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Abstract

We introduce an intrinsic geometric framework to model the optimal path of infor-

mation acquisition. Agents’ utility maximizing actions are naturally dependent on the

path on which they acquire information. By an intrinsic framework we mean to focus

purely on the geometry of information acquisition that is invariant to arbitrary pa-

rameterization and information measurement by an outside econometrician. Intrinsic

curvature of the information manifold is the key driver of our framework: curvature re-

lates to the marginal cost of information acquisition that is averaged across all possible

information acquisition directions. In a finance application, our geometric framework

leads to canonical definitions of velocity, acceleration, curvature and torsion of port-

folio holdings and equilibrium returns of risky assets. To demonstrate the empirical

applicability potential of our framework, we show that “return absolute curvature” is

a significant explanatory variable of VIX. Our geometric framework also provides a

method for information recovery: upon observing a trajectory of portfolio holdings by

an econometrician, we can geometrically infer the mean-variance information used by

the portfolio manager. Finally, our framework is general: essentially all expected utility

maximization problems based on parameterized random variables are applicable.

JEL classification: D83, G11, G12

Keywords: information acquisition, portfolio choice, asset pricing, information geome-

try, Riemannian geometry

∗Department of Finance, Cheung Kong Graduate School of Business, email: raymondleung@ckgsb.edu.cn. I thank Farshad
Haghpanah, Zhongzhi Song, and Yu-Man Tam for helpful and insightful discussions.



1 Introduction

It is indisputable that endogenous acquisition of information is the key to understanding

how economic agents make decisions. The extant literature of information economics have

focused on how equilibria are influenced by the presence of informed and uninformed agents.

While we have learned much from this literature on what happens when economic agents

have heterogeneous information sets, this literature has remained silent on how an agent

obtains their own piece of knowledge in the first place. To take a concrete example in

finance, suppose an investor is endowed with an initial belief of the returns of some risky

assets. If it is costly to learn information above and beyond his initial belief, it is natural to

ask which direction of information should he acquire first. When should the investor learn

more about the mean of the return, the variance, or both? If so, at what velocity and at

what acceleration of learning?

We present in this paper an intrinsic framework for information acquisition, and show

its applicability to classic finance problems. The framework is intrinsic, meaning we solely

concentrate on the geometric properties of information acquisition. In contrast, an extrinsic

theory of information acquisition will heavily depend on arbitrary parameterizations and

measurements of an agent’s information set by a theory-modeller or an econometrician. In

effect, this arbitrariness in describing an extrinsic framework for information acquisition

imply that different theory models are largely incompatible and incomparable to each other.

Our intrinsic framework is based on the well-established field of information geometry

in probability and statistics theory. To the best of my knowledge, information geometric

methods have not been applied to theoretical economic and finance problems. The key to an

intrinsic theory of information acquisition is recognize that: (P1) states of knowledge can be

represented by probability distributions; (P2) knowledge should be intrinsically and not ex-

trinsically measured; and (P3) economic agents’ expected utility maximizing action choices

should be based on intrinsically described information. We call these three points as princi-

ples for an intrinsic theory of information acquisition. Principles (P1) and (P2) are largely

resolved by information geometric methods. Our consideration for endogenous optimiza-

tion problems in (P3) differentiate our paper from just rehashing the existing information

geometry literature.

We canonically use the distance between knowledge (i.e. probability distributions) to
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measure the cost of information acquisition from one point to another point of knowledge.

In adherence to principle (P2), the cost function is canonical and intrinsic: the choice of

uncertainty form in the economy fixes the distance measure. In this sense, the functional

form of the cost of information acquisition is not completely arbitrary, and thus disciplines

the theory-modeller and econometrician. A key contribution of our framework is that we

can intrinsically describe the trajectory of information acquisition at the minimal cost. As a

result, we can concretely answer our finance motivated question in the opening paragraph and

describe the velocity, speed and acceleration of knowledge acquisition of risky asset returns.

