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Abstract

This paper proposes the GMM estimation of the spatial dynamic panel data model with fixed effects
when n is large, and T can be large, but small relative to n. By eliminating fixed effectsto begin with,
we investigate asymptotic properties of the estimators, where exogenous and predetermined variables are
used as instruments. For the spatial dynamic panel data model, as compared with the dynamic panel
data model, we have not only more linear moment conditions due to spatial effects, but also quadratic
moment conditions. We stack up the data and construct the best linear and quadratic moment conditions.
An alternative approach is to use separate moment conditions for each period, which gives rise to many
moment estimation. We show that these estimators are pnT consistent, asymptotically normal, and can
be relatively efficient. We compare these approaches on their finite sample performance by Monte Carlo.

JEL classification: C13; C23; R15
Keywords: Spatial autoregression, Dynamic panels, Fixed effects, Generalized method of moment,
Many moments



1 Introduction

Dynamic panel data has been studied extensively in recent decades in the literature. It can not only
capture dynamics of economic activities but also enable researchers to control unobservable heterogeneity
across units. When the number of cross section units n is large, with fixed effects for units, we encounter the
incidental parameter problem in Neyman and Scott (1948). As a result, the maximum likelihood estimator
(MLE) of the autoregressive coefficient, which is also known as the within estimator, is biased and inconsistent
when n tends to infinity but T remains finite (Nickell, 1981; Hsiao, 1986). By taking time differences to
eliminate fixed effects in the dynamic equation, the estimation method of instrumental variables (IV) is
popular (see Anderson and Hsiao, 1981; Arellano and Bond, 1991; Arellano and Bover, 1995; Blundell and
Bond, 1998; Bun and Kiviet, 2006, etc).

When T is finite, the IVs from all the available lag variables may improve, in principle, the asymptotic
efficiency of the estimators. When T is moderate or large, however, the many moment issue with a prolif-
eration of IVs will appear. In the literature on IV and generalized method of moments (GMM) estimation
with many moment conditions, e.g., in nonlinear simultaneous equations models or conditional moments
restrictions models, many moments decrease the variances of the IV or GMM estimates, but increase their
biases (see Bekker, 1994; Donald and Newey, 2001; Chao and Swanson, 2005; Han and Phillips, 2006, etc).
In the simple dynamic panel data model with fixed effects, when T is moderately large, but small relative to
n, Alvarez and Arellano (2003) study the many IV estimation and its asymptotic properties. Okui (2009)
investigates how to choose the number of instruments to minimize the mean square error (MSE) by extending
Donald and Newey (2001) to dynamic panel data models.

Recently, there is a growing literature on spatial panel data models and dynamic panel data models with
spatial correlations. By including spatial effects into panel models or dynamic panel models, one can take into
account the cross section dependence from contemporaneous or lagged cross section interactions. Kapoor et
al. (2007) extend the method of moments estimation to a spatial panel model with error components. Baltagi
et al. (2007) consider the testing of spatial and serial dependence in an extended error components model,
where serial correlation on each spatial unit over time and spatial dependence across spatial units are in the
disturbances. Su and Yang (2007) study the dynamic panel data with spatial error and random effects. These
panel models specify spatial correlations by including spatially correlated disturbances and have emphasized
error components. In the fixed effects setting, Korniotis (2008) studies a time-space recursive model, where
individual time lag and spatial time lag are present, by the least square dummy regression approach. Yu
et al. (2007, 2008) and Yu and Lee (2010) study the quasi maximum likelihood (QML) estimation for,

respectively, the spatial cointegration, stable, and unit root spatial dynamic panel data (SDPD) models,



where individual time lag, spatial time lag and contemporaneous spatial lag are all included.

For the stable SDPD model with fixed effects, the asymptotics of the QML estimation in Yu et al. (2008)
is developed under T' — oo where T' cannot be too small relative to n. In empirical applications, we might
have data sets where n is large while T is relatively small. This motivates our study of GMM estimation of
the SDPD model in order to cover the scenario that both n and T can be large, but 7" is small relative to
n. The reason for considering the asymptotic with T — oo instead of a finite T is that, in this framework,
we have the best IV or best GMM estimation with proper designs of IVs and moment conditions.! In the
QML approach considered in Yu et al (2008), all the parameters including individual fixed effects are jointly
estimated, which apparently gives rise to asymptotic biases. In the present paper, we eliminate individual
fixed effects first and then consider the IV and GMM estimation of the resulting equation. Specifically, this
paper extends the GMM estimation of dynamic panel data models to SDPD models, where we have more
linear moment conditions and additional quadratic moment conditions due to spatial effects.

Compared to dynamic panel data models where serial correlation occurs in the time dimension, the SDPD
model has correlation in the time dimension as well as spatial correlation across units. In one approach, we
stack up the data and use moment conditions in a systematic setting where the IVs have a fixed column
dimension for all the periods. In another, we can use separate moment conditions for each time period, which
result in many moments. Those many moments not only come from time lags, but are also designed for
spatial lags. We focus on the design of estimation methods that can have some asymptotic efficient properties.
Normalized asymptotic distributions of IV estimators in the finite moments approaches are properly centered
at the true parameter vector. In the many moment approach, normalized asymptotic distributions of IV
estimates might not be properly centered or an IV estimator might not be consistent due to the many IV
moments (but not directly due to the fixed effects). In contrast to the asymptotics in Yu et al. (2008) where
there are ratio conditions on how 7T and n go to infinity in order that estimates can be consistent or their
normalized asymptotic distributions are properly centered, such ratio conditions may no longer be needed
with the proposed finite moments estimation methods in the present paper. In the many IVs estimation
method, the ratio condition concerns about the number of IVs or moments relative to the total sample size
nT, but not directly the ratio of T' and n. However, if the total number of IVs is essentially a function of T',
then n and T ratio conditions would appear; but in that case, the ratio condition requires that T shall be
small relative to n. Thus, the many IVs approach is complementary to the QML approach. In other words,
the proposed estimation methods can be applied to some scenarios where the 7' is small relative to n, while
the QML method might not be, in theory.

The paper is organized as follows. Section 2 introduces the model and discusses moment conditions.

I'This might not be possible for a fixed effects model when T is assumed to be finite.



Section 3 derives the consistency and asymptotic distribution of GMM estimators when we use finite moment
conditions in a systematic setting. Under the framework of 7" being large, optimal moment conditions can
be designed. Section 4 derives the asymptotic properties of GMM estimators when we use many moment
conditions. In both Sections 3 and 4, we discuss the asymptotic efficiency of the proposed estimators. Section
5 extends the analysis to the model with also fixed time effects in addition to individual effects. Monte Carlo
results for various estimators are provided in Section 6. Section 7 concludes the paper and summarizes the
contributions relative to the GMM estimation of the dynamic panel data model and also the QML estimation

of similar SDPD models. Some lemmas and proofs are collected in the Appendices.

2 The Model and Moment Conditions
2.1 The Model

The model we consider in this paper is the SDPD model
Yoi = AoWn Yo + ’YOYmtfl + pOWnYn,tfl + Xnt/BO + Cno + Vnta t=1,2,.., Ta (1)

where Y1 = (Y16, Y2ty -, Yne) and Vg = (v14,Vay, ..., Upny)’ are n x 1 column vectors, and v;4’s are i.4.d. across
i and t with zero mean and variance o3. The W, is an n x n spatial weights matrix, which is nonstochastic
and generates the dependence of y;;’s across spatial units. X,,; is an n X k, matrix of nonstochastic regressors
and c,,0 is an n x 1 column vector of individual effects. The initial values in Y,,g are assumed to be observable.

When n is large, to avoid the incidental parameter problem caused by individual effects, they are elim-
inated by a data transformation. Let [Fpro_q, \%TZT] be the orthonormal matrix of the eigenvectors of

Jr = (It — Flrly), where Frp_; is the T x (T — 1) eigenvectors matrix corresponding to the eigenvalues of

one and I is the T-dimensional vector of ones. The n x T matrix of dependent variables [Y,1, Yn2, -+, Yor]
can be transformed into the n x (7" — 1) matrix [Y,,Y,5, -, Y ] = Y1, Yo, -+, Yor|Frr-1; and,
also, [V, yleh L ,Yé}__?} = Yoo, Yn1, -, Yor—1]Frr-1. It is important to note that Y,,(*t__ll)
and Y,', | are not equal. Similarly, define [X;:l,kv"' ’X;:,Tka] = [Xn1k, -, Xnrk)Frr—1 where Xy k
is the kth column of the n X k, matrix X,,; and [V, -- ,V;nyl] = [Va1, -+ Var|Frr—1. Denote X}, =
(X1 ,Xj;t)kz]. As U Frop_1 = 0, it follows [cpo,- -+, cnolFr,r—1 = 0 so that individual effects are

eliminated by the orthonormal transformation. Thus,?

Yo = MWa Yo, + (voln + pOWn)Y;z(,,?:ll) + X580+ Vo, t=1,--- T 1 (2)

2Because Yé;‘:ll) is not Y;,tfv (2) does not form a SDPD process by itself. For this reason, an ML or QML approach for
(2) is not be feasible.



As (Vito e Viir 1) = (Frp oy @ L) (Vans -+ Vor) s BV Vil ) Vit Viile ) = o8 Inr—y)
because Fpp_Frr-1 = Ir—1. Hence, vj;’s are uncorrelated where vy, is the ith element of V,5;. However,
we note that Yn(j;’:ll) is correlated with V.%,. For this reason, in order to estimate (2) where individual effects
are eliminated, IVs are needed for Y,E*t:ll ) and Wner*t:ll ) for each ¢ (and also for W, Y,%). For this purpose,
a convenient selection of Frr7_; is the Helmert transformation. When the Helmert transformation is used,

* = (T%;-tl)% Vit — 7 Z,?:Hl Vin] and er’*t’:ll) = (T{;t_l)% Yoio1— 7 f;tl Y,.»] depend on current

and future variables, but not on the past ones. Thus, in addition to all strictly exogenous variables X, for
s=1,---,T —1, the time lag variables Yo, -+ ,Y} :—1 can also be used to construct IVs for Y,E,*t’:ll) as in
the literature of dynamic panel data models (Alvarez and Arellano, 2003, etc). Correspondingly, we may use

WpXps fors=1,--- T —1and W,Y,, for s =0,....,t — 1 as IVs for WnY;;’:ll).

2.2 Moment Conditions

For the estimation of (2), effective IVs and moment conditions are needed for W,, Y%, in addition to those
for Y,Ej;’__ll) and WnY,f;’__ll). To motivate the moment conditions for this spatial aspect of the SDPD model,
we briefly review the GMM estimation of the cross section spatial autoregressive (SAR) model in order
to highlight the particular feature of quadratic moments. For models with spatial interactions, quadratic
moments have an important role in efficient estimation.?

For the cross section SAR model Y,, = AW, Y, + X,,8y + V,,, the reduced form equation is Y, =
S 1 X,B8y + Vi) where S, = I,, — \oW,, and, hence, W,.Y,, = G,, X3, + G,,V,, where G,, = W,,S;;1. The
deterministic part G, X, 8, = E(W,,Y,|X,,) is the best IV for a 2SLS approach (Lee, 2003). However, the
stochastic component G, V,, can also be important. One can find IV functions which are correlated with
G, V, (and hence W, Y,,) but uncorrelated with V,,. Lee (2007) shows that the best moment function for this
purpose is (G, — @In)Vn when elements in V,, are i.i.d.N (0, 02). Lee (2007) proposes the GMM approach
based on the linear and quadratic moment conditions E((G,X,8,)' Vs) = 0 and E(V,)(G,,— MTG")IH)VR) =0.
The derived GMM estimator is shown to be asymptotically as efficient as the MLE of the SAR model when
the disturbances are normally distributed. When the disturbances are non-normal, best linear and quadratic
moments also exist, but the expressions can be complicated (see, Liu et al., 2009). To have consistent
(but not necessary efficient) estimates, simpler linear and quadratic moments may be used. Kelejian and

Prucha (1998) and Kelejian et al. (2004) suggest the use of IVs such as X,,, W, X,, and W?2X,,, etc., which

. 2
approximate G, X,, in the estimation. One may also use VW, V,, and/or V(W2 — %.T,L)Vn7 which are

tr

the leading components in the series expansion of V! (G,, — g" 1)V, to form quadratic moments. As shown

3The use of quadratic moments is motivated by the the likelihood function of the SAR model under normality disturbances
(Lee, 2007), as well as the Moran test statistic (Moran, 1950).



in Lee (2007), with P,, being the class of n x n constant matrices with zero traces, any finite number of
matrices in P,, can be used in quadratic moment conditions for consistent estimation.

For the GMM estimation of the SDPD model, proper linear moment and quadratic moment conditions
for the time and spatial lags, namely, Y,E;’:ll), WnY;L(*t:ll ) and W, Y%, can be revealed from (2). For the
linear moments, we can stack up the data and construct moment conditions in a systematic setting. Denote
Qunr-1 = (Qn1, -+ Q) r_1) as the IV matrix for the system, where @, has a fixed column dimension
greater than or equal to k; + 3 for all ¢, e.g., Qp: could be [V, 1—1, W, Y t—1, W2Yp 11, Xy, W X5,]. Then,

nt»

*/

by denoting V; 7, = (V;7,---,V;’r_;)’; the linear empirical moments are Q;, 7V}, 7 ;. In another
approach, we may use separate moments for each period, where the number of moments might increase over
time. Denote H,; as an IV matrix at ¢ consisting of predetermined variables till £ — 1 and all the exogenous
variables. For example, H,; can be (Ayy, Wihn, -+, WE hyy) where hpy = (Yoo, -+ s Yo—1, Xna, -+, Xnr)
with the integer power p,, > 1. Then, the linear empirical moments are H,, V., fort =1,--- , T — 1. For the

quadratic moments, they are designed for the disturbance of W, Y%, in (2). From (2), it follows that
WaXyis = Ga(roln + paWa) Vi t) + G X0y + GuViiyy =10, T = 1.

This suggests that, in addition to the linear moment conditions, the quadratic moment condition can be
EVy o -1 ®(Gn — @In)}v;zj_l = 0. As these moments involve unknown parameters in G,,, initial
consistent estimates can be obtained from some simpler moment conditions. These generalize the GMM
approach for the estimation of dynamic panel data and cross section SAR models to the SDPD model.

Denote 6 = (A, 7, p, ') and V5, (8)= (I, — \W,)Y 5, — (7L, + pWo)Y,o7) — X7, 8. Thus, Vi, (8) =

(V1(0),---,V,p_1(0))". In one approach, we propose the following finite moments in the systematic setting:
* * * * * /
gnT(‘g) = ( n/,Tfl(g)Pn,TflA,an,Tfl(0)7 Ty nl,Tfl(Q)Pn,Tfl’mVn,Tfl(e)? n/,T71(9)Qn,T71) y (3)

and, another approach may use separate linear moments for each period, which allows an increasing number

of IVs over time:

gnT(e) = ( :LI,TA(H)Pn,Tfl,lvz,Tq(e)a B ;;/,Tq(G)Pn,Tfl,mV;;,Tq(e)» Z/,TA(H)DWQ(HMW“ »Hn,Tfl))/a
(4)

where Diag(Hpa,- -+ ,Hp,r—1) is a block diagonal matrix with diagonal blocks H,,’s. Here, each P, 1_1; for

l=1,---,mis an n(T — 1)-dimensional nonstochastic square matrix selected from P, r_1, where P, r_1 =

It 1 ® P, with P,, being a class of n X n matrices with a zero trace. For analytical tractability, we assume

that P, in P, is uniformly bounded in row and column sums in absolute value (for short, UB).* These

4We say a (sequence of n x m) matrix P, is uniformly bounded in row and column sums if sup,>1 || Prll,, < oo and
sup,,>1 [|[Pnll; < oo, where [|Pnll,, = supi<;<,, Z?:l [Pij,n| is the row sum norm and ||Pnll; = supi<j<n Djey |Pijn | is the
column sum norm.



settings provide general frameworks in which one may discuss the best designs of Qy¢, Hyt and Py, r—1.

For (3), the column dimension of @, is fixed and is the same for all ¢. For (4), the column dimension
of H,; might be increasing in ¢t. The latter approach requires careful analysis due to the many moment
issue as T' — oo. Hence, appropriately designed H,,; might be needed in order that the derived estimate has
desirable asymptotic properties. Denote S, (\) = I, — A\W,, and S,, = S,,(A\g). From the DGP (1), we have
Yoo = AL Yo+ S0 0 ARS N0 + Xt nBo + Vitn), t = 1,2, -+, T, where A,, = S5 (voIn + poWh). For
our analysis of the asymptotic properties of estimators, we make the following assumptions.

Assumption 1. W, is a nonstochastic spatial weights matrix with zero diagonals.

Assumption 2. The disturbances {v;}, i = 1,2,...,n and t = 1,2, ..., T, are i.i.d. across 7 and ¢ with zero
mean, variance o3 and F |vie|*T" < o0 for some 7 > 0.

Assumption 3. S, () is invertible for all A € A, where the parameter space A is compact and \g is in the
interior of A.

Assumption 4. W, is UB and |[AW, |, < 1. Also, S;;*(}\) is UB, uniformly in A € A.”

Assumption 5. The elements of X,,; and c,¢ are nonstochastic and bounded, uniformly in n and ¢. Also,
lim,, o0 ﬁ ZtT:_ll XX, exists and is nonsingular.

Assumption 6. Yo = 22;0 AlrS Y (cno + Xn,—nBo + Vi,—1n), where h* could be finite or infinite.
Assumption 7. Y7 abs(A") is UB where [abs(A,)]ij = |An.ij-

Assumption 8. n goes to infinity.

The zero diagonal assumption on W, helps the interpretation of the spatial effect as self-influence shall be
excluded in practice. Assumption 2 provides regularity assumptions for v;;. Assumption 3 guarantees that
the model is an equilibrium one. Also, the compactness of the parameter space is a condition for theoretical
analysis. When W, is row normalized, a compact subset of (—1,1) is often taken as the parameter space.
In Assumption 4, when [[\gW, ||, <1, S, ! can be expanded as an infinite series in terms of W,,. In many
empirical applications of spatial issues, each of the rows of W, sums to 1, which ensures that all the weights
are between 0 and 1. In that case, with ||[W,||., = 1, |[Ao| < 1 is assumed. The uniform boundedness
assumption in Assumption 4 is originated by Kelejian and Prucha (1998, 2001) and also used in Lee (2004,
2007). That W,, and S,,;*()\) are UB is a condition that limits the spatial correlation to a manageable degree.
When exogenous variables X,,;’s are included in the model, it is convenient to assume that they are uniformly
bounded as in Assumption 5, and so is ¢,o. If X,; and ¢, are allowed to be stochastic and unbounded,
appropriate moment conditions can be imposed instead. The remaining part of Assumption 5 points out

that the regressors of X/, are asymptotically linear independent. Assumption 6 specifies the initial condition

5This assumption has effectively imposed limited dependence across units. For example, if Aop, = 1 — 1/n under n — oo, it
is a near unit root case for a cross sectional spatial autoregressive model and Si! will not be UB (see Lee and Yu, 2007).



so that the process may start from a finite or infinite past. Assumption 7 combines the absolute summability
condition and the UB condition of the power series of A,,, which is essential for the analysis in this paper,
as it limits the dependence over time series and across spatial units.> Assumption 8 specifies that we have a
large number of spatial units, while the time period T could be either large or small. The particular interest
in this paper is for the case that T can be large, but small relative to n, as the estimation of such a case has

not been explicitly covered in the spatial panel literature.

