks in which one may discuss the best designs of Qnt, Hnt and Pn;T�1;l.

For (3), the column dimension of Qnt is �xed and is the same for all t. For (4), the column dimension

of Hnt might be increasing in t. The latter approach requires careful analysis due to the many moment

issue as T !1. Hence, appropriately designed Hnt might be needed in order that the derived estimate has

desirable asymptotic properties. Denote Sn(�) = In � �Wn and Sn � Sn(�0). From the DGP (1), we have

Ynt = A
t
nYn0+

Pt�1
h=0A

h
nS

�1
n (cn0+Xn;t�h�0+Vn;t�h), t = 1; 2; � � � ; T , where An = S�1n (
0In+ �0Wn). For

our analysis of the asymptotic properties of estimators, we make the following assumptions.

Assumption 1. Wn is a nonstochastic spatial weights matrix with zero diagonals.

Assumption 2. The disturbances fvitg, i = 1; 2; :::; n and t = 1; 2; :::; T; are i:i:d: across i and t with zero

mean, variance �20 and E jvitj
4+�

<1 for some � > 0.

Assumption 3. Sn(�) is invertible for all � 2 �, where the parameter space � is compact and �0 is in the

interior of �.

Assumption 4. Wn is UB and k�0Wnk1 < 1. Also, S�1n (�) is UB, uniformly in � 2 �.5

Assumption 5. The elements of Xnt and cn0 are nonstochastic and bounded, uniformly in n and t. Also,

limn!1
1

n(T�1)
PT�1

t=1 X
�0
ntX

�
nt exists and is nonsingular.

Assumption 6. Yn0 =
Ph�

h=0A
h
nS

�1
n (cn0 +Xn;�h�0 + Vn;�h), where h

� could be �nite or in�nite.

Assumption 7.
P1

h=0 abs(A
h
n) is UB where [abs(An)]ij = jAn;ij j.

Assumption 8. n goes to in�nity.

The zero diagonal assumption onWn helps the interpretation of the spatial e¤ect as self-in�uence shall be

excluded in practice. Assumption 2 provides regularity assumptions for vit. Assumption 3 guarantees that

the model is an equilibrium one. Also, the compactness of the parameter space is a condition for theoretical

analysis. When Wn is row normalized, a compact subset of (�1; 1) is often taken as the parameter space.

In Assumption 4, when k�0Wnk1 < 1, S�1n can be expanded as an in�nite series in terms of Wn. In many

empirical applications of spatial issues, each of the rows of Wn sums to 1, which ensures that all the weights

are between 0 and 1. In that case, with kWnk1 = 1, j�0j < 1 is assumed. The uniform boundedness

assumption in Assumption 4 is originated by Kelejian and Prucha (1998, 2001) and also used in Lee (2004,

2007). ThatWn and S�1n (�) are UB is a condition that limits the spatial correlation to a manageable degree.

When exogenous variables Xnt�s are included in the model, it is convenient to assume that they are uniformly

bounded as in Assumption 5, and so is cn0. If Xnt and cn0 are allowed to be stochastic and unbounded,

appropriate moment conditions can be imposed instead. The remaining part of Assumption 5 points out

that the regressors of X�
nt are asymptotically linear independent. Assumption 6 speci�es the initial condition

5This assumption has e¤ectively imposed limited dependence across units. For example, if �0n = 1� 1=n under n!1, it
is a near unit root case for a cross sectional spatial autoregressive model and S�1n will not be UB (see Lee and Yu, 2007).
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so that the process may start from a �nite or in�nite past. Assumption 7 combines the absolute summability

condition and the UB condition of the power series of An, which is essential for the analysis in this paper,

as it limits the dependence over time series and across spatial units.6 Assumption 8 speci�es that we have a

large number of spatial units, while the time period T could be either large or small. The particular interest

in this paper is for the case that T can be large, but small relative to n, as the estimation of such a case has

not been explicitly covered in the spatial panel literature.

3 Asymptotic Properties of GMME with Finite Moments

3.1 Consistency and Asymptotic Distribution of GMME

For the moment conditions in (3), identi�cation requires that plimn!1
1

n(T�1)gnT (�) = 0 should have

the unique solution at �0. Denote It�1 as the information set (�-algebra) spanned by (Yn0; � � � ; Yn;t�1),

conditional on (Xn1; � � � ; XnT ; cn0). Also, denote � = (
; �; �0)0, Gn;T�1 = IT�1 
 Gn and Z�n;T�1 =

(Z�0n1; � � � ; Z�0n;T�1)0 where Z�nt = (Y
(�;�1)
n;t�1 ;WnY

(�;�1)
n;t�1 ; X

�
nt) having kz = kx + 2 columns. The following

assumption speci�es the identi�cation via rank conditions for the IV estimation.

Assumption 9. The n�q IV matrix Qnt is predetermined such that E(QntjIt�1) = Qnt, its column dimen-

sion is �xed for all n and t with its elements Op(1) uniformly in n and t, and plimn!1
1

n(T�1)Q
0
n;T�1Qn;T�1

is of full rank q. Also, plimn!1
1

n(T�1)Q
0
n;T�1[Gn;T�1Z

�
n;T�1�0;Z

�
n;T�1] has the full rank kz + 1.

From (2), because Sn(�) = Sn + (�0 � �)Wn, we can expand V �nt(�) as V
�
nt(�) = d

�
nt(�) + Sn(�)S

�1
n V �nt,

where V �nt � V �nt(�0) and d�nt(�) = (�0��)GnZ�nt�0+Z�nt(�0� �). From the linear moment conditions in (3),

as plimn!1
1

n(T�1)
PT�1

t=1 Q
0
ntSn(�)S

�1
n V �nt = 0 uniformly in � 2 � from Lemma 1 (iv), the unique solution of

plimn!1
1

n(T�1)gnT (�) = 0 at �0 requires that the equation plimn!1
1

n(T�1)Q
0
n;T�1[Gn;T�1Z

�
n;T�1�0;Z

�
n;T�1]

(�0��; (�0��)0)0 = 0 should have a unique solution �0. That plimn!1
1

n(T�1)Q
0
n;T�1[Gn;T�1Z

�
n;T�1�0;Z

�
n;T�1]

has a full rank kz + 1 is a su¢ cient condition. Because Z�n;T�1 consists of time and spatial time lags, this

condition will, in general, be satis�ed as long as �0 6= 0.

Theorem 1 provides the consistency and asymptotic distributions of GMM estimates. The results are valid

with either a �nite T or T !1. As in Hansen�s GMM setting (1982), one considers a linear transformation

of the moment conditions, anT gnT (�), where anT is a matrix with its number of rows greater than or equal

to (kz +1) and anT is assumed to converge in probability to a constant full rank matrix a0. For the optimal

GMM (OGMM) estimation, we need the variance matrix of the moment conditions. Let vecD(Pn;T�1;j) be

the column vector formed by diagonal elements of Pn;T�1;j and vec(Pn;T�1;j) the column vector formed by

stacking the columns of Pn;T�1;j . We denote !nm;T = [vecD(Pn;T�1;1); � � � ; vecD(Pn;T�1;m)], and �mn;T =
6 In this paper, we focus only on the stable dynamic model setting, but not unit root or related issues.
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[vec(P0n;T�1;1); � � � ; vec(P0n;T�1;m)]0[vec(Psn;T�1;1); � � � ; vec(Psn;T�1;m)]. From Lemma 2, the variance matrix

of the moments can be approximated by

�nT = �
4
0

 
1

n(T�1)�nm;T 0m�q
0q�m

1
�20

1
n(T�1)Q

0
n;T�1Qn;T�1

!
+

1

n(T � 1)

�
(�4 � 3�40)!0nm;T!nm;T �

0q�m 0q�q

�
,

(5)

where �4 is the fourth moment of vit.
7 When vit is normally distributed, the second component of �nT will

be zero because �4 � 3�40 = 0. For the optimal GMM, ��1nT is used as a
0
nTanT . As is shown in Appendix

D.1, denoting Psn;T�1;j = Pn;T�1;j +P
0
n;T�1;j , we have

1
n(T�1)

@gnT (�̂nT )
@�0 = DnT + op(1) where

DnT = �
1

n(T � 1)

�
�20tr(G

0
n;T�1P

s
n;T�1;1) � � � �20tr(G

0
n;T�1P

s
n;T�1;m) (Gn;T�1Z

�
n;T�1�0)

0Qn;T�1
0kz�1 � � � 0kz�1 Z�0n;T�1Qn;T�1

�0
.

Theorem 1 Under Assumptions 1-9, suppose we use the moment conditions in (3) where the nonstochastic

matrices Pn;T�1;l for l = 1; � � � ;m are from Pn;T�1 and a0plimn!1
1

n(T�1)gnT (�) = 0 has a unique root at

�0 in �, the GMME �̂nT derived from min�2� g
0
nT (�)a

0
nTanT gnT (�) is consistent andp

n(T � 1)(�̂nT��0)
d! N(0;plimn!1 (D

0
nTa

0
nTanTDnT )

�1
D0
nTa

0
nTanT�nTa

0
nTanTDnT (DnTa

0
nTanTDnT )

�1
):

Also, the optimal GMM estimator (OGMME) �̂o;nT derived from min�2� g
0
nT (�)�

�1
nT gnT (�) hasp

n(T � 1)(�̂o;nT � �0)
d! N(0;plimn!1(D

0
nT�

�1
nTDnT )

�1). (6)

Suppose that �̂�1nT � �
�1
nT = op(1), then the feasible OGMME derived from min�2� g

0
nT (�)�̂

�1
nT gnT (�) has the

same asymptotic distribution as (6).

The OGMME can be compared with the 2SLSE. The 2SLSE of �0 is

�̂2sl;nT =
�
(Wn;T�1Y

�
n;T�1;Z

�
n;T�1)

0MQ;nT (Wn;nT�1Y
�
n;T�1;Z

�
n;T�1)

��1
�
�
(Wn;T�1Y

�
n;T�1;Z

�
n;T�1)

0MQ;nTY
�
n;T�1

�
,

whereMQ;nT = Qn;T�1(Q
0
n;T�1Qn;T�1)

�1Qn;T�1. It is consistent and asymptotically normal with the lim-

iting variance matrix �20plimn!1(
1

n(T�1) (Gn;T�1Z
�
n;T�1�0;Z

�
n;T�1)

0MQ;nT (Gn;T�1Z
�
n;T�1�0;Z

�
n;T�1))

�1. The

e¢ ciency of the OGMME �̂o;nT relative to the 2SLSE is apparent due to additional quadratic moments.

7Here, �nT is not exactly the variance matrix of the moment conditions. While the elements involving the quadratic
moment conditions take the expectation form, the elements involving the linear moment conditions take the regular form
without expectations or probability limit (because the Qnt�s are functions of predetermined variables). However, it has the
same limit as the variance matrix. The reason we use such a �nT is due to its simplicity. See Lemma 2 on how to get �nT .
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3.2 The Best Linear and Quadratic Moment Conditions

As the quadratic moment conditions and the linear moment conditions of V�
n;T�1 do not interact with

each other (see Lemma 2) even though the third moment of vit is not zero, �nT in (5) is block diagonal.

Thus,

D0
nT�

�1
nTDnT =

1

�20

1

n(T � 1)(Gn;T�1Z
�
n;T�1�0;Z

�
n;T�1)

0MQ;nT (Gn;T�1Z
�
n;T�1�0;Z

�
n;T�1) (7)

+
1

n(T � 1)

 
Cmn;T (

�4�3�40
�40

!0nm;T!nm;T +�mn;T )
�1C 0mn;T 01�kz

0kz�1 0kz�kz

!
,

where Cmn;T = [tr(Psn;T�1;1Gn;T�1); : : : ; tr(P
s
n;T�1;mGn;T�1)]. When Vnt is normally distributed so that

�4�3�40 = 0, the best quadratic moment matrix is IT�1

�
Gn � trGn

n In
�
by the Cauchy-Schwarz inequality.

Without normality, the best quadratic moment matrix shall be (see Appendix D.2), similar to that in Liu

et al. (2009),

Pn;T�1 = IT�1 

��
Gn �

trGn
n

In

�
� �4 � 3�

4
0

�4 � �40

�
diag(Gn)�

trGn
n

In

��
, (8)

where diag(A) denotes the diagonal matrix formed by diagonal elements of a square matrix A. When Vnt is

normally distributed, it simpli�es to IT�1 

�
Gn � trGn

n In
�
as expected.

For linear moments, the best Qnt should be the conditional mean E(WnY
�
nt; Z

�
ntjIt�1).8 While this

ideal IV matrix might not be directly available, one may design an approximated sequence for it. For

that purpose, de�ne Y wnt = Ynt � (In � An)�1S�1n cn0, ~Xn;tT = 1
T�tS

�1
n

PT�1
h=t �T�hXnh and ~Vn;tT =

1
T�tS

�1
n

PT�1
h=t �T�hVnh where �j =

Pj�1
h=0A

h
n. From Lemma 5, we have

Y
(�;�1)
n;t�1 = E(Y

(�;�1)
n;t�1 jIt�1)� cTt ~Vn;tT , (9)

where E(Y (�;�1)n;t�1 jIt�1) = 	tY
w
n;t�1 � cTt ~Xn;tT�0, 	t = cTt(In � An�T�t

T�t ) with cTt = ( T�t
T�t+1 )

1
2 . However,

E(Y
(�;�1)
n;t�1 jIt�1) involves the (unknown) �xed e¤ects (In �An)�1S�1n cn0 via Y wn;t�1. With initial consistent

estimates of �0, one may use whole sample observations over time to construct a consistent estimate of cn0,

and, then an estimated Y wnt and an estimated IV for E(Y (�;�1)n;t�1 jIt�1). This IV approach is presented in

Appendix C, where a large T is crucial to guarantee that cn0 can be consistently estimated. For a �nite T ,

such an IV approach could be inconsistent.

As an alternative, at each t, one may infer cn0 from observables up to t � 1, which has the advantage

of constructing a consistent IV estimate even if T is �nite. As Yns = AnYn;s�1 + S
�1
n Xns�0 + S

�1
n cn0 +

8That E(WnY �nt; Z
�
ntjIt�1) is the best IV can be seen from the asymptotic variance component of a GMM estimator due to

the IVs in Theorem 2.
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S�1n Vns, by taking summations over s = 1 to (t � 1), we have S�1n cn0 =
1
t�1

Pt�1
s=1(Yns � AnYn;s�1) �

S�1n
1
t�1

Pt�1
s=1Xns�0 � S�1n 1

t�1
Pt�1

s=1 Vns. Hence, for t � 2,

Y
(�;�1)
n;t�1 = Hnt + [	t(In �An)�1S�1n

1

t� 1
Pt�1

s=1 Vns � cTt ~Vn;tT ]; (10)

where

Hnt = 	t[Yn;t�1 � (In �An)�1
1

t� 1
Pt�1

s=1(Yns �AnYn;s�1)]

+[	t(In �An)�1S�1n
1

t� 1
Pt�1

s=1Xns�0 � cTt ~Xn;tT�0]. (11)

The best theoretically IV E(Y (�;�1)n;t�1 jIt�1) can be approximated by predetermined variables up to the period

t�1 and exogenous variables up to the period T �1 via Hnt. Even though 	t(In�An)�1S�1n 1
t�1

Pt�1
s=1 Vns is

in It�1 but cannot be observed, it might be ignored. Indeed, it can be small as long as t is far from the initial

period. Thus, the approximation can be accurate for those t�s far away from the initial period t = 0. Hence,

we may use Hnt as a desirable IV for Y �n;t�1. For t = 1, E(Y
(�;�1)
n0 jI0) = 	1(Yn0 � (In � An)�1S�1n cn0) �

cT1 ~Xn;1T�0 and we may simply take Hn1 = 	1Yn0 � cT1 ~Xn;1T�0. For these IVs with t�s close to the initial

period t = 0, the approximations yield valid IVs but might not be adequate. However, as T is large, the

segment with early observations is short relative to the later segment of observations; asymptotically, these

IVs are adequate (see Lemma 6). Therefore, the best IV for Z�nt may be taken as Knt � (Hnt;WnHnt; X�
nt)

and the best one for WnY
�
nt is GnKnt�0. This suggests that we may use

Qnt = (GnKnt�0;Knt) (12)

as an IV matrix for (WnY
�
nt; Z

�
nt), and its feasible version is

~Qnt = ( ~Gn ~Knt~�; ~Knt) (13)

where ~Gn, ~Knt and ~� are feasible counterparts constructed with an initial consistent estimate of �0.

Assumption 10. The �nT;22 = 1
n(T�1) (Gn;T�1Z

�
n;T�1�0; Z

�
n;T�1)

0(Gn;T�1Z
�
n;T�1�0;Z

�
n;T�1) has its prob-

ability limit being nonsingular.

Theorem 2 Under Assumptions 1-10, suppose we use the moment conditions in (3) where Qnt takes the

special form ~Qnt in (13) and P̂n;T�1 is estimated9 from (8). As n and T tend to in�nity, the feasi-

ble best GMME (BGMME) �̂b;nT derived from min�2� g
0
nT (�)�̂

�1
nT gnT (�), where �̂

�1
nT � �

�1
nT = op(1), hasp

n(T � 1)(�̂b;nT � �0)
d! N

�
0;��1b

�
where

�b = lim
n!1

� 1
n(T�1) tr[P

s
n;T�1Gn;T�1] 01�kz
0kz�1 0kz�kz

�
+
1

�20
plimn!1�nT;22. (14)

9The Pn;T�1 involves the true parameter �0, �20 and �4, where �0 can be estimated from Theorem 1 and the moments
parameters �20 and �4 can be consistently estimated with the estimated residuals.
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For the QML estimator (QMLE) in Yu et al. (2008), it has O(1=T ) bias, which can be eliminated but

requires the condition that T
3

n !1. From Theorem 2, the BGMME does not have a bias term with such an

order. Under normality of Vnt, the BGMME and QMLE have the same asymptotic variance. However, when

Vnt is not normally distributed, the BGMME with the best IV and best quadratic moment matrix in (8)

can be more e¢ cient than the QMLE, because the quadratic moment in the GMM estimation incorporates

kurtosis of the disturbances.

We note that when T is �nite, the proposed GMME is still consistent and asymptotic normal. However,

its limiting variance matrix is the inverse of

�c � lim
n!1

� 1
n(T�1) tr[P

s
n;T�1Gn;T�1] 01�kz
0kz�1 0kz�kz

�
(15)

+
1

�20
plimn!1

1

n(T � 1)(Gn;T�1Z
�
n;T�1�0;Z

�
n;T�1)

0MQ;nT (Gn;T�1Z
�
n;T�1�0;Z

�
n;T�1);

where MQ;nT = Qn;T�1(Q0n;T�1Qn;T�1)�1Qn;T�1. Thus, when T is �nite, the best GMME does not attain

the e¢ ciency speci�ed in (14) due to the presence of MQ;nT . This is so, because the best IV Hnt cannot

approximate E(Y (�;�1)n;t�1 jIt�1) well when t is small.

4 Asymptotic Properties of GMME with Many Moments

If we use the moment condition in (4) where the dimension of Hnt might increase with t (and also increase

with pn, where pn is the order of spatial expansion of Gn), we have the many moment problem (see Bekker

1994, etc) in terms of asymptotic bias. In this section, we investigate the asymptotic properties of the GMM

estimator for this approach.

4.1 Consistency, Asymptotic Normality and E¢ ciency of 2SLSE

For the many moment approach, we can use the IV matrix

Hnt = (hnt;Wnhnt; � � � ;W pn
n hnt) with hnt = (Yn0; :::; Yn;t�1; Xn1; :::; XnT ) (16)

motivated by (11),10 where the column dimension of hnt is pt = kxT + t.11 The pn (respectively, pt) needs

to increase as n (respectively, t and T ) increases in order to provide adequate approximation to the best

theoretical IV. Therefore, the dimension of Hnt is Kt = (pn + 1) � pt. The choice of many moments might

have a trade-o¤ between the bias and variance of the GMM estimate, i.e., the larger number of moments

might increase the bias of an IV estimator but decrease its variance. In general, we assume that

10There are some technical di¢ culties in the presence of many IVs which involve estimated parameters in the literature,
which is also true for our model. Hence, it is desirable to avoid it by using IVs which do not involve estimated parameters.
11From (11), an alternative hnt is (Yn0; 1

t�2
Pt�2
s=1 Yns; Yn;t�1;

1
t�1

Pt�1
s=1Xns; Xnt; :::; XnT ), which has a smaller dimension.
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Assumption 11. Both T and pn !1 as n!1.