We show that the key and essentially only driver in our intrinsic geometric framework is

the curvature of the manifold of information. The cost of information acquisition in this

geometric framework is non-constant. In particular, the marginal cost of acquiring one

direction of knowledge versus the marginal cost of another direction actually depends on the

knowledge state. In that finance motivated example, this means depending on the investor’s

position of his initial endowed belief of the risky asset return, he may find it more or less

costly to first acquire knowledge in the mean direction versus the variance direction. This

causes the optimal information acquisition trajectory to “curve”. Overall, this “curvature” of

the manifold of information summarizes the average marginal cost of information acquisition.

Finally, the application of our geometric information acquisition framework to a classic

portfolio choice and asset pricing problem will yield new additional insights. If our investor

has CARA preferences and is myopic, then we can discuss a geometry of the optimal portfolio

allocations along an optimal information acquisition trajectory. Specifically, we can define

notions like portfolio trajectory velocity, acceleration, curvature and torsion. These notions

endogenously arise out of the curvature in the manifold of information. In equilibrium, we

further show the instantaneous return dynamics also enjoy several geometric notions like re-

turn velocity, acceleration and curvature. As a demonstration for the empirical applicability,

we empirically show that “return absolute curvature” is a significant explanatory variable

for VIX. One hopes that the introduction of these geometric concepts to describing empirical

return behavior might lead to new additional insights in future research.
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2 Motivating information geometry

While the field of information geometry is well established in the statistical and probability

theory literature 1 , its applications are not well known in economic theory 2 . To motivate

why it is useful to consider information geometric techniques, let’s first briefly review the

contemporary and predominant methods of modelling information in the economics litera-

ture. Typically in these models, there a signal U of an economic object of interest, but an

agent can only observe a noisy version S = U + ε, where ε is a random noise term with mean

zero that prevents the agent from perfect observation of the signal V . It is also typically

assumed that the agent can pay some cost to increase the precision 1/Var(ε) of the noise

term. This form of modelling information is widely used in applied theories from contracting,

accounting, trade, and finance. A likely reason for the widespread adoption of this modelling

form is its simplicity.

Despite the widespread and successful adoption of this form of information modelling, it

nonetheless suffers a deficit: what concretely is a “noisy observation”? More importantly,

can this modelling approach say anything concrete about the “type” and “direction” of

information an agent should acquire? For instance, should an agent learn more about the

“mean”, ”volatility” or other moments of the information? How quickly should the agent

learn about these moments and in which direction? How does the direction and speed of

learning depend on his prior information? What should be the trajectory of learning? The

current information modelling paradigm is completely silent to these arguably important

and concrete questions.

We will motivate why information geometric tools are natural in answering important

questions in information acquisition in three different ways. All three ways revolve around

how one views the “distance” between informations.

2.1 What is knowledge?

We must first explicitly discuss what we mean by information or knowledge; throughout

this paper, we will interchange using these two words for the same meaning. Simply put, a

1See the textbook treatments by Amari and Nagaoka (2007), Calin and Udriste (2014), Amari (2016),
and Ay et al. (2017).

2Geometric methods have been selectively applied in econometrics; see Marriott and Salmon (2000) for a
textbook treatment. Debreu (1972) used differential geometric methods to investigate preference relations.
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probability assignment of an event describes a certain state of knowledge. This principle has

had a long history in probability, statistics and even in economics. Bernoulli (1713) calls it the

Principle of Insufficient Reason in Ars Conjectandi. The esteemed economist John Maynard

Keynes calls it the Principle of Insufficient Reason in his A Treaties of Probability (Keynes

(1921)). Jaynes (1978) recounts a colorful history on this principle of viewing probability as

representing the state of knowledge. However, this way of viewing probabilities took a sharp

turn by the late 18th to early 19th century. Indeed, Jaynes (1978) writes:

“This counter-stream of thought, however, rejected the notion of probability as

describing a state of knowledge, and insisted by ‘probability’ one must mean only

‘frequency in a random experiment’. For a time this viewpoint dominated the

field so completely that those who were students in the period 1930-1960 were

hardly aware that any other conception had ever existed”.

Sampling or frequentist interpretation of probability took over most of the 19th century.

However by the 1950’s, a “Bayesian revolution” in statistics and probability came about.

