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Abstract

This paper examines the stopping decisions of individual slot machine players using a unique 
casino dataset, asking whether the relationship between quitting behavior and winnings can be most 
easily reconciled using neoclassical expected utility theory (EU) or a prospect theory value function 
(PT) (Kahneman and Tversky, 1979). I assume that slot machine players have a utility of gambling 
(Conlisk, 1993) which motivates their visit to the casino, and preferences over winnings which may 
(PT) or may not (EU) depend on a reference-point level of winnings. Using the fact that outcomes of 
individual slot machine bets are independent draws, the central limit theorem is applied to assess 
whether gamblers quit approximately randomly as EU predicts, or whether quitting was concentrated 
disproportionately at some reference level of winnings as PT predicts. By comparing the data to 
simulations which match broad features in the data, statistical tests find substantial excess kurtosis (4th 

moment) in final stopping distributions, thus rejecting that winnings are distributed normally and 
providing support for PT preferences. In addition, winnings distributions are positively skewed (3rd 

moment) – this implies that people are more likely to quit with winnings above the reference point than 
below it, providing support for diminishing sensitivity of the PT value function’s gains and loss 
segments.

1 j2lien@ucsd.edu. Comments are welcome. I am grateful to my advisor Vincent Crawford for encouragement and 
guidance, Julie Cullen for invaluable input, and an anonymous casino which generously allowed me to use their data for 
this study.  For helpful comments and conversations, I also thank Gray Calhoun, Rachel Croson, Chulyoung Kim, Craig 
McIntosh, Juanjuan Meng, Joel Sobel, and participants in the Micro theory lunch seminar. All errors are my own. 
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1. Introduction2 
Do slot machine gamblers behave consistently with the prospect theory value function? This paper 

presents new evidence on whether risky decisions can be most adequately accounted for with a neoclassical 
model of choice under uncertainty or a reference dependent model, using field data from a unique dataset 
of slot machine gamblers. While previous studies have tested for forms of reference dependence in the 
field, this study presents clear new evidence of irregularities relative to the standard neoclassical model 
from a previously untested setting, utilizing the features of slot machines that make them conducive to such 
tests.

I analyze data gathered over the course of one month at a casino using magnetic strip cards, which 
track nearly 2400 gamblers’ activity for a single visit, recording each gambler’s numbers of bets placed, 
wagers, and winnings. The data provide clear statistical evidence of reference dependence in winnings for 
slot machine gamblers that is consistent with the value function proposed by Prospect Theory (Kahneman 
and Tversky 1979; henceforth PT), rejecting implications of Expected Utility (henceforth EU) under the 
utility of gambling framework proposed by Conlisk (1993).

The workhorse neoclassical model EU, assumes that a person maximizes the mathematical 
expectation of his or her von Neumann-Morgenstern utility function defined over wealth levels.  PT is the 
workhorse behavioral model, which assumes that an individual’s decisions under uncertainty are 
determined by preferences over distributions of total final winnings relative to a reference point such as the 
status quo ante or expected return – a feature known as reference-dependence. In addition, PT value 
depends on whether the level of winnings is a gain or loss relative to this reference point, with losses of a 
given magnitude lowering value by more than gains of the same magnitude raise it – the key feature of PT 
known as loss aversion.

In the analysis, I focus only on the shape of the value function in PT as compared to EU, ignoring 
the component of PT which allows nonlinear probability weighting (for example, overweighting small 
probability events). By using a simple form of EU as the representative of neoclassical choice under 
uncertainty and establishing it as the null hypothesis, I am unable to concretely rule out or accept the full 
range of non-expected utility neoclassical alternatives. Therefore, the empirical analysis of this paper might 
be best interpreted as testing for reference dependence (or lack thereof) in gamblers’ valuation of winnings 
- a key component of PT which defines the shape of the value function, and fundamentally differentiates 
PT from neoclassical models.

I assume that a gambler’s decision to stop making bets is determined by two main factors: realized 
winnings as the PT or EU theories suggest, and an intrinsic utility of gambling derived from the 
anticipation of the bet’s outcome as proposed by Conlisk (1993). The utility of gambling component is 
likely to decrease marginally in the long run as a result of gambling fatigue, but is unobservable in the data. 
My analysis assumes that the utility derived purely from pulling the slot machine lever is completely 
independent of the outcome of each pull and is heterogeneous across gamblers.3 So each gambler has their 
own pace at which playing the slot machines becomes tiresome, but all gamblers are assumed to have 
approximately similar preferences over the wealth resulting from the gambles – in the case of EU, a slightly 
positive marginal utility of winnings so that winning is preferred to losing, but risk aversion over small 
stakes is minimal – and in the case of PT, a similar preference for winning over losing except that risk 
aversion is markedly higher near a particular outcome which gamblers consider the reference point. While 
the data do not have the capability of ruling out all variations of neoclassical models, they distinctly show a 
higher propensity to quit gambling at a reference point, and under a utility of gambling assumption of the 
form suggested by Conlisk (1993), support the break-even effect of Thaler and Johnson (1990) being 
greater than the house money effect.

2 A list of acronyms and variables used throughout the paper and their meanings provided in Appendix A.
3 This rules out wealth-dependent utility of gambling, such as valuing the intrinsic act of gambling more while winning or losing. 
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The slot machine environment is a simple and relatively controlled setting to test for EU and PT in 
the field. The environment is constant since machines pay out with the same probabilities regardless of day 
of the week or time of day. Furthermore, the outcomes of individual bets are random and independent of 
previous bets, and there is no skill required.4 

Due to data limitations which do not allow observation of every single bet made, I consider only a 
gambler’s total number of bets over all machines played and his or her total net winnings for the visit. 
Following the main analysis of Post, van den Assem, Baltussen, and Thaler (2008), I ignore the option 
value of continuing to make bets, assuming that gamblers make the decision whether to quit or continue 
myopically, one bet at a time, given that they have already decided to visit the casino (due to enjoyment of 
gambling, and other potential factors which may have led him there).5  

Making use of the fact that individual bet outcomes are serially independent, the central limit 
theorem predicts that regardless of the original distribution of returns for a single bet, for a sufficiently 
large number of bets taken, an individual gambler’s sum of winnings up until that point should be 
distributed normally. Therefore in the cross-section of individuals, if we assume that individuals quit 
approximately randomly (and independently of one another) as suggested by EU, then the empirical 
distribution of winning levels observed in the data for gamblers who took the same number and type of bets 
should also be normally distributed. By extending this basic reasoning to allow for aggregation over bets 
and wager sizes, and supplementing with simulations for comparison purposes, the analysis shows that the 
distribution of actual realized winnings has substantially higher kurtosis (4th moment) than a normal 
distribution. Since excess kurtosis means a higher peaked probability distribution, this is an indication of 
the presence of the key feature of PT, loss aversion with respect to the reference point where individuals 
quitting decisions are disproportionally concentrated. This result confirms the predictions of PT in a 
dynamic setting, replicating Thaler and Johnson’s (1990) break-even effect which predicts lower likelihood 
of quitting while losing relative to the reference point, and the house money effect which predicts the 
similar result for winning relative to the reference point.

In addition, the empirical distribution of winnings are more positively skewed than simulations 
suggest, meaning that gamblers were more likely to quit while being “ahead” (relative to the reference 
point) instead of quitting while “behind”. This is consistent with the hypothesis that the PT value function 
has the additional feature of diminishing sensitivity in the gains and loss segments, making winning 
individuals risk-averse and losing individuals risk-loving. So, while on the margin individuals are still most 
likely to quit near the reference point, they are even less likely to quit while behind compared to while 
ahead.

The rest of the paper is organized as follows. Section 2 provides a brief review of related literature. 
Section 3 describes the key features of EU and PT models of decision making under uncertainty and 
derives their implications for gambling behavior. Readers already familiar with EU, PT, and related 
empirical literature might skip to Section 3.3. Section 4 describes the data. Section 5 discusses the 
assumptions and empirical strategy. Section 6 reports the results. Section 7 concludes.  