Assumption 11 speci�es that, many moments in Hnt come out not only from the spatial power series

expansion (pn ! 1) but also from the inclusion of lagged values (T ! 1). As we use a �nite number

of quadratic moment conditions in the SDPD model, we pay special attention to the linear moments. The

additional quadratic moment conditions will not complicate the asymptotic analysis as the two sets of

moments do not interact with each other (see Lemma 2).

The fnt = E(WnY
�
nt; Z

�
ntjIt�1) is the best IV for (WnY

�
nt; Z

�
nt). From (2) and (9), (WnY

�
nt; Z

�
nt) = fnt+unt

where

fnt = [Gn((
0In + �0Wn)E(Y
(�;�1)
n;t�1 jIt�1) +X�

nt�0); E(Y
(�;�1)
n;t�1 jIt�1);WnE(Y

(�;�1)
n;t�1 jIt�1); X�

nt]; (17)

unt = [Gn((
0In + �0Wn)�nt + V
�
nt); �nt;Wn�nt;0n�kx ] with �nt = �cTt ~Vn;tT . (18)

From (10), for t � 2, the best IV fnt can be approximated by the variables: Yn;t�1, 1
t�1

Pt�1
s=1 Yns,

1
t�1

Pt�1
s=1 Yn;s�1,

1
t�1

Pt�1
s=1Xns, the exogenous variables afterwards (Xnt; � � � ; XnT ), plus an error compo-

nent ( 1
t�1

Pt�1
s=1 Vns), and their spatial expansions.

12 As the elements in Hnt contain spatial series involving

Wn and hnt, the many moments via (16) come out from both spatial and time dimensions. From Lemma 10,

we see that fnt can be well approximated by some linear combination of Hnt when t is far from the initial

period.

The 2SLS estimate is �̂2sl;nT = [
PT�1

t=1 (WnY
�
nt; Z

�
nt)

0Mnt(WnY
�
nt; Z

�
nt)]

�1[
PT�1

t=1 (WnY
�
nt; Z

�
nt)

0MntY
�
nt],

where Mnt = Hnt(H
0
ntHnt)

+H 0
nt. Thus,p

n(T � 1)(�̂2sl;nT��0) =
�

1

n(T � 1)
T�1P
t=1
(fnt + unt)

0Mnt(fnt + unt)

��1 "
1p

n(T � 1)

T�1P
t=1
(fnt + unt)

0MntV
�
nt

#
.

(19)

From Lemma 6, plimn!1
1

n(T�1)
PT�1

t=1 f
0
ntfnt = plimn!1�nT;22 is the probability limit of the �rst com-

ponent in (19). As unt and V �nt are correlated, the second component in (19) has a non-zero mean. De-

note b1;� = 1p
n(T�1)

�20
PT�1

t=1 [tr(GnMnt)], b2;� = � �20p
n(T�1)

T�1P
t=1

1
T+1�t tr(MntC

0
nTtS

0�1
n Gn(
0In +Wn�0)),

b2;
 = � �20p
n(T�1)

T�1P
t=1

1
T+1�t tr(MntC

0
nTtS

0�1
n ) and b2;� = � �20p

n(T�1)

T�1P
t=1

1
T+1�t tr(MntC

0
nTtS

0�1
n Wn) with

CnTt =
1

T�t
PT�t

h=1 hA
h�1
n .

Theorem 3 Under Assumptions 1-8 and 10-11, suppose we use many linear moments in (16). UnderPT�1
t=1

Kt

n(T�1) ! 0, the 2SLS �̂2sl;nT is consistent and

p
n(T � 1)(�̂2sl;nT � �0)� [Ĥ]�1 � ('1 + '2) +Op

 PT�1
t=1

p
Ktp

n(T � 1)

!
d! N(0; �20plimn!1�

�1
nT;22), (20)

12For t = 1, fn1 can be approximated by the spatial expansion of Yn0 and (Xn1; :::; Xn;T�1).

12



where Ĥ = 1
n(T�1)

PT�1
t=1 (WnY

�
nt; Z

�
nt)

0Mnt(WnY
�
nt; Z

�
nt), '1 = e1b1;� = Op

�PT�1
t=1

Ktp
n(T�1)

�
with e1 being the

corresponding �rst unit vector, and '2 = (b2;�; b2;
 ; b2;�;01�kx)
0 = Op

�
1p

n(T�1)

PT�1
t=1

Kt

(T+1�t)(T�t)

�
.

Consequently,

(i) if
PT�1

t=1
Ktp

n(T�1)
! 0, then

p
n(T � 1)(�̂2sl;nT � �0)

d! N(0; �20plimn!1�
�1
nT;22);

(ii) if
PT�1

t=1
Ktp

n(T�1)
! c where c is a positive �nite constant and maxfKt:t=1;:::;T�1gPT�1

t=1
Kt

! 0 as T ! 1, thenp
n(T � 1)(�̂2sl;nT � �0)� [Ĥ]�1 � '1

d! N(0; �20plimn!1�
�1
nT;22);

(iii) let �̂
1

2sl;nT = �̂2sl;nT � 1p
n(T�1)

Ĥ�1'̂1 be a bias corrected estimate, where '̂1 is estimated '1

with �̂2sl;nT . Then, under the setting in (i), or (ii) and
PT�1

t=1

p
Ktp

n(T�1)
! 0,

p
n(T � 1)(�̂

1

2sl;nT � �0)
d!

N(0; �20plimn!1�
�1
nT;22).

From Theorem 3, we see that the 2SLS estimate might not be consistent if we have too many moments

such that
PT�1

t=1
Kt

n(T�1) is not small. Here, the bias '1 in the asymptotic expansion is caused by the endogeneity

of the spatial lag, which is of the order
PT�1

t=1
Kt

n(T�1) after being rescaled by
p
n(T � 1). The '2 is caused by the

correlation of Z�nt and V
�
nt after the data transformation to eliminate individual e¤ects, and

'2p
n(T�1)

is of

the order K
n(T�1) where K = maxfKt : t = 1; :::; T � 1g. Thus, the dominant asymptotic bias of the estimate

is caused by the endogeneity of the spatial lag term rather than the dynamic lag term. However, after the

bias correction, the dominating bias '1 can be eliminated. Comparing the asymptotic distribution of the

bias corrected IV estimate in Theorem 3 with that of the IV component of the �nite moments approach

in Theorem 2, we see that they have the same asymptotic distribution and, thus, both can asymptotically

attain the best IV estimate. The asymptotic e¢ ciency of the many IV estimate, however, requires ratio

conditions, in particular, that
PT�1

t=1
Ktp

n(T�1)
! 0. For this requirement to hold, it is implicit that T has to be

small relative to n.

4.2 Consistency, Asymptotic Distribution and E¢ ciency of GMME

To increase the e¢ ciency of estimates, quadratic moment conditions can be included as those in Section

3. Thus, the moment conditions are (4) where Hnt takes the form in (16). Similar to Section 3, the variance

matrix of these moment conditions can be approximated by

�nT = �40

 
1

n(T�1)�nm;T 0m�(�T�1t=1 Kt)

0(�T�1t=1 Kt)�m
1
�20

1
n(T�1)H

0
n;T�1Hn;T�1

!
(21)

+
1

n(T � 1)

�
(�4 � 3�40)!0nm;T!nm;T �

0(�T�1t=1 Kt)�m 0(�T�1t=1 Kt)�(�T�1t=1 Kt)

�
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where Hn;T�1 = Diag(Hn1; � � � ;Hn;T�1) is the block diagonal matrix with Hnt in the tth diagonal block.

We study the optimal GMM with the objective function g0nT (�)�
�1
nT gnT (�) = g0nT;1(�)�

�1
nT;1gnT;1(�) +

g0nT;2(�)�
�1
nT;2gnT;2(�), where gnT (�) = (g

0
nT;1(�); g

0
nT;2(�))

0 so that gnT;1(�) is the quadratic moment in (4),

gnT;2(�) is the linear moment in (4), and �nT is block diagonal from (21) with �nT = Diag(�nT;1;�nT;2).

Theorem 4 Under Assumptions 1-8 and 10-11, suppose we use many moment conditions in (4) with Hnt

in (16) and P̂n;T�1 estimated from (8), the feasible BGMME �̂b;nT is consistent under
PT�1

t=1
Kt

n(T�1) ! 0, and

p
n(T � 1)(�̂b;nT � �0)� [�20�b]�1 � ('1 + '2) +Op

 PT�1
t=1

p
Ktp

n(T � 1)

!
d! N(0;��1b ),

where �b is in (14).

Let �̂
1

b;nT = �̂b;nT� 1p
n(T�1)

[�̂2nT �̂b]
�1'̂1, under the setting in Theorem 3 (iii), the bias corrected BGMME

�̂
1

b;nT has
p
n(T � 1)(�̂

1

b;nT � �0)
d! N

�
0;��1b

�
.

Thus, the BGMME with many IVs can have the same asymptotic distribution as that in Theorem 2.

5 A General Model with Time Dummy E¤ects

The SDPD model (1) can be generalized to include time dummies:

Ynt = �0WnYnt + 
0Yn;t�1 + �0WnYn;t�1 +Xnt�0 + cn0 + �tln + Vnt; t = 1; 2; :::; T , (22)

where �t is a �xed time e¤ect. For estimation, we may �rst eliminate individual e¤ects by FT;T�1,

which yields Y �nt = �0WnY
�
nt + 
0Y

�
n;t�1 + �0WnY

(�;�1)
n;t�1 + X�

nt�0 + �
�
t ln + V

�
nt, t = 1; 2; :::; T � 1, where

[��1; �
�
2; � � � ; ��T�1] = [�1; �2; � � � ; �T ]FT;T�1 can be considered as transformed time e¤ects. We make a fur-

ther transformation to eliminate those time e¤ects ��t�s. For that purpose, we shall work on the popular

spatial scenario that Wn is row normalized.13

Assumption 1�. Wn is a row normalized nonstochastic spatial weights matrix with zero diagonals.

Let Jn = In � 1
n lnl

0
n be the deviation from the group mean over spatial units, and let [Fn;n�1, 1p

n
ln] be

the orthonormal matrix of eigenvectors of Jn, where the n� (n� 1) eigenvectors matrix Fn;n�1 corresponds

to the eigenvalues of one and ln=
p
n corresponds to the eigenvalue zero. We can transform the n-dimensional

vector Y �nt to an (n� 1)-dimensional vector Y ��n�1;t by Y ��n�1;t = F 0n;n�1Y �nt. With Wn being row normalized,

because F 0n;n�1Wnln = F
0
n;n�1ln = 0, one has

Y ��n�1;t = �0(F
0
n;n�1WnFn;n�1)Y

��
n�1;t+
0Y

(��;�1)
n�1;t�1+�0(F

0
n;n�1WnFn;n�1)Y

(��;�1)
n�1;t�1+X

��
n�1;t�0+V

��
n�1;t; (23)

13When Wn is not row normalized, we can still eliminate the transformed time e¤ects; however, we will not have the SAR
presentation of (23).
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where X��
n�1;t;k = F 0n;n�1X

�
nt;k and V

��
n�1;t = F 0n;n�1V

�
nt. Because (V ��0n�1;1; :::; V

��0
n�1;T�1)

0 = (F 0T;T�1 


F 0n;n�1)(V
0
n1; :::; V

0
nT )

0, we have E(V ��0n�1;1; :::; V
��0
n�1;T�1)

0(V ��0n�1;1; � � � ; V ��n�1;T�1) = �20I(n�1)(T�1). Hence, ele-

ments of V ��n�1;t are uncorrelated for all i and t. From (23), as (In�1 � �0F 0n;n�1WnFn;n�1) is invertible (see

Lee and Yu, 2010), Y ��n�1;t can be expressed as a function of Y
(��;�1)
n�1;t�1, X

��
n�1;t and V

��
n�1;t.

5.1 Finite Moments Approach in the Systematic Setting

For the linear moments, we similarly stack up the data and construct moment conditions via the

transformed equation (23). An IV matrix can take the form �Qn�1;T�1 = (�Q0n�1;1; � � � ; �Q0n�1;T�1)0 where
�Qn�1;t = F 0n;n�1Qnt has a �xed column dimension q greater than or equal to kx + 3. Thus, the lin-

ear moments are �Q0
n�1;T�1V

��
n�1;T�1(�) = Q0

n;T�1Jn;T�1V
�
n;T�1(�) where Jn;T�1 = IT�1 
 Jn because

Fn;n�1F
0
n;n�1 = Jn. For the quadratic moments, let �Pn�1;T�1;j = IT�1 
 F 0n;n�1PnjFn;n�1 for some non-

stochastic n� n matrix Pnj with the property tr(PnjJn) = 0. The moment conditions would be

�gnT (�) =

0BBBB@
V��0
n�1;T�1(�)

�Pn�1;T�1;1V
��
n�1;T�1(�)

...
V��0
n�1;T�1(�)

�Pn�1;T�1;mV
��
n�1;T�1(�)

�Q0
n�1;T�1V

��
n�1;T�1(�)

1CCCCA =

0BBB@
V�0
n;T�1(�)Jn;T�1Pn;T�1;1Jn;T�1V

�
n;T�1(�)

...
V�0
n;T�1(�)Jn;T�1Pn;T�1;mJn;T�1V

�
n;T�1(�)

Q0
n;T�1Jn;T�1V

�
n;T�1(�)

1CCCA :
(24)

For identi�cation, denote SFn�1(�) = In�1 � �F 0n;n�1WnFn;n�1. From (23), V ��n�1;t(�) can be expanded as

V ��n�1;t(�) = d��n�1;t(�) + S
F
n�1(�)(S

F
n�1)

�1V ��n�1;t, where V
��
n�1;t � V ��n�1;t(�0) and d

��
n�1;t(�) = F 0n;n�1[(�0 �

�)GnZ
�
nt�0+Z

�
nt(�0��)], because Fn;n�1Wnln = 0, [SFn�1]

�1 = F 0n;n�1S
�1
n (�)Fn;n�1 and SFn�1(�)[S

F
n�1]

�1 =

In�1 + (�0 � �)F 0n;n�1GnFn;n�1. These suggest the following identi�cation conditions.

Assumption 5�. The elements of Xnt and cn0 are nonstochastic and bounded, uniformly in n and t. Also,

limn!1
1

n(T�1)
PT�1

t=1 X
�0
ntJnX

�
nt exists and is nonsingular.

Assumption 9�. The n�q IV matrix Qnt is predetermined such that E(QntjIt�1) = Qnt, its column dimen-

sion is �xed for all n and t with its elementsOp(1) uniformly in n and t, and plimn!1
1

n(T�1)Q
0
n;T�1Jn;T�1Qn;T�1

is of full rank q. Also, plimn!1
1

n(T�1)Q
0
n;T�1Jn;T�1[Z

�
n;T�1;Gn;T�1Z

�
n;T�1�0] has the full rank kz + 1.

Assumption 9� is similar to Assumption 9, with the additional Jn;T�1 involved due to the additional

transformation Fn;n�1 to eliminate time e¤ects. By de�ning �DnT = � 1
(n�1)(T�1)��

�20tr(G
0
n;T�1Jn;T�1P

s
n;T�1;1) � � � �20tr(G

0
n;T�1Jn;T�1P

s
n;T�1;m) (Gn;T�1Z

�
n;T�1�0)

0Jn;T�1Qn;T�1
0kz�1 � � � 0kz�1 Z�0n;T�1Jn;T�1Qn;T�1

�0
,

1
(n�1)(T�1)

@�gnT (�̂nT )
@�0 = �DnT + op(1) similar to Section 3. Let

�mn;T = [vec(Jn;T�1P
0
n;T�1;1Jn;T�1); � � � ; vec(Jn;T�1P0n;T�1;mJn;T�1)]0

�[vec(Jn;T�1Psn;T�1;1Jn;T�1); � � � ; vec(Jn;T�1Psn;T�1;mJn;T�1)];
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and !nm;T = [vecD(Jn;T�1Pn;T�1;1Jn;T�1); � � � ; vecD(Jn;T�1Pn;T�1;mJn;T�1)]: The variance matrix of

these quadratic and linear moments can be approximated by

��nT = �40

 
1

(n�1)(T�1)�nm;T 0m�q
0q�m

1
�20

1
(n�1)(T�1)Q

0
n;T�1Jn;T�1Qn;T�1

!
(25)

+
1

(n� 1)(T � 1)

�
(�4 � 3�40)!0nm;T!nm;T �

0q�m 0q�q

�
.

Theorem 5 Under Assumptions 1�, 2-4, 5�, 6-8, and 9�, suppose we use the moment conditions in (24),

the OGMME �̂o;nT derived from min�2��g
0
nT (�)

���1nT�gnT (�) hasp
(n� 1)(T � 1)(�̂o;nT � �0)

d! N(0;plimn!1(�D
0
nT
���1nT

�DnT )
�1). (26)

Suppose that �̂��1nT ���
�1
nT = op(1), then the feasible OGMME derived from min�2��g

0
nT (�)

�̂��1nT�gnT (�) has the

same asymptotic distribution in (26).

Proof. The moment conditions in (24) in terms of V�
n;T�1(�) have similar structures as that in Section

3, except for the presence of Jn, which eliminates the time dummies. We note that Jn is UB and the

multiplication of UB matrices results in a UB matrix. Thus, asymptotic analysis is similar to Theorem 1. �

For the corresponding best GMM estimation, from Appendix E, the best quadratic moment has

�P�n�1;T�1 = IT�1 
 F 0n;n�1P �nFn;n�1, (27)

where P �n = (Gn� trGn

n�1 Jn)+
(1��n)2

( n
n�2+

�4�3
2 )

h
diag(JnGnJn)� tr(GnJn)

n In

i
with �n = � 2

n�2+
q

n
n�2

q
n
n�2 +

�4�3
2

and P �n is the best within the class of matrices such that tr(PnJn) = 0. When Vnt is normally distributed

so that �4 = 3, it implies �n = 1 and the best quadratic matrix is reduced to IT�1
 (Gn�
tr(GnJn)
n�1 Jn). For

the linear moments, at t, the best IV is E(F 0n;n�1[WnY
�
nt; Z

�
nt]jIt�1) and its feasible version is

F 0n;n�1( ~Gn
~Knt~�; ~Knt). (28)

Assumption 10�. The ��22;nT = 1
(n�1)(T�1) (Gn;T�1Z

�
n;T�1�0;Z

�
n;T�1)

0Jn;T�1(Gn;T�1Z
�
n;T�1�0;Z

�
n;T�1)

has its probability limit being nonsingular.

Theorem 6 Under Assumptions 1�, 2-4, 5�, 6-8 and 9�-10�, suppose we use the moment conditions in (24)

where Qn�1;t takes the special form in (28) and �P�n�1;T�1 is estimated from (27). As n and T tend to

in�nity, the feasible BGMME �̂b;nT derived from min�2��g
0
nT (�)

�̂��1nT�gnT (�), where �̂�
�1
nT ���

�1
nT = op(1), hasp

(n� 1)(T � 1)(�̂b;nT � �0)
d! N(0;���1b ) where

��b = lim
n!1

�
1

(n�1)(T�1) tr[
�P�sn�1;T�1

�Gn;T�1] 01�kz
0kz�1 0kz�kz

�
+
1

�20
plimn!1��22;nT , (29)

with �Gn;T�1 = IT�1 
 F 0n;n�1GnFn;n�1.