In a nutshell, if one accepts the Bayes rule, then one must accept that probability represents

knowledge, and not the frequency of which an event happens. From there, ideas of entropy —

which we will heavily use in this paper — flourished. Again, Jaynes (1978) has a wonderful

historical account of these philosophical developments:

“[T]o a person who has been trained to think probability only in the sense of

frequency in a random experiment (as was surely the case for anyone educated at

M.I.T. in the 1930’s!), the idea that a probability distribution represents a mere

state of knowledge is strictly taboo.”

In this paper, we will axiomatically accept that each random variable, and their associated

probability distribution, represents the state of knowledge of an agent. Under this principle,

knowledge acquisition then can be mathematically and economically represented as “moving”

from one random variable (representing one probability distribution) to another random

variable (representing another probability distribution). We devote a good portion of the

paper to discuss what does it mean and how does one “move” from one knowledge point to

another. These ideas will be made precise in Section A.1. In order to discuss how to “move”

knowledge, we must discuss how to measure the distance of knowledge.
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2.2 Rational inattention

The rational inattention literature provides a natural motivation for discussing the distance

between knowledge. The key idea in this literature is an agent’s “limited capacity for pro-

cessing information” (Sims (2003)). In particular, suppose Xp0 be a parameterized random

variable that represents the “truth information” and let Xp be some “action information”

the agent can acquire. Here we deliberately use the alphabet letters, like p, to denote a

parametrization, rather than the perhaps more conventional notations that use Greek let-

ters; this is to harmonize with the geometry based notations for the rest of the paper.

Since the agent cannot immediately process all information, I(Xp0 ;Xp) (the mutual in-

formation) measures the information gain for the agent for acquiring the truth Xp0 relative

to his current information Xp. Thus effectively, the rational inattention literature takes the

stance that the distance between random variables — as measured by mutual information

— measures the cost of acquiring information, and this cost arises precisely because of the

agent’s limited information processing capacity.

For our purposes, it is technically more convenient to not work with mutual information

I(Xp0 ;Xp), but rather with relatively entropy (or also frequently known as Kullback-Leibler

divergence (KL divergence)) DKL(Xp||Xp0). Sims (2003) draws out the connection between

his mutual information based framework to relative entropy. Mutual information and relative

entropy are related as I(Xp0 ;Xp) = EXp0DKL[(Xp|Xp0)||Xp], where X|Y is the conditional

distribution of X given Y . Like mutual information, the relative entropy can also be viewed

as a form of “distance” between two random variables. With this interpretation, we can think

of DKL(Xp||Xp0) as the distance between information from an agent’s current information

Xθ relative to the truth Xθ0 , and this distance again measures the cost of the agent’s limited

information processing capacity.

Most crucial for our purpose is that relative entropy is intimately related to the Fisher

information matrix. Rao (1945) made the pioneering connection between the distance of

information by using the Fisher information matrix as a metric. The Fisher information

matrix of a parameterized probability distribution f(x; p), where p = (p1, . . . , pm)> has its

(j, k)-th entry as,

gjk(p) := E
[(

∂

∂pj
log f(X; p)

)(
∂

∂pk
log f(X; p)

)]
. (2.1)
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It is easily shown that [gjk(p)] is an m ×m positive semidefinite symmetric matrix. In the

rest of our paper, we will only consider distributions where the Fisher information matrix is

actually positive definite.

Lemma 2.1 (KL divergence and Fisher information metric, Jeffreys (1946)). Let f(·; p)
denote the probability density function of the random variable Xp and let’s consider p close

to p0. For θ 7→ f(·; p) sufficiently smooth, we have that

DKL(Xp||Xp0) ≈
1

2

∑
j,k

∆pj∆pkgjk(p0),

where ∆pj := (p− p0)j is the jth component of the vector p− p0.

The key observation from Lemma 2.1 is that when we consider two infinitely close prob-

ability distributions, relative entropy and the Fisher information matrix capture the same

notion of distance between random variables. As we shall see, there are significant economic

insights to be gained with using the Fisher information matrix as a measure of distance

between random variables rather than the KL divergence or mutual information. Ly et al.

(2017) provide an overview of the Fisher information matrix, and draws the connection

between this matrix to mathematical psychology and cognitive modeling.