3 Asymptotic Properties of GMME with Finite Moments
3.1 Consistency and Asymptotic Distribution of GMME

For the moment conditions in (3), identification requires that plimnﬂmﬁ gnr(0) = 0 should have
the unique solution at 6y. Denote Z;_; as the information set (o-algebra) spanned by (Yo, - -, Yn 1),
conditional on (X1, -+, Xnr,Cno). Also, denote § = (v,p,), Gur-1 = Ir—1 ® G,, and Zir =
(Zh, -+ 22 p_y) where Z, = (VTP Wy, T, Xz,) having k. = k, + 2 columns. The following
assumption specifies the identification via rank conditions for the IV estimation.

Assumption 9. The n x g IV matrix @, is predetermined such that E(Qn:|Zt—1) = Qnt, its column dimen-
sion is fixed for all n and ¢ with its elements O, (1) uniformly in n and ¢, and plimnﬁmﬁQ;,T_lQn,T_l
is of full rank ¢. Also, plimnﬁme%,T_l[Gn,TﬂZ;,T_l(;o, Z;, r_,] has the full rank k. + 1.

From (2), because S,(\) = S, + (Ao — \)W,,, we can expand V%, (0) as V.5, (0) = d%,(0) + S, (NS, 1 V.5,
where V¥, = V.5, (0p) and d,(0) = (Ao — AN)GnZ2 00+ Z%, (80 — §). From the linear moment conditions in (3),
as plimn_,ooﬁ ZtT:_ll 1 Sn (NS 1V, = 0 uniformly in § € © from Lemma 1 (iv), the unique solution of
plim,, ., ﬁgﬂ«(@) = 0 at 0 requires that the equation plim,,_, ﬁ nr—11Gnr-1Zy 7100, Zy 4]
(Ao—A, (6p—9)")" = 0 should have a unique solution 6. That phmn—)ooﬁQ;L,Tfl (Gnr—1Zy 7 100, 2} 7 4]
has a full rank k, + 1 is a sufficient condition. Because Zj, ;_; consists of time and spatial time lags, this
condition will, in general, be satisfied as long as dg # 0.

Theorem 1 provides the consistency and asymptotic distributions of GMM estimates. The results are valid
with either a finite T or T — co. As in Hansen’s GMM setting (1982), one considers a linear transformation
of the moment conditions, a,7g,7(0), where a,r is a matrix with its number of rows greater than or equal
to (k, + 1) and a,7 is assumed to converge in probability to a constant full rank matrix ag. For the optimal
GMM (OGMM) estimation, we need the variance matrix of the moment conditions. Let vecp (P, r—1;) be

the column vector formed by diagonal elements of P, 71 ; and vec(P,, r_1 ;) the column vector formed by

stacking the columns of P,, r_1 ;. We denote wym 1 = [vecp(Pnr—11), -+ ,vecp(Ppnr_1,m)], and A, 7 =

6In this paper, we focus only on the stable dynamic model setting, but not unit root or related issues.



[vec(P), r_1 1), svee(P, py )| [vec(Py, 7y 1), -+ svee(Py, p_y )] From Lemma 2, the variance matrix

of the moments can be approximated by

1
Anm T 0m>< 1 ( — 304)w' w *
En P n(T-1) ) 4 My 0/%nm, T%nm,T
r=o0 ( TaT o) ’
(5)

where fi, is the fourth moment of v;;.” When v;; is normally distributed, the second component of 3,7 will

1 1 /
qum ?%n(T,l) Qn,T71Qn,T71 qum 0q><q

be zero because p1, — 303 = 0. For the optimal GMM, E;% is used as a} pan7r. As is shown in Appendix

D.1, denoting P;, 1 1 ; =Pp 71, + P 1, ;, we have n(T171) ag%é?”) = D1 + 0,(1) where
D,r = 741 Ugtr(G;z,TquL,Tﬂg) U%tT(G;L,TAPfL,TA,m) (Gn,Tflzz,TA‘sO)/Qn,T*l /.
" n(T —1) Ok x1 EE 0k. x1 Z) 1 Qur-1

Theorem 1 Under Assumptions 1-9, suppose we use the moment conditions in (3) where the nonstochastic
matrices P, r_1; forl=1,---,m are from P, r_1 and aoplimn_,ooﬁgmﬂ(ﬂ) = 0 has a unique root at

0y in O, the GMME Opr derived from mingeo g/, (0)al, ranrgnr(0) is consistent and

n(T — 1)(0nr—00) 4 N(0,plim,, (D;Ta/nTanTDnT)71 D;zTa/nTanTZnTa/nTanTDnT (DnTa/nTa7LTDnT)71)~

Also, the optimal GMM estimator (OGMME) 90,,@ derived from mingece g',7(0)Z, 19,7 (0) has

(T = 1)(Bonr — 60) % N(0,plim,, . (D.p Sk Dyr) ™). (6)

Suppose that 2;} — E;% = 0,(1), then the feasible OGMME derived from mingce g;T(H)ﬁg%gnT(G) has the

same asymptotic distribution as (6).

The OGMME can be compared with the 2SLSE. The 2SLSE of 6 is

ha * * -1
92sl,nT = [(Wn,Tlef*z,T—u Zn,T—l)’MQmT(Wn,anlYZ,T—la n,T—l)]
X [(Wn,T—lY;,T—hZ:,T—l)/MQmTY:,T—l] )
where Mg 7 = Qn7-1(Q), 7 1Qnr—1) " Qu 1. It is consistent and asymptotically normal with the lim-

iting variance matrix nghmn—mo(ﬁ(Gn,T—lz;,T_ﬂSO,Z;T_l)/MQ,nT(Gn,T—lzz,T—léOa -1)) " The

efficiency of the OGMME 9o,nT relative to the 2SLSE is apparent due to additional quadratic moments.

"Here, ¥, is not exactly the variance matrix of the moment conditions. While the elements involving the quadratic
moment conditions take the expectation form, the elements involving the linear moment conditions take the regular form
without expectations or probability limit (because the Qn¢’s are functions of predetermined variables). However, it has the
same limit as the variance matrix. The reason we use such a 3,7 is due to its simplicity. See Lemma 2 on how to get X, 7.



3.2 The Best Linear and Quadratic Moment Conditions

As the quadratic moment conditions and the linear moment conditions of V7 7._; do not interact with
each other (see Lemma 2) even though the third moment of v;; is not zero, ,r in (5) is block diagonal.

Thus,

1 1 * * * *
DX 1Dt ?m(GH,T—lzn,Tfl(so’ Z;, 1 1) M@ur(Gnr1Z), 7100, Zy 1) (7)
0
+ 1 Cmn,T(u4 0300 wnm TWnm, T + Amn T) 101/7,”17’1« lekz
n(T —1) 0k, x1 Ok, xk,

where Cpn,r = [tr(P), p_1 1Gnr-1), -« tr(P} 71, Gnr—1)]. When V,,; is normally distributed so that
g — 308 = 0, the best quadratic moment matrix is I7_; ® (Gn — %In) by the Cauchy-Schwarz inequality.
Without normality, the best quadratic moment matrix shall be (see Appendix D.2), similar to that in Liu
et al. (2009),

_ 4
Pn,T—l = IT—l 02y [(Gn - tTGYnIn) - M <dlag(G ) - tTGYnIn)] ) (8)
n Hq —0g n

where diag(A) denotes the diagonal matrix formed by diagonal elements of a square matrix A. When V,;; is
tan

normally distributed, it simplifies to Ir_1 ® (G” — In) as expected.

For linear moments, the best Q,; should be the conditional mean E(W, Y%, Z*,|Z;—1).> While this
ideal IV matrix might not be directly available, one may design an approximated sequence for it. For
that purpose, define Y% = Y,; — (I, — A,) 1S 'cno, Xpur = — nlzh —; D7 X, and Viir =

1 g-1yT-1 — N1 an
7350 2 ont Pr—nVan where @5 =375~ Ap. From Lemma 5, we have

Yoo = E(ny*t “VNTis1) = eriVars 9)

n,t

where E(Y, Cx, 71)|It 1) = VY cth(n,tTﬁo, U, = cpe(ln — A"Tq:Tt"‘) with ey = (T%;rtl)% However,
E (Yn(ff:ll ) |Zt_1) involves the (unknown) fixed effects (I,, — A,,)71S, e, via Y,",—1. With initial consistent
estimates of 6y, one may use whole sample observations over time to construct a consistent estimate of c,q,
and, then an estimated Yy and an estimated IV for E(Y, 75,; _11 |Z;—1). This IV approach is presented in
Appendix C, where a large T is crucial to guarantee that ¢, can be consistently estimated. For a finite T,
such an IV approach could be inconsistent.

As an alternative, at each ¢, one may infer ¢, from observables up to ¢ — 1, which has the advantage

of constructing a consistent IV estimate even if T" is finite. As Y,,; = A, Y, s—1 + S X580 + Siteno +

8 That EW,Y},, Z},|Tt—1) is the best IV can be seen from the asymptotic variance component of a GMM estimator due to
the IVs in Theorem 2.



S~1V,,, by taking summations over s = 1 to (¢t — 1), we have S, 'c,0 = 5 Zt_l(yns —A,Y, so1) —

t—1 s=1
1 1 t—1 —-1 1 t—1
S T Y1 XnsBo — S5t 77 D os—1 Vas. Hence, for t > 2,

S

. — a1 1 - ~
Y57t7711) = Hnt + [\Ijt (In - An) 1Sn 175—71 Zizll Vns - cTtVn,tTL (10)
where
4 1 _
H,: = \Ilt[)/n,t—l - (In - An) 1m Zizll (Yns - AnYn,s—l)]
“1g-1 1 t—1 o
+Wi (L, — An) ™S, ;] Les=1 XnsBo — CTtXn,tTﬁo]- (11)

The best theoretically IV E (Y,E*t:f ) |Z:—1) can be approximated by predetermined variables up to the period
t—1 and exogenous variables up to the period T'—1 via H,,;. Even though ¥;(I,, — A4, )15 ! t_% 22;11 Vs 18
in Z; 1 but cannot be observed, it might be ignored. Indeed, it can be small as long as t is far from the initial
period. Thus, the approximation can be accurate for those ¢’s far away from the initial period ¢ = 0. Hence,
we may use Hy; as a desirable IV for Y,*, ;. For t =1, E(KES’_UHO) =0 (Yoo — (In — An) 1S, teno) —
chXn,lTBO and we may simply take H,,; = ¥1Y,,0 — chXn,lTBO. For these IVs with ¢’s close to the initial
period t = 0, the approximations yield valid IVs but might not be adequate. However, as T is large, the
segment with early observations is short relative to the later segment of observations; asymptotically, these
IVs are adequate (see Lemma 6). Therefore, the best IV for Z, may be taken as K+ = (H,,¢, W, H,1, X5,)

and the best one for W, Y., is G, K,,100. This suggests that we may use

Qnt - (GnKntéo,Knt) (12)

as an IV matrix for (W, Y}

7%, and its feasible version is

@nt == (énKntSa H’{nt) (13)
where én, an, and & are feasible counterparts constructed with an initial consistent estimate of .
Assumption 10. The X,,1 22 = ﬁ(eﬂ,lz;j_léo, Z;, 1 1) (Gnr-1Z}, 1100, Zy, r_1) has its prob-

ability limit being nonsingular.

Theorem 2 Under Assumptions 1-10, suppose we use the moment conditions in (3) where Qn: takes the
special form Qs in (18) and P, 11 is estimated from (8). As n and T tend to infinity, the feasi-
ble best GMME (BGMME) 0y 7 derived from mingee g7 (034 gnr(0), where S0 — B-1 = o0,(1), has

/(T =1) 0y, — 00) 4N (0,2, ") where

¥, = lim ( ﬁtr[PfﬂT—lG"’T*] 01k, )

1
—pli by . 14
am Oh. x1 Oh. . + Jgp m, _, . 2inT,22 (14)

0

9The P, 7_1 involves the true parameter Ao, 08 and py, where Ag can be estimated from Theorem 1 and the moments

parameters 0(2) and py can be consistently estimated with the estimated residuals.
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For the QML estimator (QMLE) in Yu et al. (2008), it has O(1/T) bias, which can be eliminated but
requires the condition that %3 — 00. From Theorem 2, the BGMME does not have a bias term with such an
order. Under normality of V,,;, the BGMME and QMLE have the same asymptotic variance. However, when
Vit is not normally distributed, the BGMME with the best IV and best quadratic moment matrix in (8)
can be more efficient than the QMLE, because the quadratic moment in the GMM estimation incorporates
kurtosis of the disturbances.

We note that when T is finite, the proposed GMME is still consistent and asymptotic normal. However,

its limiting variance matrix is the inverse of

1 s
S = lim ( n(Tfl)tr[Pn,TflGan_l} O1xk, > (15)
n—00 Ok, x1 Ok, xk.
+07%phmn—>oom(GmT—lzn,T—lém Zn,T—l)/MQWT(G%T—lZn,T—ldO? Zn,T—1)7

where Mg 1 = Qn,Tfl(Q;L’T_lQn,Tfl)ilQn,Tfl' Thus, when T is finite, the best GMME does not attain
the efficiency specified in (14) due to the presence of Mg 7. This is so, because the best IV H,,; cannot

approximate E(Y(*’:ll) |Z:—1) well when ¢t is small.

n,t

4 Asymptotic Properties of GMME with Many Moments

If we use the moment condition in (4) where the dimension of H,,; might increase with ¢ (and also increase
with p,, where p,, is the order of spatial expansion of G,,), we have the many moment problem (see Bekker
1994, etc) in terms of asymptotic bias. In this section, we investigate the asymptotic properties of the GMM

estimator for this approach.

4.1 Consistency, Asymptotic Normality and Efficiency of 2SLSE

For the many moment approach, we can use the IV matrix
H’nt = (h/nt; thnt7 e ,Wﬁnhnt) Wlth hnt = (Yn07 ceey Ynﬂg_l, an, ceey XnT) (16)

motivated by (11),!° where the column dimension of h,; is p; = k,T + t.!! The p, (respectively, p;) needs
to increase as n (respectively, ¢ and T) increases in order to provide adequate approximation to the best
theoretical IV. Therefore, the dimension of H,; is K; = (p, + 1) - pt. The choice of many moments might
have a trade-off between the bias and variance of the GMM estimate, i.e., the larger number of moments

might increase the bias of an IV estimator but decrease its variance. In general, we assume that

10There are some technical difficulties in the presence of many IVs which involve estimated parameters in the literature,
which is also true for our model. Hence, it is desirable to avoid it by using IVs which do not involve estimated parameters.
HErom (11), an alternative hyn¢ is (Yno, ﬁ Zt7% Yns, Yn,t—1, ﬁ ZZ;% Xns, Xnt, ..., Xn1), which has a smaller dimension.

s=
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Assumption 11. Both T and p,, — o0 as n — oo.

Assumption 11 specifies that, many moments in H,; come out not only from the spatial power series
expansion (p, — o00) but also from the inclusion of lagged values (T' — o00). As we use a finite number
of quadratic moment conditions in the SDPD model, we pay special attention to the linear moments. The
additional quadratic moment conditions will not complicate the asymptotic analysis as the two sets of
moments do not interact with each other (see Lemma 2).

The fr: = EW,Y,5, Z%,|T:—1) is the best IV for (W, Y%, Z%,). From (2) and (9), (W, Y5, Z%,) = fat+tnt

where
Fut = [Gal(voIn + poW) By "D Tim) + Xy Bo)s B DT W BV D [ Tion), X, (17)

Unt = [Gn((Voln + PoWi) Tt + Vi) Mt Watlnes Onxk, ] with n,,, = _CTtVn,tT' (18)

From (10), for ¢ > 2, the best IV f,; can be approximated by the variables: Y, ;_1, iztg;ll Yo,

% 22;11 Yi.s—1, ﬁ Zi;ll Xns, the exogenous variables afterwards (X, -, X,7), plus an error compo-
nent (ﬁ Zi;ll Vps), and their spatial expansions.!? As the elements in H,; contain spatial series involving
W, and h,,;, the many moments via (16) come out from both spatial and time dimensions. From Lemma 10,
we see that f,; can be well approximated by some linear combination of H,; when ¢ is far from the initial
period.

The 2SLS estimate is fognr = [Yo1q (WY

nt’Z’r*Lt)/Mnt(WnY* zZ
where M,; = Hp(H.,H,;)T H.,. Thus,

nt» “nt

N S (WY, Z25,) Mt Y,

R 1 T—1 -1 1 T—1
n(T — 1)(02s1,nr—00) = m t; (fnt + unt)/Mnt(fnt + Unt)] \/ﬁ t; (frt + unt)antV;t

(19)
From Lemma 6, plimnﬂmﬁ ZtT;ll ! fnt = plim,,_, 2,790 is the probability limit of the first com-

ponent in (19). As u,, and V3, are correlated, the second component in (19) has a non-zero mean. De-

s  T—1
1 T—1 o _
note by \ = \/ﬁa% i1 [tr(GrnMyy)], bay = _\/n(:;)“q) t; T+11_ttr(M,LtC’;LTtSjL LG (Yoln + Whpy)),
JER a g2 Il _ .
b27’y = 7\/71(;_1) t; T-‘rll—ttT(MntC’:LTtS?/’l 1) and b2,p = 7\/n(i;1—1) t; T—'r]i—ttr(MntC?/LTtS':L 1Wn) with
Cort = 7 Y2y hAR,

Theorem 3 Under Assumptions 1-8 and 10-11, suppose we use many linear moments in (16). Under

2 K

Y Uy 0, the 25LS 92557,LT is consistent and

T—1
5 . 4, VK . ,
VAT =) Bastir = 00) = (] - (01 + 02) + O, (;—(lT - 1;) L V(0. ofplim, o B k), (20)

12For t = 1, fn1 can be approximated by the spatial expansion of Yyo and (Xn1y s Xnr—1)-

12



T—1
S T—1 x 7k e K . .
where H = n(T ) Yooy WY Z0 ) My (WY, Z7%,), o1 = etbiy = O <§m) with ey being the
corresponding first unit vector, and ¢, = (ba x,b2,5,b2,5,01xk,) = \/n(T ) Zf s %(T t))
Consequently,
(i) if Z — 0, then \/n(T — 1)(92357HT o) 4, N(0, aophmnéOOE;T 99);

\/7

(ii) if PO — ¢ where ¢ is a positive finite constant and

Vn(T-1)
: : d . _
TL(T - 1)(92sl,nT - 00) - [H}il B N(O ngllmnﬁoozn% 22) ]
H- Lo, be a bias corrected estimate, where ¢y is estimated

VK
n(T—1)

max{K;:t=1,...,T—1}

> Ko

— 0 as T — o0, then

~1 ~
(i) let Orsint = 025101 — m

d

with g4 nr. Then, under the setting in (i), or (i) and — 0, /n(T — 1)(9;817nT —0y) —

N(0,03plim,, ;7 5,).