Proof. Similar to Theorem 2. �
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5.2 Many Moment Approach

For the separate moments approach, we can use �Hn�1;t = F 0n;n�1Hnt for each period, where Hnt can be

from (16). The many moment conditions are

�gnT (�) =

0BBBB@
V0��
n�1;T�1(�)

�Pn�1;T�1;1V
��
n�1;T�1(�)

...
V0��
n�1;T�1(�)

�Pn�1;T�1;mV
��
n�1;T�1(�)

Diag(�Hn�1;1; � � � ; �Hn�1;T�1)0V��
n�1;T�1(�)

1CCCCA =

0BBB@
V�0
n;T�1(�)Jn;T�1Pn;T�1;1Jn;T�1V

�
n;T�1(�)

...
V�0
n;T�1(�)Jn;T�1Pn;T�1;mJn;T�1V

�
n;T�1(�)

Diag(Hn1; � � � ;Hn;T�1)0Jn;T�1V�
n;T�1(�)

1CCCA ;
(30)

where

�Hn�1;t = F
0
n;n�1(hnt;Wnhnt; � � � ;W pn

n hnt), with hnt = (Yn0; � � � ; Yn;t�1; Xn1; � � � ; XnT ). (31)

Theorem 7 Under Assumptions 1�, 2-4, 5�, 6-8, 10� and 11, suppose we use moment conditions in (30)

with �Hn�1;t in (31) and �P�n�1;T�1 estimated from (27), the feasible BGMME �̂b;nT is consistent underPT�1
t=1

Kt

n(T�1) ! 0.

Let �̂
1

b;nT = �̂b;nT � 1p
n(T�1)

�̂�
�1
b '̂1 where '1 = e1�b1;� with �b1;� = 1p

n(T�1)
�20
PT�1

t=1 [tr(JnGnMnt)].

Under the setting in Theorem 3 (iii), the bias corrected BGMME �̂
1

b;nT has
p
(n� 1)(T � 1)(�̂

1

b;nT � �0)
d!

N(0;���1b ), where ��b is in (29).

Proof. Similar to Theorem 4. �

6 Monte Carlo

We run simulations to investigate the performance of 2SLSEs and GMMEs in Sections 3 and 4 under

di¤erent values of n, T and 
0. We also compare them with those of the QMLE in Yu et al. (2008). Samples

are generated from (1):

Ynt = �0WnYnt + 
0Yn;t�1 + �0WnYn;t�1 +Xnt�0 + cn0 + Vnt; t = 1; 2; :::; T ,

using �a0 = (0:2; 0:1;�0:2; 1), �b0 = (0:2; 0:5;�0:2; 1) and �c0 = (0:2; 0:9;�0:2; 1) where �0 = (�0; 
0; �0; �00)0.

Hence, 
0 takes the values from 0:1 to 0:9 and other parameters are held constant. The Xnt; cn0 and

Vnt are generated from independent standard normal distributions and the spatial weights matrix Wn is a

rook matrix.14 We use T = 5, 10; 20, and n = 100. For each set of generated sample observations, we

14We use the rook matrix based on an r board (so that n = r2). The rook matrix represents a square tessellation with a
connectivity of four for the inner �elds on the chessboard and two and three for the corner and border �elds, respectively. Most
empirically observed regional structures in spatial econometrics are made up of regions with connectivity close to the range of
the rook tessellation.
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calculate the GMM estimator �̂nT and evaluate the bias �̂nT ��0. We do this 1000 times to get the empirical

bias 1
1000

P1000
i=1 (�̂nT � �0)i. With three di¤erent values of �0 for each n and T , �nite sample properties of

these estimators are summarized in Tables 1-7. For each case, we report the bias (Bias), empirical standard

deviation (SD) and root mean square error (RMSE). For cases where there are outliers, some quantiles are

reported instead.

Tables 1 and 2 use �nite moment conditions in (3). Table 1 is for the 2SLSE and GMME using

[Yn;t�1;WnYn;t�1; � � � ;W 5
nYn;t�1; X

�
nt;WnX

�
nt] as the IV matrix,

15 where GMME uses additionally IT�1 


(Wn � trWn

n In) and IT�1 
 (W 2
n �

trW 2
n

n In) for quadratic moments. Table 2 is for the BGMMEs, where

either ~Qnt in (13) or Q̂ant in (37) are used as the IV matrix in linear moments, and IT�1 
 ( ~Gn � tr ~Gn

n In)

for quadratic moment, where ~Gn is estimated with initial estimates from the GMME in Table 1. For further

investigation of BGMMEs in Table 2 compared with GMME in Table 1, we also provide the quantiles of

those estimates in Tables 3 and 4.

Tables 5 and 6 use many moments, where IV matrices are Yn0, � � � , Yn;t�1, Xn1, � � � , XnT and their �rst

�ve spatial lags. Table 5 is the 2SLSE with and without bias correction. Table 6 is the BGMME with and

without bias correction, where IT�1 
 ( ~Gn � tr ~Gn

n In) is used for the quadratic moment and ~Gn is estimated

with initial estimates from Table 5. All the GMMEs are optimum ones as inverses of their variance matrices

are used for weighting. Also, Table 7 is MLEs with and without bias correction.

From Table 1 for the 2SLSE and GMME, Biases are small for all the estimates. For both 2SLSE and

GMME, as T increases, SDs decrease; as 
0 increases, Biases slightly increase on average and SDs increase.

The GMME of �0 has a smaller SD than that of the 2SLSE of �0 such that SDs can be reduced by less than

a half; but for other estimates, the performance of GMME and 2SLSE are similar. From Table 2, BGMMEs

have small Biases. When T increases or 
0 decreases, SDs will be smaller. The BGMMEs have smaller SDs

than those of GMM in Table 1 for items (1)-(5), but larger SDs for the rest. From the quantiles of those

estimates in Tables 3 and 4, BGMMEs are less dispersed in the speci�ed 25%-75% quantile range, and so

is the 10%-90% range. Those large SDs in the BGMME compared to the GMME in Table 2 are caused by

some outliers of estimates.

From Table 5, the 2SLSE with many IVs has some biases for the estimate of 
0 when T is small, and

have biases for the estimate of �0. When T is larger or 
0 is smaller, SDs are smaller while the changes

in Biases are ambiguous. After the bias correction, Biases and SDs are smaller for the estimate of �0, but

15The [Yn;t�1;WnYn;t�1; � � � ;W 3
nYn;t�1; X

�
nt;WnX�

nt] is also a valid IV matrix. However, we �nd that the SDs of the
estimates would be much reduced by addingW 4

nYn;t�1 andW
5
nYn;t�1 as the IVs. For the current DGP with exogenous variables,

the SDs are reduced by 10% on average with more IVs; for the DGP without exogenous variables, the SDs are large with IV
matrix [Yn;t�1;WnYn;t�1; � � � ;W 3

nYn;t�1]. Detailed simulation results with IV matrix [Yn;t�1;WnYn;t�1; � � � ;W 3
nYn;t�1] are

available in the supplement �le upon request, but are not presented here due to limited space. Also, counterparts for Tables
1-7 without exogenous variables are available.
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Table 1: 2SLS and GMME Using Finite IVs in the Systematic Setting
2SLSE GMME

n T �0 � 
 � � � 
 � �
(1) 100 5 �a0 Bias 0.0039 -0.0021 0.0013 -0.0039 -0.0011 -0.0043 0.0008 -0.0045

SD 0.0978 0.0595 0.1026 0.0525 0.0624 0.0620 0.1127 0.0525
RMSE 0.0978 0.0596 0.1026 0.0527 0.0621 0.0622 0.1127 0.0527

(2) 100 10 �a0 Bias 0.0046 -0.0015 -0.0000 -0.0018 0.0009 -0.0021 0.0001 -0.0016
SD 0.0640 0.0356 0.0624 0.0327 0.0378 0.0355 0.0627 0.0325

RMSE 0.0641 0.0357 0.0624 0.0328 0.0378 0.0355 0.0627 0.0326
(3) 100 20 �a0 Bias 0.0007 0.0010 -0.0002 -0.0001 -0.0015 0.0008 -0.0028 0.0003

SD 0.0427 0.0228 0.0419 0.0231 0.0284 0.0230 0.0455 0.0230
RMSE 0.0427 0.0228 0.0419 0.0231 0.0284 0.0230 0.0456 0.0230

(4) 100 5 �b0 Bias 0.0035 -0.0071 0.0000 -0.0052 0.0010 -0.0130 0.0047 -0.0068
SD 0.1073 0.0931 0.1449 0.0588 0.0748 0.0952 0.1442 0.0591

RMSE 0.1074 0.0934 0.1449 0.0590 0.0748 0.0961 0.1443 0.0595

(5) 100 10 �b0 Bias 0.0041 -0.0027 -0.0031 -0.0020 0.0008 -0.0043 -0.0013 -0.0020
SD 0.0656 0.0484 0.0842 0.0338 0.0398 0.0479 0.0820 0.0336

RMSE 0.0657 0.0484 0.0743 0.0338 0.0398 0.0481 0.0820 0.0336

(6) 100 20 �b0 Bias 0.0006 0.0013 -0.0017 0.0000 0.0004 0.0014 -0.0018 0.0000
SD 0.0433 0.0277 0.0540 0.0232 0.0280 0.0277 0.0523 0.0230

RMSE 0.0433 0.0278 0.0540 0.0232 0.0280 0.0277 0.0523 0.0230
(7) 100 5 �c0 Bias 0.0169 -0.0747 0.0211 -0.0374 0.0130 -0.1021 0.0266 -0.0487

SD 0.2046 0.2938 0.2708 0.1435 0.1251 0.2431 0.1956 0.1214
RMSE 0.2053 0.3032 0.2716 0.1483 0.1258 0.2637 0.1974 0.1308

(8) 100 10 �c0 Bias 0.0099 -0.0003 0.0025 -0.0016 0.0073 -0.0154 0.0047 -0.0070
SD 0.1179 0.1662 0.1779 0.0735 0.0782 0.1341 0.1131 0.0607

RMSE 0.1183 0.1662 0.1780 0.0735 0.0785 0.1350 0.1132 0.0611
(9) 100 20 �c0 Bias -0.0007 0.0177 -0.0049 0.0051 0.0048 0.0101 -0.0072 0.0020

SD 0.0613 0.0876 0.1089 0.0363 0.0679 0.0977 0.0831 0.0422
RMSE 0.0613 0.0894 0.1091 0.0367 0.0681 0.0982 0.0835 0.0422

Note: 1. �a0= (0:2; 0:1;�0:2; 1), �b0= (0:2; 0:5;�0:2; 1) and �c0= (0:2; 0:9;�0:2; 1).
2. The IV matrix is [Yn;T�1;Wn;T�1Yn;T�1; :::;W

5
n;T�1Yn;T�1;X

�
n;T�1;Wn;T�1X

�
n;T�1].

3. The quadratic matrices are IT�1
(Wn�
trWn

n In) and IT�1
(W 2
n�

trW 2
n

n In).
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Table 2: BGMMEs Using Finite IVs and Best Quadratic Moments
BGMME in Theorem 2 BGMME in Theorem 8

n T �0 � 
 � � � 
 � �
(1) 100 5 �a0 Bias -0.0016 -0.0007 -0.0004 -0.0026 -0.0003 0.0001 0.0016 -0.0027

SD 0.0572 0.0518 0.0919 0.0515 0.0550 0.0420 0.0757 0.0510
RMSE 0.0572 0.0518 0.0919 0.0515 0.0550 0.0420 0.0757 0.0511

(2) 100 10 �a0 Bias 0.0002 -0.0013 -0.0010 -0.0014 -0.0001 -0.0011 -0.0004 -0.0013
SD 0.0374 0.0291 0.0535 0.0325 0.0382 0.0252 0.0454 0.0325

RMSE 0.0374 0.0291 0.0535 0.0326 0.0382 0.0252 0.0454 0.0325
(3) 100 20 �a0 Bias 0.0000 0.0003 -0.0014 -0.0001 0.0002 0.0005 -0.0018 -0.0002

SD 0.0280 0.0187 0.0353 0.0231 0.0260 0.0172 0.0336 0.0231
RMSE 0.0280 0.0187 0.0353 0.0231 0.0260 0.0172 0.0337 0.0231

(4) 100 5 �b0 Bias -0.0023 -0.0028 -0.0025 -0.0027 -0.0019 0.0007 -0.0004 -0.0021
SD 0.0757 0.0744 0.1286 0.0554 0.0652 0.0493 0.0827 0.0523

RMSE 0.0757 0.0744 0.1286 0.0554 0.0653 0.0493 0.0827 0.0523

(5) 100 10 �b0 Bias 0.0017 -0.0033 -0.0025 -0.0015 -0.0004 -0.0026 0.0005 -0.0015
SD 0.0537 0.0368 0.0674 0.0332 0.0414 0.0256 0.0528 0.0329

RMSE 0.0538 0.0369 0.0675 0.0333 0.0414 0.0257 0.0528 0.0329

(6) 100 20 �b0 Bias -0.0010 -0.0015 0.0010 -0.0003 -0.0024 -0.0013 0.0009 0.0008
SD 0.0335 0.0218 0.0548 0.0234 0.0294 0.0160 0.0399 0.0238

RMSE 0.0335 0.0218 0.0548 0.0234 0.0295 0.0161 0.0399 0.0238
(7) 100 5 �c0 Bias -0.0025 -0.0693 0.0204 -0.0321 0.0064 -0.0018 0.0055 -0.0025

SD 0.2166 0.3237 0.3221 0.1563 0.1583 0.1304 0.1415 0.0777
RMSE 0.2166 0.3310 0.3228 0.1596 0.1585 0.1304 0.1416 0.0777

(8) 100 10 �c0 Bias 0.0058 -0.0090 -0.0017 -0.0043 0.0024 0.0079 -0.0026 0.0024
SD 0.0948 0.0964 0.1362 0.0499 0.0980 0.0751 0.0765 0.0444

RMSE 0.0949 0.0968 0.1363 0.0501 0.0980 0.0755 0.0765 0.0445
(9) 100 20 �c0 Bias 0.0102 -0.0108 -0.0084 -0.0046 0.0045 0.0040 -0.0048 0.0020

SD 0.0947 0.0865 0.1262 0.0538 0.1288 0.0640 0.0923 0.0531
RMSE 0.0953 0.0872 0.1265 0.0540 0.1289 0.0642 0.0925 0.0531

Note: 1. �a0= (0:2; 0:1;�0:2; 1), �b0= (0:2; 0:5;�0:2; 1) and �c0= (0:2; 0:9;�0:2; 1).
2. For BGMME in Theorem 2, the IV matrix is ~Qn;T�1 = ( ~Q

0
n1; :::;

~Q0n;T�1)
0 with ~Qnt in (13).

3. For BGMME in Theorem 8, the IV matrix is Q̂a
n;T�1 = (Q̂

a0
n1; :::; Q̂

a0
n;T�1)

0 with Q̂ant in (37).

4. The quadratic matrix is an estimated IT�1
( ~Gn�
tr ~Gn

n In).
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Table 3: Quantiles of BGMM Using Finite IVs and Best Quadratic Moments
BGMME in Theorem 2 Results for GMME from Table 1

n T �0 � 
 � � � 
 � �
(1) 100 5 �a0 Median 0.1979 0.0981 -0.1999 0.9964 0.2015 0.0966 -0.1991 0.9936

10%Q 0.1243 0.0340 -0.3185 0.9297 0.1244 0.0179 -0.3292 0.9270
25%Q 0.1628 0.0630 -0.2624 0.9618 0.1610 0.0574 -0.2717 0.9597
75%Q 0.2365 0.1336 -0.1411 1.0328 0.2393 0.1327 -0.1291 1.0318
90%Q 0.2711 0.1668 -0.0859 1.0641 0.2746 0.1714 -0.0623 1.0636

(2) 100 10 �a0 Median 0.2001 0.0991 -0.2007 1.0008 0.2002 0.0984 -0.2008 1.0000
10%Q 0.1543 0.0613 -0.2681 0.9562 0.1543 0.0541 -0.2801 0.9554
25%Q 0.1754 0.0774 -0.2370 0.9755 0.1756 0.0746 -0.2415 0.9769
75%Q 0.2260 0.1183 -0.1638 1.0210 0.2256 0.1210 -0.1589 1.0205
90%Q 0.2482 0.1352 -0.1325 1.0397 0.2489 0.1430 -0.1179 1.0391

(3) 100 20 �a0 Median 0.1995 0.1000 -0.2020 1.0000 0.1987 0.1007 -0.2025 1.0004
10%Q 0.1672 0.0761 -0.2454 0.9704 0.1666 0.0710 -0.2559 0.9709
25%Q 0.1812 0.0879 -0.2239 0.9839 0.1812 0.0849 -0.2308 0.9842
75%Q 0.2174 0.1132 -0.1777 1.0166 0.2170 0.1162 -0.1730 1.0168
90%Q 0.2323 0.1246 -0.1579 1.0289 0.2320 0.1308 -0.1463 1.0289

(4) 100 5 �b0 Median 0.2006 0.4955 -0.2034 0.9970 0.2013 0.4915 -0.1948 0.9930
10%Q 0.1118 0.4063 -0.3570 0.9258 0.1097 0.3751 -0.3773 0.9175
25%Q 0.1537 0.4495 -0.2832 0.9586 0.1572 0.4289 -0.2926 0.9543
75%Q 0.2414 0.5422 -0.1272 1.0340 0.2476 0.5434 -0.1056 1.0306
90%Q 0.2835 0.5932 -0.0416 1.0707 0.2914 0.6020 -0.0035 1.0688

(5) 100 10 �b0 Median 0.2000 0.4974 -0.2032 1.0014 0.2013 0.4962 -0.2039 0.9995
10%Q 0.1498 0.4497 -0.2878 0.9550 0.1502 0.4365 -0.3022 0.9528
25%Q 0.1756 0.4722 -0.2445 0.9757 0.1743 0.4671 -0.2570 0.9759
75%Q 0.2257 0.5221 -0.1590 1.0211 0.2269 0.5266 -0.1472 1.0211
90%Q 0.2506 0.5426 -0.1144 1.0396 0.2529 0.5544 -0.0940 1.0411

(6) 100 20 �b0 Median 0.2009 0.4996 -0.2009 0.9997 0.2012 0.5013 -0.2022 1.0002
10%Q 0.1669 0.4722 -0.2510 0.9698 0.1660 0.4665 -0.2644 0.9701
25%Q 0.1826 0.4851 -0.2265 0.9839 0.1829 0.4822 -0.2350 0.9834
75%Q 0.2185 0.5120 -0.1757 1.0162 0.2194 0.5186 -0.1672 1.0168
90%Q 0.2322 0.5232 -0.1539 1.0289 0.2325 0.5369 -0.1382 1.0290

(7) 100 5 �c0 Median 0.2004 0.8464 -0.1915 0.9763 0.2143 0.7963 -0.1677 0.9507
10%Q -0.0238 0.5319 -0.5293 0.8185 0.0599 0.5314 -0.4317 0.8128
25%Q 0.1016 0.7026 -0.3548 0.8946 0.1448 0.6500 -0.3138 0.8806
75%Q 0.2931 0.9834 -0.0123 1.0486 0.2885 0.9362 -0.0339 1.0183
90%Q 0.4176 1.1398 0.1900 1.1256 0.3650 1.0705 0.0761 1.0948

(8) 100 10 �c0 Median 0.2021 0.8915 -0.2030 0.9982 0.2093 0.8831 -0.2016 0.9936
10%Q 0.1150 0.7879 -0.3615 0.9376 0.1185 0.7293 -0.3373 0.9216
25%Q 0.1584 0.8450 -0.2766 0.9653 0.1613 0.8081 -0.2725 0.9548
75%Q 0.2499 0.9450 -0.1346 1.0279 0.2519 0.9649 -0.1234 1.0302
90%Q 0.3095 0.9930 -0.0491 1.0545 0.2979 1.0436 -0.0471 1.0611

(9) 100 20 �c0 Median 0.2014 0.8966 -0.2018 0.9989 0.2005 0.9129 -0.2107 1.0034
10%Q 0.1562 0.8420 -0.2881 0.9636 0.1495 0.8178 -0.3008 0.9620
25%Q 0.1781 0.8700 -0.2436 0.9808 0.1725 0.8642 -0.2532 0.9811
75%Q 0.2272 0.9210 -0.1591 1.0169 0.2274 0.9612 -0.1605 1.0252
90%Q 0.2478 0.9466 -0.1171 1.0333 0.2563 1.0046 -0.1057 1.0468

Note: 1. �a0= (0:2; 0:1;�0:2; 1), �b0= (0:2; 0:5;�0:2; 1) and �c0= (0:2; 0:9;�0:2; 1).
2. The IV matrix is ~Qn;T�1 = ( ~Q

0
n1; :::;

~Q0n;T�1)
0 with ~Qnt in (13).