2. Literature review
Camerer (1998) surveys a number of field studies which have used PT to explain puzzles that are 

hard to reconcile in an EU framework. For example, Benartzi and Thaler (1997) proposed a PT explanation 
of the equity premium puzzle – the phenomenon of risk premiums on equity returns being systematically 
much higher than a reasonable risk-averse EU investor would require in order to hold equity rather than 
bonds. They suggested that the premium is so high because it must compensate not only for investors’ risk 
aversion, but also for their loss aversion. Camerer, Babcock, Loewenstein and Thaler (1997) (see also 

4 See Zangeneh, Blaszczynski, and Turner (2007), Chapter 2.
5 See Barberis (2009) for a theoretical analysis of both the decision to visit the casino, as well as the gambler’s behavior once 
inside the casino using a non-naïve PT framework.
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Koszegi and Rabin (2006)) considered the role of reference dependence and loss aversion in cabdrivers’ 
labor supply decisions, finding that drivers worked fewer hours when average daily wages were high, and 
more hours when daily wages were low – a behavior contrary to predictions of classical intertemporal labor 
supply substitution, but consistent with loss averse preferences in daily income.

In additional support for loss aversion, Odean (1998) shows that investors, via a “disposition 
effect”, tend to sell stocks whose purchase prices allow them to realize a gain, significantly more often than 
otherwise equivalent stocks for which selling would yield a loss. He suggests a PT explanation for this 
systematically different treatment of gains and losses (also see Barberis and Xiong (2006)). Similar to 
Odean (1998)’s work on stock market investors, Genesove and Mayer (2001) show that condominium 
owners seeking to sell their properties but facing an expected loss in the market, posted asking prices that 
were systematically higher than owners of similar condominiums whose expected selling price would yield 
a gain.

An early, key experimental study by Thaler and Johnson (1990) extends PT by focusing on the 
impact of previous gains and losses on current decision-making under uncertainty, thus applying PT to an 
explicitly dynamic setting. Thaler and Johnson find that risk aversion as revealed by choices, tends to 
decrease after a previous gain, which they call the “house money effect”. They also find that risk aversion 
decreases after a previous loss, provided that a gamble offers the opportunity for a person to break even, 
which they call the “break-even effect”. 

Perhaps the most direct field evidence in support of Thaler and Johnson’s dynamic generalization of 
PT is Post, van den Assem, Baltussen, and Thaler (2008), who examine decisions of contestants in the 
television show “Deal or No Deal?”  In the show, contestants go through several rounds of deciding 
between risk-free ‘bank offers’ and the pursuit of a final prize of unknown value in a suitcase. Post et al 
find that as information about the final prize is uncovered in each round of the game, contestants were more 
likely to reject generous risk-free offers (often exceeding the expected value of the final prize), after 
uncovering information that suggested either a very favorable or unfavorable final prize. In other words, 
contestants were less risk-averse when evidence supported the idea that their final prize was either very bad 
(“break even effect”) or very good (“house money effect”) relative to reasonable expectations – a pattern 
most easily reconciled using PT. 

These studies make PT a plausible candidate to explain dynamic choice under uncertainty. However 
the issue remains controversial. For example, Farber (2005, 2008) questions Camerer, et al’s (1997) 
interpretation of cabdrivers’ labor supply as reflecting loss aversion, arguing that driver and day fixed 
effects account for most of the PT-like stopping behavior, and further that the reference point is difficult to 
pin down (see however Crawford and Meng (2008), who show that Farber’s data do in fact support a PT 
interpretation as proposed by Koszegi and Rabin (2006)). Barberis and Xiong (2006) raise questions about 
whether the “disposition effect” found by Odean (1998) necessarily follows directly from PT. Finally, List 
(2004) compares EU and PT implications in a sports card trading market, finding that while most 
inexperienced consumers’ behavior was consistent with PT, most experienced consumers behaved in 
accordance with EU.

3. Models of decisions under uncertainty

3.1. Expected utility
In the EU framework, a gambler enters the casino with a given level of wealth, which along with his 

utility function, determine how he views the gambles he is about to take. In most of the economics 
literature, this given level of wealth is interpreted as either lifetime or annual wealth. An EU individual 
gambles due to a combination of his utility of wealth preferences as well as his preferences over gambling, 
both of which interact to determine at what point he decides to stop. He stops gambling when his utility of 
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gambling no longer compensates him adequately for the change in expected utility of wealth anticipated 
from the next bet.

EU normally assumes that utility of wealth is concave, often further assuming that the individual’s 
level of absolute risk aversion decreases as wealth increases - so that increases in wealth, other things 
equal, make a person less averse to mean-preserving risks involving absolute changes in wealth. A typical 
neoclassical utility function looks like the one in Figure 1 below, which shows a “flexible expo utility 
function” (with parameters α = 0.5 and β = 0.5). This family of functions allows the individual’s risk-
aversion to be flexible in both relative and absolute terms with respect to wealth.6

Attitudes toward risk in the EU framework are completely determined by a gambler’s wealth level. 
For small stakes gambles such as slot machines, where the typical wager is only a fraction of a dollar at a 
time, a small amount relative to lifetime or annual income. Under these conditions, a differentiable von 
Neumann-Morgenstern utility function implies that people are approximately risk neutral. Further, even for 
variations in wealth as large as a whole visit’s winnings or losses at a casino, which are on the order of less 
than $1000 for 97% of people in the sample, significant variation in an individual’s absolute risk aversion 
is unlikely. An EU individual with time-separable preferences will value an additional bet about the same 
everywhere within the range of wealth variation in a day at the casino, and therefore has no preference for 
quitting at one level of casino winnings over another. The EU individual’s quitting decision can therefore 
be approximately interpreted as random with respect to winnings.

Figure 1:
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In this essay I avoid the scaling concern discussed by Rabin (2000) and Rabin and Thaler (2001) by 
confining the analysis to the small to moderate risks casino gamblers encountered in the dataset. 7  

6 Flexible Expo utility nests Constant Relative Risk Aversion (CRRA) utility as the special case where α→∞ and Constant 
Absolute Risk Aversion (CARA) utility as the special case where β = 0. The original formulation is credited to Saha (1993), and 
is utilized in Post et al. (2008) with the formulation u(x) = [1-exp(-α(W+x)1-β)]/ α, also used in the above figure, where W is ex-
ante wealth, and x is the net outcome of the gamble.
7 Rabin (2000) and Rabin and Thaler (2001) take this argument a step further, arguing that EU cannot simultaneously explain 
people’s attitudes toward small and large risks, because the moderate risk aversion commonly observed over small stakes 
gambles implies, in an EU framework, unreasonably high risk aversion over gambles of larger stakes. This is due to the fact that 
marginal utility would have to be dropping very steeply from the person’s current level of wealth in the event of losing the small 
stakes gamble in order for them to reject it, which suggests that they will have to reject any gamble which poses a potentially 
larger loss. The specific example that Rabin and Thaler give is “Johnny is a risk averse, EU maximizer, who always turns down a 
50-50 gamble of losing $10 or gaining $11. …what is the biggest Y such that we know Johnny will turn down a 50-50 lose $100, 
gain $Y bet?” The answer is “Johnny will reject the bet no matter what Y is.” The intuitive interpretation is that a person who 
finds the prospect of losing $10 that unattractive even though he has the chance to win $11 with the same probability, basically 
has to be so risk averse that he will turn down anything in order to guarantee that he doesn’t lose $100. 
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3.2. Prospect theory 
Unlike EU, PT assumes that individuals evaluate the decision on whether or not to take a particular 

gamble based on their current position relative to some reference point. To close the model it is necessary 
to specify what determines the reference point. This has been done in various ways. For example the 
reference point might be determined by a person’s expectations (Koszegi and Rabin 2007), or the status 
quo ante (Thaler and Johnson 1990). Since my econometric tests rely only on rejecting the normal 
distribution and not the exact value of the reference point, I do not attempt to estimate it, although its value 
can be inferred by examining where in the winnings distribution quitting tends to concentrate.