From Theorem 3, we see that the 2SLS estimate might not be consistent if we have too many moments

T—1
such that u

PGy is not small. Here, the bias ¢, in the asymptotic expansion is caused by the endogeneity

T— 1

of the spatial lag, which is of the order - after being rescaled by \/n(T — 1). The @, is caused by the

(T 1)

correlation of ZF, and V%, after the data transformation to eliminate individual effects, and ——22— is of
/n(T-1)

the order where K = max{K; :t=1,. —1}. Thus, the dominant asymptotic bias of the estimate

(T 1)
is caused by the endogeneity of the spatial 1ag term rather than the dynamic lag term. However, after the
bias correction, the dominating bias ¢, can be eliminated. Comparing the asymptotic distribution of the
bias corrected IV estimate in Theorem 3 with that of the IV component of the finite moments approach
in Theorem 2, we see that they have the same asymptotic distribution and, thus, both can asymptotically
attain the best IV estimate. The asymptotic efficiency of the many IV estimate, however, requires ratio
conditions, in particular, that \2/:% — 0. For this requirement to hold, it is implicit that 7" has to be

small relative to n.

4.2 Consistency, Asymptotic Distribution and Efficiency of GMME

To increase the efficiency of estimates, quadratic moment conditions can be included as those in Section
3. Thus, the moment conditions are (4) where H,; takes the form in (16). Similar to Section 3, the variance

matrix of these moment conditions can be approximated by

D 4 ﬁAnm T OmX(ETilK ) (21)
n = O t=1 1%t
! ’ O(ET th) 71?) n(Tlfl) H;L,Tlen,Tfl
1 (g — 300) Wy, 7Wnm,T *
+— 0 0
n(T —1) (ET 'Ky )xm ET 1 K)x(ET K

13



where H,, 7_1 = Diag(Hp1,- - , H, r—1) is the block diagonal matrix with H,,; in the ¢th diagonal block.
We study the optimal GMM with the objective function g/ ,(0)X 1g,7(0) = g;T71(0)EnT 19n7,1(0) +
g;LT,Q(G)E;%’zgnT’Q(GL where gn7(0) = (9,,7.1(0), 9,,7.2(0))" so that g,r,1(0) is the quadratic moment in (4),
gn1,2(0) is the linear moment in (4), and X,7 is block diagonal from (21) with X,7 = Diag(E,1.1, Xn1,2)-

Theorem 4 Under Assumptions 1-8 and 10-11, suppose we use many moment conditions in (4) with H,;

in (16) and Pn -1 estimated from (8), the feasible BGMME 01, nT 48 consistent under (Tilll)(’ — 0, and

-1
(T = 1) (Ot = 00) = [03Z0] "+ (91 + 02) + Oy <;L=(1T\—/I1?;

) LN, =,
where Xy, is in (14).

1 o ~
Let 0y, ;7 = Oy n1— (6237 %, , under the setting in Theorem 3 (iii), the bias corrected BGMME

n(T—-1)
Oy has /m(T — 1)(By ur — 00) > N (0,5, 7).

Thus, the BGMME with many IVs can have the same asymptotic distribution as that in Theorem 2.

5 A General Model with Time Dummy Effects

The SDPD model (1) can be generalized to include time dummies:
Ynt = AOWnYnt + ’YOYn,tfl + p()WnYn,tfl + Xntﬁ() + Cno + atln + Vnt7 t= ]-7 27 ceey Tv (22)

where a; is a fixed time effect. For estimation, we may first eliminate individual effects by Frr_1,
which yields Y5, = AWn Y + 70Ysi o1 + poWa Y, 50 + X80 + il + Vi t = 1,2, T — 1, where
[af, 05, k4] = [oa, @0, - ,ap]Frr_1 can be considered as transformed time effects. We make a fur-
ther transformation to eliminate those time effects o}’s. For that purpose, we shall work on the popular
spatial scenario that W,, is row normalized.'?
Assumption 1’. W, is a row normalized nonstochastic spatial weights matrix with zero diagonals.

Let J, =1, — %lnl; be the deviation from the group mean over spatial units, and let [F}, ,_1, fl ] be
the orthonormal matrix of eigenvectors of J,,, where the n x (n — 1) eigenvectors matrix F,, ,_1 corresponds
to the eigenvalues of one and [,,/y/n corresponds to the eigenvalue zero. We can transform the n-dimensional

vector Y, to an (n — 1)-dimensional vector Y,;*; , by Y;*; , = F},

n_1Yn:- With W, being row normalized,

!/ — / —
because Fy ,_1Wyl, = F} 41, =0, one has

* ok sk, —1 *ok *k
Y,z 1t_)‘0( n,n— WiFnn )Y, 1t+’70Y( 14— )1+PO(F7I1,n71WnFn,n71)Y( Ti— )1+X 1tﬁ0 anl,t’ (23)

13When W, is not row normalized, we can still eliminate the transformed time effects; however, we will not have the SAR
presentation of (23).
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*% _ / * K% _ / *
Where anl,t,k - Fn,n—IXnt,k: and ‘/n—l,t - Fn,n—l‘/nt'

Because (V™) 1., Vo™ 7 1) = (Frp_y ®
Fﬁ,n—l)( s s VV/LT)/’ we have E( ;ill,lv ey V':ill,T—l)/( r;ki/l,lv Tt ,V:L,T—l) = 031(n—1)(T—1)~ Hence, ele-
ments of V,*, ;, are uncorrelated for all i and t. From (23), as (I,,-1 — Ao F, ,, i Wn I n—1) is invertible (see

Lee and Yu, 2010), Y,y*; , can be expressed as a function of Y,Ei*lﬁ)l, X5ty and Vo o

5.1 Finite Moments Approach in the Systematic Setting

For the linear moments, we similarly stack up the data and construct moment conditions via the
transformed equation (23). An IV matrix can take the form Q,_;r_; = (@;71)1, Q! pq) where

@n,u = FT/L,annt has a fixed column dimension ¢ greater than or equal to k; + 3. Thus, the lin-

. A/ *ok _ / * _ .
ear moments are anl’TfanfLTfl(H) = Qn7T71J",T—1Vn,T71(0) where J, 7—1 = Ir—1 @ J,, because
P,;F, n—1 for some non-

an—va/L,n—l = J,. For the quadratic moments, let lsn_l,T_Lj =171 ® F,’m_1

stochastic n x n matrix P,; with the property tr(P,;J,) = 0. The moment conditions would be

o

Vo 1 (O)Pr1 11V 4 (0) Vi 1(O)Inr-1Por—113n 11V}, r_1(0)
.&nT(e) = skox/ S : kK - */ : *
Vi (0P 12 m Vi o (0) Vi 1O 1Prr1mIn -1V 1(0)
Q;zfl,Tflv;kL*fl,Tfl(e) Q;L,T—lJn,T—lvz,Tq(e)
(24)

For identification, denote Sf (A) = In_1 — AF}, ,, \WypFp n_1. From (23), V;**; ;(0) can be expanded as
2Ea(0) = diy 4 (0) + ST (N(S1) TV, where Vit = Vi ((6) and di 4 (0) = F (Ao —
NGnZ60+ 25, (80—0)], because Fpy 1 Wyl =0, [SF_ 17 = F) 1S, (W) Fn—1 and ST (N)[SE_ 171 =

Infl + ()\0 - )‘)FI

nn—1GnFnn—1. These suggest the following identification conditions.

Assumption 5’. The elements of X,,; and ¢, are nonstochastic and bounded, uniformly in n and ¢. Also,
lim,, o0 ﬁ Zthfll X I X, exists and is nonsingular.

Assumption 9°. The nx g IV matrix @, is predetermined such that E(Qn¢|Zt—1) = Qnt, its column dimen-
sion is fixed for all n and ¢ with its elements O, (1) uniformly in » and ¢, and plim,,_, ﬁQ;’TilJn,T_lQmT_l

is of full rank q. Also, plim,L%me;,T_lJn’T_l[Z;T_l, G71,,T—1Z:17T_150] has the full rank k, + 1.

Assumption 9’ is similar to Assumption 9, with the additional J,, 7—; involved due to the additional

transformation Fj, ,_1 to eliminate time effects. By defining lo)nT = —mx
/
U%tT(G;L,T—lJmT—lPZ,T—1,1) UgtT(Gln,T—1‘]n7T—1PfL,T—1,m) (Gn,T—lZZ,T—l‘sO)/Jn,T—lQn,T—l
*/ 9
0%, x1 e 0%, x1 Zy p 1 JInr-1Qnr-1
(n—l)l(T—l) ag"gé?”) = Dpr + 0p(1) similar to Section 3. Let
Appr = [veeTnr-1P) oy 1 Inr-1), s veeTn 1Py p_y nInr-1)]
x[vec(Inr1P r 1 1 Inr-1), - vecTnra Py roy ndnr-1)l;
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and Wnm, T = [UGCD(Jn,T—1P7L,T—1,1J7L,T—1)7'" 7UecD(JH,T—1P’!L,T—1,77LJ’!L,T—1)]' The variance matrix of

these quadratic and linear moments can be approximated by

1
o 7Anm T 07n><
Zn _ 0_4 (n—1)(T-1) ) q 25
r 0 ( qum, an T—1 n T—lQn,T—l ( )
_1_; ( (,u - 300) nm, TWnm,T * )
(n—1)(T-1) 0g5xm Ogxq )

Theorem 5 Under Assumptions 1°, 2-4, 5, 6-8, and 9’, suppose we use the moment conditions in (24),

the OGMME 907nT derived from mingco g;LT(O)E;%gnT(H) has

(n— 1)(T — 1D)(Bonr — 60) > N(0,plim,, . (D.pSEDyr) ™). (26)

n—oo

Suppose that 3.+ — 31 = 0,(1), then the feasible OGMME derived from mingeg g7 (8)3 minr(0) has the

same asymptotic distribution in (26).

Proof. The moment conditions in (24) in terms of V7 ;. ;(f) have similar structures as that in Section
3, except for the presence of .J,, which eliminates the time dummies. We note that J,, is UB and the
multiplication of UB matrices results in a UB matrix. Thus, asymptotic analysis is similar to Theorem 1. B

For the corresponding best GMM estimation, from Appendix E, the best quadratic moment has

f):zfl 71 =Ir 1 ®F, 1Py Fyn 1, (27)
* Gy, l—an, GpnJn : _ n n n4—3
where P = (G,,— t”Gl In)+ (7& +,]4) ey diag(J,GnJn) — %IH with o, = 7n32+ R Vs A s ’42

and P} is the best within the class of matrices such that tr(P,J,) = 0. When V,,; is normally distributed

so that n, = 3, it implies o, = 1 and the best quadratic matrix is reduced to Ir_1 ® (G,, — %Jn) For

the linear moments, at ¢, the best IV is E(F}, ,,_1[W,Y,,, Z:]|Z;:—1) and its feasible version is
Fé,n—l(énKntSa Knt) (28)

Assumption 10°. The ¥ .7 = G=p57=57(Gn. 1125 17160, Zoy 1) Tn 11 (Gonr 1 2y o180, Ziy 1)

has its probability limit being nonsingular.

Theorem 6 Under Assumptions 1°, 2-4, 5°, 6-8 and 9’-10’, suppose we use the moment conditions in (24)
where Q1+ takes the special form in (28) and P*_, 71 15 estimated from (27). Asn and T tend to
infinity, the feasible BGMME Qb,nT derived from mingcg gnT(H)EnTgnT(Q), where Zn% ) 1+ = o0p(1), has
(n— 1)(T — 1)(Bonr — 00) > N(0,3;) where
3, = lim ( Wl(Tfl)tr[P” LT 1Gur-al Or, ) + ! —plim, 32 7, (29)
n—00 0% x1 Ok, xk, og

with én,T—l =Ir_ 1 ® FTIL,n—lGnan—l'

Proof. Similar to Theorem 2. B
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5.2 Many Moment Approach

For the separate moments approach, we can use H,,_1; = F) H,,; for each period, where H,; can be

n,n—1
from (16). The many moment conditions are

o

VZjI,Tfl(Q)Pn—l,T—l,IV:tl,Tfl(e) V;/,Tq(Q)Jn,Tflpn’Tf1,1Jn’T71V2,T71(0)
énT(e) = s S : *ok = */ : *
Vn—cl,T—l(Q)Pnj},T*l»mvn—l,T—l(9) Vn,T—l(Q)Jn,T—lPn,T—LmJn,T—lvn,T—1(9)
Diag(Hp-1,1, s Hom1,7-1)' V35 74 (0) Diag(Hni,- -+ s Hor—1) Jnr1 Vi 4 1(0)
(30)
where
I—DInth = F»,/Lnfl(hnta thnt7 e aWrrIL)nhnt)a with hnt = (YnO; e 7Yn,t71a ana T 7XnT)- (31)

Theorem 7 Under Assumptions 1°, 2-4, 5, 6-8, 10’ and 11, suppose we use moment conditions in (30)

with H,_1, in (31) and f’;_LT_l estimated from (27), the feasible BGMME @y 1 is consistent under
K

n(T—1)

~1 ~
Let ebynT S 9b7nT -

— 0.

51

51 . . 1
7m2b P, where @, = e1by x with by x = 7m08 Yoieq tr(JnGpMyy)).
Under the setting in Theorem 3 (iii), the bias corrected BGMME éinT has \/(n — 1)(T — 1)(9;,nT — b)) <

N(0, f];l), where 3y is in (29).

Proof. Similar to Theorem 4. &

6 Monte Carlo

We run simulations to investigate the performance of 2SLSEs and GMMEs in Sections 3 and 4 under
different values of n, T and 7,. We also compare them with those of the QMLE in Yu et al. (2008). Samples

are generated from (1):
Ynt = )\()Wnynt + 'YOYn,tfl + pOWnYn,tfl + Xntﬁo +cpo + Vnta t= 1; 27 (3] T?

using 63 = (0.2,0.1,—0.2,1), 05 = (0.2,0.5,—0.2,1) and 65 = (0.2,0.9,—0.2,1) where 8y = (Ao, Y5 20> 50)’-
Hence, v, takes the values from 0.1 to 0.9 and other parameters are held constant. The X, c,o and

Ve are generated from independent standard normal distributions and the spatial weights matrix W, is a

14

rook matrix."* We use T = 5, 10, 20, and n = 100. For each set of generated sample observations, we

14We use the rook matrix based on an r board (so that n = r2). The rook matrix represents a square tessellation with a
connectivity of four for the inner fields on the chessboard and two and three for the corner and border fields, respectively. Most
empirically observed regional structures in spatial econometrics are made up of regions with connectivity close to the range of
the rook tessellation.
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calculate the GMM estimator 9,LT and evaluate the bias 9,LT —0y. We do this 1000 times to get the empirical

1 1000/

bias 1505 2_i—1 (OnT — 00)i- With three different values of 0y for each n and T, finite sample properties of

these estimators are summarized in Tables 1-7. For each case, we report the bias (Bias), empirical standard
deviation (SD) and root mean square error (RMSE). For cases where there are outliers, some quantiles are
reported instead.

Tables 1 and 2 use finite moment conditions in (3). Table 1 is for the 2SLSE and GMME using
Yot1, WoYnio1, -, W3Y, 101, X7, WaX,] as the IV matrix,'® where GMME uses additionally Ir_; ®

(W, — trnW" I,) and Ity ® (W2 — m;lvg I,,) for quadratic moments. Table 2 is for the BGMMESs, where

either Q,; in (13) or Q%, in (37) are used as the IV matrix in linear moments, and Ip_; @ (G, — @In)
for quadratic moment, where G,, is estimated with initial estimates from the GMME in Table 1. For further
investigation of BGMMEs in Table 2 compared with GMME in Table 1, we also provide the quantiles of
those estimates in Tables 3 and 4.

Tables 5 and 6 use many moments, where IV matrices are Yy, -+, Yn¢—1, Xn1, -+, Xnr and their first
five spatial lags. Table 5 is the 2SLSE with and without bias correction. Table 6 is the BGMME with and
without bias correction, where I7_1 ® (én — %Ll) is used for the quadratic moment and G,, is estimated
with initial estimates from Table 5. All the GMMEs are optimum ones as inverses of their variance matrices
are used for weighting. Also, Table 7 is MLEs with and without bias correction.

From Table 1 for the 2SLSE and GMME, Biases are small for all the estimates. For both 2SLSE and
GMME, as T increases, SDs decrease; as 7, increases, Biases slightly increase on average and SDs increase.
The GMME of Ay has a smaller SD than that of the 2SLSE of \q such that SDs can be reduced by less than
a half; but for other estimates, the performance of GMME and 2SLSE are similar. From Table 2, BGMMEs
have small Biases. When T increases or 7, decreases, SDs will be smaller. The BGMMEs have smaller SDs
than those of GMM in Table 1 for items (1)-(5), but larger SDs for the rest. From the quantiles of those
estimates in Tables 3 and 4, BGMMEs are less dispersed in the specified 25%-75% quantile range, and so
is the 10%-90% range. Those large SDs in the BGMME compared to the GMME in Table 2 are caused by
some outliers of estimates.