3. The quadratic matrix is an estimated IT�1
( ~Gn�
tr ~Gn

n In).
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Table 4: Quantiles of BGMM Using Alternative Finite IVs and Best Quadratic Moments
BGMME in Theorem 8 Results for GMME from Table 6

n T �0 � 
 � � � 
 � �
(1) 100 5 �a0 Median 0.1972 0.0992 -0.1969 0.9964 0.1982 0.0302 -0.1706 0.9827

10%Q 0.1319 0.0469 -0.2950 0.9307 0.1305 -0.0226 -0.2549 0.9173
25%Q 0.1640 0.0725 -0.2482 0.9620 0.1623 0.0029 -0.2171 0.9482
75%Q 0.2370 0.1268 -0.1476 0.0320 0.2359 0.0571 -0.1232 1.0185
90%Q 0.2719 0.1548 -0.1046 1.0643 0.2686 0.0819 -0.0801 1.0496

(2) 100 10 �a0 Median 0.2005 0.0987 -0.1993 1.0004 0.1919 0.0410 -0.1789 0.9961
10%Q 0.1537 0.0660 -0.2571 0.9551 0.1465 0.0119 -0.2339 0.9505
25%Q 0.1750 0.0821 -0.2307 0.9765 0.1665 0.0267 -0.2074 0.9724
75%Q 0.2251 0.1161 -0.1699 1.0209 0.2171 0.0583 -0.1493 1.0160
90%Q 0.2477 0.1305 -0.1418 1.0398 0.2402 0.0715 -0.1242 1.0349

(3) 100 20 �a0 Median 0.2000 0.1009 -0.2003 1.0000 0.1908 0.0726 -0.1912 1.0001
10%Q 0.1670 0.0789 0.2426 0.9701 0.1580 0.0517 -0.2300 0.9706
25%Q 0.1823 0.0889 -0.2229 0.9836 0.1732 0.0607 -0.2113 0.9840
75%Q 0.2182 0.1120 -0.1808 1.0161 0.2089 0.0833 -0.1712 1.0171
90%Q 0.2330 0.1224 -0.1614 1.0286 0.2239 0.0929 -0.1554 1.0292

(4) 100 5 �b0 Median 0.1976 0.4976 -0.2017 0.9961 0.1994 0.3845 -0.1648 0.9640
10%Q 0.1231 0.4380 -0.3005 0.9285 0.1297 0.3230 -0.2549 0.8974
25%Q 0.1590 0.4668 -0.2520 0.9622 0.1621 0.3532 -0.2105 0.9282
75%Q 0.2420 0.5341 -0.1479 1.0319 0.2376 0.4159 -0.1128 0.9956
90%Q 0.2808 0.5646 -0.1006 1.0660 0.2712 0.4395 -0.0743 1.0305

(5) 100 10 �b0 Median 0.1997 0.4983 -0.2003 1.0005 0.1931 0.4140 -0.1722 0.9873
10%Q 0.1534 0.4654 -0.2604 0.9548 0.1456 0.3831 -0.2280 0.9410
25%Q 0.1749 0.4810 -0.2319 0.9756 0.1677 0.3986 -0.2018 0.9641
75%Q 0.2253 0.5141 -0.1687 1.0212 0.2170 0.4294 -0.1453 1.0074
90%Q 0.2488 0.5288 -0.1413 1.0401 0.2396 0.4445 -0.1167 1.0270

(6) 100 20 �b0 Median 0.1995 0.4992 -0.2002 1.0000 0.1913 0.4594 -0.1861 0.9984
10%Q 0.1624 0.4788 -0.2437 0.9703 0.1551 0.4402 -0.2250 0.9692
25%Q 0.1804 0.4885 -0.2226 0.9843 0.1731 0.4495 -0.2074 0.9818
75%Q 0.2181 0.5097 -0.1793 1.0167 0.2091 0.4697 -0.1660 1.0153
90%Q 0.2318 0.5181 -0.1571 1.0311 0.2242 0.4779 -0.1471 1.0282

(7) 100 5 �c0 Median 0.2034 0.8785 -0.1852 0.9925 0.1943 0.7172 -0.1584 0.9159
10%Q 0.0872 0.7952 -0.3342 0.9138 0.1210 0.6534 -0.2565 0.8485
25%Q 0.1436 0.8314 -0.2599 0.9477 0.1606 0.6898 -0.2134 0.8828
75%Q 0.2630 0.9355 -0.1250 1.0380 0.2357 0.7502 -0.1084 0.9506
90%Q 0.3301 1.0166 -0.0641 1.0838 0.2722 0.7783 -0.0706 0.9857

(8) 100 10 �c0 Median 0.2029 0.8996 -0.1977 1.0037 0.1928 0.7716 -0.1684 0.9524
10%Q 0.1328 0.8531 -0.2791 0.9523 0.1447 0.7425 -0.2236 0.9079
25%Q 0.1679 0.8749 -0.2393 0.9769 0.1672 0.7565 -0.1963 0.9306
75%Q 0.2359 0.9301 -0.1628 1.0270 0.2170 0.7859 -0.1394 0.9731
90%Q 0.2730 0.9718 -0.1263 1.0508 0.2422 0.7985 -0.1112 0.9929

(9) 100 20 �c0 Median 0.2004 0.9019 -0.2031 1.0014 0.1919 0.8387 -0.1817 0.9841
10%Q 0.1582 0.8802 -0.2582 0.9674 0.1581 0.8248 -0.2188 0.9544
25%Q 0.1774 0.8899 -0.2283 0.9843 0.1717 0.8317 -0.2008 0.9673
75%Q 0.2208 0.9167 -0.1786 1.0200 0.2096 0.8463 -0.1642 1.0005
90%Q 0.2431 0.9380 -0.1559 1.0369 0.2252 0.8539 -0.1486 1.0154

Note: 1. �a0= (0:2; 0:1;�0:2; 1), �b0= (0:2; 0:5;�0:2; 1) and �c0= (0:2; 0:9;�0:2; 1).
2. The IV matrix is Q̂a

n;T�1 = (Q̂
a0
n1; :::; Q̂

a0
n;T�1)

0 with Q̂ant in (37).

3. The quadratic matrix is an estimated IT�1
( ~Gn�
tr ~Gn

n In).
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Table 5: 2SLS Using Many Moments
2SLSE before Bias Correction 2SLSE after Bias Correction

n T �0 � 
 � � � 
 � �
(1) 100 5 �a0 Bias 0.0903 -0.0671 0.0415 -0.0221 -0.0339 -0.0706 0.0208 -0.0145

SD 0.0789 0.0402 0.0686 0.0512 0.0481 0.0399 0.0683 0.0507
RMSE 0.1199 0.0782 0.0802 0.0558 0.0588 0.0811 0.0714 0.0528

(2) 100 10 �a0 Bias 0.0964 -0.0538 0.0277 -0.0125 -0.0497 -0.0598 0.0191 -0.0041
SD 0.0526 0.0234 0.0422 0.0328 0.0281 0.0232 0.0426 0.0324

RMSE 0.1098 0.0587 0.0505 0.0351 0.0570 0.0641 0.0467 0.0326
(3) 100 20 �a0 Bias 0.0953 -0.0233 0.0097 -0.0065 -0.0472 -0.0296 0.0097 0.0014

SD 0.0360 0.0164 0.0295 0.0231 0.0193 0.0163 0.0299 0.0228
RMSE 0.1019 0.0284 0.0311 0.0240 0.0510 0.0338 0.0314 0.0229

(4) 100 5 �b0 Bias 0.0940 -0.1160 0.0191 -0.0427 -0.0366 -0.1166 0.0359 -0.0347
SD 0.0811 0.0450 0.0712 0.0517 0.0482 0.0448 0.0717 0.0512

RMSE 0.1241 0.1245 0.0737 0.0670 0.0605 0.1249 0.0802 0.0618

(5) 100 10 �b0 Bias 0.0990 -0.0842 -0.0059 -0.0216 -0.0506 -0.0871 0.0403 -0.0129
SD 0.0534 0.0234 0.0423 0.0331 0.0194 0.0149 0.0286 0.0229

RMSE 0.1125 0.0874 0.0427 0.0395 0.0580 0.0901 0.0580 0.0351

(6) 100 20 �b0 Bias 0.0966 -0.0379 -0.0284 -0.0088 -0.0478 -0.0412 0.0290 -0.0008
SD 0.0364 0.0150 0.0306 0.0231 0.0194 0.0149 0.0286 0.0229

RMSE 0.1032 0.0407 0.0418 0.0247 0.0516 0.0438 0.0408 0.0229
(7) 100 5 �c0 Bias 0.0939 -0.1834 -0.0075 -0.0888 -0.0472 -0.1812 0.0488 -0.0809

SD 0.0869 0.0479 0.0774 0.0527 0.0480 0.0471 0.0739 0.0522
RMSE 0.1279 0.1896 0.0778 0.1033 0.0673 0.1872 0.0886 0.0963

(8) 100 10 �c0 Bias 0.1020 -0.1290 -0.0390 -0.0555 -0.0548 -0.1287 0.0624 -0.0469
SD 0.0551 0.0223 0.0471 0.0333 0.0284 0.0221 0.0395 0.0330

RMSE 0.1159 0.1309 0.0612 0.0648 0.0617 0.1306 0.0738 0.0573
(9) 100 20 �c0 Bias 0.0987 -0.0608 -0.0655 -0.0229 -0.0492 -0.0611 0.0492 -0.0148

SD 0.0369 0.0112 0.0340 0.0233 0.0195 0.0111 0.0249 0.0231
RMSE 0.1054 0.0618 0.0738 0.0327 0.0529 0.0621 0.0551 0.0274

Note: 1. �a0= (0:2; 0:1;�0:2; 1), �b0= (0:2; 0:5;�0:2; 1) and �c0= (0:2; 0:9;�0:2; 1).
2. The IVs are Yn0, � � � , Yn;t�1, Xn1, � � � , XnT and their �rst 5 spatial lags for the period t.
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Table 6: GMM Using Many IVs and Best Quadratic Moment
GMME before Bias Correction GMME after Bias Correction

n T �0 � 
 � � � 
 � �
(1) 100 5 �a0 Bias 0.0442 -0.0689 0.0374 -0.0193 -0.0010 -0.0702 0.0299 -0.0166

SD 0.0673 0.0401 0.0702 0.0511 0.0561 0.0400 0.0699 0.0511
RMSE 0.0806 0.0798 0.0795 0.0547 0.0561 0.0808 0.0760 0.0538

(2) 100 10 �a0 Bias 0.0496 -0.0556 0.0244 -0.0089 -0.0080 -0.0580 0.0210 -0.0056
SD 0.0467 0.0234 0.0439 0.0326 0.0366 0.0233 0.0440 0.0325

RMSE 0.0681 0.0603 0.0502 0.0338 0.0375 0.0625 0.0488 0.0330
(3) 100 20 �a0 Bias 0.0501 -0.0252 0.0086 -0.0029 -0.0088 -0.0278 0.0086 0.0003

SD 0.0336 0.0163 0.0306 0.0230 0.0262 0.0163 0.0307 0.0230
RMSE 0.0603 0.0300 0.0318 0.0232 0.0276 0.0322 0.0319 0.0230

(4) 100 5 �b0 Bias 0.0468 -0.1167 0.0304 -0.0397 0.0005 -0.1169 0.0365 -0.0369
SD 0.0676 0.0448 0.0714 0.0513 0.0562 0.0448 0.0716 0.0513

RMSE 0.0822 0.1250 0.0776 0.0648 0.0562 0.1252 0.0803 0.0632

(5) 100 10 �b0 Bias 0.0503 -0.0852 0.0103 -0.0178 -0.0079 -0.0863 0.0283 -0.0145
SD 0.0495 0.0238 0.0491 0.0328 0.0387 0.0237 0.0483 0.0327

RMSE 0.0706 0.0884 0.0502 0.0373 0.0395 0.0895 0.0560 0.0358

(6) 100 20 �b0 Bias 0.0489 -0.0393 -0.0086 -0.0046 -0.0100 -0.0407 0.0148 -0.0013
SD 0.0360 0.0150 0.0379 0.0234 0.0280 0.0150 0.0365 0.0233

RMSE 0.0607 0.0421 0.0388 0.0238 0.0297 0.0434 0.0394 0.0234
(7) 100 5 �c0 Bias 0.0431 -0.1834 0.0207 -0.0857 -0.0039 -0.1826 0.0396 -0.0831

SD 0.0727 0.0478 0.0775 0.0524 0.0599 0.0476 0.0763 0.0523
RMSE 0.0845 0.1895 0.0802 0.1004 0.0601 0.1887 0.0859 0.0982

(8) 100 10 �c0 Bias 0.0516 -0.1288 -0.0063 -0.0518 -0.0079 -0.1288 0.0322 -0.0485
SD 0.0511 0.0222 0.0481 0.0332 0.0398 0.0222 0.0440 0.0331

RMSE 0.0726 0.1308 0.0485 0.0615 0.0406 0.1307 0.0545 0.0587
(9) 100 20 �c0 Bias 0.0526 -0.0608 -0.0301 -0.0199 -0.0072 -0.0609 0.0162 -0.0166

SD 0.0474 0.0111 0.0415 0.0429 0.0437 0.0111 0.0397 0.0429
RMSE 0.0708 0.0618 0.0513 0.0473 0.0442 0.0619 0.0429 0.0460

Note: 1. �a0= (0:2; 0:1;�0:2; 1), �b0= (0:2; 0:5;�0:2; 1) and �c0= (0:2; 0:9;�0:2; 1).
2. The IVs are Yn0, � � � , Yn;t�1, Xn1, � � � , XnT and their �rst �ve order spatial lags, for the period t.
3. The quadratic matrix is an estimated IT�1
( ~Gn�

tr ~Gn

n In).
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Table 7: MLE
MLE before Bias Correction MLE after Bias Correction

n T �0 � 
 � � � 
 � �
(1) 100 5 �a0 Bias 0.0043 -0.1152 0.0470 -0.0267 0.0016 -0.0124 0.0061 -0.0040

SD 0.0526 0.0357 0.0640 0.0508 0.0531 0.0403 0.0717 0.0509
RMSE 0.0528 0.1206 0.0794 0.0573 0.0531 0.0422 0.0720 0.0511

(2) 100 10 �a0 Bias 0.0016 -0.0571 0.0218 -0.0070 0.0010 -0.0041 0.0015 -0.0011
SD 0.0359 0.0231 0.0421 0.0324 0.0359 0.0244 0.0442 0.0324

RMSE 0.0360 0.0616 0.0475 0.0332 0.0359 0.0248 0.0442 0.0324
(3) 100 20 �a0 Bias 0.0004 -0.0275 0.0097 -0.0012 0.0002 -0.0005 -0.0004 0.0003

SD 0.0244 0.0163 0.0297 0.0229 0.0245 0.0167 0.0304 0.0229
RMSE 0.0245 0.0319 0.0312 0.0229 0.0245 0.0167 0.03074 0.0229

(4) 100 5 �b0 Bias 0.0060 -0.1759 0.0509 -0.0556 0.0024 -0.0144 0.0022 -0.0055
SD 0.0535 0.0376 0.0645 0.0504 0.0548 0.0465 0.0790 0.0519

RMSE 0.0538 0.1799 0.0822 0.0751 0.0549 0.0487 0.0791 0.0522

(5) 100 10 �b0 Bias 0.0022 -0.0846 0.0233 -0.0157 0.0012 -0.0062 0.0004 -0.0016
SD 0.0363 0.0226 0.0412 0.0326 0.0364 0.0245 0.0446 0.0327

RMSE 0.0364 0.0875 0.0474 0.0362 0.0364 0.0253 0.0446 0.0327

(6) 100 20 �b0 Bias 0.0006 -0.0401 0.0096 -0.0035 0.0003 -0.0016 -0.0011 0.0002
SD 0.0248 0.0149 0.0291 0.0229 0.0248 0.0154 0.0301 0.0229

RMSE 0.0248 0.0428 0.0307 0.0232 0.0248 0.0155 0.0301 0.0229
(7) 100 5 �c0 Bias 0.0009 -0.2580 0.0523 -0.1179 -0.0013 0.0286 -0.0114 0.0125

SD 0.0558 0.0383 0.0671 0.0499 0.0626 0.0688 0.1115 0.0600
RMSE 0.0558 0.2609 0.0850 0.1280 0.0626 0.0745 0.1121 0.0613

(8) 100 10 �c0 Bias 0.0020 -0.1280 0.0252 -0.0497 0.0010 0.0092 -0.0059 0.0034
SD 0.0371 0.0203 0.0407 0.0328 0.0385 0.0295 0.0522 0.0354

RMSE 0.0371 0.1296 0.0478 0.0595 0.0385 0.0309 0.0526 0.0355
(9) 100 20 �c0 Bias 0.0010 -0.0610 0.0102 -0.0175 0.0000 0.0015 -0.0044 0.0010

SD 0.0249 0.0111 0.0273 0.0232 0.0250 0.0137 0.0301 0.0234
RMSE 0.0249 0.0620 0.0292 0.0290 0.0250 0.0138 0.0304 0.0235

Note: �a0= (0:2; 0:1;�0:2; 1), �b0= (0:2; 0:5;�0:2; 1) and �c0= (0:2; 0:9;�0:2; 1).
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those for other estimates are ambiguous. Compared with the 2SLSE in Table 1, the 2SLSE with many IVs

(before bias correction) has larger Biases, smaller SDs; for RMSEs, the 2SLSE with many IVs has larger

RMSE for most of the estimates when 
0 = 0:1 and 0:5 (except for the estimates of �0), and has a smaller

RMSE for most of the estimates when 
0 = 0:9. When we compare the bias corrected 2SLSE using many

IVs with the 2SLSE in Table 1, the bias corrected 2SLSE still has larger Biases, but smaller SDs; for the

RMSEs, the bias corrected 2SLSE has a smaller RMSE for all the estimates when 
0 = 0:9, and a smaller

RMSE for the estimates of �0. Table 6 is the GMME with many IVs and best quadratic moment. Compared

with 2SLSE in Table 5, the GMME has a similar performance, but SDs of the estimates of �0 are smaller.

Compared with the BGMME in Table 2, for the items (1)-(5) where we do not have outliers of the estimates

in Table 2, the bias corrected GMME has a larger Bias, a smaller SD and the RMSE is larger. By looking

at the quantiles of this bias corrected GMME (now listed as the second column block in Table 4) and those

of BGMME in Table 3, we see that the bias corrected GMME has a larger Bias, especially a downward Bias

for estimate of 
0. We also have MLEs before and after bias correction in Table 7. Comparing the MLE

with the BGMME in Table 2 and the bias corrected GMME with many IVs and best quadratic moment in

Table 6, except that (the bias uncorrected) MLEs of 
0 for small T = 5 have larger Biases than those of the

GMMEs, MLE is slightly better overall, especially when 
0 is large.

7 Conclusion

This paper proposes the GMM estimation of the spatial dynamic panel data model with �xed e¤ects when

n is large and T can be relatively small. We can stack up the data and construct �nite moment conditions in

a systematic setting, where we derive the best linear and quadratic moment conditions. Alternatively, we can

use separate moment conditions, with which the number of IVs may increase as the time period increases.

We show that these estimators are
p
nT consistent, asymptotically normal, and have e¢ cient properties.

In a simple dynamic panel data model with �xed e¤ects, the OLS (least squares with dummy variables;

within) estimate has O(1=T ) bias due to the correlation of predetermined variables and resulting disturbances

after the elimination of �xed e¤ects. The IV estimation approach avoids such a problem when a �nite number

of IVs is used as those IVs are uncorrelated with the disturbances. However, when the number of IVs increases

without bound as the sample size increases, the correlation of the predetermined variables and disturbances

is restored to some extent (determined by the number of IVs). In the SDPD model with �xed e¤ects, and

time and spatial time lags, the OLS estimate has a similar O(1=T ) bias (Korniotis 2008). For the SDPD

model with the additional contemporaneous spatial lag, an additional O(1) bias for the OLS estimate occurs.