In our discussion of PT, an individual’s valuation of winnings is referred to as the “value function”, 
to differentiate it from EU’s von Neumann-Morgenstern utility function. Recall that gains exceeding the 
reference wealth add value just as in the neoclassical version of utility of wealth. However, losses below 
the reference level of wealth reduce value more than gains of the same magnitude increase it, producing 
loss aversion.

Figure 2:

Prospect theory (PT) value function
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Figure 2 above shows the simplest possible example of a PT value function, one which assumes 
local risk neutrality in gains and losses away from the break-even point. Imagine a person starting at the 
reference point pictured above, who is offered a gamble with an outcome distribution that will take him 
above the reference point with some probability and otherwise force him below the reference point. Even 
though gains and loss segments are in isolation perfectly flat (risk neutral), near the reference point his 
value function is in fact very concave due to loss aversion. A person with this kind of value function over 
money is ‘first-order’ risk averse at the reference point, and approximately equally risk averse to small 
gambles and large gambles, thus avoiding EU’s weakness of not being able to reconcile real life decisions 
about risk on small and large scales.8

The coefficient of loss aversion is defined as the ratio of the loss segment’s slope to the gains 
segment slope near the reference point. In the example pictured, the coefficient is 4 (chosen to emphasize 
kink at reference point), meaning that losses are four times worse than gains are beneficial. Experiments 
typically produce estimates of the coefficient of loss aversion near 2, meaning that losses are twice as bad 
as gains are beneficial. 

Kahneman and Tversky (1979) suggested that in addition to the loss aversion exhibited by the value 
function in Figure 3, the gains and loss segments may exhibit “diminishing sensitivity”, in that deviations 
8 In first-order risk aversion the risk premium required to accept a fair gamble is proportional to the standard deviation of the 
gamble, whereas in second-order risk aversion the premium is proportional to the gamble’s variance. See Segal and Spivak 
(1990) for a detailed discussion.
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from the reference point have marginally smaller effects on value, the larger they are. This means the value 
function would be concave in gains and convex in losses as illustrated in Figure 3, making a person with 
these suggested PT preferences additionally (‘second-order’, as in EU) risk-averse over gains and risk-
loving over losses.9 10

Figure 3:

Prospect theory (PT) value function
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PT suggests that a gambler’s risk aversion will differ systematically across the space of possible 
outcomes.11 It follows that once the utility of gambling and heterogeneity among people are adequately 
controlled for as explained below, PT implies different likelihoods of a person quitting, depending which of 
the three regions they are currently in. Similar to the analysis of Post et al. (2008), I make a simplifying 
assumption that gamblers decide when to quit myopically, based only on the prospect offered by the next 
bet. However, allowing for more sophisticated gamblers who look several bets ahead would not change the 
qualitative results.

3.3 Predictions of PT and EU for slot machine gambling
Recall that the prediction of EU for the small stakes environment of slot machines is that gamblers 

quit approximately randomly, and in particular, there is no common reference level of winnings influencing 
the decision of when to quit. By contrast, PT offers distinct predictions about relative likelihoods of 
quitting, depending how much the gambler has won or lost relative to the reference point. 

Near the reference point a gambler will be first-order risk averse due to the concave kink in the 
value function, which unlike a differentiable vNM utility function, makes the gambler approximately 
equally averse to small and large risks. Therefore at net winnings levels near the reference point, a person is 
highly unwilling to take additional gambles, or equivalently more likely to quit.

9 A frequently used specification for the PT value function is V(x|r) = -λ(r-x)α for x ≤ r
(x-r)α for x > r where r is the reference point, x is the ex-

post level of wealth, and λ is the coefficient of loss aversion. α determines the curvature of the gain and loss segments. In Figure 
2: λ = 4 and α = 1, and in Figure 3:  λ = 4 and α = 0.7.
10 Kahnemann and Tversky (1979) also suggested a feature of prospect theory which we ignore in this paper: nonlinear 
probability weighting. Typically in PT, agents are allowed to weigh outcomes of gambles in ways that are not consistent with the 
actual odds, and furthermore the weights do not need to sum to one like actual probabilities. A common example of this 
weighting distortion is the overweighting of the tails of outcome distributions. Here I assume that people are fully rational about 
probabilities, so that the burden of explanation falls only on loss aversion and to a lesser extent, diminishing sensitivity.
11 EU technically does not rule out such variations, but does not particularly suggest them either in the sense that they would 
require unexplained and implausible variations in the coefficient of absolute risk aversion with wealth levels.
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A gambler who is far enough into the gains segment that he has little or no chance of crossing the 
reference point in the next bet, experiences Thaler and Johnson’s (1990) house money effect, since he is risk 
neutral in the absence of diminishing sensitivity (Figure 2) or mildly second-order risk averse, (as in a 
standard EU analysis) with diminishing sensitivity (Figure 3). In either case, the house money effect 
becomes increasingly relevant the further the gambler is into the gains segment; but it may be enhanced for 
very large winnings by wealth-induced changes in absolute risk aversion. In any case, a gambler whose net 
winnings are far enough into the gains segment that he has little or no chance of crossing the reference 
point in the next bet (technically fully under the gambler’s control by their choice of wager) will be more 
willing to take additional gambles, and therefore less likely to quit, than a person whose net winnings are 
closer to the reference point.

Following the same logic, a gambler who is far enough into the loss segment that he has little 
chance of crossing the reference point in the next bet, experiences Thaler and Johnson’s (1990) break even 
effect, since he is risk neutral and hence willing to take risky bets he would not take at the reference point, 
even in the absence of diminishing sensitivity (Figure 3). The presence of diminishing sensitivity (Figure 4) 
increases this effect further because it makes a person locally risk-loving in the region of losses. The 
overall result is that a person is least likely to quit when he is ‘losing’.

In practice, the slot machine environment has structural features that should provide a particularly 
conducive environment for observing Thaler and Johnson’s (1990) house money and break even effects, if 
these effects do exist. The first such feature is that a person has the ability to adjust the maximum amount 
he loses directly through his choice of wager. This means that if a person who is winning is truly loss 
averse, he is able to choose a wager size which will ensure that he will not cross his reference point. 
Secondly, from the perspective of gamblers who are losing, the notion of a “jackpot” provides the 
conditions that would allow a break-even effect to exist - a person who is currently losing always faces at 
least a very small probability of being able to break-even from the losses observed in this dataset in a single 
bet.

To summarize, the consequence of PT for stopping decisions is that controlling for the utility of 
gambling, individuals should be most likely to quit when they are near the reference point, less likely to quit 
when significantly above the reference point, and least likely to quit when they are significantly below the 
reference point. This is in stark contrast to EU theory, which assumes that preferences do not depend on a 
reference point, so that the distinction between gains and losses is irrelevant, further suggesting that risk 
attitudes should change very little over a series of small stakes bets. 

4. Data
The data for the analysis are from a casino marketing program which tracks customer activity and 

offers participants reward points which can be redeemed for buffet meals, merchandise and other benefits.12 

The structure and incentives of the program are similar to that of an airline mileage rewards program. 
Membership is free to anyone of the required age who provides a photo ID such as a driver’s license, and 
their address. 

After joining, customers are given a magnetic stripe card, which they insert into a slot machine as 
they play so that the casino can keep track of how much money they have wagered. Money put into the 
machines and tracked using their membership card are then converted into rewards points. The card itself 
does not actually hold a cash balance, and gamblers can technically play the machines without a card, 
however the rewards provide gamblers with an incentive to have the card track their activity. The card must 
be inserted into the machine while bets are being placed for gamblers to earn credits, ruling out multiple 
individuals playing simultaneously on the same card, or playing more than one machine at a time.