From Table 5, the 2SLSE with many IVs has some biases for the estimate of v, when T is small, and
have biases for the estimate of A\g. When 7' is larger or v, is smaller, SDs are smaller while the changes

in Biases are ambiguous. After the bias correction, Biases and SDs are smaller for the estimate of g, but

5 The Yon,t—1, WnYn -1, ,WgYn,t_l,X;;t,WnX;t} is also a valid IV matrix. However, we find that the SDs of the
estimates would be much reduced by adding W#Ynyt,l and WT?Yn,t—l as the IVs. For the current DGP with exogenous variables,
the SDs are reduced by 10% on average with more IVs; for the DGP without exogenous variables, the SDs are large with IV
matrix [Yy -1, WnYpn -1, ,Wg)’mt_l]. Detailed simulation results with IV matrix [Yy ¢—1, Wn¥n,t—1,- - ,WSYn’t_ﬂ are
available in the supplement file upon request, but are not presented here due to limited space. Also, counterparts for Tables
1-7 without exogenous variables are available.
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Table 1: 2SLS and GMME Using Finite IVs in the Systematic Setting

2SLSE GMME

n T b A ¥ p B A ¥ p B

(1) 100 5 63 Bias 00039 -0.0021 0.0013 -0.0039 | -0.0011 -0.0043  0.0008 -0.0045
SD 0.0978  0.0595 0.1026  0.0525 | 0.0624  0.0620  0.1127  0.0525

RMSE  0.0978  0.0596  0.1026  0.0527 | 0.0621  0.0622  0.1127  0.0527

(2) 100 10 62 Bias  0.0046 -0.0015 -0.0000 -0.0018 | 0.0009 -0.0021  0.0001 -0.0016
SD 0.0640 0.0356 0.0624 0.0327 0.0378 0.0355 0.0627 0.0325

RMSE 0.0641 0.0357 0.0624 0.0328 0.0378 0.0355 0.0627 0.0326

(3) 100 20 62 Bias  0.0007 0.0010 -0.0002 -0.0001 | -0.0015  0.0008 -0.0028  0.0003
SD 0.0427  0.0228  0.0419  0.0231 | 0.0284  0.0230  0.0455  0.0230

RMSE  0.0427  0.0228  0.0419  0.0231 | 0.0284  0.0230  0.0456  0.0230

(4) 100 5 65 Bias 00035 -0.0071  0.0000 -0.0052 | 0.0010 -0.0130  0.0047 -0.0068
SD 0.1073 0.0931 0.1449 0.0588 0.0748 0.0952 0.1442 0.0591

RMSE 0.1074 0.0934 0.1449 0.0590 0.0748 0.0961 0.1443 0.0595

(5) 100 10 65 Bias  0.0041 -0.0027 -0.0031 -0.0020 | 0.0008 -0.0043 -0.0013 -0.0020
SD 0.0656  0.0484  0.0842  0.0338 | 0.0398  0.0479  0.0820  0.0336

RMSE  0.0657 0.0484  0.0743  0.0338 | 0.0398  0.0481  0.0820  0.0336

(6) 100 20 98 Bias 0.0006 0.0013 -0.0017 0.0000 0.0004 0.0014 -0.0018 0.0000
SD 0.0433 0.0277 0.0540 0.0232 0.0280 0.0277 0.0523 0.0230

RMSE  0.0433  0.0278  0.0540  0.0232 | 0.0280  0.0277  0.0523  0.0230

(7) 100 5 65 Bias 00169 -0.0747 0.0211 -0.0374 | 0.0130 -0.1021  0.0266 -0.0487
SD 0.2046 0.2938 0.2708 0.1435 0.1251 0.2431 0.1956 0.1214

RMSE  0.2053  0.3032 0.2716  0.1483 | 0.1258  0.2637  0.1974  0.1308

(8) 100 10 65 Bias  0.0099 -0.0003 0.0025 -0.0016 | 0.0073 -0.0154  0.0047 -0.0070
SD 0.1179  0.1662  0.1779  0.0735 | 0.0782  0.1341  0.1131  0.0607

RMSE 0.1183 0.1662 0.1780 0.0735 0.0785 0.1350 0.1132 0.0611

(9) 100 20 65 Bias -0.0007 0.0177 -0.0049  0.0051 | 0.0048 0.0101 -0.0072  0.0020
SD 0.0613  0.0876  0.1089  0.0363 | 0.0679  0.0977  0.0831  0.0422

RMSE  0.0613  0.0894  0.1091  0.0367 | 0.0681  0.0982  0.0835  0.0422

Note: 1. 63=(0.2,0.1,—0.2,1), 5= (0.2,0.5,—0.2,1) and 5= (0.2,0.9, —0.2,1).
2. The IV matrix is [Y,, 7, W, p 1 Yoz 1,0 W0 o Yoo 1, X5 0, W, X5 ]

3. The quadratic matrices are IT_1®(Wn—W77VLV"In) and IT_1®(Wi—
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Table 2: BGMMEs Using Finite IVs and Best Quadratic Moments

BGMME in Theorem 2 BGMME in Theorem 8

n T 6 A vy ) Jé] A o p B

100 5 6 Bias -0.0016  -0.0007 -0.0004 -0.0026 | -0.0003  0.0001  0.0016 -0.0027
SD 0.0572  0.0518  0.0919  0.0515 | 0.0550  0.0420  0.0757  0.0510
RMSE 0.0572  0.0518 0.0919 0.0515 | 0.0550 0.0420  0.0757  0.0511

100 10 6 Bias 0.0002 -0.0013 -0.0010 -0.0014 | -0.0001 -0.0011 -0.0004 -0.0013
SD 0.0374  0.0291  0.0535 0.0325 | 0.0382  0.0252  0.0454  0.0325
RMSE 0.0374 0.0291 0.0535 0.0326 | 0.0382  0.0252  0.0454  0.0325

100 20 6 Bias 0.0000  0.0003 -0.0014 -0.0001 | 0.0002  0.0005 -0.0018 -0.0002
SD 0.0280  0.0187  0.0353  0.0231 | 0.0260  0.0172  0.0336  0.0231
RMSE 0.0280 0.0187 0.0353 0.0231 | 0.0260 0.0172  0.0337  0.0231

100 5 98 Bias -0.0023  -0.0028 -0.0025 -0.0027 | -0.0019  0.0007 -0.0004 -0.0021
SD 0.0757  0.0744  0.1286  0.0554 | 0.0652  0.0493  0.0827  0.0523
RMSE 0.0757 0.0744 0.1286  0.0554 | 0.0653  0.0493  0.0827  0.0523

100 10 08 Bias 0.0017 -0.0033 -0.0025 -0.0015 | -0.0004 -0.0026  0.0005 -0.0015
SD 0.0537  0.0368  0.0674  0.0332 | 0.0414  0.0256  0.0528  0.0329
RMSE 0.0538 0.0369 0.0675 0.0333 | 0.0414 0.0257  0.0528  0.0329

100 20 98 Bias -0.0010 -0.0015  0.0010 -0.0003 | -0.0024 -0.0013  0.0009  0.0008
SD 0.0335  0.0218  0.0548  0.0234 | 0.0294 0.0160  0.0399  0.0238
RMSE 0.0335 0.0218 0.0548 0.0234 | 0.0295 0.0161  0.0399  0.0238

100 5 65 Bias -0.0025 -0.0693  0.0204 -0.0321 | 0.0064 -0.0018  0.0055 -0.0025
SD 0.2166  0.3237  0.3221  0.1563 | 0.1583  0.1304  0.1415  0.0777
RMSE 0.2166 0.3310 0.3228  0.1596 | 0.1585  0.1304 0.1416  0.0777

100 10 5 Bias 0.0058 -0.0090 -0.0017 -0.0043 | 0.0024  0.0079 -0.0026  0.0024
SD 0.0948  0.0964 0.1362  0.0499 | 0.0980 0.0751  0.0765  0.0444
RMSE 0.0949 0.0968 0.1363  0.0501 | 0.0980  0.0755  0.0765  0.0445
100 20 65 Bias 0.0102 -0.0108 -0.0084 -0.0046 | 0.0045 0.0040 -0.0048  0.0020
SD 0.0947  0.0865 0.1262  0.0538 | 0.1288  0.0640  0.0923  0.0531
RMSE  0.0953 0.0872  0.1265 0.0540 | 0.1289  0.0642  0.0925  0.0531

Note: 1. 65=(0.2,0.1,-0.2,1), 5= (0.2,0.5, 021)and90—(0209 -0.2,1). R
2. For BGMME in Theorem 2, the IV matrix is Q. 7—1 = (Q) n1=~ ,Qn T 1) with Qpy in (13).
3. For BGMME in Theorem 8, the IV matrix is Qn,T—l ( o, Qn “ 1) with Q‘}Lt in (37).
4. The quadratic matrix is an estimated IT_1®(G~n—trg" I,).
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Table 3: Quantiles of BGMM Using Finite IVs and Best Quadratic Moments

BGMME in Theorem 2

Results for GMME from Table 1

n_ T 6 A Y P p A Y P p

(1) 100 5 65 Median 0.1979 0.0981 -0.1999 0.9964 | 0.2015 0.0966 -0.1991 0.9936
10%Q  0.1243  0.0340 -0.3185 0.9297 | 0.1244 0.0179 -0.3292  0.9270

25%Q  0.1628 0.0630 -0.2624 0.9618 | 0.1610 0.0574 -0.2717  0.9597

75%Q 02365 0.1336  -0.1411 1.0328 | 0.2393 0.1327 -0.1291 1.0318

90%Q  0.2711 0.1668 -0.0859 1.0641 | 0.2746 0.1714 -0.0623 1.0636

(2) 100 10 6% Median 0.2001 0.0991 -0.2007 1.0008 | 0.2002 0.0984 -0.2008 1.0000
10%Q 0.1543 0.0613 -0.2681 0.9562 | 0.1543 0.0541 -0.2801 0.9554

25%Q  0.1754 0.0774 -0.2370  0.9755 | 0.1756 0.0746 -0.2415 0.9769

75%Q  0.2260 0.1183 -0.1638 1.0210 | 0.2256 0.1210 -0.1589 1.0205

90%Q  0.2482 0.1352 -0.1325 1.0397 | 0.2489 0.1430 -0.1179 1.0391

(3) 100 20 6% Median 0.1995 0.1000 -0.2020 1.0000 | 0.1987 0.1007 -0.2025 1.0004
10%Q  0.1672  0.0761 -0.2454 0.9704 | 0.1666 0.0710 -0.2559  0.9709

25%Q  0.1812  0.0879 -0.2239 0.9839 | 0.1812 0.0849 -0.2308  0.9842

75%Q 0.2174 0.1132 -0.1777 1.0166 | 0.2170 0.1162 -0.1730 1.0168

90%Q 0.2323 0.1246 -0.1579 1.0289 | 0.2320 0.1308 -0.1463 1.0289

(4) 100 5 A5 Median 0.2006 0.4955 -0.2034 0.9970 | 0.2013 0.4915 -0.1948  0.9930
10%Q  0.1118 0.4063 -0.3570 0.9258 | 0.1097 0.3751 -0.3773  0.9175

25%Q  0.1537 0.4495 -0.2832 0.9586 | 0.1572 0.4289 -0.2926 0.9543

75%Q  0.2414  0.5422 -0.1272 1.0340 | 0.2476 0.5434 -0.1056 1.0306

90%Q  0.2835 0.5932 -0.0416 1.0707 | 0.2914 0.6020 -0.0035  1.0688

(5) 100 10 A} Median  0.2000 0.4974 -0.2032 1.0014 | 0.2013 0.4962 -0.2039  0.9995
10%Q  0.1498 0.4497 -0.2878 0.9550 | 0.1502 0.4365 -0.3022 0.9528

25%Q  0.1756  0.4722 -0.2445 0.9757 | 0.1743 0.4671 -0.2570 0.9759

75%Q 0.2257 0.5221 -0.1590 1.0211 | 0.2269 0.5266 -0.1472 1.0211

90%Q 0.2506  0.5426 -0.1144 1.0396 | 0.2529 0.5544 -0.0940 1.0411

(6) 100 20 98 Median 0.2009 0.4996 -0.2009 0.9997 | 0.2012 0.5013 -0.2022 1.0002
10%Q 0.1669 0.4722 -0.2510 0.9698 | 0.1660 0.4665 -0.2644 0.9701

25%Q  0.1826 0.4851 -0.2265 0.9839 | 0.1829 0.4822 -0.2350 0.9834

75%Q  0.2185 0.5120 -0.1757 1.0162 | 0.2194 0.5186 -0.1672 1.0168

90%Q  0.2322  0.5232 -0.1539 1.0289 | 0.2325 0.5369 -0.1382 1.0290

(7) 100 5 65 Median 0.2004 0.8464 -0.1915 0.9763 | 0.2143 0.7963 -0.1677 0.9507
10%Q  -0.0238 0.5319 -0.5293 0.8185 | 0.0599 0.5314 -0.4317 0.8128

25%Q  0.1016 0.7026 -0.3548 0.8946 | 0.1448 0.6500 -0.3138  0.8806

75%Q 0.2931 0.9834 -0.0123 1.0486 | 0.2885 0.9362 -0.0339 1.0183

90%Q  0.4176 1.1398  0.1900 1.1256 | 0.3650 1.0705  0.0761 1.0948

(8) 100 10 A5 Median 0.2021 0.8915 -0.2030 0.9982 | 0.2093 0.8831 -0.2016 0.9936
10%Q  0.1150 0.7879 -0.3615 0.9376 | 0.1185 0.7293 -0.3373  0.9216

25%Q  0.1584 0.8450 -0.2766 0.9653 | 0.1613 0.8081 -0.2725 0.9548

75%Q 02499 09450 -0.1346 1.0279 | 0.2519 0.9649 -0.1234  1.0302

90%Q  0.3095 0.9930 -0.0491 1.0545 | 0.2979 1.0436 -0.0471 1.0611

(9) 100 20 65 Median 0.2014 0.8966 -0.2018 0.9989 | 0.2005 0.9129 -0.2107 1.0034
10%Q  0.1562 0.8420 -0.2881 0.9636 | 0.1495 0.8178 -0.3008 0.9620

25%Q  0.1781 0.8700 -0.2436 0.9808 | 0.1725 0.8642 -0.2532 0.9811

75%Q  0.2272  0.9210 -0.1591 1.0169 | 0.2274 0.9612 -0.1605 1.0252

90%Q  0.2478 0.9466 -0.1171 1.0333 | 0.2563 1.0046 -0.1057 1.0468

Note: 1. 5= (0.2,0.1, 0.2, 1), 08: (Q.Q, 0.5,-0.2, 1) and 00~: (0.2,0.9,—0.2,1).
2. The IV matrix is Qpr—1 = (Ql1, -, Q%,T_l)/ with Q¢ in (13).
3. The quadratic matrix is an estimated IT_1®((?”7%I”).
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Table 4: Quantiles of BGMM Using Alternative Finite IVs and Best Quadratic Moments

BGMME in Theorem 8

Results for GMME from Table 6

n_ T 6 A Y P p A Y P p
(1) 100 5 63 Median 0.1972 0.0992 -0.1969 0.9964 | 0.1982  0.0302 -0.1706 0.9827
10%Q  0.1319  0.0469 -0.2950 0.9307 | 0.1305 -0.0226 -0.2549 0.9173
25%Q  0.1640 0.0725 -0.2482  0.9620 | 0.1623  0.0029 -0.2171  0.9482
75%Q  0.2370 0.1268 -0.1476  0.0320 | 0.2359  0.0571 -0.1232 1.0185
90%Q  0.2719  0.1548 -0.1046 1.0643 | 0.2686  0.0819 -0.0801 1.0496
(2) 100 10 6% Median 0.2005 0.0987 -0.1993 1.0004 | 0.1919  0.0410 -0.1789  0.9961
10%Q 0.1537 0.0660 -0.2571 0.9551 | 0.1465 0.0119 -0.2339 0.9505
25%Q  0.1750 0.0821 -0.2307 0.9765 | 0.1665  0.0267 -0.2074 0.9724
75%Q  0.2251 0.1161 -0.1699 1.0209 | 0.2171  0.0583 -0.1493  1.0160
90%Q  0.2477 0.1305 -0.1418 1.0398 | 0.2402  0.0715 -0.1242 1.0349
(3) 100 20 6% Median 0.2000 0.1009 -0.2003 1.0000 | 0.1908  0.0726 -0.1912  1.0001
10%Q  0.1670 0.0789  0.2426  0.9701 | 0.1580  0.0517 -0.2300 0.9706
25%Q  0.1823  0.0889 -0.2229 0.9836 | 0.1732  0.0607 -0.2113  0.9840
75%Q 0.2182 0.1120 -0.1808 1.0161 | 0.2089 0.0833 -0.1712 1.0171
90%Q 0.2330 0.1224 -0.1614 1.0286 | 0.2239 0.0929 -0.1554 1.0292
(4) 100 5 A Median 0.1976 0.4976 -0.2017 0.9961 | 0.1994  0.3845 -0.1648  0.9640
10%Q  0.1231  0.4380 -0.3005 0.9285 | 0.1207  0.3230 -0.2549  0.8974
25%Q  0.1590 0.4668 -0.2520 0.9622 | 0.1621  0.3532 -0.2105 0.9282
75%Q  0.2420 0.5341 -0.1479 1.0319 | 0.2376  0.4159 -0.1128 0.9956
90%Q  0.2808 0.5646 -0.1006 1.0660 | 0.2712  0.4395 -0.0743 1.0305
(5) 100 10 6} Median 0.1997 0.4983 -0.2003 1.0005 | 0.1931  0.4140 -0.1722 0.9873
10%Q  0.1534  0.4654 -0.2604 0.9548 | 0.1456  0.3831 -0.2280 0.9410
25%Q  0.1749 0.4810 -0.2319 0.9756 | 0.1677  0.3986 -0.2018  0.9641
75%Q 0.2253 0.5141 -0.1687 1.0212 | 0.2170 0.4294 -0.1453 1.0074
90%Q 0.2488 0.5288 -0.1413 1.0401 | 0.2396 0.4445 -0.1167 1.0270
(6) 100 20 98 Median  0.1995 0.4992 -0.2002 1.0000 | 0.1913 0.4594 -0.1861 0.9984
10%Q 0.1624 0.4788 -0.2437 0.9703 | 0.1551 0.4402 -0.2250 0.9692
25%Q  0.1804 0.4885 -0.2226 0.9843 | 0.1731  0.4495 -0.2074 0.9818
75%Q  0.2181  0.5097 -0.1793 1.0167 | 0.2091  0.4697 -0.1660 1.0153
90%Q 0.2318 0.5181 -0.1571 1.0311 | 0.2242 0.4779 -0.1471 1.0282
(7) 100 5 65 Median 0.2034 0.8785 -0.1852 0.9925 | 0.1943  0.7172 -0.1584 0.9159
10%Q  0.0872 0.7952 -0.3342 0.9138 | 0.1210  0.6534 -0.2565 0.8485
25%Q  0.1436  0.8314 -0.2599 0.9477 | 0.1606  0.6898 -0.2134 0.8828
75%Q 0.2630 0.9355 -0.1250 1.0380 | 0.2357 0.7502 -0.1084 0.9506
90%Q  0.3301 1.0166 -0.0641 1.0838 | 0.2722 0.7783 -0.0706 0.9857
(8) 100 10 A5 Median 0.2029 0.8996 -0.1977 1.0037 | 0.1928  0.7716 -0.1684 0.9524
10%Q  0.1328 0.8531 -0.2791 0.9523 | 0.1447  0.7425 -0.2236  0.9079
25%Q  0.1679 0.8749 -0.2393  0.9769 | 0.1672  0.7565 -0.1963  0.9306
75%Q  0.2359  0.9301 -0.1628 1.0270 | 0.2170  0.7859 -0.1394  0.9731
90%Q  0.2730 0.9718 -0.1263 1.0508 | 0.2422  0.7985 -0.1112  0.9929
(9) 100 20 605 Median 0.2004 0.9019 -0.2031 1.0014 | 0.1919  0.8387 -0.1817 0.9841
10%Q  0.1582 0.8802 -0.2582 0.9674 | 0.1581  0.8248 -0.2188 0.9544
25%Q  0.1774 0.8899 -0.2283 0.9843 | 0.1717  0.8317 -0.2008 0.9673
75%Q  0.2208 0.9167 -0.1786  1.0200 | 0.2096  0.8463 -0.1642  1.0005
90%Q  0.2431 0.9380 -0.1559 1.0369 | 0.2252  0.8539 -0.1486 1.0154
Note: 1. 6= (0.2,0.1,-0.2,1), 5= (0.2,0.5,—0.2,1) and #5= (0.2,0.9,—0.2,1).