The latter is due to the simultaneity of the spatial lag variable. The simultaneity of the spatial lag can be
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handled in the QML approach as in Yu et al. (2008); but, the bias order O(1=T ) remains for the QMLE. On

the contrary, IV estimates would not have such an order of bias when the number of IVs is �nite. However,

when the number of IVs increases (to in�nity), the bias for the SDPD model will also be restored, and the

bias for the estimate of the spatial e¤ect, '1, would be dominant. A bias correction procedure can eliminate

this dominating bias. Therefore, under the situation that T is small relative to n, we can have consistent

estimates with properly centered asymptotic normal distribution.

In addition to linear moments constructed from the time lags, spatial time lags, and exogenous variables,

we also utilize quadratic moments to increase the e¢ ciency of the estimates. These quadratic moments are

implied by the spatial e¤ect in the SDPD model, which do not appear in the dynamic panel data models.

This is a distinct feature of our GMM approach as compared with IV approaches for the estimation of

spatial dynamic models. We propose an optimal quadratic moment condition that is free of distributional

assumption for the disturbances.

The best GMM estimates from the �nite moment conditions in the systematic setting have the same

asymptotic distribution of the MLE when the disturbances are normal. Compared to MLE of the SDPD

models, the GMM estimate is computationally simpler, and can be extended as in Lee and Liu (2010) to

higher spatial order models that the MLE cannot easily deal with. Additionally, when the distribution is

not normal, the best GMM estimate in the current paper can be more e¢ cient relative to the QMLE as the

kurtosis of the disturbances is used for the best quadratic moment. The many moment approach and the

MLE approach complement each other as the former can be applied to the case with T being small relative

to n, while the ML approach is valid for the case with T being moderate or large relative to n.

Appendices

A Notations

The following list summarizes some frequently used notations in the paper:

Sn(�) = In � �Wn for any possible �, Sn = In � �0Wn, Gn =WnS
�1
n and An = S�1n (
0In + �0Wn).

Asn = A0n +An for any square matrix An.

vecD(An) is the column vector formed by diagonal elements of An.

FT;T�1 is the T � (T � 1) matrix of Helmert transformation.

Fn;n�1 is the n� (n� 1) eigenvectors matrix of Jn = In� 1
n lnl

0
n corresponding to the eigenvalues of one.

[Y �n1; � � � ; Y �n;T�1] = [Yn1; � � � ; YnT ]FT;T�1, [Y
(�;�1)
n0 ; � � � ; Y (�;�1)n;T�2 ] = [Yn0; � � � ; Yn;T�1]FT;T�1.

V �nt = (
T�t
T�t+1 )

1
2 [Vnt � 1

T�t
PT

h=t+1 Vnh].
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Znt = (Yn;t�1; WnYn;t�1; Xnt) and Z�nt = (Y
(�;�1)
n;t�1 ;WnY

(�;�1)
n;t�1 ; X

�
nt).

� = (�; �0)0 with � = (
; �; �0).

[Y ��n�1;1; � � � ; Y ��n�1;;T�1] = F 0n;n�1[Y �n1; � � � ; Y �n;T�1], [Y
(��;�1)
n�1;0 ; � � � ; Y (��;�1)n�1;T�2] = F

0
n;n�1[Y

(�;�1)
n0 ; � � � ; Y (�;�1)n;T�2 ].

kx is the column dimension of Xnt and kz = kx + 2 is the column dimension of Z�nt.

Pn is the class of n� n nonstochastic matrix with a zero trace.

Qnt is the IV matrix for Section 3, Hnt = (hnt;Wnhnt; � � � ;W pn
n hnt) is the IV matrix for Section 4 where

hnt = [Yn0; :::; Yn;t�1; Xn1; :::; XnT ], and Mnt = Hnt(H
0
ntHnt)

+H 0
nt.

Z�n;T�1 = (Z
�0
n1; :::; Z

�0
n;T�1)

0 and V�
n;T�1 = (V

0�
n1; :::; V

0�
n;T�1)

0.

Wn;T�1 = IT�1 
Wn, Sn;T�1 = IT�1 
 Sn, Gn;T�1 = IT�1 
Gn, and Qn;T�1 = (Q
0
n1; � � � ; Q0n;T�1)0.

Pn;T�1;l = IT�1 
 Pnl for l = 1; 2; :::m, where Pnl is from Pn in Sections 3 and 4.

Jn;T�1 = IT�1 
 Jn.

!nm;T = [vecD(Pn;T�1;1); � � � ; vecD(Pn;T�1;m)] and !snm;T = [vecD(Psn;T�1;1); � � � ; vecD(Psn;T�1;m)].

�j =
Pj�1

h=0A
h
n, 	t = cTt

�
In � An�T�t

T�t

�
where cTt = ( T�t

T�t+1 )
1
2 .

~Xn;tT =
1

T�tS
�1
n

PT�1
h=t �T�hXnh and ~Vn;tT =

1
T�tS

�1
n

PT�1
h=t �T�hVnh.

E(Y
(�;�1)
n;t�1 jIt�1) = 	tY wn;t�1 � cTt ~Xn;tT�0 where Y wn;t�1 = Yn;t�1 � (In �An)�1S�1n cn0.

Hn1 = 	1Yn0 � cT1 ~X1T�0 and Hnt is in (11) for t � 2.

Knt � (Hnt;WnHnt; X�
nt) and Qnt = (GnKnt�0;Knt).

�nT;22 =
1

n(T�1) (Gn;T�1Z
�
n;T�1�0; Z

�
n;T�1)

0(Gn;T�1Z
�
n;T�1�0;Z

�
n;T�1).

fnt = [Gn((
0In + �0Wn)E(Y
(�;�1)
n;t�1 jIt�1) +X�

nt�0); E(Y
(�;�1)
n;t�1 jIt�1);WnE(Y

(�;�1)
n;t�1 jIt�1); X�

nt]:

unt = [Gn((
0In + �0Wn)�nt + V
�
nt); �nt;Wn�nt;0n�kx ] with �nt = �cTt ~Vn;tT .

B Some Lemmas

Lemma 1 Under Assumption 2, for any n� n nonstochastic UB matrices Bn,

(i) E(V �ntBnV
�0
nsjIt�1) = 0 for t 6= s;

(ii) 1
n(T�1)V

�0
n;T�1(IT�1 
Bn)V�

n;T�1 =
1
n�

2
0trBn +Op

�
1p
nT

�
;

(iii) under Assumption 6, 1
n(T�1)Y

(�;�1)0
n;T�1 (IT�1 
 Bn)V�

n;T�1 � E 1
n(T�1)Y

(�;�1)0
n;T�1 (IT�1 
 Bn)V�

n;T�1 =

Op

�
1p
nT

�
where E 1

n(T�1)Y
(�;�1)0
n;T�1 (IT�1 
Bn)V�

n;T�1 = O
�
1
T

�
;

(iv) under Assumption 9, for the IV matrix Qnt, plimn!1
1

n(T�1)
PT�1

t=1 Q
0
ntBnV

�
nt = 0.

(v) E[(V �0ntBnV
�
nt)

2] = (�4 � 3�40)c4Tt
�
1 + 1

(T�t)3

�
vec0D(Bn)vecD(Bn) + �

4
0[tr

2(Bn) + tr(BnB
s
n)].

Lemma 2 Under Assumption 2 with Pn;T�1;j = IT�1 
 Pnj, the covariance of V�0
n;T�1Pn;T�1;jV

�
n;T�1

and V�0
n;T�1Pn;T�1;lV

�
n;T�1 is �

4
0tr(Pn;T�1;jP

s
n;T�1;l) + (�4 � 3�40)vec0D(Pn;T�1;j)vecD(Pn;T�1;l) and that

of V�0
n;T�1Pn;T�1;jV

�
n;T�1 and Q

0
n;T�1V

�
n;T�1 is zero for j = 1; :::;m.
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Let Cnt be an n � 1 column vector from the IV matrix Qnt in Assumption 9. Denote snt = C 0ntV
�
nt +

V �0ntBnV
�
nt��20trBn and16 �2s;nT = Var(

PT�1
t=1 snt) = E(�

2
0

PT�1
t=1 C

0
ntCnt+T (�4�3�40)

Pn
i=1 b

2
n;ii+T�

4
0tr(BnB

s
n)).

Lemma 3 Under Assumptions 2, 8 and 9, if f 1
n(T�1)�

2
s;nT g is bounded away from zero,

PT�1
t=1

snt
�s;nT

d! N(0; 1).

Given square matrices Pnl, l = 1; :::;m, with zero trace, where the quadratic moments in (3) and (4) take

the form Pn;T�1;l = IT�1 
 Pnl, let �4 =
�4
�40
, P+nl = Pnl � diag(Pnl) +

q
�4�1
2 diag(Pnl) and

G�n = Gn �
trGn
n

In +

 s
2

�4 � 1
� 1
!�

diag(Gn)�
trGn
n

In

�
,

so thatP+n;T�1;l = IT�1
P
+
nl andG

�
n;T�1 = IT�1
G�n . Denote �P;nT = 1

n(T�1)Cmn;T (
�4�3�40
�40

!0nm;T!nm;T+

�mn;T )
�1C 0mn;T in (7) where Cmn;T = [tr(P

s
n;T�1;1Gn;T�1); : : : ; tr(P

s
n;T�1;mGn;T�1)].

Lemma 4 (i) tr(Psn;T�1;lGn;T�1) = tr(P
+s
n;T�1;lG

�
n;T�1);

(ii) �4�3�
4
0

�40
!0nm;T!nm;T+�mn;T =

1
2 (vec(P

+s
n;T�1;1); :::; vec(P

+s
n;T�1;m))

0(vec(P+sn;T�1;1); :::; vec(P
+s
n;T�1;m));

(iii) �P;nT � 1
2vec

0(G�s
n;T�1)vec(G

�s
n;T�1);

(iv) for Pn;T�1 in (8), we have tr(P
+s
n;T�1G

�
n;T�1)[

1
2 (vec

0(P+sn;T�1)
0vec(P+sn;T�1)]

�1tr(P+sn;T�1G
�
n;T�1) =

1
2vec

0(G�s
n;T�1)vec(G

�s
n;T�1), where

1
2vec

0(G�s
n;T�1)vec(G

�s
n;T�1) = tr(P

s
n;T�1Gn;T�1).

Lemma 5 Denote cTt = ( T�t
T�t+1 )

1
2 and �j =

Pj�1
h=0A

h
n. We have Y

(�;�1)
n;t�1 = E(Y

(�;�1)
n;t�1 jIt�1) + �nt where

(i) E(Y (�;�1)n;t�1 jIt�1) = cTt(In �
An�T�t
T�t )(Yn;t�1 � (In �An)�1S�1n cn0)� cTt ~Xn;tT�0, and

(ii) �nt = �cTt ~Vn;tT with ~Vn;tT = 1
T�tS

�1
n

PT�1
h=t �T�hVnh.

For Hnt in (11),

E(Y
(�;�1)
n;t�1 jIt�1) = Hnt +Wnt, and Y

(�;�1)
n;t�1 = Hnt +Wnt + �nt, (32)

where Wn1 = �	1(In �An)�1S�1n cn0 and Wnt = 	t(In �An)�1S�1n 1
t�1

Pt�1
s=1 Vns for t � 2.

Lemma 6 Under Assumptions 1-8 and T !1, for any nonstochastic square matrix Bn,

1

n(T � 1)
PT�1

t=1 H
0
ntBnHnt = E(

1

n(T � 1)
PT�1

t=1 H
0
ntBnHnt) +Op

�
1p
nT

�
with E( 1

n(T�1)
PT�1

t=1 H0ntBnHnt) = O(1). Also,

1

n(T � 1)
PT�1

t=1 W
0
ntBnWnt = op(1) and

1

n(T � 1)
PT�1

t=1 H
0
ntBnWnt = op(1). (33)

Similarly,

1

n(T � 1)
PT�1

t=1 (Wnt + �nt)
0Bn(Wnt + �nt) = op(1) and

1

n(T � 1)
PT�1

t=1 H
0
ntBn(Wnt + �nt) = op(1). (34)

16Here, the covariance of
PT�1
t=1 C

0
ntV

�
nt and

PT�1
t=1 V

�
ntBnV

�
nt is zero, which is similar to Lemma 2. Thus, the third moment

of vit does not appear in �2s;nT .
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Let Mnt = Hnt(H
0
ntHnt)

+H 0
nt so that Mnt is an n� n idempotent matrix with rank Kt.

Lemma 7 For any UB n� n square matrices B1n and B2n,

(i) tr(MntB1nB
0
1nMnt) � cKt, where c is a �nite constant (for all n and t);

(ii) jtr(B1nMnt)j and jtr(B1nMntB2n)j are less than cKt for some c > 0;

(iii) jtr(MntB1nMnsB2n)j are less than c
p
KtKs for some c > 0.

Lemma 8 Under Assumptions 1-6, for any nonstochastic UB matrix Bn,

(i) E(
PT�1

t=1 V
�0
ntBnMntV

�
nt) = �

2
0

PT�1
t=1 E[tr(BnMnt)] = O(

PT�1
t=1 Kt), and

(ii)
PT�1

t=1 (V
�0
ntBnMntV

�
nt � �20tr(BnMnt)) = Op(

PT�1
t=1

p
Kt).

Lemma 9 Under Assumptions 1-6, for any nonstochastic UB matrix Bn,

E(
PT�1

t=1 �
0
ntBnMntV

�
nt) = �

�20
T + 1� tE[tr(MntC

0
nTtS

0�1
n B0n)] = O

�PT�1
t=1

Kt

(T + 1� t)(T � t)

�
,

and
PT�1

t=1 (�
0
ntBnMntV

�
nt +

�20
T+1�t tr(MntC

0
nTtS

0�1
n B0n)) = Op

�PT�1
t=1

q
Kt

T+1�t

�
, where CnTt = 1

T�t (In +

2An+� � �+(T�t)AT�1�tn ). Also, for any nonstochastic UB matrices Bn1 and Bn2, E(
PT�1

t=1 �
0
ntBn1MntBn2�nt) =

O
�PT�1

t=1
Kt

T�t+1

�
and

PT�1
t=1 (�

0
ntBn1MntBn2�nt � E(�0ntBn1MntBn2�ntjIt�1)) = Op

�PT�1
t=1

p
Kt

T�t+1

�
.

Lemma 10 Under Assumptions 1-8 , suppose we choose Hnt from (16). For each t, there exists a matrix

�t such that 1
n(T�1)

PT�1
t=1 (fnt �Hnt � �t)0(fnt �Hnt � �t)

p! 0 as n!1 and T !1.

The following Lemma 11 is about magnitudes of certain orders in the 2SLS estimate with many IVs in

(19). Denote K = maxfK1; :::;KT�1g, ef (K) = 1
n(T�1)

PT�1
t=1 f

0
nt(In �Mnt)fnt and �K = tr(ef (K)).

Lemma 11 Under Assumptions 1-8 and T !1,

(i) �K = op(1);

(ii) 1p
n(T�1)

PT�1
t=1 f

0
nt(In �Mnt)V

�
nt = Op((E�K)

1=2);

(iii) 1
n(T�1)

PT�1
t=1 f

0
ntMntBnV

�
nt = Op

�
1p

n(T�1)

�
and 1

n(T�1)
PT�1

t=1 f
0
ntMntBn ~Vn;tT = Op

�
1p

n(T�1)

�
;

(iv) 1
n(T�1)

PT�1
t=1 (u

0
ntMntunt � E(u0ntMntuntjIt�1)) = Op( 1

n(T�1)
PT�1

t=1

p
Kt) where

1
n(T�1)

PT�1
t=1 E(u

0
ntMntuntjIt�1) = O( 1

n(T�1)
PT�1

t=1 Kt).

Proof for Lemma 1:

(i) As V �ntBnV
�0
ns = cTtcTs(Vnt � 1

T�t
PT

h=t+1 Vnh)Bn(Vns � 1
T�s

PT
h=s+1 Vnh)

0, for t > s,

E(V �ntBnV
�0
nsjIt�1) = cTtcTsE[(Vnt �

1

T � t
PT

h=t+1 Vnh)Bn(Vns �
1

T � s
Pt�1

h=s+1 Vnh)
0jIt�1]

�cTtcTsE[(Vnt �
1

T � t
PT

h=t+1 Vnh)Bn
1

T � s
PT

h=t V
0
nhjIt�1]

= �cTtcTs�20[
1

T � str(Bn)�
1

(T � t)
1

(T � s) (T � t)tr(Bn)] = 0.
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For t < s, we have E(V �ntBnV
�0
nsjIt�1) = E(V �ntBnV �0ns) = 0.

(ii) We have 1
n(T�1)V

�0
n;T�1(IT�1
Bn)V�

n;T�1 =
1

n(T�1)
PT

t=1
~V 0ntBn ~Vnt where ~Vnt = Vnt� 1

T

PT
s=1 Vns.

By Lemma 9 in Yu et al. (2008), 1
n(T�1)

PT
t=1

~V 0ntBn
~Vnt � E 1

n(T�1)
PT

t=1
~V 0ntBn

~Vnt = Op

�
1p
nT

�
with

E 1
n(T�1)

PT
t=1

~V 0ntBn ~Vnt =
1
n�

2
0trBn.

(iii) We have 1
n(T�1)Y

(�;�1)0
n;T�1 (IT�1 
 Bn)V�

n;T�1 =
1

n(T�1)
PT

t=1
~Y 0n;t�1Bn

~Vnt, where ~Yn;t�1 = Yn;t�1 �
1
T

PT�1
s=0 Yns. Under Assumption 6,

1
n(T�1)

PT
t=1

~Y 0n;t�1Bn
~Vnt�E 1

n(T�1)
PT

t=1
~Y 0n;t�1Bn

~Vnt = Op

�
1p
nT

�
by

Lemma 15 in Yu et al. (2008), with E 1
n(T�1)

PT
t=1

~Y 0n;t�1Bn
~Vnt = O

�
1
T

�
.

(iv) From Assumption 9 that E(QntjIt�1) = Qnt, E( 1
n(T�1)

PT�1
t=1 Q

0
ntBnV

�
nt) = 0. Also, as E(V

�
ntV

�0
nsjIt�1) =

0 whenever s < t, Cov(Q0ntBnV
�
nt; Q

0
nsBnV

�
ns) = 0 for t 6= s. Hence, Var( 1

n(T�1)
PT�1

t=1 Q
0
ntBnV

�
nt) =

�20
n2(T�1)2

PT�1
t=1 E[Q

0
ntBnB

0
nQnt]. Under Assumption 9 that elements in Qnt are Op(1) uniformly in n and t,

1
n(T�1)

PT�1
t=1 E[Q

0
ntBnB

0
nQnt] = O(1); hence,

1
n(T�1)

PT�1
t=1 Q

0
ntBnV

�
nt = Op

�
1p

n(T�1)

�
.

(v) As V �nt = cTt[(1;� 1
T�t ; :::;�

1
T�t )
In](V

0
nt; :::; V

0
nT )

0, we have V �0ntBnV
�
nt = c

2
Tt(V

0
nt; :::; V

0
nT )AnT (V

0
nt; :::; V

0
nT )

0

where AnT = [(1;� 1
T�t ; :::;

1
T�t )

0
 In]Bn[(1;� 1
T�t ; :::;�

1
T�t )
 In]. It follows that tr(AnT ) =

T�t+1
T�t tr(Bn),

tr(A0nTA
s
nT ) = (

T�t+1
T�t )

2tr(BnB
s
n) and vec

0
D(AnT )vecD(AnT ) = (1 +

1
(T�t)3 )vec

0
D(Bn)vecD(Bn). Hence, as

c2Tt =
T�t
T�t+1 , we have the result in (v). �

Proof for Lemma 2: Denote VnT = (V 0n1; � � � ; V 0nT )0. As V�
n;T�1 = (F 0T;T�1 
 In)VnT and Pn;T�1;j =

IT�1
Pnj , we have Cov(V�0
n;T�1Pn;T�1;jV

�
n;T�1;V

�0
n;T�1Pn;T�1;lV

�
n;T�1) = Cov(V

0
nT (JT
Pnj)VnT ;V

0
nT (JT


Pnl)VnT ) = �
4
0tr((JT 
 Pnj)(JT 
 P snl)) + (�4 � 3�40)vec0D(JT 
 Pnj)vecD(JT 
 Pnl), by using the variance

formulae of quadratic form of i.i.d. disturbances. Using tr((JT 
 Pnj)(JT 
 P snl)) = (T � 1)tr(PnjP snl) =

tr(Pn;T�1;jP
s
n;T�1;l) and vec

0
D(JT
Pnj)vecD(JT
Pnl) = (T�1)vec0D(Pnj)vecD(Pnl) = vec0D(Pn;T�1;j)vecD(Pn;T�1;l),

the covariance matrix of V�0
n;T�1Pn;T�1;jV

�
n;T�1 and Q

0
n;T�1V

�
n;T�1 is �

4
0tr(Pn;T�1;jP

s
n;T�1;l) + (�4 �

3�40)vec
0
D(Pn;T�1;j)vecD(Pn;T�1;l).