12 Since the data is proprietary, by agreement with the casino it cannot be made available publicly or to other researchers, nor can 
the casino be identified.
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The dataset consists of one month’s worth of new casino members each, for a single visit’s worth of 
activity on the day that they sign up for the card. The data are aggregated at the machine level, rather than 
keeping track of every single bet. For each individual in the sample, the data covers slot machine activity 
for the entire length of visit commencing with membership enrollment - continuous gambling into the next 
calendar day is included. While there may be some differences in gambler characteristics depending the 
day of the week, or time of day, I do not focus on this and treat every observed customer identically.

     Figure 4a:     Figure 4b:

Figure 4a shows the distribution of the total number of bets (b) and total winnings (π) at quitting in 
(b,π)-space, with each gambler’s experience represented by a single point. The x and y-axes are rescaled in 
a way that allows the points to be seen clearly (otherwise the points are too concentrated in a single area).13 

As is evident from the figure, there is considerable bunching at or just below zero net winnings, particularly 
for low numbers of bets, and less so for higher numbers of bets due to the negative drift to winnings as a 
result of the negative expected value. Figure 4b is identical to Figure 4a, except focused on a narrower 
range of net winnings. The figures show two conflicting tendencies in the data – a high likelihood of 
stopping near the break even point (seen most predominantly for small numbers of bets), and the 
cumulative effect of negative expected returns on each bet on this tendency to stop at the break even point 
(seen predominantly in high numbers of bets).

A PT framework, by allowing gamblers to react systematically differently to gains and losses 
defined relative to a reference point, might explain the concentration of stopping near zero total winnings in 
the data. By contrast, an EU model rules out any influence of a reference point by assumption, so the 
observed cluster could only be explained in EU terms by increases in individuals’ coefficients of absolute 
risk aversion (making additional bets less appealing) that just happen to be especially concentrated near the 
break-even point despite individual heterogeneity in wealth – an unlikely explanation. This suggests that 
PT might explain the patterns in the data more gracefully than EU.

To make this point clearer, imagine that Figure 4 consisted of an extremely concentrated set of 
points forming a solid vertical line at the zero net winnings mark (a very extreme version of what the actual 
data hint at). This would mean that everybody in the sample had stopped at zero net winnings, no matter 
how many bets they had taken. For an expected utility framework to explain such behavior, every person in 
13 Seventy-nine out of the 2393 observations (a little over 3%) are outliers and omitted from Figure 4a for scaling purposes.
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the sample would have to have a drastic upward spike in risk aversion at exactly zero net winnings, 
regardless of their wealth differences. Such uniform stopping would be a huge coincidence.

Figure 5 shows the data collapsed into histogram form. Although in Figure 5 the data are only 
subdivided into very broad groups based on number of bets taken, it illustrates the general idea of the 
impending statistical tests – that if quitting decisions were more or less random the way a model without a 
reference point such as EU would imply, then the final distribution of winnings should be more similar to a 
normal distribution than the empirical distributions shown Figure 5.

Figure 5:

However, a more detailed analysis of the data is needed in order to determine if winnings are truly 
non-normal by statistical standards, exactly how the distribution deviates from normality, and what the 
deviations from normality imply about preferences.

5. Predictions for individual stopping decisions
If bet-by-bet outcomes for each individual gambler were observed in the data, then a hazard model 

(see Kiefer 1988) could be used to test whether the probability of stopping was greater conditional on a 
reference level of winnings compared to other winnings levels. The hazard specification would estimate the 
probability that a gambler quits after a particular bet b, conditional on his cumulative winnings at that time 
πb, given the fact that he had not quit in bets 1 through b-1 with the sequence of observed cumulative 
winnings after those particular bets. The resulting coefficient on winnings would give the effect of 
winnings on the likelihood of quitting, which is the relationship of interest in distinguishing between EU 
and PT.  

However, since the data do not allow observation of individual bet outcomes, the correctly specified 
hazard model cannot be implemented. Instead, I rely on a cross sectional approach which relates observed 
final winnings to the empirical likelihood of quitting, using completely random quitting as the null 
hypothesis representing EU. Statistically distinguishing between EU and the deliberate stopping near the 
reference point predicted by PT, relies on the independent nature of individual bet outcomes. Slot machines 
in the United States have payouts determined by random number generators resulting in bet-by-bet 
outcomes which are fully independent of any previous or future bet outcomes (Zangeneh, Blaszczynski, 
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Turner, 2008, p.18).14 This is the first main assumption needed in order to justify normality testing as a 
method for determining whether stopping was non-random, and is clearly satisfied by the slot machine 
environment.

In addition, I need to assume that winnings are drawn from identical distributions in order to 
connect gamblers’ preferences over winnings to the observed cross-sectional distributions of outcomes. 
However, distributions of total winnings are generally not identical across gamblers for two main reasons. 
First, there is a drift associated with a gambler’s net winnings depending on how many bets he has taken. If 
a single bet has an expected value of μ and a variance of σ2, the sum of outcomes from a sufficiently large 
number b of identical bets is distributed N(μb, σ2b). This means that in the case of negative expected value 
bets such as slot machine bets, as a gambler takes more bets, the expectation of his cumulative winnings is 
declining and its variance is increasing.  In other words, there is both a negative drift and a spreading out of 
possible outcomes with each bet taken. 

Second, the distribution of possible winnings can differ depending on the gambler’s chosen wager 
size. This is important because assuming that the mean and variance of a single bet remain in 
approximately constant proportions for a given wager unit, a gambler taking 5 cent bets has a higher 
expected value and lower variance of winnings than a gambler betting 80 cents each time, for an identical 
number of bets. A simple way of modeling this potential heterogeneity in bet sizes is to categorize the 
distribution of winnings as a function of both number of bets taken b and wager size w, N(wμb, σ2bw). I 
take w to be an individual gambler’s average wager during the visit – the ratio of a gambler’s total amount 
wagered over the total number of bets taken.15 

So to maintain cross-sectional normality, I need groups of gamblers who are identical across wager 
size as well as number of bets taken. In other words, gamblers observed in a single wagers-bets bin (w,b) 
should be theoretically indistinguishable from a normal distribution under the EU hypothesis. However, 
since the data do not provide enough gamblers in each (w,b) bin to test for normality separately for each 
bin, consecutive bins must be combined in order to get a reasonable sample size.16 While this will 
technically result in a non-normal distribution, the objective is to combine consecutive bins in such a way 
that simulations of winnings drawn from empirical bin frequencies of the relevant normal distributions will 
be nearly indistinguishable from normality. Applying the same normality test to both the simulated data 
and the actual data will then reveal how far from random the quitting behavior in the data were.

What does it mean to reject normality in the data? First, compared to the normal distribution in 
winnings implied by EU, excess kurtosis would imply an unusually high stopping frequency at some 
particular level of winnings, which would then be interpreted as the reference point. Figure 6 shows three 
distributions of varying kurtosis levels; the distribution on the far right has “excess kurtosis” or higher 
kurtosis than a normal distribution.