2.3 Bayesian news acquisition

As we have seen above, an agent’s limited information processing capacity can motivate

why it is important to study the distance between information (or random variables). Here,

we provide an alternative justification from an information acquisition perspective. For

concreteness, let’s specify our discussion to an univariate Gaussian distribution, although

our discussion works for any general multivariate parameterized distributions

Suppose Z(T ) ∼ N (µ(T ), σ(T )) represents the true distribution of some piece of infor-

mation that is only revealed at some terminal time T . The agent is endowed with some

“initial knowledge” Z(0) ∼ N (µ(0), σ(0)) at time t = 0. For instance, Z(T ) is true return

distribution of a risky asset, and Z(0) is the agent’s initial knowledge of this true return. The

objective of the agent is to acquire the true distribution Z(T ) from his endowed knowledge

Z(0) through an endogenous “news trajectory”. News does not arrive instantaneously to
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the agent. In particular, there is no one single piece of news for which the agent can “jump

learn” from his initial knowledge Z(0) to the terminal truth Z(T ).

As a result, the agent must endogenously choose the type and direction of news acquisi-

tion. In particular at each time t, the agent has some prior knowledge Z(t) ∼ N (µ(t), σ(t)).

Using the Bayes rule, the agent selects and acquires a piece of news at time t such that his

posterior knowledge for the next period t+ dt becomes Z(t+ dt) ∼ N (µ(t+ dt), σ(t+ dt)).

Once the agent reaches to time t + dt, the agent uses Z(t + dt) as his prior (which was

previously the time t+dt posterior) to update to his next posterior Z(t+2dt) at time t+dt.

The agent iterates this information acquisition strategy from t = 0 to t = T . See Figure 1

for an illustration.

Next, we describe how the agent optimally picks his information trajectory. From a purely

statistical standpoint, the agent wants to pick the sequence news such that the “distance”

between the random variables Z(t) and Z(t+ dt) is small, and all the while ensuring he can

reach from Z(0) to Z(T ). One can view this “distance” as the cost of acquiring news to

update the agent from an old knowledge Z(t) to the new knowledge Z(t+ dt). Furthermore,

Section 2.2 provides an alternative microfoundation for this “distance”: if the agent has a

limited capacity for processing information, then the agent will pick information such that

the “mental processing cost” (namely as measured by relative entropy) between Z(t) and

Z(t+ dt) is small.

The following result will be an easy corollary from one of the results of our paper. We

state the result in its full generality, meaning that Z(t) in the statement can be multivariate,

non-Gaussian, discretely or continuously distributed.

Lemma 2.2 (Optimal Bayesian news acquisition trajectory). Consider the framework de-

scribed in Section 2.3, and let Z(0) be an agent’s initial knowledge of an economic variable,

and Z(T ) represent its terminal truth knowledge. Then:

(i) For any information trajectory {Z(t)}t∈[0,T ], there exists a Bayesian likelihood between

all times t and t+ dt such that Z(t) is the prior and Z(t+ dt) is the posterior.

(ii) Suppose Z(0), Z(T ) belong to the same parameterized distribution family, and whose

distribution support is not dependent on the parameters. Then there always exist an

information trajectory (possibly non-unique) {Z(t)}t∈[0,T ] that starts at Z(0), ends at

Z(T ), and that minimizes the relative entropy between the Z(0) and Z(T ).
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Z(0) ∼ N (µ(0), σ(0))

Z(T ) ∼ N (µ(T ), σ(T ))

Z(t) Z(t+ dt)
Z(t+ 2dt)

prior posterior

prior posterior

Figure 1: Bayesian news acquisition trajectory

Proof of Lemma 2.2. Part (ii) will be an immediate result of Proposition 5.1.

The proof of statement (a) is immediate from Bayes theorem. Statement (a) simply says

if there is a sequence of random variables {Z(t)} where each Z(t) are independent and belong

to the same distribution family, then we can always find a Bayesian information acquisition

interpretation to link Z(t) and Z(t+ dt). Statement (b) forms the core microfoundations of

our intrinsic information economic framework that we will formalize in Section A. It tells

us that given only some initial knowledge and some terminal knowledge, it is always possible

to find an information acquisition trajectory {Z(t)} that connects them. Moreover, this

information acquisition trajectory is optimal in the sense that it minimizes the “distance”

between them. One interpretation is that there is always a cheapest way to acquire news.