. The IV matrix is Q% -_; = (Q%,...,QY 14
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Table 5: 2SLS Using Many Moments

2SLSE before Bias Correction

2SLSE after Bias Correction

n T 0 A Y P B A Y P B

(1) 100 5 63 Bias 0.0903 -0.0671 0.0415 -0.0221 | -0.0339 -0.0706 0.0208 -0.0145
SD  0.0789  0.0402 0.0686  0.0512 | 0.0481  0.0399 0.0683  0.0507

RMSE 0.1199  0.0782  0.0802 0.0558 | 0.0588  0.0811 0.0714  0.0528

(2) 100 10 6% Bias  0.0964 -0.0538 0.0277 -0.0125 | -0.0497 -0.0598 0.0191 -0.0041
SD  0.0526 0.0234  0.0422  0.0328 | 0.0281 0.0232 0.0426  0.0324

RMSE 0.1098 0.0587 0.0505 0.0351 | 0.0570 0.0641 0.0467  0.0326

(3) 100 20 €3 Bias  0.0953 -0.0233  0.0097 -0.0065 | -0.0472 -0.0296 0.0097  0.0014
SD  0.0360 0.0164 0.0295 0.0231 | 0.0193 0.0163 0.0299  0.0228

RMSE 0.1019  0.0284  0.0311  0.0240 | 0.0510 0.0338 0.0314  0.0229

(4) 100 5 6% Bias  0.0940 -0.1160 0.0191 -0.0427 | -0.0366 -0.1166 0.0359 -0.0347
SD  0.0811 0.0450 0.0712  0.0517 | 0.0482  0.0448 0.0717  0.0512

RMSE 0.1241 0.1245 0.0737  0.0670 | 0.0605 0.1249 0.0802  0.0618

(5) 100 10 6%  Bias  0.0990 -0.0842 -0.0059 -0.0216 | -0.0506 -0.0871 0.0403 -0.0129
SD  0.0534 0.0234 0.0423  0.0331 | 0.0194 0.0149 0.0286  0.0229

RMSE 0.1125 0.0874  0.0427  0.0395 | 0.0580  0.0901 0.0580  0.0351

(6) 100 20 6% Bias  0.0966 -0.0379 -0.0284 -0.0088 | -0.0478 -0.0412 0.0290 -0.0008
SD  0.0364 0.0150 0.0306 0.0231 | 0.0194 0.0149 0.0286  0.0229

RMSE 0.1032  0.0407 0.0418  0.0247 | 0.0516 0.0438 0.0408  0.0229

(7) 100 5 65 Bias  0.0939 -0.1834 -0.0075 -0.0888 | -0.0472 -0.1812 0.0488 -0.0809
SD  0.0869 0.0479  0.0774  0.0527 | 0.0480  0.0471 0.0739  0.0522

RMSE 0.1279  0.1896  0.0778  0.1033 | 0.0673  0.1872 0.0886  0.0963

(8) 100 10 65 Bias  0.1020 -0.1290 -0.0390 -0.0555 | -0.0548 -0.1287 0.0624 -0.0469
SD  0.0551 0.0223 0.0471 0.0333 | 0.0284 0.0221 0.0395  0.0330

RMSE 0.1159  0.1309  0.0612  0.0648 | 0.0617 0.1306 0.0738  0.0573

(9) 100 20 65 Bias  0.0987 -0.0608 -0.0655 -0.0229 | -0.0492 -0.0611 0.0492 -0.0148
SD  0.0369 0.0112 0.0340  0.0233 | 0.0195 0.0111 0.0249  0.0231

RMSE 0.1054 0.0618 0.0738  0.0327 | 0.0529  0.0621 0.0551  0.0274

Note: 1. 02= (0.2,0.1,—0.2,1), 6
2. The IVs are Y,,q, - - -
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Table 6: GMM Using Many IVs and Best Quadratic Moment

GMME before Bias Correction

GMME after Bias Correction

n T 6 A gl p B A gl p B

(1) 100 5 603 Bias 00442 -0.0689 0.0374 -0.0193 | -0.0010 -0.0702 0.0299 -0.0166
SD  0.0673 0.0401 0.0702  0.0511 | 0.0561  0.0400 0.0699  0.0511

RMSE 0.0806 0.0798  0.0795 0.0547 | 0.0561  0.0808 0.0760  0.0538

(2) 100 10 63 Bias  0.0496 -0.0556  0.0244 -0.0089 | -0.0080 -0.0580 0.0210 -0.0056
SD  0.0467 0.0234 0.0439  0.0326 | 0.0366 0.0233 0.0440  0.0325

RMSE 0.0681  0.0603 0.0502 0.0338 | 0.0375 0.0625 0.0488  0.0330

(3) 100 20 A3 Bias  0.0501 -0.0252  0.0086 -0.0029 | -0.0088 -0.0278 0.0086  0.0003
SD  0.0336 0.0163 0.0306 0.0230 | 0.0262 0.0163 0.0307  0.0230

RMSE 0.0603  0.0300 0.0318 0.0232 | 0.0276 0.0322 0.0319  0.0230

(4) 100 5 6% Bias  0.0468 -0.1167 0.0304 -0.0397 | 0.0005 -0.1169 0.0365 -0.0369
SD  0.0676 0.0448 0.0714 0.0513 | 0.0562 0.0448 0.0716 0.0513

RMSE 0.0822 0.1250 0.0776  0.0648 | 0.0562  0.1252 0.0803  0.0632

(5) 100 10 6} Bias  0.0503 -0.0852  0.0103 -0.0178 | -0.0079 -0.0863 0.0283 -0.0145
SD  0.0495 0.0238 0.0491  0.0328 | 0.0387  0.0237 0.0483  0.0327

RMSE 0.0706  0.0884  0.0502  0.0373 | 0.0395 0.0895 0.0560  0.0358

(6) 100 20 6% Bias  0.0489 -0.0393 -0.0086 -0.0046 | -0.0100 -0.0407 0.0148 -0.0013
SD  0.0360 0.0150 0.0379  0.0234 | 0.0280 0.0150 0.0365  0.0233

RMSE 0.0607 0.0421 0.0388  0.0238 | 0.0297 0.0434 0.0394  0.0234

(7) 100 5 65 Bias 00431 -0.1834  0.0207 -0.0857 | -0.0039 -0.1826 0.0396 -0.0831
SD  0.0727 0.0478 0.0775 0.0524 | 0.0599  0.0476 0.0763  0.0523

RMSE 0.0845  0.1895 0.0802 0.1004 | 0.0601  0.1887 0.0859  0.0982

(8) 100 10 65 Bias 00516 -0.1288 -0.0063 -0.0518 | -0.0079 -0.1288 0.0322 -0.0485
SD  0.0511 0.0222 0.0481 0.0332 | 0.0398 0.0222 0.0440  0.0331

RMSE 0.0726  0.1308 0.0485 0.0615 | 0.0406 0.1307 0.0545  0.0587

(9) 100 20 65 Bias  0.0526 -0.0608 -0.0301 -0.0199 | -0.0072 -0.0609 0.0162 -0.0166
SD  0.0474 0.0111  0.0415 0.0429 | 0.0437 0.0111 0.0397  0.0429

RMSE 0.0708 0.0618 0.0513  0.0473 | 0.0442  0.0619 0.0429  0.0460

Note: 1. 3= (0.2,0.1,—0.2,1), #5= (0.2,0.5, —0.2,1) and 6= (0.2,0.9, —0.2,1).

2. The IVs are Y,,q, - - -

) Yn,tfla X’I’Ll; e

, X, and their first five order spatial lags, for the period t.

3. The quadratic matrix is an estimated IT*1®(GR_%IH)'
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Table 7. MLE

MLE before Bias Correction

MLE after Bias Correction

n T 6 A Y P B A gl P B

(1) 100 5 603 Bias 00043 -0.1152 0.0470 -0.0267 | 0.0016 -0.0124  0.0061 -0.0040
SD  0.0526 0.0357 0.0640 0.0508 | 0.0531  0.0403  0.0717  0.0509

RMSE 0.0528 0.1206 0.0794  0.0573 | 0.0531  0.0422  0.0720  0.0511

(2) 100 10 A% Bias  0.0016 -0.0571 0.0218 -0.0070 | 0.0010 -0.0041  0.0015 -0.0011
SD  0.0359 0.0231 0.0421 0.0324 | 0.0359 0.0244  0.0442  0.0324

RMSE 0.0360 0.0616 0.0475 0.0332 | 0.0359 0.0248  0.0442  0.0324

(3) 100 20 A% Bias  0.0004 -0.0275 0.0097 -0.0012 | 0.0002 -0.0005 -0.0004  0.0003
SD  0.0244 0.0163 0.0297 0.0229 | 0.0245 0.0167  0.0304  0.0229

RMSE 0.0245 0.0319 0.0312  0.0229 | 0.0245 0.0167 0.03074  0.0229

(4) 100 5 6} Bias  0.0060 -0.1759 0.0509 -0.0556 | 0.0024 -0.0144  0.0022 -0.0055
SD  0.0535 0.0376 0.0645 0.0504 | 0.0548 0.0465  0.0790  0.0519

RMSE 0.0538 0.1799 0.0822  0.0751 | 0.0549  0.0487  0.0791  0.0522

(5) 100 10 63  Bias  0.0022 -0.0846 0.0233 -0.0157 | 0.0012 -0.0062  0.0004 -0.0016
SD  0.0363 0.0226 0.0412 0.0326 | 0.0364 0.0245  0.0446  0.0327

RMSE 0.0364 0.0875 0.0474  0.0362 | 0.0364 0.0253  0.0446  0.0327

(6) 100 20 6} Bias  0.0006 -0.0401 0.0096 -0.0035 | 0.0003 -0.0016 -0.0011  0.0002
SD  0.0248 0.0149 0.0291  0.0229 | 0.0248 0.0154  0.0301  0.0229

RMSE 0.0248  0.0428 0.0307  0.0232 | 0.0248 0.0155  0.0301  0.0229

(7) 100 5 65 Bias  0.0009 -0.2580 0.0523 -0.1179 | -0.0013  0.0286 -0.0114  0.0125
SD  0.0558 0.0383 0.0671 0.0499 | 0.0626 0.0688  0.1115  0.0600

RMSE 0.0558  0.2609 0.0850  0.1280 | 0.0626 0.0745  0.1121  0.0613

(8) 100 10 65 Bias  0.0020 -0.1280 0.0252 -0.0497 | 0.0010  0.0092 -0.0059  0.0034
SD  0.0371 0.0203 0.0407 0.0328 | 0.0385 0.0295  0.0522  0.0354

RMSE 0.0371  0.1296 0.0478  0.0595 | 0.0385 0.0309  0.0526  0.0355

(9) 100 20 65 Bias  0.0010 -0.0610 0.0102 -0.0175 | 0.0000  0.0015 -0.0044  0.0010
SD  0.0249 0.0111 0.0273 0.0232 | 0.0250 0.0137  0.0301  0.0234

RMSE  0.0249  0.0620 0.0292  0.0290 | 0.0250  0.0138  0.0304  0.0235

Note: 2= (0.2,0.1,—0.2,1), 8%= (0.2,0.5,—0.2,1) and 65= (0.2,0.9, —0.2, 1).
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those for other estimates are ambiguous. Compared with the 2SLSE in Table 1, the 2SLSE with many IVs
(before bias correction) has larger Biases, smaller SDs; for RMSEs, the 2SLSE with many IVs has larger
RMSE for most of the estimates when v, = 0.1 and 0.5 (except for the estimates of p,), and has a smaller
RMSE for most of the estimates when 7, = 0.9. When we compare the bias corrected 2SLSE using many
IVs with the 2SLSE in Table 1, the bias corrected 2SLSE still has larger Biases, but smaller SDs; for the
RMSEs, the bias corrected 2SLSE has a smaller RMSE for all the estimates when v, = 0.9, and a smaller
RMSE for the estimates of p,. Table 6 is the GMME with many IVs and best quadratic moment. Compared
with 2SLSE in Table 5, the GMME has a similar performance, but SDs of the estimates of A\g are smaller.
Compared with the BGMME in Table 2, for the items (1)-(5) where we do not have outliers of the estimates
in Table 2, the bias corrected GMME has a larger Bias, a smaller SD and the RMSE is larger. By looking
at the quantiles of this bias corrected GMME (now listed as the second column block in Table 4) and those
of BGMME in Table 3, we see that the bias corrected GMME has a larger Bias, especially a downward Bias
for estimate of ,. We also have MLEs before and after bias correction in Table 7. Comparing the MLE
with the BGMME in Table 2 and the bias corrected GMME with many IVs and best quadratic moment in
Table 6, except that (the bias uncorrected) MLEs of «, for small T' = 5 have larger Biases than those of the
GMMESs, MLE is slightly better overall, especially when 7, is large.

7 Conclusion

This paper proposes the GMM estimation of the spatial dynamic panel data model with fixed effects when
n is large and T can be relatively small. We can stack up the data and construct finite moment conditions in
a systematic setting, where we derive the best linear and quadratic moment conditions. Alternatively, we can
use separate moment conditions, with which the number of IVs may increase as the time period increases.
We show that these estimators are v/nT' consistent, asymptotically normal, and have efficient properties.

In a simple dynamic panel data model with fixed effects, the OLS (least squares with dummy variables;
within) estimate has O(1/T") bias due to the correlation of predetermined variables and resulting disturbances
after the elimination of fixed effects. The IV estimation approach avoids such a problem when a finite number
of IVs is used as those IVs are uncorrelated with the disturbances. However, when the number of IVs increases
without bound as the sample size increases, the correlation of the predetermined variables and disturbances
is restored to some extent (determined by the number of IVs). In the SDPD model with fixed effects, and
time and spatial time lags, the OLS estimate has a similar O(1/T") bias (Korniotis 2008). For the SDPD
model with the additional contemporaneous spatial lag, an additional O(1) bias for the OLS estimate occurs.

The latter is due to the simultaneity of the spatial lag variable. The simultaneity of the spatial lag can be
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handled in the QML approach as in Yu et al. (2008); but, the bias order O(1/T) remains for the QMLE. On
the contrary, IV estimates would not have such an order of bias when the number of IVs is finite. However,
when the number of IVs increases (to infinity), the bias for the SDPD model will also be restored, and the
bias for the estimate of the spatial effect, ¢;, would be dominant. A bias correction procedure can eliminate
this dominating bias. Therefore, under the situation that 7" is small relative to n, we can have consistent
estimates with properly centered asymptotic normal distribution.

In addition to linear moments constructed from the time lags, spatial time lags, and exogenous variables,
we also utilize quadratic moments to increase the efficiency of the estimates. These quadratic moments are
implied by the spatial effect in the SDPD model, which do not appear in the dynamic panel data models.
This is a distinct feature of our GMM approach as compared with IV approaches for the estimation of
spatial dynamic models. We propose an optimal quadratic moment condition that is free of distributional
assumption for the disturbances.

The best GMM estimates from the finite moment conditions in the systematic setting have the same
asymptotic distribution of the MLE when the disturbances are normal. Compared to MLE of the SDPD
models, the GMM estimate is computationally simpler, and can be extended as in Lee and Liu (2010) to
higher spatial order models that the MLE cannot easily deal with. Additionally, when the distribution is
not normal, the best GMM estimate in the current paper can be more efficient relative to the QMLE as the
kurtosis of the disturbances is used for the best quadratic moment. The many moment approach and the
MLE approach complement each other as the former can be applied to the case with T" being small relative

to n, while the ML approach is valid for the case with T' being moderate or large relative to n.

Appendices

A Notations

The following list summarizes some frequently used notations in the paper:

Sn.(\) = I, — A\W,, for any possible \, S,, = I, — A\oW,,, G, = WS and A, = S, (vo L + poWh)-
A = Al + A, for any square matrix A,,.

veep(Ay) is the column vector formed by diagonal elements of A,,.

Frr_qis the T x (T — 1) matrix of Helmert transformation.

F, n—1 is the n x (n — 1) eigenvectors matrix of J,, = I, — %lnl;l corresponding to the eigenvalues of one.

Vi Y] = Yar, - YarlFrr—y, Y™ Y520 = Yoo+, Yar—a) Pror—1.

nl»

_ 1 T
(T%H_tl) 2 [Vnt - %_t Zh:t—i—l Vnh]-

*
nt
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Zm‘, = (Yn,t—la WnYn,t—h an) and Z’;klt = (Yn(tf _11)’ W Yn(ts _f)aX:Lt)'
0= (A &) with 6 = (v,p,8).
[Yn*fmv"' aYrﬁL,Tq] = I,

n,n—1

Y(* —-1)

* *,—1
Y, AR el

nl>) " aY:,TA]v [Yn(i*f,gl)v e 7eri*1’7}122] F’r/L n—1
ks is the column dimension of X,; and k, = k; + 2 is the column dimension of Z},.
P,, is the class of n X n nonstochastic matrix with a zero trace.

Qnt is the IV matrix for Section 3, Hyy = (hnt, Wohnt, - -+, WP h,,,) is the IV matrix for Section 4 where

bt = [Ynos -, Yot—1, Xn1, -y Xnr|, and My, = Hy (H), Hp)TH. L.

Z’TL,T—I = (Zzllw--vZ;:fT—l)/ and V:,T—l = (Val, - VA*T '

Wora=Ir1@Wy,, Spr—1=1Ir-1®Sn, Gpr-1=Ir-1® Gy, and Qnr-1 = (@1, Q1)

Por_1,=17r_1® Py for | =1,2,...m, where P, is from P,, in Sections 3 and 4.

Jor—1 =11 ® Jp.

Wom,r = [vecp(Pnr-11), -+ ,vecp(Ppr_1,m)] and W T = [vecD(P,fL’T_M), e ,vecD(PfL,T_lmb)].

@5 = Y Al Wy = ery (I — 27224 where opy = (m)%

AT = T S S @, Xy and Vi = =S, S By Vi,
<Y,§j;_f>|:ft_1) =YY — e XnrBy where Yy 4 = Yopo = (In = An) 718, eno

H,1 = V1Y, — CT1X1Tﬂ0 and H,,; is in (11) for ¢t > 2.

Knt = (Hnta WanhX;:t) and Qnt = (GnKntéoaKnt)-

Eor22 = 51y (Gnr-1Zy 7100, Zyyp 1) (Gur—1Z5, 7100, Ziy ).
It = [Gn((YoIn + poWa) By P |Ten) + X5080), By DT ), W BT T 1), X).
Unt = [Gn(("/oln + poWa) Mt + Vi) Mt Wnnntvonxkz] with n,,, = _CTtVn,tT’

B Some Lemmas

Lemma 1 Under Assumption 2, for any n x n nonstochastic UB matrices B,

(i) E(V; By Vi Ti—1) =0 fort # s;

(ii) WVZ/,TA(ITA ® Bn) Vi, poy = 300trBn + Oy (ﬁ):
n(T— 1)Y£L*T 12/(IT 1 ® By )V: )
O, (\/T) where En(T 1)Y£L’Tfi (Ir-1®By)Vy, 1 =0 (T)"

(iv) under Assumption 9, for the IV matriz Qn, plimn_,ooﬁ ZtT:_ll LBV =0.