For Cov(V�0
n;T�1Pn;T�1;jV

�
n;T�1;Q

0
n;T�1V

�
n;T�1) = E[(

PT�1
t=1 V

�0
ntPn;jV

�
nt)(

PT�1
t=1 Q

0
ntV

�
nt)], we have

E(V �0ntPn;jV
�
nt)(Q

0
ntV

�
nt)

= c3TtE

�
(Vnt �

1

T � t
PT

h=t+1 Vnh)
0Pn;j(Vnt �

1

T � t
PT

h=t+1 Vnh)Q
0
nt(Vnt �

1

T � t
PT

h=t+1 Vnh)

�
= c3Tt�3EQ

0
ntvecD(Pn;j)(1�

1

(T � t)2 ) = �3EQ
0
ntvecD(Pn;j) � cTt(1�

1

T � t ).
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For s < t, we have

E(V �0nsPn;jV
�
ns)(Q

0
ntV

�
nt)

= c2TscTtE

�
(Vns �

1

T � s
PT

h=s+1 Vnh)
0Pn;j(Vns �

1

T � s
PT

h=s+1 Vnh)Q
0
nt(Vnt �

1

T � t
PT

h=t+1 Vnh)

�
= c2TscTtE

�
(� 1

T � s
PT

h=t Vnh)
0Pn;j(�

1

T � s
PT

h=t Vnh)Q
0
nt(Vnt �

1

T � t
PT

h=t+1 Vnh)

�
= c2TscTt�3EQ

0
ntvecD(Pn;j)[

1

(T � s)2 �
T � t

(T � s)2(T � t) ] = 0,

because EV 0ngPn;jVnhQ
0
ntVnp = 0 for g; h < t and p � t, E[Vnt � 1

T�t
PT

h=t+1 Vnh](
PT

h=t Vnh) = 0 and

E(QntjIt�1) = Qnt. For s < t, we have

E(V �0ntPn;jV
�
nt)(Q

0
nsV

�
ns)

= c2TtcTsE

�
(Vnt �

1

T � t
PT

h=t+1 Vnh)
0Pn;j(Vnt �

1

T � t
PT

h=t+1 Vnh)Q
0
ns(Vns �

1

T � s
PT

h=s+1 Vnh)

�
= c2TtcTsE

�
(Vnt �

1

T � t
PT

h=t+1 Vnh)
0Pn;j(Vnt �

1

T � t
PT

h=t+1 Vnh)�Q
0
ns(�

1

T � s
PT

h=t Vnh)

�
= c2TtcTs�3EQ

0
nsvecD(Pn;j)(�

1

T � s �
T � t

(T � t)2(T � s) ) = �3EQ
0
nsvecD(Pn;j) � (�cTs

1

T � s ).

Hence,

E[(
PT�1

t=1 V
�0
ntPn;jV

�
nt)(

PT�1
t=1 Q

0
ntV

�
nt)]

=
PT�1

t=1 E [(V
�0
ntPn;jV

�
nt)(Q

0
ntV

�
nt)] +

PT�2
s=1

PT�1
t>s E [(V

�0
ntPn;jV

�
nt)(Q

0
nsV

�
ns)]

=
PT�1

t=1 �3EQ
0
ntvecD(Pn;j) � cTt(1�

1

T � t )�
PT�2

s=1 �3EQ
0
nsvecD(Pn;j) � cTs(1�

1

T � s ) = 0.

Therefore, Cov(V�0
n;T�1Pn;T�1;jV

�
n;T�1;Q

0
n;T�1V

�
n;T�1(�)) = 0. �

Proof for Lemma 3: The objective is sum of three terms: (i) 1p
n(T�1)

PT�1
t=1

�
cTtC

0
ntVnt + V

0
ntBnVnt � �20trBn

	
,

(ii) � 1p
n(T�1)

PT�1
t=1

n
1

(T�t+1)1=2(T�t)1=2C
0
nt

PT
h=t+1 Vnh

o
and (iii) � Tp

n(T�1)
f �V 0nTBn �VnT � 1

T �
2
0trBng. The

�rst term will obey CLT by using Theorem 13 in Yu et al. (2008), where limn!1
1

n(T�1)
PT�1

t=1 c
2
TtEC

0
ntCnt =

limn!1
1

n(T�1)
PT�1

t=1 EC
0
ntCnt because c

2
Tt =

T�t
T�t+1 . For the second term, its expectation is zero and its

variance is 1
n(T�1)

PT�1
t=1

h
1

(T�t+1)EC
0
ntCnt

i
< c

(T�1)
PT

t=1

h
1

(T�t+1)

i
= O

�
lnT
T

�
for a �nite constant c as

1
nEC

0
ntCnt is bounded uniformly in t. The third term will be Op

�
1p
nT

�
by Lemma 9 in Yu et al. (2008).

Hence, for large T , as the last two terms will vanish, the CLT follows directly from the �rst term.

For the case of a �nite T , the second and third terms would not vanish, but can be combined with

the �rst term into a linear and quadratic system in terms of (V 0n1; :::; V
0
nT )

0. The asymptotic will rely on

n!1. The linear term would involve predetermined variables in its coe¢ cients (instead of constants as in
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Kelejian and Prucha (2001)). However, as the proof of the CLT in Prucha and Kelejian (2001) is based on

the martingale CLT, it can be extended, similarly to Yu et al. (2008), to cover the predetermined variables

situation without additional complication. �

Proof for Lemma 4: This is extended from Liu et al. (2006). �

Proof for Lemma 5: With Y wnt = Ynt � (In �An)�1S�1n cn0, from (1), we have

Y wnt = �0WnY
w
nt + 
0Y

w
n;t�1 + �0WnY

w
n;t�1 +Xnt�0 + Vnt; t = 1; 2; :::; T . (35)

Also, with the Helmert transformation to eliminate individual e¤ects, we have

Y
(�;�1)
n;t�1 = cTt(Yn;t�1 �

1

T � t
PT�1

s=t Yns) = cTt(Y
w
n;t�1 �

1

T � t
PT�1

s=t Y
w
ns). (36)

We expand Y wn;t+h for h � 0 so that Y wn;t+h = Ah+1n Y wn;t�1+S
�1
n

Ph
j=0A

j
nXn;t+h�j�0+S

�1
n

Ph
j=0A

j
nVn;t+h�j .

Therefore, we have
PT�1

s=t Y
w
ns =

PT�t
h=1 A

h
nY

w
n;t�1 + S

�1
n

PT�1
r=t (

PT�r�1
h=0 Ahn)(Xnr�0 + Vnr). Thus, we can

rewrite (36) as Y (�;�1)n;t�1 = cTt

h
(In � An�T�t

T�t )Y wn;t�1 � ~Xn;tT�0 � ~Vn;tT

i
. With E(Y (�;�1)n;t�1 jIt�1) = 	tY wn;t�1�

cTt ~Xn;tT�0, the result follows. �

Proof for Lemma 6: From (11), we can decomposeHnt intoHnt = HXnt+HVnt, whereHXnt is the deterministic

part and HVnt is the stochastic part which has zero mean. With Yns � AnYn;s�1 = S�1n (Xns�0 + cn0 + Vns)

and Yn0 = S�1n
Ph�

h=0A
h
nXnh + S

�1
n

Ph�

h=0A
h
nVnh, we have, for t � 2, HXnt = 	tS�1n

Pt�1+h�
h=0 AhnXn;t�1+h �

cTt ~Xn;tT�0�	t(In�An)�1S�1n cn0 andHVnt = 	tS�1n
Pt�1+h�

h=0 AhnVn;t�1+h�	t(In�An)�1S�1n 1
t�1

Pt�1
s=1 Vns.

For t = 1, we have HXn1 = 	1S
�1
n

Ph�

h=0A
h
nXnh � cT1 ~Xn;1T�0 and HVn1 = 	1S

�1
n

Ph�

h=0A
h
nVnh. Thus,

elements of HXnt for t = 1; :::; T �1 are O(1), and HVnt�s are moving averages of past disturbances. By Lemma

7 in Yu et al. (2008), E( 1
n(T�1)

PT�1
t=1 H0VntBnHVnt) = O(1) and Var( 1

n(T�1)
PT�1

t=1 H0VntBnHVnt) = O( 1
nT ).

Also, EH0XntBnHVnt = 0 and Var( 1
n(T�1)

PT�1
t=1 H0XntBnHVnt) = O( 1

nT ). Thus, 1
n(T�1)

PT�1
t=1 H0ntBnHnt =

E( 1
n(T�1)

PT�1
t=1 H0ntBnHnt) +Op(

1p
nT
) with E( 1

n(T�1)
PT�1

t=1 H0ntBnHnt) = O(1).

De�ning �n = (In �An)�1Sn. By Lemma 2 in Yu et al. (2008), E(W0
ntBnWnt) = �

2
0
1
t�1�

0
n	

0
tBn	t�n

for t � 2. For t = 1,Wn1 = �	1�ncn0 so that 1nW
0
n1BnWn1 = O(1) as elements of cn0 are bounded for all n.

Thus, for some �nite constant c, E 1
n(T�1)

PT�1
t=1 W0

ntBnWnt � �20 c
(T�1)

PT�1
t=2 (

1
t�1 )+O

�
1
T

�
= O

�
lnT
T

�
! 0.

Also, Var( 1
n(T�1)

PT�1
t=1 W0

ntBnWnt) =
1

n2(T�1)2
PT�1

t=2

PT�1
s=2 Cov(W0

ntBnWnt;W0
nsBnWns) because Wn1 is
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nonstochastic. By Lemma 4 in Yu et al. (2008), for t � s, we have

Cov(W0
ntBnWnt;W0

nsBnWns)

= (�4 � 3�40) � (s� 1) � vec0D
�

1

(t� 1)2 (	t�n)
0Bn	t�n

�
� vecD

�
1

(s� 1)2 (	s�n)
0
Bn(	s�n)

�
+2�40 � (s� 1)2 � tr

�
1

(t� 1)(s� 1)(	t�n)Bn(	s�n)
0 � 1

(t� 1)(s� 1)(	s�n)B
0
n(	t�n)

0
�

= O

�
n

(t� 1)2(s� 1)

�
+O

�
n

(t� 1)2

�
= O

�
n

(t� 1)2

�
.

Thus, Var( 1
n(T�1)

PT�1
t=1 W0

ntBnWnt) � c
n(T�1)2

PT�1
t=2

PT�1
s=2

1
(t�1)2 = O

�
1
nT

�
. Hence, 1

n(T�1)
PT�1

t=1 W0
ntBnWnt =

op(1). Similarly, 1
n(T�1)

PT�1
t=1 (Wnt + �nt)

0Bn(Wnt + �nt) = op(1).

For 1
n(T�1)

PT�1
t=1 H0ntBnWnt, it has two components 1

n(T�1)
PT�1

t=1 HX0ntBnWnt and 1
n(T�1)

PT�1
t=1 HV 0ntBnWnt.

For the �rst part, E 1
n(T�1)

PT�1
t=1 HX0ntBnWnt =

1
n(T�1)H

X0
n1BnWn1 = O

�
1
T

�
andVar( 1

n(T�1)
PT�1

t=1 HX0ntBnWnt) =

1
n2(T�1)2

PT�1
t=2

PT�1
s=2 HX0ntBn(EWntW0

ns)B
0
nHXns. As elements of HXnt are bounded uniformly in n and t, and

EW0
ntWns = O

�
1
t�1

�
for t � s, we haveVar(

PT�1
t=1 HX0ntBnWnt) = O(nT lnT ). Hence, 1

n(T�1)
PT�1

t=1 HX0ntBnWnt =

op(1). For the second part, by using Lemma 4 in Yu et al. (2008), 1
n(T�1)

PT�1
t=1 HV 0ntBnWnt = op(1). Thus,

1
n(T�1)

PT�1
t=1 H0ntBnWnt = op(1). Similarly, we have 1

n(T�1)
PT�1

t=1 H0ntBn(Wnt + �nt) = op(1). �

Proof for Lemma 7:

For (i), because B1nB01n is non-negative de�nite, B1nB
0
1n = �n�n�

0
n where �n is an orthonormal matrix

and �n is the eigenvalue matrix. It follows thatMntB1nB
0
1nMnt � ��nMnt, where ��n is the largest eigenvalue.

By the spectral radius theorem, tr(MntB1nB
0
1nMnt) � jjB1nB01njjtr(Mnt) � cKt where jj � jj denotes either

the row or column sum norm, and c is some constant such that jjB1nB01njj � c because B1n is UB.

For (ii), as tr(B1nMntB2n) = tr(B2nB1nMnt), it is su¢ cient to show the case for tr(B1nMnt). By the

Cauchy-Schwarz inequality, jtr(B1nMnt)j � tr
1
2 (B1nMntB

0
1n)tr

1
2 (Mnt) � cKt, because tr(B1nMntB

0
1n) =

tr(MntB
0
1nB1nMnt) � c2Kt for some c by (1).

For (iii), by the Cauchy-Schwarz inequality, jtr(MntB1nMnsB2n)j � [tr(B01nMntB1n)]
1=2[tr(B02nMnsB2n)]

1=2.

As tr(B01nMntB1n) = tr(MntB1nB
0
1nMnt) � jjB1nB01njjtr(Mnt) � cKt, the lemma follows. �

Proof For Lemma 8: Because E(V �0ntBnMntV
�
nt) = E[E(V

�0
ntBnMntV

�
ntjIt�1)] = �20E[tr(BnMnt)] = O(Kt),

E(
PT�1

t=1 V
�0
ntBnMntV

�
nt) = O(

PT�1
t=1 Kt). Also, from Lemma 1 (v),

E[Var(V �0ntBnMntV
�
nt)jIt�1] = (�4 � 3�40)c4Tt

�
1 +

1

(T � t)3

�
E[vec0D(BnMnt)vecD(BnMnt)]

+�40E[tr(BnMntB
0
n)+tr(BnMntBnMnt)]:
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As vec0D(BnMnt)vecD(BnMnt) � tr(MntB
0
nBnMnt), by Lemma 7, E[Var(V �0ntBnMntV

�
nt)jIt�1] = O(Kt).

Because

Var(V �0ntBnMntV
�
nt � �20tr(BnMnt))

= EfVar(V �0ntBnMntV
�
nt � �20tr(BnMnt)jIt�1)g+VarfE(V �0ntBnMntV

�
nt � �20tr(BnMnt)jIt�1)g

= EfVar(V �0ntBnMntV
�
nt � �20tr(BnMnt)jIt�1)g = EfVar(V �0ntBnMntV

�
ntjIt�1)g = O(Kt),

it follows that

Var(
PT�1

t=1 (V
�0
ntBnMntV

�
nt � �20tr(BnMnt))) = E(

PT�1
t=1 (V

�0
ntBnMntV

�
nt � �20tr(BnMnt)))

2

�
PT�1

t=1

PT�1
s=1 Var

1=2(V �0ntBnMntV
�
nt � �20tr(BnMnt))Var

1=2(V �0nsBnMnsV
�
ns � �20tr(BnMns))

= O((
PT�1

t=1

p
Kt)

2). �

Proof for Lemma 9: As �nt = �cTt ~Vn;tT , we have
PT�1

t=1 �
0
ntB

0
nMntV

�
nt = �

PT�1
t=1 UTt where UTt =

(V 0nT ; :::; V
0
nt)AnT;t(V

0
nT ; :::; V

0
nt)

0 and AnT;t = 1
T+1�t (0;�1; :::;�T�t)

0S0�1n B0nMnt(� 1
T�tIn; :::;�

1
T�tIn; In).

Note that tr(AnT;t) = 1
T+1�t tr(S

0�1
n B0nMntC

0
nTt) where CnTt = �T�t� 1

T�t
PT�1

s=t+1 �T�s =
1

T�t
PT�t

h=1 hA
h�1
n ,

tr(A2nT;t) =
1

(T + 1� t)2 tr(S
0�1
n B0nMntC

0
nTtS

0�1
n B0nMntC

0
nTt),

and tr(AnT;tA0nT;t) =
1

(T+1�t)(T�t) tr(S
0�1
n B0nMntBnS

�1
n

PT�t
s=1 �s�

0
s). As

PT�t
h=1 hA

h�1
n is UB implied by

Assumption 7, elements of CTt are O( 1
T�t ). Thus, by Lemma 7, tr(AnT;t) = O

�
Kt

(T+1�t)(T�t)

�
, tr(A2nT;t) =

O
�

Kt

(T+1�t)2(T�t)2

�
, and tr(AnT;tA0nT;t) = O

�
Kt

T+1�t

�
. Hence, E(UTt) =

�20
T+1�tE[tr(MntC

0
nTtS

0�1
n B0n)],which

implies jE(UTt)j � cKt

(T+1�t)(T�t) and jE
PT�1

t=1 UTtj �
���PT�1

t=1
cKt

(T+1�t)(T�t)

���. For the variance, we have
Var(UTt � �20tr(AnT;t)) = EfVar(UTt � �20tr(AnT;t)jIt�1)g+VarfE(UTt � �20tr(AnT;t)jIt�1)g

= EfVar(UTt � �20tr(AnT;t)jIt�1)g = EfVar(UTtjIt�1)g

= (�4 � 3�40)E[vec0D(AnT;t)vecD(AnT;t)] + �40[E(tr(A2nT;t)) + E(tr(AnT;tA0nT;t))]

= O(
Kt

T + 1� t ).

Thus, Var(
PT�1

t=1 (UTt��20tr(AnT;t))) �
PT�1

t=1

PT�1
s=1 Var

1=2(UTt��20tr(AnT;t))Var1=2(UTs��20tr(AnT;s)) =

O((
PT�1

t=1

q
Kt

T+1�t )
2).

Similarly,
PT�1

t=1 �
0
ntBn1MntBn2�nt =

PT�1
t=1 WTt where WTt = (V 0nT ; :::; V

0
nt)BnT;t(V

0
nT ; :::; V

0
nt)

0 with

BnT;t =
1

(T�t+1)(T�t) (0;�1; :::;�T�t)
0S0�1n B0n1MntBn2S

�1
n (0;�1; :::;�T�t). As tr(BnT;t) = O

�
Kt

T�t+1

�
,

tr(B2nT;t) = O
�

Kt

(T�t+1)2

�
and tr(BnT;tB0nT;t) = O

�
Kt

(T�t+1)2

�
, we have E(

PT�1
t=1 �

0
ntBn1MntBn2�nt) =

�20E[
PT�1

t=1 tr(BnT;t)] = O
�PT�1

t=1
Kt

T�t+1

�
and Var(

PT�1
t=1 WTt � �20tr(BnT;t)) = Op

��PT�1
t=1

p
Kt

T�t+1

�2�
. �
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Proof for Lemma 10: From (17), it is su¢ cient to show that 1
n(T�1)

PT�1
t=1 (E(Y

(�;�1)
n;t�1 jIt�1) � Hnt �

�t)
0(E(Y

(�;�1)
n;t�1 jIt�1)�Hnt ��t)

p! 0 as n!1 and pn !1 for some vector �t. As E(Y
(�;�1)
n;t�1 jIt�1) = Hnt+

Wnt from (32) and 1
n(T�1)

PT�1
t=1 W0

ntWnt
p! 0 as n!1 from Lemma 6, we need to show 1

n(T�1)
PT�1

t=1 (Hnt�

Hnt � �t)0(Hnt �Hnt � �t)
p! 0 as n!1 and pn !1, under which 1

n(T�1)
PT�1

t=1 (Hnt �Hnt � �t)0Wnt
p! 0

by using the Cauchy-Schwarz inequality.