Alternatively, using the rational inattention interpretation, an agent can always find a way

to acquire information to minimize his mental information processing cost. As we shall see

in more detail in Proposition 5.1, (b) is a consequence of a very deep result and should not

be deemed as “obvious”.
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2.4 Intrinsic versus extrinsic perspective of information

Either through a rational inattention or an Bayesian news acquisition perspective, we hope it

is clear by now that the notion of distance between random variables is critical to understand-

ing endogenous information acquisition. However, we must be careful in understanding that

information must be “intrinsic” and not “extrinsic” in the following sense. We will again use

the Gaussian distribution to illustrate the idea. As it is well known, the Gaussian distribu-

tion can be characterized by two parameters. One possible parameterization is via its mean

and standard deviation. Suppose now we have two Gaussian random variables X1 (mean

0 and standard deviation 2) and X2 (mean 0 and standard deviation 4). Nonetheless, this

mean and standard deviation parameterization form, however conventional, is still arbitrary.

We could have equally described the two random variables as Y1 (mean 0 and precision 1/2)

and Y2 (mean 0 and precision 1/4). If we “naively” use the R2 Euclidean distance to measure

the parameterization distance between X1 and X2, we would have ||(0, 2)− (0, 4)||R2 = 2.

However, if we were to use the same R2 Euclidean distance to measure the parameterization

distance between Y1 and Y2, we would have ||(0, 1/2)− (0, 1/4)||R2 = 1/4. This is awkward

— two equivalent methods of describing the random variables yield two different distance

values. The notion of distance should be invariant (in some important sense to be discussed

in Section A) to arbitrary parameterizations. In more colorful but suggestive language, the

value of information should be independent of whether it is written in English or in Japanese!

The following analogy will be useful to keep in mind starting from Section A below when

we formally introduce geometric aspects to our framework. When a bird flies by in the

physical world, it simply does not care whether an observing physicist measures its flight

trajectory in meters or in feet. A good physical theory for the trajectory should be intrinsic

to the bird, and not depend on subjective extrinsic choices of an observer. By analogy,

how an agent acquires knowledge in his psychological mind should not depend on how an

econometrician measures it.

In all, an “extrinsic” notion of information will depend significantly on the arbitrary

parameterization of an outside observer, while an “intrinsic” notion of information should

be free of this arbitrariness. As we shall see, the appropriate intrinsic measure of information

will be given by the Fisher information metric of (2.1).
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3 Intrinsic theory of information acquisition

Regardless of the perspectives one adopts from Section 2, we enforce these principles that

should hold for an intrinsic theory of information acquisition:

Principles for an intrinsic theory of information acquisition We postulate that an

intrinsic theory for information acquisition should simultaneously satisfy the following three

principles:

(P1) Probability distributions represent the state of knowledge of an agent.

(P2) Information should be intrinsically and not extrinsically measured;

(P3) Any utility maximizing action by an agent needs to be based on his intrinsic knowledge.

Information geometry offers a way to satisfy both principles (P1) and (P2), and provide

a natural distance between information. This natural distance between information will be

our cost function for information acquisition. Principle (P3) is the key that elevates and

differentiates our paper from existing information geometry papers.

The literature on information geometry is vast, and is built upon the theories of differ-

ential geometry and Riemannian geometry. Roughly speaking, information geometry puts a

geometric manifold structure on the space of probability distributions. Differential geometry

is the study of calculus on manifolds. Riemannian geometry introduces a metric structure

on manifolds on top of a calculus structure.3 .

3.1 Finance and economic applications roadmap

We are most interested in applying information geometry to concrete economic applications.

Indeed, without these critical applications, our discussions here would simply rehash the

literature of information geometry. In this paper, we focus on three sequentially related

finance questions:

3Differential and Riemannian geometry found their most substantial application in Einstein’s general
relativity in physics. As history goes, apparently mathematician Marcel Grossman was instrumental in
influencing and convincing Einstein the importance of non-Euclidean geometry in developing the theory of
general relativity.