(0) BV BaVii)?] = (1 = 308)ch, (1+ e ) vec(Ba)veen (By) + obltr(Ba) + tr(BaB;)].

(iii) under Assumption 6, (T 1)Y,(1*T 1ZI(IT 1 ® By )V:7T_1 =

Lemma 2 Under Assumption 2 with P, r—1; = Ir—1 ® Pyj, the covariance of Vp Py r_1;V; 1
and Viip Pur 1 Vg s aétr(Pn,T_l,ijL’Tle) + (g — 303 vecy (Ppr-1,5)vecn(Pyr—1,) and that

*/ * / * . s
of Vi 1 Pur—1;Vy oy and Q) 71V}, r_y is zero for j =1,....m.
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Let Cp: be an n x 1 column vector from the IV matrix @,: in Assumption 9. Denote s, = C}, V>, +

Vil Bu Vi —odtrBy, and'® 02 1 = Var(X] ' su) = E(03 31 ChyCre+T (114 —308) S0 b2 i+ Todtr (B, By)).

= i=1 “n,it

T—1
Lemma 3 Under Assumptions 2, 8 and 9, if{ﬁagﬂﬁ} is bounded away from zero, % 4, N(0,1).

Given square matrices Py, [ = 1,...,m, with zero trace, where the quadratic moments in (3) and (4) take

the form Py r—14 = Ir—1 ® Pu, let 1y = 54, Py = Py — diag(Pur) + 2L diag(Py) and

2
G, =G, — trGn I, + (1/ — 1) (diag(Gn) _ G In) ,
n ny —1 n

— _ 1 —308
sothat P}, = Ir_1®Pj and G, oy = Ir_1®G,,. Denote Xpyr = 1o Cn,m (M7 W) 7@, 7+

o’é n
Amn,T)ilC;rm,T in (7) where Cyp,7 = [tr(PfL,T—l,lGan_l)7 e ’tr(PZ,T—l,mGTL,T—l)]'

Lemma 4 (i) tT(sz,TleGn,T—l) = tT(P:,STA,lG;,T—JJ

.. —302

(i Mggao W;Lm,Twnm,TJFAmn,T = %('U@C(P;ST—m)v ~-~7UeC(P:,ST—l,m))/(UBC(PI,ST—m): ~-~7”60(P:,3“—1,m))7'
(i) Xppr < %Uecl(G;,S'TfﬂveC(G;STfﬂ{

(iv) for Ppr_1 in (8), we have tT(PZ,STAG;Tq)[%(UCC/(P;F,STA)/Uec(PI,STA)}_1t7"<PI7ST71G;,T71) =

%vec’(G;ST_l)vec(G;sT_l), where %vec’(G;fT_l)vec(G;’sT_l) =tr(P; r_1Gn1-1)

Lemma 5 Denote ey = (qui;rtl)% and ®; = Z?;t Al We have Yn(j‘t’:ll) = E(er;’:ll) |Z:—1) 4+ n,,; where
(i) BV, 50| Tim) = erel(ln — 2575 (Yoot = (In = An) 'S en0) = ereXn, 7By, and
(Zl) Npt = *CTtVn,tT with Vn,tT = ﬁs;l Z}T;;tl Dr_ 1 Von.

For H,,; in (11),

E(Y TP\ Tm1) = B + Wi, and Y0y = Hoyy + Wi + 17, (32)
where Wy,1 = —Wq (I, — A,) 1S Leno and Wy = Wy (1, — An)_lsglﬁ 22;11 Vs fort > 2.

Lemma 6 Under Assumptions 1-8 and T — oo, for any nonstochastic square matriz B,

1 T—1 1 T—-1 1
W(T = 1) &= Hye BrHint = E(m t=1 Hp BpHye) + O <\/ﬁ>
with By Yoy HyyBoHyy) = O(1). Also,
1 T-1 T-1
n(T —1) 2t=1 W3y By Wt = 0p(1) and n(T = 1) &=t=1 Hyy By Wt = op(1). (33)
Similarly,
1 T-1 / T—1 1
m =1 (Wat + 100) Bn (Wit 4 1y,) = 0p(1) and m t=1 Hpy Bn(Wit 4 1y) = 0p(1). (34)

6Here, the covariance of T-1¢r v* and ST yx B, V¥ is zero, which is similar to Lemma 2. Thus, the third moment
)
R 9 t=1 nt ' nt t=1 nt nt )
of v;; does not appear in o2, -
,

29



Let Mnt - HrLt(H/ H7zt)+H/

i ne 50 that My, is an n x n idempotent matrix with rank K.

Lemma 7 For any UB n X n square matrices By, and Ba,,
(1) tr(My: B1,BY,, M) < cKy, where ¢ is a finite constant (for all n and t);
(i) |tr(BinMnt)| and |tr(B1n, Myt Bay)| are less than cKy for some ¢ > 0;
(iii) |tr (M B1y My,sBoy)| are less than c/Ki K, for some ¢ > 0.

Lemma 8 Under Assumptions 1-6, for any nonstochastic UB matriz B,
(i) B VA B M V) = 02 1! Eltr(Bo M) = O(X ' Ky), and
(i1) 313 (Vi Bu My Vi, — o3tr(BuMoy) = 0y (3, 2 V).

Lemma 9 Under Assumptions 1-6, for any nonstochastic UB matriz By,

o
T+1—-t

_ , _ K.
BT o B M V) = — Eltr(MClupy S, BL)) = 0< -1 : )

=L (T +1—-t)(T —t)

T+t
2A,+ -+ (T—t)AT=1=1). Also, for any nonstochastic UB matrices B, and By, E(Ez:_lln’ntBnantBngnnt) =

T-1 3 T-1 — -1 :
0 (Zt:l T—Lﬂ-l) and Zt:1 (77/ntBn1Mnt3n277nt - E(n/ntBnantBn2nnt|It—1)) =0y ( t=1 TEJ'

T—1/ 4 x o} G =1y — T-1 K _ 1
and Y, (0 Bn MV, + mtr(MmC’nTtSn Bl)) =0, i1 , where Cpry = 7 (In +

Lemma 10 Under Assumptions 1-8 , suppose we choose H,; from (16). For each t, there exists a matrix

7 such that ﬁ z:ll(fnt — Hpy 7)) (fpt — Hp - ) 20 as n — oo and T — oo.

The following Lemma 11 is about magnitudes of certain orders in the 2SLS estimate with many IVs in

(19). Denote K = max{K1, ..., Kr_1}, e;(K) = 5=y 32155 fu(In = M) for and Agc = tr(es(K)).

Lemma 11 Under Assumptions 1-8 and T — oo,
(1) Ax = op(1);
(i) oy Yot e
(iti) o=y o1 [ruMut BaViiy = Oy ( WIT 1)) and =5 315 fiMaiBuViir = Oy (m)
() w7 Sy Moty — Bty Moyt |Zi—1)) = Op (= VR where

_ 1 Tl T-1
n(Tlfl) Zt:l E(U:LtMntuntlz-t—l) = O(ﬁ i1 Kt).

(I — M)V = Op(EAK)Y?);

Proof for Lemma 1:

(1) As %TtBnV;sf = CTtCTS(Vnt - ﬁ Z}q::t_;ﬂ Vnh)Bn(Vns - ﬁ Zf:s—&-l Vnh)/, for t > S,

" 1 1 _
E(VyBuViidLi1) = criersE[(Vae — T S ht1 Vo) B (Vis — T Y s Van)'|Te1]
1

T 1 T
_CTtCTsE[(‘/nt - ﬁ Zh:t+1 ‘/’th)Bnm Zh:t ,,ih‘zt—l]
1 1

tr(By) — ——————(T — t)tr(B,)] = 0.

= —criersof (T —1) (T - s)

1
T—s
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For ¢ <'s, we have E(VntBn‘CTﬂIt—l) E(ViBnV;$) = 0.

(if) We have A= Ve (Ir 1@ Bu) Vi 1 = 7=y St Ve Bn Vot where Vi = Vi = £ 3701 Vi,
By Lemma 9 in Yu et al. (2008), ngzl V! . BV — Eﬁ 23:1 V!B,V = O, (W) with
By Xiey Vi BuVit = 03t By,

(iii) We have /- 1)Y§;‘T‘1}’(IT 1 @ Bu)Vir 1 = it Yoret Vo1 B Vs, where Vo1 = Y01 —
7 ZT ' Yy,s. Under Assumption 6, ﬁ Zf 1 ,;t B Vi — ﬁ Zthl ﬁiilean =0, (\/ﬁ) by
Lemma 15 in Yu et al. (2008), with E——=— (T 5 SELY, wit—1DBn Ve =0 (4).

(iv) From Assumption 9 that E(Qn¢|li—1) = Qnt, (m thl 1B V) = 0. Also, as E(VAVI|Ti—1) =

0 Whenever s < t, Cov(Qr, BV, Q. ByVy) = 0 for t # s. Hence, Var(ﬁ tT;ll BV =

T I Z ElQ):BnB,,Qnt]- Under Assumption 9 that elements in @Q,,; are O,(1) uniformly in n and ¢,

T 1
mthl E[Q,BnB;,Qnt] = O(1); hence, n(T ) BVl = Op ﬁ

(V) As Vi = en[(1, =5, oo, — 7))@ (Vi - .,VnT) ,wehave VB, VY, = 2, (V! ., VD) Apr (Vs o V)
where Anr = [(1, =755, -y 725) @ Lu] Bu[(1, — 72, ..., —75) @ L)) It follows that tr(Anr) = T tr(B,),
tT(A/nTAiT) (L2242t (B, BS) and vec), (Anr)vecp(Ayr) = (1 + ﬁ)vecb(Bn)vecD(Bn). Hence, as

2 T—
¢y = 7517, We have the result in (v).

Proof for Lemma 2: Denote V,r = (Voq,-++, Vig)'. As V2o ) = (Frp oy ® In)Var and Py roqj =

I 1®Pyy, we have Cov(V o Pur 1 Vip 1, Vi Pur 1/ Vg ) = Cov(Vip(Jr@Pos) Vor, Vi (Jr®
Po)Vour) = oftr((Jr @ Pyj)(Jr @ P2) + (g — 30§)vec, (Jr @ Ppj)veep(Jr @ Pyy), by using the variance

formulae of quadratic form of i.i.d. disturbances. Using tr((Jr ® P,;)(Jr ® P2))) = (T — V)tr(P,;P3,) =
tr(Pn7T_1,jP;7T71)l) and vec, (Jr®P, ) )vecp (Jr@Py) = (T—1)vecy (P )vecp (Pui) = vecy (Pn r-1,;)vecn(Prr—1,),
the covariance matrix of V' \Pnr 1; Vi | and Q) p Vi p y is ogtr(Pur1P5 0y ) + (g —

3ot vec (Pnr—15)vecp(Pnr—-11).

For Cov(VY 1 1 Prnr-1;Vy ro1: Quor1Viro1) = El(, - 1V*/P Vi) T 1 ntVne)l, we have

E(Vi Po Vi) (@ Virt)

1 1 7 1

= C?:’FtE (Vnt T Zh t+1 Vnh) P, (Vnt T ¢ Zh:t+1 Vnh>Q;n(Vnt - ﬁ Zh:tJrl Vnh)
1

= s EQvecn(Py ;) (1 — m) = uz EQvecp (P j) - eri(1 — ﬁ)
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For s < t, we have

BV P Vo) Qi Vi)
1 1

1
- C%SCTtE |:(Vns’ - ﬂ Z£:S+1 V;Lh)/Pn,j(Vns - m 2}7;:5_;'_1 Vnh)QInt(Vnt - ﬁ Z}T;:t—i-l Vnh):|

1 1 1
= C%SCTtE l:(_T—S Zz::t Vnh)/Pn,j(_m Zf:t V:th)ant(Vnt - ﬁ Z;:Hl Vnh):|

1 Tt

T2  T—spa - "

= C%SCTt;U'SEQ;LtUeCD(PnJ)[(

because EV, P, iV, @ Vop = 0 for g,h < t and p > t, E[Vy; — ﬁ ZZ::&H Vnh](ZZ:t Van) = 0 and
E(Qnt|ZTi—1) = Qni. For s < t, we have

BV Pa Vi) (@ Vi)

1 T 1 T 1 T
- C%‘tCTsE |:(Vnt - ﬁ Zh:t—i—l Vnh)/Pn,j(Vnt - Ti—t Zh:t+1 Vnh)Q;s(Vns - Ti—s Zh:s—i—l Vnh):|
1 T 1 T 1 T
= ensE [(Vnt ~ g k=t Van) Pr i (Ve — T 2h=tt1 Van) X ka(*m Dbt Vnh)]
1 T—t 1

) = w3 EQvecp(Pr ;) - (—crs )-

= cperss EQpveep (P j)(—

T—s (T—t)>T-s) T—s
Hence,
Bl Vi PagVi) (5 Qi V)]
= S BV P Vi) @Vl + S S B (Vi Pa g Vi) (@ Vi)
_ 1 _ 1
= Z?:ll /’L3EQ;’Lt/UECD(Pn1j) ! CTt(l - T _ t) - ZZ::[Q M3EQ;LSUBCD(P”J) ' CTS(l - T _ S) = 0

Therefore, COV(V;/,T_an’T,LjV;,T_l, Q.1 1V 1(0)=0 1

Proof for Lemma 3: The objective is sum of three terms: (i) \/ﬁ ZZ:ll {erCh Vi +V,

nt

V! By Vo — %U(Q)tan}. The

.. 1 T—1 1 T T
(ii) _\/ﬁ Zt:l { (T—t+1)1/2(T—1)1/2 Cre Zh:tJrl Vnh} and (iii) _\/ﬁ{
first term will obey CLT by using Theorem 13 in Yu et al. (2008), where lim,, ﬁ Z;";l &, EC!,Cphy =

T—

. 1 . . .
lim,,_, o ﬁ > i1 EC,Chy because CQTt = For the second term, its expectation is zero and its

e
variance is ﬁ ZtT;ll [ﬁECﬁLtCm < 7= Zthl [ﬁ] = O () for a finite constant c as
LEC!,Cyy is bounded uniformly in ¢. The third term will be O, (ﬁ) by Lemma 9 in Yu et al. (2008).
Hence, for large T, as the last two terms will vanish, the CLT follows directly from the first term.

For the case of a finite T, the second and third terms would not vanish, but can be combined with

the first term into a linear and quadratic system in terms of (V,.,,...,V,.1-)’. The asymptotic will rely on

n — o0o. The linear term would involve predetermined variables in its coefficients (instead of constants as in
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Kelejian and Prucha (2001)). However, as the proof of the CLT in Prucha and Kelejian (2001) is based on
the martingale CLT, it can be extended, similarly to Yu et al. (2008), to cover the predetermined variables

situation without additional complication. B
Proof for Lemma 4: This is extended from Liu et al. (2006). B

Proof for Lemma 5: With Y%

nt —

Yo — (I, — Ap) 1S, e, from (1), we have
Yo = AWaYoi + 7Y o1 + poWa Y1 + XntBo + Ve, t=1,2,..,T. (35)
Also, with the Helmert transformation to eliminate individual effects, we have

*,— 1 - w 1 - w
Y,,E,t’_ll) = CT¢t (Yn,tfl - ﬁ Zz:tl Yns) =Crt (Yn,tfl - ﬁ Ez:tl Yns)' (36)

We expand Y,%, ,, for b > 0so that Y,%, ), = ALY, +5, Z?:o Al X prn—jBot Sy ! Z?:o ALV tn—j-
Therefore, we have Y2 _'Yw = S Ahye, 4+ 501 ST 25 AR (X By + Vir). Thus, we can

rewrite (36) as Y,y ) = ey (I — 22252, — XpurBo — Viar |- With E(Y, 77D |Tim1) = 0,0, —

cth(n_’tTBm the result follows. B

Proof for Lemma 6: From (11), we can decompose H,,; into H,,; = H-X,+HY,, where HX, is the deterministic
part and H,‘ft is the stochastic part which has zero mean. With Y, — A,Y;, -1 = S M XnsBo + €no + Vis)
and Y, = S, ! ZZ;O AR X+ St ZZ;O ArV,p, we have, for ¢ > 2, HX, = ¥, 51 Zz;l(fh* ArX e —
cre X i7B0—Vi(In—A) 1Sy epo and HY, = W, Sy S0 0 ARV, =0 (1, —A,) 1S A ST W,
For t = 1, we have HY, = ;5! ZZ;O AR X — ch)N(,,L,lTBO and HY, = ¥;5! 22;0 AMV,,. Thus,
elements of HX, for t = 1,...,T — 1 are O(1), and H",’s are moving averages of past disturbances. By Lemma

Tin Yu et al. (2008), (s Yioy Hy BHY,) = O(1) and Var(;7— S5, Hiy B.HY,) = O(%).

Also, EHY B,HY, = 0 and Var(s7—; X, Hi B.HY,) = O(). Thus, o= 3,0 H, By, =

T— . T—
E(ry it HiyBuHue) + Op(A5) with Bl X2y Hyy Ballae) = O(1),

Defining =,, = (I,, — 4,)"'S,. By Lemma 2 in Yu et al. (2008), E(W,,,B,W,;) = 03 *EZ,V}B,V,E,
fort >2. Fort=1, W, = —V¥;E,,c,o so that %WiﬂBnWm = O(1) as elements of ¢, are bounded for all n.

Thus, for some finite constant c, Eﬁ STW,BW,, < Ugﬁ ZtT:_Ql(t_%) +0(%)=0(2L) —o.

Also, Var(ﬁ ZtT;ll W, BoW,,;) = m ZtT;Ql ZZ:; Cov(W! ,B,W,,, W' B, W,,) because W, is

ns
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nonstochastic. By Lemma 4 in Yu et al. (2008), for ¢t > s, we have

Cov(W! ,B,W,;, W B, W,)

= (uy —303) - (s —1) - vech {@11)2(\%571)/3”\1%5”} -vecp [(5 31)2 (\PsEn)/Bn(\IJSEn)}
+205 - (s — 1) - tr {(t_l)l(s_l)(\lftEH)Bn(\IfsEn)’ : (t_l)l(s_l)(\PSEn)B;(\IftEn)’}

= o(eren) (@) =0 ()

T-1 c T—1~T-1 T-1
Thus, Var(ﬁ 1=t Wit BaWit) < oays 20000 Dosia ﬁ = O (-%). Hence, ﬁ >oioy W B W, =
0p(1). Similarly, A 35 (W 4+ 10,,) Ba(Wos +1,,) = 0p(1).