We have Hn1 = 	1Yn0 � cT1 ~X1T�0 and

Hnt =
1

t� 1	t(In �An)
�1AnYn0 �

1

t� 1	t
Pt�1

s=2 Yn;s�1 +	t(In �
1

t� 1(In �An)
�1)Yn;t�1

+	t(In �An)�1S�1n
1

t� 1
Pt�1

s=1Xns�0 � cTt ~Xn;tT�0;

for t > 1 from (11). Without loss of generality, consider 1
t�1	t(In � An)

�1AnYn0 with t 6= 1. As An =

S�1n (
0In + �0Wn) = 
0In + (
0�0 + �0)
P1

j=1 �
j�1
0 W j

n, A
j
n can be written as spatial power series, denoted

as
P1

h=0 a
(h)
j Wh

n where a(h)j is the scalar coe¢ cient for the spatial expansion of Ajn. As �j =
Pj�1

h=0A
h
n,

An�T�t can be written as
P1

h=0(
PT�t

j=1 a
(h)
j )Wh

n and (In�An)�1An can be written as
P1

h=0(
P1

j=1 a
(h)
j )Wh

n .

Hence, as 	t = cTt(In � An�T�t
T�t ), 1

t�1	t(In � An)
�1An can be written as cTt

t�1
P1

h=0 b
(h)Wh

n where b
(0) =

(1�
PT�t

j=1
a
(0)
j

T�t )(
P1

j=1 a
(0)
j ) and b(h) = (1�

PT�t
j=1

a
(0)
j

T�t )(
P1

j=1 a
(h)
j )�

Ph
l=1(

PT�t
j=1

a
(l)
j

T�t )(
P1

j=1 a
(h�l)
j ) for h � 1.

Because k�0Wnk1 < 1 by Assumption 4, k�0Wnkpn1 decreases to zero in an exponential rate. By choosing

pn = lnn, we have 1
t�1	t(In�An)

�1AnYn0 =
cTt
t�1 (

Ppn
h=0 b

(h)Wh
n +Rn1)Yn0 where elements of Rn1 is O(

1
nc )

for some c > 0 and ncRn1 is UB. Hence, for Hnt in (16), we can �nd �
(1)
t such that 1

t�1	t(In�An)
�1AnYn0 =

Hnt � �(1)t + cTt
t�1Rn1 � Yn0.

Similarly, 1
t�1	t

Pt�1
s=2 Yn;s�1 = Hnt � �(2)t + cTt

t�1Rn2
Pt�1

s=2 Yn;s�1 for some �
(2)
t and 	t(In � 1

t�1 (In �

An)
�1)Yn;t�1 = Hnt � �(3)t + cTtRn3 � Yn;t�1 for some �(3)t . For the fourth and �fth components of Hnt,

they are the linear combinations of Xn1; :::; Xn;T�1 and XnT . With spatial power series expansions, we can

similarly obtain 	t(In �An)�1S�1n 1
t�1

Pt�1
s=1Xns�0 � cTt ~Xn;tT�0 = Hnt � �

(4)
t + cTtRn4 for some �

(4)
t .

Thus, we have 1
n(T�1)

PT�1
t=1 (Hnt �Hnt � �t)0(Hnt �Hnt � �t)! 0 as n!1 and pn !1. �

Proof for Lemma 11:

(i) As Mnt = Hnt(H
0
ntHnt)

+H 0
nt, (In �Mnt)Hnt = 0. Hence, ef (K) = 1

n(T�1)
PT�1

t=1 f
0
nt(In �Mnt)fnt =

1
n(T�1)

PT�1
t=1 (fnt �Hnt ��t)0(In �Mnt)(fnt �Hnt ��t) � 1

n(T�1)
PT�1

t=1 (fnt �Hnt � �t)0(fnt �Hnt � �t). By

Lemma 10, ef (K)! 0.

(ii) As fnt andMnt involve variables up to period t�1 and V �nt involves the error terms at or after period

t, we have E 1p
n(T�1)

PT�1
t=1 f

0
nt(In�Mnt)V

�
nt = 0. Also, using E(V

�
ntV

�0
nsjIt�1) = 0 for t > s from Lemma 1,

we have Var( 1p
n(T�1)

PT�1
t=1 f

0
nt(In�Mnt)V

�
nt) = �

2
0E

1
n(T�1)

PT�1
t=1 f

0
nt(In�Mnt)fnt = �

2
0E[ef (K)]. Hence,

1p
n(T�1)

PT�1
t=1 f

0
nt(In �Mnt)V

�
nt = Op((E�K)

1=2);
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(iii) For 1
n(T�1)

PT�1
t=1 f

0
ntMntBnV

�
nt, its mean is zero. For t > s, Cov(f 0ntMntBnV

�
nt; f

0
nsMnsBnV

�
ns) =

E[f 0ntMntBnE(V
�
nt �V �0nsjIt�1)B0nMnsfns] = 0 from Lemma 1; for t = s, Cov(f 0ntMntBnV

�
nt; f

0
nsMnsBnV

�
ns) =

�20E[f
0
ntMntBnB

0
nMntfnt]. Hence, we have Var(

PT�1
t=1 f

0
ntMntBnV

�
nt) = �

2
0

PT�1
t=1 E[f

0
ntMntBnB

0
nMntfnt] �

�20 kBnB0nk1
PT�1

t=1 E(f
0
ntfnt). As

1
n(T�1)

PT�1
t=1 E(f

0
ntfnt) = O(1) from Lemma 6, Var(

1
n(T�1)

PT�1
t=1 f

0
ntMntBnV

�
nt) =

O
�

1
n(T�1)

�
. Hence, 1

n(T�1)
PT�1

t=1 f
0
ntMntBnV

�
nt = Op

�
1p
nT

�
. For 1

n(T�1)
PT�1

t=1 f
0
ntMntBn ~Vn;tT , its mean

is zero and its variance is 1
n2(T�1)2

PT�1
t=1

PT�1
s=1 E[f

0
nsMnsBn ~Vn;sT ~V

0
n;tTB

0
nMntfnt]. For s � t, we have

E( ~Vn;sT ~V
0
n;tT jIt�1) =

�20
(T�s)S

�1
n [ 1

T�t
PT�t

j=1 �j�
0
j ]S

0�1
n = O

�
1

T�s

�
. Thus,

Var(
PT�1

t=1 f
0
ntMntBn ~Vn;tT ) =

PT�1
t=1

PT�1
s=1 E[f

0
nsMnsBnE( ~Vn;sT ~V

0
n;tT jImaxft;sg�1)B0nMntfnt]

� c1
PT�1

t=1

PT�1
s=1

1

(T �minft; sg) [E(f
0
nsMnsfns)]

1=2[E(fntMntfnt)]
1=2 � nc2

PT�1
t=1

PT�1
s=1

1

(T �minft; sg) ,

as E( f
0
ntfnt
n ) = O(1) uniformly in t. Because

PT�1
t=1

PT�1
s=1

1
(T�minft;sg) = 2(T � 1)�

PT�1
s=1

1
T�s = O(T � 1),

Var( 1
n(T�1)

PT�1
t=1 f

0
ntMntBn ~Vn;tT ) = O

�
1

n(T�1)

�
.

(iv) From (18), the results follow as they are linear combinations of 1
n(T�1)

PT�1
t=1 V

�0
ntBn1MntBn2V �nt,

1
n(T�1)

PT�1
t=1 �

0
ntBn1MntBn2�nt and 1

n(T�1)
PT�1

t=1 �
0
ntBn1MntBn2V �nt, where Bni�s are UB. Thus, from Lem-

mas 8 and 9, we have the results. �

C Alternative Finite Moments in the Systematic Setting

As derived from Lemma 5, we have Y (�;�1)n;t�1 = 	tY
w
n;t�1� cTt ~Xn;tT�0� cTt ~Vn;tT where Y wn;t�1 = Yn;t�1�

(In � An)�1S�1n cn0. To construct an optimal IV for Y
(�;�1)
n;t�1 , the systematic IV approach in the main text

has individual e¤ects cn0 estimated by observables till t � 1. An alternative approach is to estimate cn0
with the whole sample. Denoting ĉnT = 1

T

PT
t=1(Sn(�̂)Ynt�Znt�̂) where �̂ and �̂ are

p
nT consistent initial

estimates (which could be obtained from some simple IV procedures). The alternative feasible optimal IV

for Y (�;�1)n;t�1 can be Ĥant = 	̂t
h
Yn;t�1 � (In � Ân)�1Ŝ�1n ĉnT

i
� cTt ~̂Xn;tT �̂ for t = 1; :::; T . Thus, the feasible

best IV for Z�nt is K̂ant � (Ĥant;WnĤant; X�
nt) and the best IV for WnY

�
nt is ĜnK̂ant�0. Hence, an IV matrix for

(WnY
�
nt; Z

�
nt) can be

Q̂ant = (ĜnK̂ant�̂, K̂ant). (37)

Theorem 8 Under Assumptions 1-10, suppose we use the moment conditions in (3) where Qnt takes the

special form Q̂ant in (37) and P̂n;T�1 is estimated from (8). Suppose that �̂�1nT � �
�1
nT = op(1). Then, the

BGMME �̂
a

b;nT has
p
n(T � 1)(�̂

a

b;nT � �0)
d! N

�
0;��1b

�
as n!1 and T !1.
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Proof. From Theorem 4 in Yu et al. (2008), (ĉnT � cn0) = 1
T

PT
t=1 Vnt +Op

�
1p
nT

�
. Thus,

Ĥant = 	̂tYn;t�1 � 	̂t(In � Ân)�1Ŝ�1n cn0 � cTt ~̂Xn;tT �̂ � 	̂t(In � Ân)�1Ŝ�1n
�
1

T

XT

t=1
Vnt +Op

�
1p
nT

��
= E(Y

(�;�1)
n;t�1 jIt�1) +Op

�
1p
nT

�
+ 	̂t(In � Ân)�1Ŝ�1n

�
1

T

XT

t=1
Vnt +Op

�
1p
nT

��
= E(Y

(�;�1)
n;t�1 jIt�1) +Op

�
1p
T

�
.

Therefore, E(Y (�;�1)n;t�1 jIt�1) of Y
(�;�1)
n;t�1 can be well approximated by Ĥant. By using Lemma 6, �̂

a

b;nT has the

same asymptotic distribution as �̂b;nT in Theorem 2. �

Theorem 8 holds when T is large, where 1
T

PT
t=1 Vnt will vanish in probability as T ! 1, and Ĥant

would be asymptotically the best IV. On the other hand, when T is �nite, 1
T

PT
t=1 Vnt will not vanish and

its presence will cause the correlation of Ĥant with the disturbances V �nt. Thus, when T is �nite, the linear

moments from (37) may cause inconsistent estimate.

D Proofs for Theorems

D.1 Proof for Theorem 1

We �rst derive the uniform convergence of 1
n(T�1)anT gnT (�). Combined with the identi�cation in As-

sumption 9, the consistency of GMM estimator �̂nT will follow. Let anT = (a
(1)
nT , � � � a

(m)
nT ; a

(Q)
nT ) be a

ka � (m+ q) matrix. Then,

1

n(T � 1)anT gnT (�) =
1

n(T � 1)V
�0
n;T�1(�)(

Pm
j=1 a

(j)
nTPn;T�1;l)V

�
n;T�1(�) +

1

n(T � 1)a
(Q)
nT Q

0
n;T�1V

�
n;T�1(�);

where, by expansion, V�
n;T�1(�) = d

�
n;T�1(�) + (In(T�1) + (�0 � �)Gn;T�1)V

�
n;T�1 with d

�
n;T�1(�) = (�0 �

�)Gn;T�1Z
�
n;T�1�0 + Z

�
n;T�1(�0 � �).

For 1
n(T�1)a

(Q)
nT Q

0
n;T�1V

�
n;T�1(�) =

1
n(T�1)a

(Q)
nT Q

0
n;T�1d

�
n;T�1(�) +

1
n(T�1)a

(Q)
nT Q

0
n;T�1(In(T�1) + (�0 �

�)Gn;T�1)V
�
n;T�1, the second term is op(1) uniformly in � 2 � from Lemma 1 (iv). Because

V�0
n;T�1(�)(

Pm
j=1 a

(j)
nTPn;T�1;l)V

�
n;T�1(�) = d

�0
n;T�1(�)(

Pm
j=1 a

(j)
nTPn;T�1;l)d

�
n;T�1(�)+ ln;T�1(�)+qn;T�1(�)

where ln;T�1(�) = d�0n;T�1(�)(
Pm

j=1 a
(j)
nTPn;T�1;l)(V

�
n;T�1 + (�0 � �)Gn;T�1V

�
n;T�1) and

qn;T�1(�) =
�
V�
n;T�1 + (�0 � �)Gn;T�1V

�
n;T�1

�0
(
Pm

j=1 a
(j)
nTPn;T�1;l)

�
V�
n;T�1 + (�0 � �)Gn;T�1V

�
n;T�1

�
;

it is su¢ cient to prove that 1
n(T�1) ln;T�1(�) and

1
n(T�1)qn;T�1(�) converge uniformly to well de�ned limits.

By Lemma 1, as 1
n(T�1) ln;T�1(�) will converge to 0 and

1
n(T�1)qn;T�1(�) will converge to its mean, the
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desirable convergence follows. The uniform convergence and identi�cation uniqueness imply the consistency

of the estimator.

By the Taylor expansion

p
n(T � 1)(�̂nT � �0) = �

"
@g0nT (�̂nT )=@�

n(T � 1) a0nTanT
@gnT (��nT )=@�

0

n(T � 1)

#�1
@g0nT (�̂nT )=@�

n(T � 1) a0nTanT
gnT (�0)p
n(T � 1)

,

where ��nT lies between �̂nT and �0 and
@gnT (�)
@�0 = (@gnT (�)@� ; @gnT (�)@�0 ) = (�1)��

(Wn;T�1Y
�
n;T�1)

0Psn;T�1;1V
�
n;T�1(�) � � � (Wn;T�1Y

�
n;T�1)

0Psn;T�1;mV
�
n;T�1(�) (Wn;T�1Y

�
n;T�1)

0Qn;T�1
Z�0n;T�1P

s
n;T�1;1V

�
n;T�1(�) � � � Z�0n;T�1P

s
n;T�1;mV

�
n;T�1(�) Z�0n;T�1Qn;T�1

�0
.

By Lemma 1 and �̂nT��0 = op(1), 1
n(T�1)

@gnT (�̂nT )
@�0 = DnT+op(1). Thus,

@g0nT (�̂nT )=@�
n(T�1) a0nTanT

@gnT (��nT )=@�
0

n(T�1) =

D0
nTa

0
nTanTDnT + op(1). Also,

1p
n(T�1)

anT gnT (�0)
d! N(0;plimn!1anT�nTa

0
nT ) from Lemma 3. Hence,

p
n(T � 1)(�̂nT��0)

d! N(0;plimn!1 (D
0
nTa

0
nTanTDnT )

�1
D0
nTa

0
nTanT�nTa

0
nTanTDnT (DnTa

0
nTanTDnT )

�1
):

For the optimum GMM, ��1nT is used as a
0
nTanT , and its e¢ ciency relative to the ones with anT follows from

the generalized Cauchy-Schwarz inequality.

When �nT is replaced by �̂nT so that �̂nT = �nT +op(1), we will have the same asymptotic distribution

by similar arguments for Proposition 2 in Lee (2007). �

D.2 Proof for Theorem 2

For the variance matrix (D0
nT�

�1
nTDnT )

�1 in (7) of the OGMME, we shall �rst show that Pn;T�1 in (8)

is the best quadratic moment matrix, and Qnt in (12) is the best linear IV matrix when T is large. We then

proceed to prove the consistency and asymptotic distribution of the best GMME using estimated P̂n;T�1

from (8) and ~Qnt in (13).

For quadratic moments, from Lemma 4, the 1
n(T�1)Cmn;T (

�4�3�40
�40

!0nm;T!nm;T +�mn;T )
�1C 0mn;T in (7)

is maximized at 1
n(T�1)vec

0(G�s
n;T�1)vec(G

�s
n;T�1) by choosing Pn;T�1 in (8). From Lemma 1 (iv), when T

is large, plimn!1
1

n(T�1)Q
0
n;T�1(Gn;T�1Z

�
n;T�1�0;Z

�
n;T�1) = plimn!1

1
n(T�1)Q

0
n;T�1Qn;T�1. Thus,

plimn!1
1

n(T � 1)(Gn;T�1Z
�
n;T�1�0;Z

�
n;T�1)

0MQ;nT (Gn;T�1Z
�
n;T�1�0;Z

�
n;T�1) � plimn!1

1

n(T � 1)Q
0
n;T�1Qn;T�1

when T is large. Therefore, the best IV is Qn;T�1. By Lemma 6, plimn!1
1

n(T�1) (Gn;T�1Z
�
n;T�1�0;Z

�
n;T�1)

0

(Gn;T�1Z
�
n;T�1�0;Z

�
n;T�1) = plimn!1

1
n(T�1)Q

0
n;T�1Qn;T�1 .

When we use the best Pn;T�1 in (8) and Qnt in (12), the infeasible moment conditions are gnT (�) =�
V�0
n;T�1(�)Pn;T�1V

�
n;T�1(�);V

�0
n;T�1(�)Qn;T�1

�0
and the identi�cation and uniform convergence of the

GMM objective function can be obtained similar to the proof in Appendix D.1. When we use estimated ~Qnt
and P̂n;T�1, the feasible moment conditions would be ~gnT (�) =

�
V�0
n;T�1(�)P̂n;T�1V

�
n;T�1(�);V

�0
n;T�1(�)

~Qnt
�0
.

39



First, jjAn(~�)jj � jjAnjj =op(1) under jj~� � �0jj = op(1). Because jjAnjj1 < 1,
P1

h=1(jjAhn(~�)jj1�jjA
h
njj1) =

(1 � jjAn(~�)jj1)�1 � (1 � jjAnjj1)�1 = op(1). Hence,
P1

h=0 jjAhn(~�)�Ahnjj1 = op(1) and the elements of
1

T�t
PT�1

s=t

Ps�1
h=1(A

h
n(
~�)�An)Xn;s�h are op(1) uniformly. Therefore, combined with




S�1n (~�)� S�1n




1
=op(1)

and



Gn(~�)�Gn




1
= op(1), ~Hnt�Hnt =




~� � �0


 �BHnt for some BHnt , of which its elements are bounded
uniformly in n and t. Similarly, Pn;T�1� P̂n;T�1 = op(1) �BPn;T�1 for some BPn;T�1 which also has a block

diagonal pattern similar to Pn;T�1 with its diagonal matrices being UB.

Thus, 1
n(T�1) ~gnT (�) =

1
n(T�1)

�
V�0
n;T�1(�)(P̂n;T�1 �Pn;T�1)V�

n;T�1(�);V
�0
n;T�1(�)(

~Qn;T�1 �Qn;T�1)
�0
+

1
n(T�1)gnT (�). As

~Hnt�Hnt =



~� � �0


 �BHnt , the 1

n(T�1) (
~Qn;T�1�Qn;T�1)0V�

n;T�1(�) =
1

n(T�1) (
~Qn;T�1�

Qn;T�1)0d�n;T�1(�)+
1

n(T�1) (
~Qn;T�1�Qn;T�1)0(In(T�1)+(�0��)Gn;T�1)V

�
n;T�1 will be op(1) uniformly in

� because



~� � �0


 = op(1). Similarly, 1

n(T�1)V
�0
n;T�1(�)(P̂n;T�1�Pn;T�1)V�

n;T�1(�) is op(1) uniformly in �.

Thus, the identi�cation of 1
n(T�1)gnT (�) implies the identi�cation of

1
n(T�1) ~gnT (�) and the uniform conver-

gence of 1
n(T�1)anT gnT (�) will imply the uniform convergence of 1

n(T�1)anT ~gnT (�). Hence, the consistency

of the estimates using the feasible moments follows.