14 By contrast slot machines in the United Kingdom are permitted to have payouts which follow adaptive algorithms, which is 
beneficial from the point of view of the casino in that they can ensure a short term profit. Compared to UK machines, US slot 
machines are completely independent draws, relying on the law of large numbers for the casino to obtain its expected long run 
profit. In addition US slot machines tend to pay out less frequently but in larger amounts when they do.
15 Within-person wager heterogeneity is unobserved in the data, but under the finite menu of payout distributions in a casino, 
survives the CLT through the Lindberg-Feller condition. Meaning with reasonable assumptions on variances of any single bet’s 
distribution, the sum of non-identical but independent bet outcomes will still converge to a normal distribution.
16 An alternative approach would sample and sum a small finite number of individual gamblers’ final winnings with replacement 
from both the simulated normal distributions and the empirical distribution. The empirical distribution of sums should be normal 
in the limit under EU, and remain non-normal under PT. However, this appears to be a computationally intensive approach given 
the heterogeneity of normal distributions used, and would not be as visually informative about cross-sectional quitting patterns 
compared to combining the adjacent (w,b) bins.
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Figure 6:

           Negative excess kurtosis        Normal distribution              Positive excess kurtosis

Another possible way to reject normality is if the distribution has skewness. Since the normal 
distribution has zero skewness, excess positive skewness simply means that the distribution of winnings at 
quitting for a particular group of bins has a longer right tail and a shorter left tail. In other words, there is a 
higher overall probability of quitting above the reference point given by the peak of the distribution 
compared to the probability of quitting below the peak. In PT, recall that this a consequence of diminishing 
sensitivity in the gains and loss segments of the value function, since below the reference point gamblers 
are risk-loving and highly unlikely to quit, while above the reference point gamblers remain risk-averse. 
Figure 7 shows illustrations of positively (and negatively) skewed distributions.

Figure 7:

           Negative skewness                         Positive skewness

To summarize the predictions that the two categories of quitting behavior have for the distribution 
of winnings in a sufficiently restricted bin range of bets taken and average wagers, EU would make the 
empirical distribution of winnings indistinguishable from the normal distribution, while PT would be able 
to reject the normal distribution. Rejection of the normal distribution alone would not be enough to accept 
PT as an alternative hypothesis. However if we were to then consider exactly in what way the normal 
distribution was rejected, PT would suggest positive excess kurtosis, and positive skewness of the winnings 
distributions.

5.1 Normality testing
Since a normal distribution has zero skewness and kurtosis of 3 regardless of the mean and variance 

of the distribution, a natural method to test whether data are normally distributed is to measure and 
compare these two higher moments in the data to those of the normal distribution. A commonly used test is 
by Jarque and Bera (1987) who combine skewness and kurtosis into a single omnibus test for normality. I 
use the small sample adjusted version of the Jarque-Bera test (henceforth AJB) provided by Urzua (1996), 
since the sample sizes for merged (w,b) bins are generally in the range of 20 to 60 observations per merged 
bin, which is insufficient for AJB to reach its asymptotic chi-squared distribution.17 In order to obtain more 
precise critical values for the AJB test for sample sizes not included in the table from Urzua (1996), I 
simulate the 95% critical values for the range of relevant sample sizes.18

Since w is the average wager of an individual gambler, and estimate of the true amount they prefer 
to wager on each bet, putting individuals into groups based on consecutive average wagers essentially 
groups them by an estimate of their gambling type – for example, “very small stakes” gamblers might be 
17 See Poitras (2006) for a discussion of small sample properties of various normality tests.
18 By drawing N observations 500,000 times from a generic normal distribution, and taking the 95th percentile of the AJB as the 
critical value. A table of the simulated critical values is in Appendix B.
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grouped as those who wagered an average of between one and 20 cents on each bet. “Medium stakes” 
gamblers might be defined as those who wagered an average of 40 to 60 cents per bet.

The total number of bets taken and average wagers for the 2393 people in the sample is shown in 
Figures 8a and 8b. As Figure 8a demonstrates, it was more common for people to take few bets and 
increasingly less common to take larger numbers of bets. 92 percent of gamblers in the sample took 2000 
bets or fewer. In Figure 8b, the most common average wager size was between 30 to 40 cents, with average 
wagers between 20 cents and 80 cents accounting for 56 percent of gamblers in the sample.

          Figure 8a: Figure 8b:

Column for 8000 bets (Figure 8a) includes gamblers taking more than 8000 bets. Column for 8 dollars 
(Figure 8b) includes gamblers with average wagers over 8 dollars.

As mentioned previously, I combine wager-bets (w,b) bins into groups to obtain a large enough 
number of gamblers in each group to test whether the data in those groups violate normality. In addition, 
since combining bins no longer yields a normal distribution even in the limit, for each group I randomize 
winnings outcomes according to the relevant distributions N(wμb, σ2bw) based on the observed frequency 
of w and b in the data. This serves as a control for the natural deviations from normality that arise from 
combining bins. In the simulations I use μ = -0.05 and σ  = 10.6 which correspond to the 5 percent house 
advantage and the standard deviation per unit wagered respectively, suggested by Eadington (1999). The 
simulation results are not sensitive to small changes in these parameterizations, particularly since the AJB 
statistic uses centralized skewness and kurtosis measures which are normalized by the variance.

How important is it to account for wager heterogeneity? This is a question of particular interest 
since a gambler’s choice of wager is itself an indicator of risk preferences. If the data tracked the wager 
amount for each individual bet, then useful information about the dynamics of risk preferences might result 
– for example, I might consistently observe whether a gambler reduced his bet size when approaching 
certain (reference) winnings levels. However, since only the average wager for each gambler is available, 
the gambler’s “type” as defined by whether they were a low stakes better, high stakes bettor or somewhere 
in between, is actually a confounding factor when testing for normality. This is because heterogeneity in 
average wagers across gamblers can produce non-normality (via heterogeneous means and variances) 
which would be overlooked if wagers were simply averaged across all gamblers.19

19 For example two normal distributions with the same mean but different variances tends to produce excess kurtosis. Two 
normal distributions with very different means tends to produce a distribution with two peaks, and so on.
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Table 1 divides the sample into groups by total number of bets taken in a single visit. The columns 
labeled “common wager” show the simulated normality rejection rates, 95th percentile of skewness and 
excess kurtosis respectively, all assuming that gamblers have a common wager equal to the average wager 
in the population of 84 cents. The AJB test fails to reject the null hypothesis of normality about 95 percent 
of the time for groups with larger number of bets. Skewness and excess kurtosis at the 95th percentile are 
not drastically different from those of the normal distribution. However once the same individuals are 
simulated according to their personal average wagers, normality is fully rejected for the exact same 
subgroups of gamblers (see far most right 3 columns). This shows that wager heterogeneity cannot be 
ignored, and therefore that the groups of gamblers in Table 1 must be broken into even smaller groups by 
wager sizes in the main empirical analysis in order to provide a valid simulated control group.

Table 1: Comparison of group rejection of normality with and without wager heterogeneity 
(simulations only)

from bet to bet

number 
of 

gamblers 
in group

simulated 
reject rate 
of normal 

distribution 
at 95% 
level 

(common 
wager = 

0.84)

95th 
percentile 
of group 

skewness 
(common 

wager)

95th 
percentile 
of group 
excess 
kurtosis 

(common 
wager)

simulated 
reject rate 
of normal 

distribution 
at 95% 
level 

(personal 
wager)

95th 
percentile 
of group 

skewness 
(personal 

wager)

95th 
percentile 
of group 
excess 
kurtosis 

(personal 
wager)

1 60 222 0.47 0.35 1.79 1 6.61 117.99
61 130 222 0.11 0.29 0.91 1 2.01 23.91

131 210 203 0.08 0.29 0.76 1 4.84 76.25
211 300 202 0.06 0.26 0.68 1 3.30 39.03
301 410 203 0.06 0.30 0.65 1 7.96 125.72
411 540 200 0.06 0.30 0.62 1 2.32 34.88
541 700 203 0.05 0.29 0.60 1 3.44 51.54
701 870 202 0.05 0.27 0.62 1 2.30 32.47
871 1120 204 0.06 0.28 0.64 1 2.96 42.65

1121 1520 202 0.06 0.30 0.70 1 0.94 12.82
1521 2490 200 0.07 0.29 0.69 1 5.29 84.93
2491 14370 130 0.40 0.33 2.98 1 1.89 30.54

Number of bets grouped so as to have at least 200 gamblers per group. Columns 4 through 6 (common wager) are simulated 
using N(0.84*μb, σ2b*0.84) with empirical b frequencies. Columns 7 through 9 (personal wager) are simulated using N(wμb, 

σ2bw) with empirical b and w frequencies.  1000 simulations for each group.