For ﬁ ZtT:_ll H! , B, W ., it has two components ﬁ ZtT:_ll HX/ B,W,,; and ﬁ ZtT:_ll HY! B, W,,;.
For the first part, E 7= ST HY BW,, = S HX By Wy = O (%) and Var (s ST HY BuWoy) =
m ZtT;Ql Z?;; HX! B, (EW,,,W! )B! HX,. As elements of H:, are bounded uniformly in n and ¢, and
EW! W,, =0 (ﬁ) fort > s, we have Var( Z:ll HX/ B,W,;) = O(nTInT). Hence, ﬁ 232_11 X B, W,,; =
0p(1). For the second part, by using Lemma 4 in Yu et al. (2008), ﬁ ZtT:_ll HY!B,W,; = 0,(1). Thus,

nt

ZTy Lot Hyy BaWoy = 0,(1). Similarly, we have —A—s 3/ 5V HY, By(Way +1,,,) = 0,(1). B

Proof for Lemma 7:

For (i), because By, Bj,, is non-negative definite, By, B}, = I',A,I",, where I';, is an orthonormal matrix
and A, is the eigenvalue matrix. It follows that M, By, BY,, My < S\,LMM, where ), is the largest eigenvalue.

By the spectral radius theorem, tr(M,; B1,Bl,,Mnt) < ||B1nBi,|[tr(M,:) < cK; where || - || denotes either
the row or column sum norm, and c¢ is some constant such that || By, B1,,|| < ¢ because By, is UB.

For (ii), as tr(B1,Mu:Bay) = tr(Be,B1,Mpy:), it is sufficient to show the case for tr(By, M,:). By the
Cauchy-Schwarz inequality, |tr(B1,Mu:)| < tr%(BlanB{n)tr%(Mm) < ¢Ky, because tr(By, My B),) =
tr(M, B}, BinMy,;) < 2K, for some ¢ by (1).

For (iii), by the Cauchy-Schwarz inequality, |tr(M,; B, Mys Bay)| < [tr(BY},, My B1,)|Y 2 [tr( B, My Bay)]Y2.

As tr(B1,, My Bipn) = tr(M,: B1n, B, Mnt) < ||B1inB1,||tr(My:) < cKy, the lemma follows. B

nl

Proof For Lemma 8: Because E(V,}/ B,,M,,;V,5,) = E[E(V,}! B, M V.5, |Ti—1)] = 02E[tr(B, M,;)] = O(Ky),
E( tT:_ll VB, M, V."5) = O( tT:_ll K3). Also, from Lemma 1 (v),

nt nt

1
(T —)?
+0 5 Eltr(B, My B.)+tr( By, M, B, M,;)].

E[Var(V B, M Vi) 1] = (g — 305)crs (1 + ) Elvecy (Bn Myt )vecp (B, Myy)]
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As vec (B, My)veecp (B Mp:) < tr(My.B),B,M,.), by Lemma 7, E[Var(V,}{B,, M,;V,})|ZTi—1] = O(Ky).

nt

Because

Var(V,Y B, M,; V.5, — o2tr(B, My;))

E{Var(V/ B, MV, — oatr(B, M) |Zi 1)} + Var{ E(V,}! B, M,,; V), — oatr(Bn M) |Zi-1)}

E{Var(V,}/ B, M,;V.};, — agtr(BanﬂIt,l)} = E{Var(V,}/ B, M, V.| Z; 1)} = O(Ky),
it follows that

Var(3, 1 (Vi Ba Mt Vi, — 03tr(Ba M) = B (Vi Ba My Vi, — 03tr(By M)

T-1

< SIS T Vart 2 (Vi B Mo Vi, — o2tr (B M) Var/2 (Vi B, M, Vi, — oatr(Bn M)
T—1

= O(X,, VK. m
Proof for Lemma 9: As n,, = —cth/n,tT, we have ZtT:_ll N B MtV = — tT:_ll Ur: where Upy =
(Vs e ViV A (Vi o, Vi) and Apry = ﬁ(o,@l,...,@T_t)'s;;lB;LMm(—T%tIn,...,—TL_tIn,I,L).
Note that tr(Anr.e) = 7ri—tr(Sh ' Bl Myt Clypy) where Chury = ®p_y— 7 210 gy = 745 ST AR,

1 B _
tr(Anrs) = mtr(sé LBy, M Crpy Sy By Mot Crry),

S

Assumption 7, elements of Cr; are O(ﬁ) Thus, by Lemma 7, tr(A,r:) = O (W), tT(AiT,t) =
0'2 — .
O ((crer=hter= ) and r(Aur o Ayp) = O (7isy ) - Hence, B(Urt) = iz Blir (Mo, ;7 B, which

and tr(Anr i Alr) = =t Sy By MBSyt S0 @,8)). As Yo7 hART is UB implied by

implies |E(Up:)| < % and |E ZtT:_ll Urs| < ‘ZtT:_ll % . For the variance, we have

Var(Ur; — oitr(Anrys)) = E{Var(Upi — oitr(Anr)|Zi—1)} + Var{E(Ur; — oatr(Anr.e)|Zi-1)}
= E{Var(Ur; — o2tr(Anr)|Zi—1)} = E{Var(Ur¢|Z;_1)}
= (ny — 309) E[vech (Anr)vecn (Ant,)] + og[E(tr(ALr,)) + E(tr(AnrsAlr,))]

K,
o O(T—i—l—t)'

Thus, Var(ztj:l1 (Uri—odtr(Anry))) < 23:11 Zz:ll Var'/?(Ug; — o2tr(Anr,))Vart/ > (Ups — o3tr(Anrs)) =
T—1
O(( t=1 TJf(ltft)2)'
Similarly, Y7 0 Bri Myt Buatny = Sory Wy where Wry = (Vg ooy V) Bug (Vi ..., V1) with

n n

BnT,t = m(oyélv'“7q)Tft)/S;LilB;LantBnQSgl(07cblv"'7(I)T7t)' As tr(BnT,t) = O(T_Ltt_._l>v
tT(BZT,t) =0 (ﬂﬁ) and tT(BnT,tB:zT,t) =0 ((Tjt(ﬁ)?» we have E(ZtT:???;ztBnanthnnt) =

2
ABI S tr(Bura)) = 0 (15! 787 ) and Var(S15 Wiy — o3tr(Bura)) = Oy <( o) > n
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Proof for Lemma 10: From (17), it is sufficient to show that mzz:ll( (v, ,f*t _11)|L 1) — Hypy -

m) (E(Y, ,gy;_ll)ﬂ't 1)—Hpe ) ﬁ>0asn—>ooandpn — oo for some vector 7y. As E(Y, ,gy;_ll)ﬂ't 1) =H, +

Wt from (32) and T 1 W W, 2, 0 asn — oo from Lemma 6, we need to show z;ll (He—

(T 1) (Tfl)
Hyy-my) (Hyy — Hpg - 7e) 2,0 as n — oo and p,, — oo, under which m thl (Hyt — Hpp - me) Wy 20
by using the Cauchy-Schwarz inequality.

We have H,,; = VY, — CT1X1T50 and

1 1
Hnt = m@t(In - An)ilAnYnO \Ilt Zt : Y ,s—1 + l:[}15(]77, - ﬁ(In - An)il)yn,tfl

+\I/t(1n - An)71S ! Zt ! anﬂo - CTtXn,tTﬁOa

for t > 1 from (11). Without loss of generality, consider ﬁlllt(ln — A,)"tA Y0 with t £ 1. As A, =
Sy (voln + poWa) = Yoln + (Yoro + po) 25y N)"'Wi, Al can be written as spatial power series, denoted
as Y, (h)Wh where agh) is the scalar coefficient for the spatial expansion of AJ. ; Zj ! AR

A, ®7_; can be written as ZZO:O(Z;‘F - a(h))Wh and (I, — A,) 1A, can be written as Zh:U(Z;O 1 ; ))Wh

Hence, as ¥; = cp¢([, — A"”Tq)_q;’t), U (I, — Ap)"'A, can be written as £7£ 37 bW where b©) =

N \ S a” oo (h Yol o (hei
(1- =) (0 al”) and b = (1 - =218 )(30% o) = o0 (ZEL ) (00 6" for b > 1.

Because ||[A\gW,|,, < 1 by Assumption 4, ||[AoW, ||’ decreases to zero in an exponential rate. By choosing
pn = Inn, we have -V, (I, — 4,) 1A, Y, = (30" "o bW+ R,1)Y,0 where elements of R, is o(L)
for some ¢ > 0 and ncRnl is UB. Hence, for Hm in (16), we can find Wg ) such that ; \Ilt(I —Ap) YA Y0 =
Hps -1 + ST Ry - Yoo,

Similarly, ;= 1\I/t Zt 'y, ns—1 = Hpy - 77,(52) 5 Rpo Zt ! 5 Y, s—1 for some 7rf ) and U (1, — t_%(ln —

A) WY1 = Hyy - 7T§ ) + creRp3 - Yy 41 for some 7r§ ). For the fourth and fifth components of H,,;,
they are the linear combinations of an, ey Xp,r—1 and X, 7. With spatial power series expansions, we can
similarly obtain W (I, — An)_lS_ = zt L 1 XnsBo — cTtthTﬂo =H,: - 7r§4) + ¢y R4 for some 7r§4).

n

Thus, we have ﬁ ZtT:_ll( nt — Hpy - ) (Hyy — Hpy - ) — 0 as n — oo and p,, — co. B

Proof for Lemma 11:
() As M,y = Hp(H), Hpe) T H),, (I, — Myi)Hyy = 0. Hence, ef(K) = ﬁ ZT:l LI — Mpt) fr =
T wT=1) S (ot = Hut - 00) (I — Myt (fnt — Hug - 00) < ﬁ M (ft = Hut - 70)! (fat — Ht - 7). By

Lemma 10, e;(K) — 0.
(ii) As fnt and M, involve variables up to period ¢ —1 and V), involves the error terms at or after period

M,)V.5, = 0. Also, using E(VXV*|T,_1) =0 for ¢ > s from Lemma 1,

/

t, we have EWZ (I
we have Var(——— m Zt:l nt(In — Mnt) Vi) = U%Em Zt:_l wt(In = Myt) for = 0 Eley (K)]. Hence,
m E nt(In — M) Vi = O;v((EAK)l/Q);
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nt> Jns ns) =
E[f M B,E(V}, - V*’|It 1)B! M5 frs] = 0 from Lemma 1; for t = s, Cov(f, MntB Vi fr MpsBRV.E) =
03 B[ f!,; My By Bly My fri]. Hence, we have Var(Y"[ ' 1, M B, Vi) = 03 31" E[f My Bn Bl Myt fr] <
o1, o I Bt A3 iy 1 Bl = O() from Lemma Var (g S e Mo BaVis) =
0 (ﬁ) Hence, (T ) Zt 1 Y My BV = Op (F) For n(T ) ZtT 11 fh Mt B, Vi, i, its mean
is zero and its variance is T T Z Zg E[ ! M, 5B, v, STV" tTBanfm] For s < t, we have

ol — T —
E(Vor V! p|Ti1) = ﬁsnl[ﬁ Zj:f @,;0/]51 = 0 (7). Thus,

(iii) For T = Z ,’Lt M+ B, VY, its mean is zero. For t > s, Cov(f,, Mn:Bn V3, fr MusBV,"

Var(zz;ill fy/LtMntBnVn,tT) = ,tT:ill Zs 1 [fnsMnsB E( n sTVn tT|Imax{t st— 1)B Mntfnt}

< Clz Z@ 1 m[E(f;LsMnsfnS)}l/z[E(fntMntfnt)} /2 < nep Zt:il 25;11

1
frifney _ : : T-1 T-1 _ T—1 _
as E(==t2t) = O(1) uniformly in ¢. Because >, ;" > | m =2T-1)-Y,_, 7 =0(T'-1),
Var(% ZT_l 7/1 MntB Vn tT) =0 (ﬁ)
(1v) From (18), the results follow as they are linear combinations of n(T 5 ZT "V By My Ba Vi,

T FTT Zf 11 1 Bri M Bron,,, and T T Zf 11 1B Mt Bra V.Y, where B,,;’s are UB. Thus, from Lem-

mas 8 and 9, we have the results. B

C Alternative Finite Moments in the Systematic Setting

. -1 5
As derived from Lemma 5, we have Y,E:;Ll) =W Y% 1 —eriXnarBo — cTtVn tr where Y2y 1 =Y, 11—

(I, — A,)~1S teno. To construct an optimal IV for KE 1 ), the systematic IV approach in the main text
has individual effects c,o estimated by observables till ¢ — 1. An alternative approach is to estimate ¢,
with the whole sample. Denoting &, = % Zthl(Sn (S\)Ym — ch%) where \ and & are vnT consistent initial
estimates (Which could be obtained from some simple IV procedures). The alternative feasible optimal IV
for Yn(t 1’ can be He RS =, Yoi-1— (I, — An)_lg_lénT — CTt):(n tTB for t = 1,...,T. Thus, the feasible
best IV for Z*, is K¢, = (H,, W, H%,, X*,) and the best IV for W,,Y;%, is G,,K%,60. Hence, an IV matrix for
(WY, Z%,) can be

nt»

02, = (GLK%,6, K%,). (37)

Theorem 8 Under Assumptions 1-10, suppose we use the moment conditions in (3) where Qn; takes the
special form Q%, in (37) and P, 11 is estimated from (8). Suppose that i;% — -1 = 0,(1). Then, the
BGMME 9Z7HT has /n(T — 1)(927"7« —0o) 4N (0,2;') asn — oo and T — oo.
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Proof. From Theorem 4 in Yu et al. (2008), (€,7 — €no) = # Zt 1Vt + 0Oy ( T). Thus,
By = 0Vt — W — A 85 w0 — ereXnerf — Gl — A5 (23 Vit 0, (——
nt tdn,t—1 t\in n n n0 TtAntT t\in n n T =1 nt D \/n7T
) A (1T 1
= BT 1)Jro,,( )—s—\IJt(In—An) 151 (thzl Vit + O, nT))

vnT
. 1
B,V Ta) + 0, <\/T) :

Therefore, E(Yn*f_l1 |Z:—1) of Yé o 1 can be well approximated by H¢,. By using Lemma 6, ézmT has the
same asymptotic distribution as Qb,nT in Theorem 2. W

Theorem 8 holds when T is large, where % Zthl Vit will vanish in probability as T' — oo, and an
would be asymptotically the best IV. On the other hand, when T is finite, % Ethl V¢ will not vanish and

its presence will cause the correlation of H¢, with the disturbances V.. Thus, when T is finite, the linear

nt

moments from (37) may cause inconsistent estimate.

D Proofs for Theorems

D.1 Proof for Theorem 1

We first derive the uniform convergence of ﬁanTgnT(O). Combined with the identification in As-
sumption 9, the consistency of GMM estimator O, will follow. Let an; = (afllq)«, 5:;), gf%)) be a

ko X (m + q) matrix. Then,

1 1 .

" x L Q
manTgnT(e) ) nr—1(0)(305, i%Pn r-1,1) Vi, r-1(0) + maiT)Q; 7-1Var-1(0),

where, by expansion, V; 5 ,(0) = d;, 7_1(0) + (Lnir—1) + (Mo = N)Gpr-1)V}, p_y With d}, 7, (0) = (Mo —
)‘)Gn,T—lz;;,T 160 + Z:L T—1(60 — (5)

For n(Tl na SL("]?—')QnT 1Viar-a(0) = ,L(Tl_l)af%) nr-19nr-1(0) + ﬁ nT QnT 1nr-1) + (Mo —

NG 1-1)V}, p_y, the second term is 0,(1) uniformly in 6 € © from Lemma 1 (iv). Because

Vi (O Pz 1) Vi 1(0) = & 1 (0)(27L afyPoro1.0)d; r 1 (6) + Lo r-1(6) + i r— (6)
where L1 (0) = di/ 7 (0)(X7y a2 P11 (Vi 1y + (Ao = NGr-1 Vi r_y) and

dn7-1(0) = (V* 7—1+ (o — /\)Gn,Tflv;kL,Tq)/ (Z;n 1 ;%Pn T-1.1) (VZ,TA + (Mo — )‘>GH,T*1V;,T71) ;
it is sufficient to prove that ﬁln@,l(e) and ﬁqnf,l(ﬂ) converge uniformly to well defined limits.

By Lemma 1, as ﬁlw,l(e) will converge to 0 and ﬁqn,zp,l(@ will converge to its mean, the
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desirable convergence follows. The uniform convergence and identification uniqueness imply the consistency
of the estimator.

By the Taylor expansion

A~ ey 71 P
N _ M ’ 8gnT (enT)/aol ag'/nT(G”T)/ae / M
\/m(anT - 90) - TL(T _ ]_) G AnT n(T — 1) TL(T - 1) @ nT \/m’

where 0,,1 lies between @nT and 0y and 8955,(9) = (89%7;\(9)7 aggg,(‘g)) = (-1)x
* S * * S * * !
( (WH,T*1Yn,T71)/Pn,T71,1Vn,T71(9) (Wn’Tlen,Tfl)/Pn,Tfl,m.Vn,Tfl(e) (Wn,Tlen,Tfl)lQn’Tfl > .
Z:L/,TAPZ,TAJVZ,TA(O) T Z;;/,TfleL,Tfl,mV;kz,Tfl(e) ZZ’,T&Qn,Tfl

By Lemma 1 and b6 = 0,(1), gy 2250270 = D70, (1). Thus, 262 atd/O0yy g O G )f00”

D! ra! ranrDypr + 0,(1). Also, \/ﬁa,ﬁgnq«(@o) 4, N(0,plim,,_, oanrEpral,r) from Lemma 3. Hence,

d . -1 -1
n(T — 1)(0nr—00) — N (0, plim,,_, . (D;’LTa;LTa'VLTD'VLT) D;LTa;LTaNTZ”Ta;LTa"TD"T (DnTa;LTanTDnT) )-

For the optimum GMM, E;% is used as a, pan7, and its efficiency relative to the ones with a,p follows from
the generalized Cauchy-Schwarz inequality.

When X, 7 is replaced by f]nT so that f]nT = Y, +0,(1), we will have the same asymptotic distribution
by similar arguments for Proposition 2 in Lee (2007). ®

D.2 Proof for Theorem 2

For the variance matrix (D/,; 3 1D,7)~" in (7) of the OGMME, we shall first show that P,, 7 in (8)
is the best quadratic moment matrix, and Qy,; in (12) is the best linear IV matrix when T is large. We then
proceed to prove the consistency and asymptotic distribution of the best GMME using estimated Pn,T_l
from (8) and Q,; in (13).