With DnT = � 1
n(T�1)

�
�20tr(G

0
n;T�1P

s
n;T�1) (Gn;T�1Z

�
n;T�1�0)

0Qn;T�1
0 Z�0n;T�1Qn;T�1

�0
, we have 1

n(T�1)
@~gnT (�̂nT )

@�0 =

DnT+op(1). Also, as ~Hnt�Hnt =



~� � �0


�BHnt and Pn;T�1�P̂n;T�1 = op(1)�BPn;T�1 ,

1p
n(T�1)

(~gnT (�0)�

gnT (�0)) =
1p

n(T�1)
(V�0

n;T�1(P̂n;T�1 � Pn;T�1)V�
n;T�1;V

�0
n;T�1(

~Qn;T�1 � Qn;T�1))0 = op(1). Thus, the

GMME obtained from the feasible moments have the same asymptotic distribution as the infeasible ones.

Thus,
p
n(T � 1)(�̂b;nT � �0)

d! N
�
0;��1c

�
with �c in (15). When T !1, �c = �b. �

D.3 Proof for Theorem 3

For (19), denote Ĥ = 1
n(T�1)

PT�1
t=1 (fnt+unt)

0Mnt(fnt+unt) and ĥ = 1p
n(T�1)

PT�1
t=1 (fnt+unt)

0MntV
�
nt.

For the 2SLSE, we have
p
n(T � 1)(�̂2sl;nT � �0) = [Ĥ]�1 � ĥ where

Ĥ = H +
P3

i=1 Z
H
i and ĥ = h+

P2
i=1 T

h
i (38)

with H = 1
n(T�1)

PT�1
t=1 f

0
ntfnt, h = 1p

n(T�1)

PT�1
t=1 f

0
ntV

�
nt, Z

H
1 = � 1

n(T�1)
PT�1

t=1 f
0
nt(In � Mnt)fnt =

�ef (K); ZH2 = 1
n(T�1)

PT�1
t=1 f

0
ntMntunt +

1
n(T�1)

PT�1
t=1 u

0
ntMntfnt, ZH3 = 1

n(T�1)
PT�1

t=1 u
0
ntMntunt, Th1 =

� 1p
n(T�1)

PT�1
t=1 f

0
nt(In �Mnt)V

�
nt and T

h
2 =

1p
n(T�1)

PT�1
t=1 u

0
ntMntV

�
nt.

For the terms in Ĥ, we have H = Op(1) from Lemma 6. ZH1 = Op(E(�K)) = op(1) as K ! 1 from

Lemma 11 (i); ZH2 = Op

�q
1
nT

�
from Lemma 11 (iii), and ZH3 = Op

�PT�1
t=1

Kt

nT

�
from Lemma 11 (iv).

Therefore, Ĥ = H +Op

�PT�1
t=1

Kt

nT

�
+ op(1).

For the terms in ĥ, h will be asymptotically normally distributed by Lemma 3 as 1p
n(T�1)

PT�1
t=1 f

0
ntV

�
nt

d!

N(0; �20plimn!1�nT;22). For the residual terms, T
h
1 = Op(

p
E(�K)) = op(1) from Lemma 11 (ii); Th2
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has two components from (18) which are Th2;1 =
1p

n(T�1)

PT�1
t=1 (GnV

�
nt; 0; 0;0n�kx)

0MntV
�
nt and T

h
2;2 =

1p
n(T�1)

PT�1
t=1 (Gn(�nt
0 +Wn�nt�0); �nt;Wn�nt;0n�kx)

0MntV
�
nt. By Lemma 8, T

h
2;1 = '1 + (T

h
2;1 � '1),

where '1 = Op

�PT�1
t=1

Ktp
n(T�1)

�
is the conditional mean of Th2;1 and (T

h
2;1�'1) = Op

�PT�1
t=1

p
Ktp

n(T�1)

�
, which is not

large than the orderOp
�q

TK
n

�
. By Lemma 9, Th2;2 = '2+(T

h
2;2�'2) where '2 = Op

�
1p
nT

PT�1
t=1

Kt

(T+1�t)(T�t)

�
and (Th2;2�'2) = Op

�
1p

n(T�1)

PT�1
t=1

q
Kt

T+1�t

�
. Hence, ĥ = h+'1+'2+e1Op

�PT�1
t=1

p
Ktp

n(T�1)

�
+Op

 PT�1
t=1

q
Kt

T+1�tp
n(T�1)

!
+

op(1). We see that '2='1
p! 0 when KPT�1

t=1
Kt

! 0. Therefore, in Th2 , the spatial endogeneity component

Th2;1 dominates T
h
2;2. This implies that, for the bias of the estimates due to many moments, the dominant

term is caused by the spatial endogeneity component.

Combining the expansions of Ĥ and ĥ with limn!1H = plimn!1�nT;22 from Lemma 6, (20) follows.

Let �̂2nT =
1

n(T�1) [Sn;T�1(�̂2sl;nT )Y
�
n;T�1 � Z�n;T�1�̂2sl;nT ]0[Sn;T�1(�̂2sl;nT )Y�

n;T�1 � Z�n;T�1�̂2sl;nT ]. As

�̂2sl;nT � �0 = Op

�
max

�PT�1
t=1

Kt

n(T�1) ;
1p

n(T�1)

��
from (20), �̂2nT � �20 =Op

�
max

�PT�1
t=1

Kt

n(T�1) ;
1p

n(T�1)

��
.

With Gn(�̂2sls;nT )�Gn = G2n(��nT )(�̂2sls;nT � �0) where G2n(��nT ) is UB in probability,
PT�1

t=1 [tr(GnMnt)]

and
PT�1

t=1 [tr(G
2
n(
��nT )Mnt)] of order O

�PT�1
t=1 Kt

�
, we have

'̂1 � '1 =
1p

n(T � 1)

 
�̂2nT

T�1X
t=1

[tr(Gn(�̂2sls;nT )Mnt)]� �20
T�1X
t=1

[tr(GnMnt)]

!
e1

= Op

0@max
0@ 1p

n(T � 1)

 PT�1
t=1 Ktp
n(T � 1)

!2
;

PT�1
t=1 Kt

n(T � 1)

1A1A :
Thus, with '2 = Op

�
Kp
nT

�
, we have

p
n(T � 1)(�̂

1

2sl;nT � �0) +Op

0@max
0@ 1p

n(T � 1)

 PT�1
t=1 Ktp
n(T � 1)

!2
;

PT�1
t=1 Kt

n(T � 1) ;
Kp
nT
;

PT�1
t=1

p
Ktp

n(T � 1)

1A1A
d! N(0; �20plimn!1�

�1
nT;22):

Under
PT�1

t=1
Ktp

n(T�1)
! c, KPT�1

t=1
Kt

! 0 and
PT�1

t=1

p
Ktp

n(T�1)
! 0, �̂

1

2sl;nT is asymptotically centered normal. �

D.4 Proof for Theorem 4

We will �rst prove the consistency of the GMME under
PT�1

t=1
Kt

n(T�1) ! 0, then establish its asymptotic

normality. Subsequently, we analyze its bias corrected version.

For the identi�cation, Assumption 10 provides the su¢ cient rank condition. Based on the ideal IVs, �0

and �0 can be identi�ed. For the many IVs approach, as linear combinations of the many IVs converge to
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the ideal IVs in the limit from Lemma 10, �0 and �0 can thus be identi�ed from the many IV�s conditions.

For the uniform convergence of g0nT (�)�
�1
nT gnT (�) in �, as analysis of the part g

0
nT;1(�)�

�1
nT;1gnT;1(�) is the

same as that in Appendix D.1, we analyze the remaining g0nT;2(�)�
�1
nT;2gnT;2(�) =

PT�1
t=1 V

�0
nt(�)MntV

�
nt(�).

As V �nt(�) = d
�
nt(�) + Sn(�)S

�1
n V �nt with d

�
nt(�) = (�0 � �)GnZ�nt�0 + Z�nt(�0 � �), we have

1

n(T � 1)
PT�1

t=1 V
�0
nt(�)MntV

�
nt(�) =

1

n(T � 1)
PT�1

t=1 V
�0
ntS

0�1
n S0n(�)MntSn(�)S

�1
n V �nt

+
1

n(T � 1)
PT�1

t=1 d
�0
nt(�)Mntd

�
nt(�) +

2

n(T � 1)
PT�1

t=1 d
�0
nt(�)MntSn(�)S

�1
n V �nt.

From Lemma 8, 1
n(T�1)

PT�1
t=1 V

�0
ntS

0�1
n S0n(�)MntSn(�)S

�1
n V �nt

p! 0 under
PT�1

t=1
Kt

n(T�1) ! 0. From Lemma 9,
1

n(T�1)
PT�1

t=1 �
0
ntMntSn(�)S

�1
n V �nt

p! 0 under KT

n(T�1) ! 0; from Lemma 11 (iii), 1
n(T�1)

PT�1
t=1 f

0
ntMntSn(�)S

�1
n V �nt =

Op

�
1p

n(T�1)

�
. Thus, by (WnY

�
nt; Z

�
nt) = fnt + unt, 2

n(T�1)
PT�1

t=1 d
�0
nt(�)MntSn(�)S

�1
n V �nt

p! 0 underPT�1
t=1

Kt

n(T�1) ! 0. Also, as 1
n(T�1)

PT�1
t=1 d

�0
nt(�)Mntd

�
nt(�) = (�0 � �; (�0 � �)0)Ĥ(�0 � �; (�0 � �)0)0 where Ĥ

has the limit equal to plimn!1�nT;22 in Assumption 10,
1

n(T�1)
PT�1

t=1 V
�0
nt(�)MntV

�
nt(�)

p! plimn!1�nT;22

uniformly in � under
PT�1

t=1
Kt

n(T�1) ! 0. Therefore, by combining the identi�cation uniqueness and uniform

convergence, we obtain the consistency of GMME.

As is derived, the best quadratic moment is to use Pn;T�1 in (8). From the Taylor expansion,

p
n(T � 1)(�̂b;nT ��0) = �

"
@g0nT (�̂b;nT )=@�

n(T � 1) ��1nT
@gnT (��nT )=@�

0

n(T � 1)

#�1
@g0nT (�̂b;nT )=@�

n(T � 1) ��1nT
gnT (�0)p
n(T � 1)

, (39)

where ��nT lies between �̂b;nT and �0. By denoting

DnT = �
1

n(T � 1)

�
�20tr(G

0
n;T�1P

s
n;T�1) (Wn;T�1Y

�
n;T�1)

0Hn;T�1
0kz�1 Z�0n;T�1Hn;T�1

�0
, (40)

we have 1
n(T�1)

@gnT (�̂nT )
@�0 = DnT + op(1) by Lemma 1 and �̂b;nT � �0 = op(1). Hence, (39) can be rewritten

as
p
n(T � 1)(�̂b;nT � �0) = �

�
D0
nT�

�1
nTDnT

��1
D0
nT�

�1
nT

gnT (�0)p
n(T�1)

+ op(1). By using �nT in (21), DnT in

(40), and gnT (�0)p
n(T�1)

= 1p
n(T�1)

�
V�0
n;T�1(�)Pn;T�1V

�
n;T�1(�);V

�0
n;T�1(�)Hn;T�1

�0
, we have

D0
nT�

�1
nT

gnT (�0)p
n(T � 1)

= � 1p
n(T � 1)

�
�20tr(G

0
n;T�1P

s
n;T�1) [�P ]

�1
V�0
n;T�1Pn;T�1V

�
n;T�1

0kz�1

�

� 1p
n(T � 1)�20

 PT�1
t=1 (WnY

�
nt)

0MntV
�
ntPT�1

t=1 Z
�0
ntMntV

�
nt

!
, (41)

where �P = (�4 � 3�40)vec0D(Pn;T�1)vecD(Pn;T�1) + �40tr(P0n;T�1Psn;T�1) and

D0
nT�

�1
nTDnT =

1

n(T � 1)

�
�40tr(G

0
n;T�1P

s
n;T�1) [�P ]

�1
tr(G0

n;T�1P
s
n;T�1) 0kz�1

01�kz 0kz�kz

�

+
1

�20

1

n(T � 1)

T�1X
t=1

(WnY
�
nt; Z

�
nt)

0Mnt(WnY
�
nt; Z

�
nt). (42)
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The second components of (41) and (42) correspond to ĥ and Ĥ of Appendix D.3. Thus, the analysis in

Theorem 3 can be carried over here and we obtain D0
nT�

�1
nT

gnT (�0)p
n(T�1)

d! N(0;plimn!1D
0
nT�

�1
nTDnT ) with

plimn!1D
0
nT�

�1
nTDnT = limn!1

� 1
n(T�1) tr[P

s
n;T�1Gn;T�1] 01�kz
0kz�1 0kz�kz

�
+ 1

�20
plimn!1�nT;22 = �b.

When we use an estimated P̂n;T�1 and �̂nT , the result holds similar to the proof in Appendix D.2. �

E Best Quadratic Moment for the Model with Time Dummies

This section derives the best quadratic moment matrix (27) for the model with time dummies. For the

covariance of V �
0

n;T�1(IT�1 
 JnPnJn)V �n;T�1 where tr(PnJn) = 0, from Lemma 2,

Cov(V �
0

n;T�1(IT�1 
 JnPn1Jn)V �n;T�1 � V �
0

n;T�1(IT�1 
 JnPn2Jn)V �n;T�1)

= �40tr[(IT�1 
 JnP sn1Jn)(IT�1 
 JnPn2Jn)] + (�4 � 3�40)vec0D(IT�1 
 JnPn1Jn)vecD(IT�1 
 JnPn2Jn)

= (T � 1)f�40tr(JnP sn1JnPn2Jn) + (�4 � 3�40)vec0D(JnPn1Jn)vecD(JnPn2Jn)g:

Then, by using Lemmas 12-15 below, the best quadratic matrix, which takes into account �4, is P
�
n in (27).

Lemma 12 Suppose tr(PnJn) = 0, then diag[Jndiag(JnPnJn)Jn] = n�2
n diag(JnPnJn).

Lemma 13 Suppose tr(PnJn) = 0 where Pn is either Pn1 or Pn2, then

tr(JnP
s
n1Jn � JnPn2Jn) = vec0[JnP

s
n1Jn � Jndiag(JnP sn1Jn)Jn] � vec[JnPn2Jn � Jndiag(JnPn2Jn)Jn]

+2(
n+ 2

n
)vec0D(JnPn1Jn)vecD(JnPn2Jn):

Lemma 14 There exists a scalar � such that

tr(JnP
s
n1Jn � JnPn2Jn) + (�4 � 3)vec0D(JnPn1Jn)vecD(JnPn2Jn)

=
1

2
fvec0[JnP sn1Jn + (�� 1)Jndiag(JnP sn1Jn)Jn] � vec[JnP sn2Jn + (�� 1)Jndiag(JnP sn2Jn)Jn]g ,

where � solves the quadratic equation (n�2n )�2 + 4
n� =

�4�3
2 + n+2

n . Explicitly, � can be taken as

�n = �(
2

n� 2) +
r

n

n� 2

r
�4 � 3
2

+
n

n� 2 :

Lemma 15 (i) There exists a diagonal matrix An with tr(An) = 0 such that

tr(JnP
s
nJnGnJn) = trf[JnP snJn + (�n � 1)Jndiag(JnP snJn)Jn] � Jn(Gn �

tr(Gn)

n� 1 Jn +An)Jng;

where An =
n(1��n)
2+(n�2)�n [diag(JnGnJn)�

tr(GnJn)
n In]:
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(ii) Let P �n = (Gn � tr(JnGn)
n�1 Jn) +

(1��n)2

( n
n�2+

�4�3
2 )

[diag(JnGnJn) � tr(GnJn)
n In]; which has tr(P �nJn) = 0.

Then, JnP �nJn + (�n � 1)Jndiag(JnP �nJn)Jn = Jn(Gn �
tr(Gn)
n�1 Jn +An)Jn.

Proof for Lemma 12: Let Dn be a diagonal matrix. We have JnDnJn = Dn � 1
n lnl

0
nDn � 1

nDnlnl
0
n +

tr(Dn)
n2 lnl

0
n. As diag(lnl

0
n) = In and diag(AnDn) = diag(An) � Dn, we have diag[Jndiag(JnPnJn)Jn] =

(1� 2
n )diag(JnPnJn) because tr(JnPnJn) = tr(PnJn) = 0. �

Proof for Lemma 13: We have

vec0[JnP
s
n1Jn � Jndiag(JnP sn1Jn)Jn] � vec[JnPn2Jn � Jndiag(JnPn2Jn)Jn]

= trf[JnP sn1Jn � Jndiag(JnP sn1Jn)Jn] � [JnPn2Jn � Jndiag(JnPn2Jn)Jn]g

= tr(JnP
s
n1JnPn2)� (1 +

2

n
)tr[diag(JnP

s
n1Jn)diag(JnPn2Jn)]:

Therefore,

tr(JnP
s
n1Jn � JnPn2Jn)� vec0[JnP sn1Jn � Jndiag(JnP sn1Jn)Jn] � vec[JnPn2Jn � Jndiag(JnPn2Jn)Jn]

= (1 +
2

n
)tr[diag(JnP

s
n1Jn)diag(JnPn2Jn)] =2(

n+ 2

n
)vec0D(JnPn1Jn)vecD(JnPn2Jn): �

Proof for Lemma 14: From Lemma 13,

tr(JnP
s
n1Jn � JnPn2Jn) + (�4 � 3)vec0D(JnPn1Jn)vecD(JnPn2Jn)

=
1

2

�
vec0[JnP

s
n1Jn � Jndiag(JnP sn1Jn)Jn] � vec[JnP 2n2Jn � Jndiag(JnP 2n2Jn)Jn]

+(�4�32 + n+2
n )vec0D(JnP

s
n1Jn)vecD(JnP

s
n2Jn)

�
.

First, by arrangement, we have

tr(JnP
s
n1Jn � JnPn2Jn) + (�4 � 3)vec0D(JnPn1Jn)vecD(JnPn2Jn)

=
1

2

�
vec0[JnP

s
n1Jn � Jndiag(JnP sn1Jn)Jn] � vec[JnP sn2Jn � Jndiag(JnP sn2Jn)Jn]

+[�4�32 + n+2
n ]vec0D(JnP

s
n1Jn)vecD(JnP

s
n2Jn)

�
Next, for any �, we have

vec0[JnP
s
n1Jn + (�� 1)Jndiag(JnP sn1Jn)Jn] � vec[JnP sn2Jn + (�� 1)Jndiag(JnP sn2Jn)Jn]

= trf[JnP sn1Jn � Jndiag(JnP sn1Jn)Jn] � [JnP sn2Jn � Jndiag(JnP sn2Jn)Jn]g

+
4�

n
tr[diag(JnP

s
n1Jn)diag(JnP

s
n2Jn)] + (1�

2

n
)�2tr[diag(JnP

s
n1Jn)diag(JnP

s
n2Jn)]:

By matching the above relevant expressions, one can determine �n which provides the equality in the

proposition. The �n is one of the roots which solve the quadratic equation. The root with the plus sign is

taken (when �4 = 3 under normality, the corresponding solution of � shall be one). �
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Proof for Lemma 15: As tr(PnJn) = 0, tr(JnP snJnGnJn) = tr[JnP
s
nJn(Gn �

tr(GnJn)
n�1 Jn)Jn]. Thus,

trf[JnP snJn + (�n � 1)diag(JnP snJn)Jn] � Jn(Gn �
tr(Gn)

n� 1 Jn +An)Jng

= tr[JnP
s
nJn(Gn �

tr(Gn)

n� 1 Jn)] + tr(JnP
s
nJnAn) + (�n � 1)trfJndiag(JnP snJn)Jn(Gn �

tr(Gn)

n� 1 Jn +An)g:

The An needs be solved from the relation

tr(JnP
s
nJnAn) + (�n � 1)tr[Jndiag(JnP snJn)JnAn] + (�n � 1)tr[Jndiag(JnP snJn)Jn(Gn �

tr(Gn)

n� 1 )] = 0:

If An were a diagonal matrix with zero trace, then diag(JnAnJn) = (1� 2
n )An. Hence,

tr[diag(JnP
s
nJn)An] + (�n � 1)(1�

2

n
)tr[diag(JnP

s
nJn)An] + (�n � 1)tr[diag(JnP snJn)diag[Jn(Gn �

tr(Gn)

n� 1 )Jn] = 0:

The An stated in the proposition is a diagonal matrix with zero trace, which satis�es this relation. This

justi�es (i). The result in (ii) can be checked algebraically. �
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