6. Results
Table 2 shows a comparison of the simulated winnings distribution for each group of combined 

bins, and the AJB statistic for each corresponding group in the data. The simulated reject rate is typically 
near or slightly above 5 percent using the 95 percent critical values estimated in Appendix B. As in Table 1, 
the reject rate is substantially higher for simulations for small numbers of bets (bets 1 to 60), which is 
consistent with the CLT. 

The four columns on the far right of Table 2 compare the 95th percentile of the simulated excess 
skewness and kurtosis values to the values of these moments in the data. The simulated 95th percentile of 
skewness column shows that there is some positive skewness that results purely from combining adjacent 
bins – however in cases where the data rejects normality, the data tend to be skewed even farther to the 
right than the simulations. The story is similar for kurtosis levels. There is a natural tendency for quitting to 
bunch near certain winnings levels due to merging the bins, however in groups where normality is rejected 
in the data, the bunching exceeds the levels implied by the simulations.

14



Table 2: Normality tests by number of bets and average wager types

from 
bet to bet

from 
average 
wager 

(dollars)

 to 
average 
wager 

(dollars)

number 
of 

gamblers 
in group

simulated 
reject rate 
of normal 

distribution 
at 95% 
critical 
value

AJB 
statistic 
(data)

indicator 
for 

rejection 
of normal 

distribution 
in data at 
95% level

simulated 
95th 

percentile 
of 

skewness
data 

skewness

simulated 
95th 

percentile 
of excess 
kurtosis

data 
excess 
kurtosis

1 60 0.21 0.40 43 0.20 9.40 1 0.83 0.17 2.89 2.15
1 60 0.41 0.60 30 0.15 38.28 1 0.95 1.89 2.82 3.59
1 60 0.61 0.80 36 0.17 1586.31 1 0.90 5.16 3.03 28.88

61 130 0.21 0.40 50 0.12 41.81 1 0.62 1.41 2.18 3.27
61 130 0.41 0.60 49 0.09 1.32 0 0.64 0.00 1.71 0.77
61 130 0.61 0.80 33 0.08 66.98 1 0.78 2.16 2.10 4.99

131 210 0.21 0.40 37 0.12 3.81 0 0.78 0.74 2.21 0.27
131 210 0.41 0.60 41 0.07 4.77 0 0.67 0.37 1.65 1.41
131 210 0.61 0.80 26 0.05 15.34 1 0.78 1.06 1.86 2.79
211 300 0.21 0.40 43 0.09 29.85 1 0.67 1.45 1.87 2.63
211 300 0.41 0.60 34 0.08 200.04 1 0.74 2.89 1.88 9.61
211 300 0.61 0.80 26 0.07 1.95 0 0.80 -0.57 2.18 0.53
301 410 0.21 0.40 49 0.12 1.06 0 0.68 0.18 2.03 0.59
301 410 0.41 0.60 39 0.08 47.13 1 0.64 1.69 1.76 3.86
301 410 0.61 0.80 31 0.06 85.94 1 0.66 2.33 1.64 6.11
411 540 0.21 0.40 45 0.087 58.84 1 0.60 1.20 1.83 4.77
411 540 0.41 0.60 36 0.061 840.02 1 0.65 4.08 1.81 20.78
411 540 0.61 0.80 31 0.06 200.30 1 0.73 2.76 1.87 10.29
541 700 0.21 0.40 48 0.11 42.52 1 0.66 1.30 1.91 3.58
541 700 0.41 0.60 47 0.067 86.99 1 0.59 1.85 1.56 5.21
541 700 0.61 0.80 22 0.054 126.18 1 0.82 2.60 1.94 9.44
701 870 0.21 0.40 53 0.105 63.03 1 0.62 1.54 2.00 4.12
701 870 0.41 0.60 37 0.06 1.22 0 0.60 0.11 1.59 0.81
701 870 0.61 0.80 34 0.052 63.94 1 0.65 1.89 1.65 5.10
871 1120 0.21 0.40 47 0.116 0.99 0 0.66 0.06 2.11 -0.67
871 1120 0.41 0.60 37 0.075 178.22 1 0.69 2.35 1.84 9.02
871 1120 0.61 0.80 37 0.079 154.53 1 0.70 2.33 1.84 8.26

1121 1520 0.21 0.40 44 0.099 3.58 0 0.65 0.29 1.98 1.20
1121 1520 0.41 0.60 35 0.074 27.25 1 0.69 1.20 1.88 3.31
1121 1520 0.61 0.80 32 0.062 5.34 0 0.69 0.62 1.75 1.43
1521 2490 0.21 0.40 46 0.093 11.53 1 0.63 0.47 1.77 2.15
1521 2490 0.41 0.60 44 0.092 20.87 1 0.68 1.35 1.79 1.79
1521 2490 0.61 0.80 28 0.055 12.52 1 0.75 1.15 1.78 2.05

Simulations repeated 1000 times for each bin, drawing from N(wμb, σ2bw) using empirical b and w frequencies, and μ = -0.05, σ  = 10.6 
(Eadington 1999). Results shown for modal wager categories only. Full table with all bins in Appendix C.

Figure 9 shows histogram plots of the groups in Table 2 (smallest and largest bet categories omitted 
to save space), with a generic normal distribution fit overlaid in red. Groups whose winnings distributions 
are approximately normal should have histogram plots which roughly follow the outline of the normal 
distribution.

Figure 10 summarizes the results in Table 2 in a slightly different way using quantile-quantile (Q-
Q) plots. In each graph, actual winnings from the data are lined up according to quantiles on the x-axis, and 
randomized winnings (conditioning on number of bets taken and average wager as in Table 2) are lined up 
by quantiles on the y-axis. Therefore the y-axis represents where the data points should be located under 
the assumption of random quitting. If the data were also generating by random quitting, then the blue points 
should line up on the dotted line where the theoretical and empirical quantiles match.
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Figure 9:



From left to right, each panel shows a shrinking subset of the data. The farthest left panel includes 
all of the data, the second panel includes only winnings between -$1000 and $1000, the third panel between 
-$500 and $500, and finally the panel on the right shows only -$100 to $100. The purpose of the four 
panels is only to zoom in so that the data points in relation to the dotted line can be seen more clearly. For 
example, in the full sample version (far left) the data appears to match the theoretical distribution, other 
than a few select outliers at the tails. A closer examination by zooming in however, shows that once 
eliminating outliers, the data actually show a consistent deviation from the theoretical distribution. 

First, the theoretical distribution (which is a mixture of normal distributions) predicts a more spread 
out distribution of winnings given the numbers of bets taken and wagers made, compared to the winnings 
realized in the data. This can be seen by the fact that at both the winning and losing end of the distribution, 
the simulations predict more far reaching outliers than those present in the data. 

Second, there is a clear difference between how well the data match the theoretical distribution for 
positive winnings compared to negative ones. Realized positive winnings in the data are consistently below 
the theoretical predictions for a given quantile, as evidenced by the blue data points lying above the dotted 
line for winnings greater than zero. This implies that gamblers tend to “run down” their winnings by re-
wagering them into additional bets, moreso than implied by random stopping. This is consistent with the 
house money effect, in that positive winnings might be viewed as expendable bonuses to gamblers.

The patterns described in Figure 10 are robust to moderate changes in parameterization to the mean 
and variance of the payout distributions.20

Figure 10: Q-Q plots

Simulated data quantiles drawn from N(wμb, σ2bw) using empirical b and w frequencies, and μ = -0.05, σ  = 10.6 (Eadington 1999).