1

4
. Ha—30g, 1 -1 ;
For quadratic moments, from Lemma 4, the mcmﬂ( T Whn, 7Wnm, T + Amn,) " Cly o in (7)

is maximized at ﬁvec’((};}_l)vec((};}_l) by choosing P, r_1 in (8). From Lemma 1 (iv), when T'

is la‘rgev phmn—>ooﬁQ;MT_l(Gn,T—lz;kL,T_l(SOa Z:;,T—l) = phmn—m)oﬁQ;l’T_lQn,T—l- Thusa

1 1

plim,,_, m(Gn,T—lz;,T—l(sOv Z;, 1 1) M@ur(Gnr1Z), 1 100, Zy 1) < plim,,_ mQ;,T—lQn,T—l

when T is large. Therefore, the best IV is Q, 7—1. By Lemma 6, plimnﬂmm(GmT,lZ:,T_léo, Z,r )
(Gnr-1Z 7100, Z5, p—y) = Plimy,_ oo oy @y 71 Qo1 -

When we use the best P, p—1 in (8) and Q,; in (12), the infeasible moment conditions are g,r(0) =
(V:‘L’,T_l(H)PmT_lV:,T_l(G), VZCT_1(9)Qn,T—1)/ and the identification and uniform convergence of the
GMM objective function can be obtained similar to the proof in Appendix D.1. When we use estimated Q,,;

N ~ ~ /
and P,, 7_1, the feasible moment conditions would be g, (0) = (V;‘L”T71 (OPnr1 Vi 1(0), Vi p (G)Qnt) .
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First, ||A,(6)]| — ||An|| =0,(1) under [|6 — 6o|| = 0,(1). Because |[Anl,, <1, Y52, ([[ALO)||..—I|AL]] ) =

(1= |4 (@) )" — (1= ||An]| )" = 0p(1). Hence, 3352, ||A"(0) — AL||, = 0,(1) and the elements of
ﬁ ZST;; 2;11 (AZ(@)—An)Xn,S,h are o, (1) uniformly. 1(5\) - 81 ‘OO =0,(1)
Gn(j\) — G|l =o0,(1), M|, —H,, = Hé — 90H - By of which its elements are bounded

and ‘

for some By

nt nt?

uniformly in n and ¢. Similarly, P, 7_1 — f’mT_l =0,(1)-Bp, ,_, for some Bp, ,_, which also has a block

diagonal pattern similar to P, 7_; with its diagonal matrices being UB.
~ ~ !/
Thus, sor—5907(0) = srry (Vi1 Ot = Prr) Vi o1 (0), Vil (0)Quro1 = Qur1)) +
mgnT(9)~ As Hyyp — Hpy = Hé - 90” - By, , the n(T i) (Qnr—1—Qur—1) Vi1 (0) = ﬁ(@nmq -
Qunr-1)'d;, r_1(0)+ n(T 0 (Qn 7-1—Qunr-1) Uner-1)+ (Ao —A)Gpn1-1)V;, p_; will be 0,(1) uniformly in

0 because |8 — 90H = 0,(1). Similarly, s Vi p_y ()1~ Por 1)V} 7y (0) s 0,(1) uniformly in 6.

Thus, the identification of T AT gnr(0) implies the identification of ﬁgw(e) and the uniform conver-
gence of manTgnT(H) will imply the uniform convergence of ﬁamﬂgnq«(@). Hence, the consistency

of the estimates using the feasible moments follows.

2 / s * / ! A
. _ 1 Uotr(Gn)T_1Pn7T_1) (Gn,T—1Zn7T_160) Qn,T—l 1 OGnt (Ont) _
With ]D)nT = Tnm-n 0 Z:z/T—lQ%T—l , We have n(T—1) 907

HD7LT+Op(1). AlSO as Hnt_Hnt = Hé — GOH 'B]HIM and Pn,T—l_Pn,T—l = Op(l)'BPn,T—17

\/ﬁ (Gnr(00) —

gn1(00)) = ﬁ(VfLT \Por1 = Pog )V Vo (Quro1 — Qur-1)) = 0p(1). Thus, the
GMME obtained from the feasible moments have the same asymptotic distribution as the infeasible ones.

Thus, /(T — 1)(Bp.nr — 00) > N (0,71 with 2, in (15). When T — o0, 5. = ;. B
D.3 Proof for Theorem 3

For (19), denote I:I = ﬁ ;’F—_ll (fnt"i'unt) (fnt+unt) and h \/ﬁ Zt 1 (fnt+unt) TLtV'y:(t'
For the 2SLSE, we have \/n(T — 1)(fasi.nr — 00) = [H] ™" x h where

H=H+ Z?:1 zH and h=h+ Zle T (38)
. T— T— . T—l
with H = n(T;l) Z - ntfnt7 ﬁ Z a / ‘/7Lt’ = —4711 1) Z = 7/1 (In - Mnt)fnt =

_ef(K) Z2H = T w(T—-1) Zt 1 fntMntunt+ n(T i) Et 1 untMntfntv Z3 = n(T i) Et 1 Uy My, Tlh =

\/ﬁ Zt 1 fnt( n = M)V and T3 = W Zt 1 UntMntV t
For the terms in H, we have H = O,(1) from Lemma 6. Z{! = O,(E(Ak)) = 0p(1) as K — oo from

T-1

Lemma 11 (i); Z3' = O, (,/ ) from Lemma 11 (iii), and Z# = O, (Zt;;m) from Lemma 11 (iv).

ZT 1K
Therefore, H= H+ 0O, | &=— ) 4+ 0,(1).

N . . o - . d
For the terms in h, h will be asymptotically normally distributed by Lemma 3 as \/ﬁ Zthll Ve =
N(0,02plim,,_, . X,7.22). For the residual terms, T} = O,(\/E(Ak)) = 0,(1) from Lemma 11 (ii); T3
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has two components from (18) which are T{fl = GV, 0,0,0,, %k, ) My VY, and T22 =

T—1
o w/n(T 1) Z (
\/ﬁ >im1 (Ga(MuYo + Wanlni£0)s Mt Wallng, Onxck, ) Mt Viyy. By Lemma 8, T2h1 =@+ (T2,1 - 1),

S VE

T—1
where ¢, = O, <Z'1Kt) is the conditional mean of T3'; and (T3 —¢;) = O, ( =)

Vn(T-1)
large than the order O, (1 / %) By Lemma 9, T£2 = ¢2+(T£2—<p2) where ¢, = O, (\/% 23:11 (TJrIE{W)

T-1 [ K
T+1 t) Hence, h = h+@,+py+e10, (Z‘ L ﬁ)—FOp <Zt=1 T“t)—i-

(T-1) n(T—1)

>, which is not

o (1fyp3) = 0, ( = L

0p(1). We see that ¢,/¢q 2 0 when — 0. Therefore, in 7%, the spatial endogeneity component

K
22:11 K
T2h,1 dominates Tzh’Q. This implies that, for the bias of the estimates due to many moments, the dominant
term is caused by the spatial endogeneity component.

Combining the expansions of H and h with lim,,_, ., H = plim 3,122 from Lemma 6, (20) follows.

n— o0

Let 65y ==y [Snr1(Aostnt) Y5 oy = Zh g1 025tn7) [Snr 1 Qastnt) i ooy = Ziy 1 O2stmr ] As
K, Ky 1

T-1 T—-1
925l,nT - 00 = Op <maX (Z(Tl)7 m)) from (20), &ELT - O'g :Op (maX (Z’n(Tl)’ m))
With Gy, (Astsnt) — Gn = G2 (A1) Aasisnr — Ao) where G2(X,7) is UB in probability, Y1 [tr(Gp M,;)]

and ZtT;ll [tr(G? (A1) M) of order O (Zt 1 t), we have

T-1
O -1 = (T( nTZtT )‘QSZSnT —0p Zt?“G M) >
- t=1

n

T-1 2 T-1
= 0 max 1 ( t=1 Ky > t=1 Ky
- p 9

\/n(T — n(T —1)

Thus, with ¢, = O, (\/;7), we have

1 1 - K ’ = K
(T — 1)(0g5y n — 00) + O, | max =1 , =L,
( ) (21, — bo) P ST —1) <\/n(T _ 1)) n(T —1)

K YO VK
VnT’ /n(T = 1)

d PIRE —1
- N(O7 O'Ophmn—»ooEnT,22)'

> K K Y VE o ,
Under ﬁ%—1) — ¢, ST — 0 and \/7) 0541 7 is asymptotically centered normal. B
D.4 Proof for Theorem 4
T—1
We will first prove the consistency of the GMME under % — 0, then establish its asymptotic

normality. Subsequently, we analyze its bias corrected version.
For the identification, Assumption 10 provides the sufficient rank condition. Based on the ideal IVs, \g

and dg can be identified. For the many IVs approach, as linear combinations of the many IVs converge to
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the ideal IVs in the limit from Lemma 10, Ay and g can thus be identified from the many IV’s conditions.

For the uniform convergence of g/, (0)2,1g,7(0) in 6, as analysis of the part g;LTJ(H)E;% 19n7,1(0) is the

same as that in Appendix D.1, we analyze the remaining g;LT,Q(Q)E;jl*’anTQ(G) _ tT:Zl Vi (0) My V5 (6).
As Vi (0) = dy(0) + Sn(N) S, Vi with 5, (0) = (Ao — N GnZy300 + Z53 (60 — 6), we have
1 T—1 1,% * 1 Tl «out e e
n(T=1) =t=1 Vil (0) M Vi (0) = W T D) 2 VA SI=18! (\) Mot S (V) STV,
1 T—1 g% . T_1 . e
T 1y 2t GO M (0) oy ey A (O) Mo Su(N)S, Vi
T—1 » STk
From Lemma 8, n(T171) iy Vi SIS (A Mt Sn (M) S, 1V = 0 under ﬁ — 0. From Lemma 9,
ﬁ Z:sz_ll e Mt Sn(X) S 1V, = 0 under % — 0; from Lemma 11 (iii), ﬁ EtT:_11 LM Sy (N) SV =
* * T—1 ;4 _ y

O, <n(1T1)) Thus, by (W, Y5, Z%) = fat + Unt, ﬁztﬂ 4, (0) My S (N STV, 2. 0 under

L K0, Also, as mps Y0 d(0) Mardi, (6) = (Mo — A (80 — 6))H (Ao — A, (8 — 8))' where H

has the limit equal to plim,, , ¥, 7 22 in Assumption 10, ﬁ ZtT;ll VH(0) M V5 (0) L plim,, X700

T—1
uniformly in 6 under % — 0. Therefore, by combining the identification uniqueness and uniform
convergence, we obtain the consistency of GMME.

As is derived, the best quadratic moment is to use P, r_1 in (8). From the Taylor expansion,

~ _ -1 N
A _ 1997 Oynr) /00 1 g (0nr) /00" | Ogpr(Obnr) /00 (1 gur(00)
’IL(T - 1)(9b,nT *90) - [ n(T _ 1) EnT n(T _ 1) n(T . 1) EnT n(T—O 1)’ (39)

where 0,,1 lies between 9b,nT and 6y. By denoting

Dy = — 1 < U%tT(G%¢T71PZ,T71) (Wn’Tle:,Tfl)leT*l >,

- 40
n(T —1) 0k, x1 Z) r Hpr (40)

we have n(Tl_l) BQ%W = D1 + 0p(1) by Lemma 1 and 8y ,,7 — 6y = 0,(1). Hence, (39) can be rewritten

as /n(T — 1)(@b7nT —0) = — [D;LTE;%D,LT]71 D! ;%\j% + 0,(1). By using ¥,z in (21), D,r in
(40), and 9n1(00)

* * * 4
\/n(Tfl) = \/n(;fl) (Vnchl(H)PTL,T—IVn}Tfl(G)’Vn/,Tfl(e)H’rL,T—l) , We have

D/Tzflg”Ti(eU) — IS ( O—gtr(G;L,T—lpz,T—l) [VP]il Ve aParaVipoy >
T (T = 1) VT = 1) 0. x1
T-1 * *
_ 1 t:lT(vlvvnYnt)/MntVnt (41)
n(T — 1)‘7% t=1 ZntMnt Vi ’
where vp = (g — 308)vecs (P r-1)veep(Prr—1) + UétT(P;LT—leL,T—l) and
~1
DS Dy = 1 ( ootr(Gl r 1 Ph 1) vel tr(GLr 1P o) Okxa >
n(T —1) 01xk. Ok, xk.
11 =
e N WY, 25 M (WY, Z5). 42
+0.3 n(T — 1) ;( nt nt) t( nt nt) ( )
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The second components of (41) and (42) correspond to h and H of Appendix D.3. Thus, the analysis in

Theorem 3 can be carried over here and we obtain D;TZT_L%Q"T*(GO) 4N (0, plim D! Y1 D,7) with

/n(T—1)
tr[Py r 1Grn7r-1]  O1xp.
05, x1 Ok. xk.
When we use an estimated f’mT_l and inT, the result holds similar to the proof in Appendix D.2. R

n—o0

1
n(T—1)

plim,,_, D/ ;¥ 1 Dyr = lim, o ( ) + gzplim, Bnr22 = 5.

E Best Quadratic Moment for the Model with Time Dummies

This section derives the best quadratic moment matrix (27) for the model with time dummies. For the

covariance of V::T_l(IT_l ® JnPan)VTf,T_1 where tr(P,J,) = 0, from Lemma 2,

Cov(V,\ g1 (Ir—1 ® JuPur Jn)Vyi gy - Vi1 (Ir—1 @ Jn Pra Jy)Vikr_1)

n n, n

ogtr[(Ir—1 @ Ju P ) (Ir—1 @ JuPaadn)] + (g — 308 vecy (Ir—1 @ JoPuiJy)veep (Ir—1 @ JnPpaldy,)

(T — V){ogtr(JnPsy JnPradn) + (g — 300)vec (JnPaiJn)veen (Jn Pradn)}.

Then, by using Lemmas 12-15 below, the best quadratic matrix, which takes into account 7,, is P} in (27).
Lemma 12 Suppose tr(P,J,) = 0, then diag[J,diag(J, Py Jyn)Jn] = "%diag(JnPan).

Lemma 13 Suppose tr(P,J,) = 0 where P, is either P,1 or Pya, then

tr(Jn P2y Jy - JnPaody) = wved [J,PiiJn — Jndiag(Jn Pl Jy) Iy - vee|Jy Pradyn — Jndiag(Jy Puady)Jy)

+2

—|—2(n Yvecn (Jn PuiJn)veen (Jn Puady).

Lemma 14 There exists a scalar o such that

tT(JnP;?1JrL : JnPrLZJ'rL) + (n4 - 3)UeCID(']'ILPnlJn)UeCD(JnPnQJ’rL)

1
= 5 {ved [Jn P21 Jn + (o — 1) Jndiag(J, Py Jn) Jy) - vee| Jn Piodyn + (o — 1) Jndiag(J, PioJn) Jn] }

where o solves the quadratic equation (“2)a? + %a = 774773 + "TH Ezxplicitly, o can be taken as

n

2 n Ny — 3 n
n72)+ n—2 2 +n72'

an = —(

Lemma 15 (i) There exists a diagonal matriz A, with tr(A,) =0 such that

tr(Gn)

tT(JnPiJnGan) = tT{[JnPTSLJn + (an - ]-)Jndlag(JnPfLJn)Jn} ’ Jn(Gn - 1 In + An)Jn}a

where Ay = 0= [diag(J,GpJn) — G222, )
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(ii) Let P = (G, — l=Gn) gy 4 %[dmgunc;njn) — wCut) 11 which has tr(P:J,) = 0.

— —3
n—1 (71’71?2_;'_774T

Then, Jo P Jn + (an — 1) Jndiag(Jy PrJp) Jn = Jn(Gy — 2E0) 14 A,) ..

Proof for Lemma 12: Let D, be a diagonal matrix. We have J,D,J, = D,, — %lnl’nDn — %Dnlnl; +
L(Tg”)lnl%. As diag(l,ll) = I, and diag(A,D,) = diag(A,) - Dy, we have diag[J,diag(J, P, J,)Jn] =

(1 = 2)diag(J, P, Jy,) because tr(J, PyJy) = tr(PyJ,) = 0. B

Proof for Lemma 13: We have

ved [Jn P2y Ty — Jndiag(Jn Pl Jn)dn] - vee|Jy Puady — Jndiag(Jn Puady)Jn)]
tr{[Jn P31 Jn — Jndiag(Jn Py Jdn)In] - [Jn Prodn — Jndiag(Jy Pradyn)Jn]}

2 . ,
tr(Jn Py JnPaa) — (1 + ﬁ)tr[dzag(JnPnlJn)dzag(JnPann)].

Therefore,

tr(Jn P2y Jy - JpPaody) — ved [Jn Py Jy — Judiag(Jn Pl Jy) I - vec|Jn Pradn — Jndiag(Jy Poady)Jy)

2
+ Yvecr (Jn PoiJn)veep (Jn Prady). B

2
= (Lt >)trldiag(J, Py o) diag(J, Pz, (%
Proof for Lemma 14: From Lemma 13,

tT(JnP,SL1Jn . JnPnZJn) + (774 - B)UeCID(']npnlJn)UecD(J'rLPnZJn)
1 [ wvecd[Jn Py Jn — Jndiag(Jn Py Jy)Jn] - vec|Jn P2y Jn — Jndiag(Jn P2y ) gy
2 (1B 26k (J, P2 Ty veen (T Piydy) '

2 n 7

First, by arrangement, we have

tr(Jn P2y Jy - JnPaady) + (ny — 3)vecs (Jn Puidn)veep (Jn PuaJn)
1 [ wed[Jn Py Jn — Jndiag(Jn Py Jn)Jn] - vec|Jn Py Jn — Jndiag(Jn Prodn)Jn]
2 +[”‘2—_3 + 2 21pec (1, Pey Jn)veen (I, Py Jy)

n

Next, for any «, we have
ved [Jn Py Jn + (o — 1) Jndiag(J, Py Jn) Iy - vee|Jn Plody + (o — 1) Jndiag(J, PioJy) )
= tr{[JnPi1Jn — Jndiag(Jn P Jn)In] - [JnPiaodn — Jndiag(Jn Plodn)Jn]}
4 2
+;atr[dz’ag(JnP;jlJn)diag(JnP,fQJn)] +(1- ﬁ)a2t7"[diag(JnPﬁlJn)dz’ag(JnP;jQJn)].
By matching the above relevant expressions, one can determine a,, which provides the equality in the

proposition. The «, is one of the roots which solve the quadratic equation. The root with the plus sign is

taken (when 7, = 3 under normality, the corresponding solution of « shall be one). B
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Proof for Lemma 15: As tr(P,J,) =0, tr(J,P:J,GnJ,) = tr[J, PsJ. (G, — %J@Jn]. Thus,

tr{[Ju Py T+ (n — D)diag(JuPsJu) T - Jo(G — tr(frf o+ Ap) o}
[T P T (G — t;(f’i) T+ tr(JuPS Tu An) + (o — Dtr{ Judiag(JoPST0) Jn(Go — t;(?q) T+ A}
The A,, needs be solved from the relation
S . S . S tT(Gﬂ)
tr(Jn Py JnAn) + (an — Vtr[Jndiag(Jn P Jy) InAn] + (o — Dtr[Jndiag(J, P Jy) Jn(Gr — — )] = 0.

If A,, were a diagonal matrix with zero trace, then diag(J, A, J,) = (1 — %)An Hence,

tr(Gn)
n—1

2
tridiag(J,PSJ,)An) + (an — 1)(1 — E)tr[diag(JnPfLJn)An] + (an — V)tr[diag(Jn Py Jy)diag[Jn (Gr — )Jn] = 0.

The A,, stated in the proposition is a diagonal matrix with zero trace, which satisfies this relation. This

justifies (i). The result in (ii) can be checked algebraically. B
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