20Drastically decreasing the mean of the single bet distribution alters the Q-Q plot to reflect stronger skewness, but still do not 
improve the fit of the data to the straight line. The patterns in Figure 10 are robust to almost any change in the standard deviation 
of a single bet distribution (including halving or doubling the value of σ). I interpret this as an indication that the data are 
difficult to reconcile with random quitting, regardless of the assumptions about the mean and variance of the outcome of a single 
bet.
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7. Conclusions
This paper has presented empirical evidence that prospect theory preferences guide the decisions of 

individuals in small stakes risk-taking settings, specifically in slot machine gambling. Since a gambler’s 
total winnings are simply the sum of independently distributed random variables’ outcomes, the implication 
of EU-style random quitting via the central limit theorem, is that the distribution of bet outcomes should be 
approximately normal within a sufficiently narrow range of wager sizes and bets taken. 

The analysis showed that people are in fact disproportionately prone to quitting within a narrow 
band of winnings, which can be interpreted as containing the PT reference point. This tendency resulted in 
higher-than-normal kurtosis levels in most of the realized net payoff distributions, suggesting that gamblers 
valued their winnings according to prospect theory preferences and subscribed to the house money and 
break-even effects. Also based on the distributions of realized winnings, gamblers were more likely to quit 
when above the reference point suggested by the peak of the distribution, compared to quitting below it. In 
other words, the final winnings distributions had positive skewness, implying that the break-even effect 
tended to exceed the house money effect, ie. that either the PT value function’s gain or loss segment 
exhibited diminishing sensitivity. 

A shortcoming of the analysis is the use of average wager by individual gamblers as an estimate for 
a gambler’s “type”. Since gamblers may potentially change the size of their wager on each bet they take, 
using the ratio of money spent gambling to total bets taken is only a rough proxy to summarize their 
gambling behavior. The use of average wager also does not account for changes in how much a gambler 
decides to wager after observing the outcome of their bets. For example, a gambler who has recently won 
may increase the size of his wager in response to the win, and one who has lost may subsequently decrease 
his wager. The analysis in this paper does not account for these possibilities since bet-by-bet wagers and 
outcomes are unobserved.

In modeling the slot machines I also assumed that each of them had identical payoff distributions 
with a fixed per-unit-wagered mean and standard deviation. Although the exact value of the mean and 
standard deviation does not impact the results, the analysis did not attempt to explain how gamblers select 
which machine to play, or allow for the possibility of heterogeneous payoff distributions other than 
conditioning on wager amount. In the case of heterogeneous wagers, I assumed that the mean and standard 
deviation would remain proportional to each other. It might be that certain machines yield better return 
distributions than others in exchange for being a new or relatively unpopular game. These and other 
possibilities associated with machine heterogeneity are not accounted for in this analysis.

A final caveat is that the analysis cannot technically distinguish between PT and a variation of EU 
in which the utility of gambling is dependent on the level of winnings. For example, a form of preferences 
where gamblers find continuing to bet intrinsically more valuable when they are ahead due to feeling lucky, 
and intrinsically more valuable when they are behind because they feel they are due to win something. 
With this dataset it is not possible to untangle the potential interactions between gamblers’ valuation of 
wealth and their valuation of making bets.

In spite of these shortcomings, the statistical tests on the data clearly show violations of normality in 
the winnings of small groups of gamblers who were sufficiently similar in wagering and betting. Due to the 
independent nature of slot machine bet outcomes, this strongly suggests that there was more reasoning 
behind gamblers’ quitting behavior than pure randomness. A prospect theory explanation where gamblers 
in the same group have a common reference point is a plausible explanation which is also consistent with 
the specific violations of normality in the data. Finally, this study is one of several field environments 
where the implications of prospect theory and expected utility have been compared and tested, adding to 
the literature of field settings where PT offers the most plausible explanation of behavior. Future work 
should consider similarly stochastic environments where the expected value of the bet is not always 
negative, where variances of bet outcomes are perhaps more controlled, and where populations of 
participants vary.
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Appendix A: List of acronyms and variables

EU = expected utility

PT = prospect theory

CLT = central limit theorem

AJB = size adjusted Jarque-Bera test

b = total bets taken by gambler
w = gambler’s average wager
μ = per unit mean of slot machine payout distribution
σ = per unit standard deviation of slot machine payout distribution
π = gambler’s net winnings for entire visit
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Appendix B:

Table B1: simulated 95% critical values for adjusted Jarque-Bera test (Urzua 1996)

N CV N CV N CV
10 7.357 27 6.816 44 6.601
11 7.341 28 6.738 45 6.607
12 7.199 29 6.819 46 6.627
13 7.186 30 6.768 47 6.578
14 7.114 31 6.764 48 6.575
15 7.102 32 6.749 49 6.524
16 7.033 33 6.680 50 6.571
17 7.019 34 6.654 51 6.491
18 6.909 35 6.641 52 6.573
19 6.989 36 6.644 53 6.530
20 6.935 37 6.700 54 6.543
21 6.935 38 6.685 55 6.491
22 6.925 39 6.683 56 6.515
23 6.833 40 6.683 57 6.500
24 6.790 41 6.614 58 6.486
25 6.802 42 6.621 59 6.477
26 6.853 43 6.613 60 6.447

Simulated using 500,000 replications of the Adjusted Jarque-Bera statistic derived by Urzua (1996), with sample drawn 
from N(0,1) distribution. Note that critical values tend to be slightly lower than the published values, possibly due to higher 
number of replications used.
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Appendix C: Results for all grouped bins
Table C1: Normality tests by number of bets and average wager types

from 
bet to bet

from 
average 
wager 

(dollars)

 to 
average 
wager 

(dollars)

number 
of 

gamblers 
in group

simulated 
reject rate 
of normal 

distribution 
at 95% 
critical 
value

adjusted 
JB 

statistic

indicator 
for 

rejection 
of normal 

distribution 
in data at 
95% level

simulated 
95th 

percentile 
of 

skewness
data 

skewness

simulated 
95th 

percentile 
of excess 
kurtosis

data 
excess 
kurtosis

1 60 0.01 0.20 14 0.15 0.35 0 1.27 -0.03 4.01 -0.68
1 60 0.21 0.40 43 0.20 9.40 1 0.83 0.17 2.89 2.15
1 60 0.41 0.60 30 0.15 38.28 1 0.95 1.89 2.82 3.59
1 60 0.61 0.80 36 0.17 1586.31 1 0.90 5.16 3.03 28.88
1 60 0.81 1.00 24 0.13 75.55 1 0.91 2.03 2.93 6.94
1 60 1.01 1.50 31 0.16 19.06 1 0.95 1.40 2.99 2.31
1 60 1.51 2.50 27 0.19 174.35 1 1.09 2.61 3.53 10.33
1 60 2.51 20.33 17 0.57 258.12 1 2.68 3.81 11.69 15.41

61 130 0.01 0.20 24 0.12 30.19 1 0.94 1.73 2.77 3.76
61 130 0.21 0.40 50 0.12 41.81 1 0.62 1.41 2.18 3.27
61 130 0.41 0.60 49 0.09 1.32 0 0.64 0.00 1.71 0.77
61 130 0.61 0.80 33 0.08 66.98 1 0.78 2.16 2.10 4.99
61 130 0.81 1.00 19 0.06 0.02 0 0.84 0.00 2.17 -0.14
61 130 1.01 1.50 24 0.08 512.75 1 0.82 4.26 2.28 19.06
61 130 1.51 2.50 15 0.08 16.97 1 1.10 1.86 2.55 2.91
61 130 2.51 20.33 8 - - - - - - -

131 210 0.01 0.20 31 0.21 21.47 1 0.96 1.47 3.37 2.50
131 210 0.21 0.40 37 0.12 3.81 0 0.78 0.74 2.21 0.27
131 210 0.41 0.60 41 0.07 4.77 0 0.67 0.37 1.65 1.41
131 210 0.61 0.80 26 0.05 15.34 1 0.78 1.06 1.86 2.79
131 210 0.81 1.00 17 0.06 3.84 0 0.94 0.81 2.23 1.37
131 210 1.01 1.50 22 0.06 47.94 1 0.85 2.16 2.17 5.10
131 210 1.51 2.50 19 0.08 3.38 0 0.93 0.85 2.56 0.86
131 210 2.51 20.33 10 0.25 20.38 1 1.85 1.95 5.55 4.68
211 300 0.01 0.20 32 0.24 9.57 1 1.02 0.98 3.66 1.60
211 300 0.21 0.40 43 0.09 29.85 1 0.67 1.45 1.87 2.63
211 300 0.41 0.60 34 0.08 200.04 1 0.74 2.89 1.88 9.61
211 300 0.61 0.80 26 0.07 1.95 0 0.80 -0.57 2.18 0.53
211 300 0.81 1.00 11 0.07 1.60 0 1.14 -0.57 2.89 -1.18
211 300 1.01 1.50 28 0.06 181.34 1 0.74 2.76 1.81 10.23
211 300 1.51 2.50 23 0.08 51.32 1 0.91 1.95 2.33 5.52
211 300 2.51 20.33 5 - - - - - - -
301 410 0.01 0.20 25 0.24 40.75 1 1.16 0.38 4.14 5.71
301 410 0.21 0.40 49 0.12 1.06 0 0.68 0.18 2.03 0.59
301 410 0.41 0.60 39 0.08 47.13 1 0.64 1.69 1.76 3.86
301 410 0.61 0.80 31 0.06 85.94 1 0.66 2.33 1.64 6.11
301 410 0.81 1.00 17 0.053 132.54 1 0.90 3.02 2.10 10.76
301 410 1.01 1.50 24 0.056 1.69 0 0.70 -0.38 1.84 -0.93
301 410 1.51 2.50 11 0.06 1.36 0 1.13 -0.33 2.71 -1.34
301 410 2.51 20.33 7 - - - - - - -
411 540 0.01 0.20 22 0.26 178.02 1 1.14 2.95 4.50 11.35
411 540 0.21 0.40 45 0.087 58.84 1 0.60 1.20 1.83 4.77
411 540 0.41 0.60 36 0.061 840.02 1 0.65 4.08 1.81 20.78
411 540 0.61 0.80 31 0.06 200.30 1 0.73 2.76 1.87 10.29
411 540 0.81 1.00 19 0.052 2.48 0 0.88 0.82 2.04 0.20
411 540 1.01 1.50 26 0.081 2.43 0 0.82 0.41 2.28 1.12
411 540 1.51 2.50 16 0.07 12.98 1 0.92 1.00 2.45 3.43
411 540 2.51 20.33 5 0.051 0.89 0 1.58 0.04 3.68 -1.88
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541 700 0.01 0.20 24 0.199 0.35 0 1.03 -0.22 3.88 0.32
541 700 0.21 0.40 48 0.11 42.52 1 0.66 1.30 1.91 3.58
541 700 0.41 0.60 47 0.067 86.99 1 0.59 1.85 1.56 5.21
541 700 0.61 0.80 22 0.054 126.18 1 0.82 2.60 1.94 9.44
541 700 0.81 1.00 17 0.044 33.70 1 0.95 1.99 1.98 4.83
541 700 1.01 1.50 29 0.071 64.50 1 0.78 1.97 1.91 5.60
541 700 1.51 2.50 13 0.065 36.38 1 0.99 2.41 2.62 5.47
541 700 2.51 20.33 3 - - - - - - -
701 870 0.01 0.20 21 0.189 4.82 0 1.09 0.62 3.88 1.77
701 870 0.21 0.40 53 0.105 63.03 1 0.62 1.54 2.00 4.12
701 870 0.41 0.60 37 0.06 1.22 0 0.60 0.11 1.59 0.81
701 870 0.61 0.80 34 0.052 63.94 1 0.65 1.89 1.65 5.10
701 870 0.81 1.00 17 0.043 47.68 1 0.91 1.83 1.95 6.43
701 870 1.01 1.50 21 0.062 1.02 0 0.86 0.51 2.05 0.08
701 870 1.51 2.50 14 0.073 2.26 0 1.01 0.87 2.71 0.41
701 870 2.51 20.33 5 - - - - - - -
871 1120 0.01 0.20 29 0.347 2.07 0 1.11 0.03 4.92 1.22
871 1120 0.21 0.40 47 0.116 0.99 0 0.66 0.06 2.11 -0.67
871 1120 0.41 0.60 37 0.075 178.22 1 0.69 2.35 1.84 9.02
871 1120 0.61 0.80 37 0.079 154.53 1 0.70 2.33 1.84 8.26
871 1120 0.81 1.00 15 0.055 1.76 0 0.98 0.08 2.42 -1.48
871 1120 1.01 1.50 20 0.057 23.10 1 0.84 1.66 2.06 3.52
871 1120 1.51 2.50 11 0.061 0.24 0 1.08 -0.31 2.62 -0.18
871 1120 2.51 20.33 8 - - - - - - -

1121 1520 0.01 0.20 26 0.149 2.31 0 0.92 0.65 3.01 0.47
1121 1520 0.21 0.40 44 0.099 3.58 0 0.65 0.29 1.98 1.20
1121 1520 0.41 0.60 35 0.074 27.25 1 0.69 1.20 1.88 3.31
1121 1520 0.61 0.80 32 0.062 5.34 0 0.69 0.62 1.75 1.43
1121 1520 0.81 1.00 19 0.046 0.85 0 0.83 -0.26 2.07 0.79
1121 1520 1.01 1.50 29 0.057 1.75 0 0.77 0.52 1.84 -0.47
1121 1520 1.51 2.50 16 0.065 17.34 1 1.00 1.86 2.60 2.78
1121 1520 2.51 20.33 1 - - - - - - -
1521 2490 0.01 0.20 17 0.191 0.48 0 1.07 -0.30 4.19 -0.46
1521 2490 0.21 0.40 46 0.093 11.53 1 0.63 0.47 1.77 2.15
1521 2490 0.41 0.60 44 0.092 20.87 1 0.68 1.35 1.79 1.79
1521 2490 0.61 0.80 28 0.055 12.52 1 0.75 1.15 1.78 2.05
1521 2490 0.81 1.00 15 0.058 9.21 1 0.89 1.35 2.42 2.18
1521 2490 1.01 1.50 27 0.057 51.05 1 0.73 1.60 1.71 5.40
1521 2490 1.51 2.50 14 0.071 26.18 1 1.02 1.98 2.40 4.50
1521 2490 2.51 20.33 9 - - - - - - -
2491 14370 0.01 0.20 7 - - - - - - -
2491 14370 0.21 0.40 24 0.228 465.94 1 0.86 3.95 4.79 18.27
2491 14370 0.41 0.60 19 0.149 0.42 0 0.82 -0.34 3.54 0.03
2491 14370 0.61 0.80 18 0.142 0.49 0 0.90 -0.26 4.15 -0.52
2491 14370 0.81 1.00 14 0.068 0.98 0 0.95 0.59 2.65 0.14
2491 14370 1.01 1.50 19 0.161 5.36 0 0.95 -1.06 4.57 1.14
2491 14370 1.51 2.50 17 0.134 1.49 0 0.91 -0.51 3.87 -0.85
2491 14370 2.51 20.33 12 0.141 1.20 0 1.20 0.69 3.87 -0.17

Simulations repeated 1000 times for each bin, drawing from N(wμb, σ2bw) using empirical b and w frequencies, and μ = -0.05, σ  = 10.6 
(Eadington 1999). Bins with fewer than 10 gamblers are left blank.
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