11



1. Dynamic portfolio allocation (Section 6). Suppose an investor is endowed with

some initial knowledge of return distribution of some risky assets, and chooses an optimal

information acquisition trajectory to reach the true distribution. Each point along the

optimal trajectory represents the investor’s best available or closest knowledge to the

truth. If the investor myopically allocates portfolio choices between these risky assets to

reflect based on his best available knowledge, what is the velocity and acceleration of the

investor’s portfolio path?

2. General equilibrium asset pricing (Section 7). Information in the economy is highly

heterogeneous. Some investors may be completely uninformed and need to acquire in-

formation on all aspects of the return distribution. Yet some investors may be partially

informed and only needs to learn a certain aspect. In equilibrium, how do asset returns,

and their time variability depend on the myriad of heterogeneous information acquisition

trajectories?

3. Information recovery from observed portfolio choices (Section 8). Unlike Ques-

tions 1 and 2 where we start from an agent’s information acquisition trajectory and ask

what are the portfolio choice and asset pricing implications, we now ask the inverse ques-

tion: Suppose an econometrician observes only the portfolio allocations of an investor over

time. Can the econometrician recover the information the investor used to base his invest-

ment decision? Can the econometrician distinguish between an informed investor (who

acquires information to reach the truth) versus an uninformed investor (who arbitrarily

uses information)?

Actually, more is true than the above three finance specific applications. These three

applications essentially “prove by concept” (of course we will rigorously prove) the following

result:

4. Practically all expected utility maximization problems can inherit this in-

trinsic information acquisition framework (Section 9). Beyond finance specific

applications, our intrinsic information acquisition framework enjoy a sweeping generaliza-

tion to practically all problems that involve expected utility maximization. In fact, our

framework provides a “poor man’s way” of injecting information acquisition dynamics to

one-period expected utility maximization problems.
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One of the key result that we need from information geometry is the geodesic equation

in Section A.3. In an information geometry context, geodesics are precisely those optimal

information acquisition trajectories of Lemma 2.2. One needs actually substantial amount

of background concepts to describe the geodesic equation, and we devote Sections A for the

background materials at a strictly intuitive and graphical level.

For our economic applications, we are only interested in the geodesic equations of Gaus-

sian distributions, and these results are reported in Section 5. If the reader is only interested

in applying the geodesic equation, and omit on a first reading the justification of the equa-

tion, the reader may skip all of Section A and proceed directly to Section 5. The reader

must then, prima facie, accept that geodesics are the correct intrinsic way to describe the

shortest trajectory between some initial knowledge and terminal truth.

3.2 Notations and Einstein’s summation convention

We adopt notations from the differential geometry literature. We write the components

of a vector v = (v1, . . . , vm) with an upper index. We also adopt Einstein’s summation

convention: an index variable that appears twice in a term implies summation of that term

over all its index values. For example, in Rm and letting Ei = (0, . . . , 1, . . . , 0) denote the

standard basis, a vector v will be written as,

v = viEi :=
m∑
i=1

viEi.

An n×m matrix A has element Aij in its ith row, and jth column. In particular this means

the matrix multiplication, when A is n×m and v is m×1, y = Av has in the kth component

of y,

yk =
m∑
j=1

Akjv
j = Akjv

j. (3.1)
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4 Overview of information geometry, differential ge-

ometry, and Riemannian geometry

This paper does not intend to be a treatise on information geometry (whose foundations

depend on differential and Riemannian geometry). However, these geometric concepts are

not well known in the economics literature, so we need to devote some considerable length

for a brief intuitive overview of the key geometric ideas, and delegate the necessary technical

details to the Appendix.

4.1 Information geometry

Consider a random variable Zp whose distribution is characterized by a parameterized density

function 4 f(z; p), where p ∈ Θ ⊆ Rm, and Θ is an open subset of Rm. We assume that

the function p 7→ f(·; p) is smooth. We will also use the notation fp := f(·; p) to emphasize

the dependence of the distribution function on the parameterization rather than its function

argument z. We collect all these distribution functions in a set M := {fp : p ∈ Θ} and we

call this set the statistical model.

The key observation in information geometry is to recognize that instead of directly work-

ing with M , which is a fairly complicated functional space, we work with its parameter space

Θ. However, for essentially all parameterized probability models, there is no such thing as an

unique parameterization. That is to say, all models are identical up to reparameterization.

If we identify all reparameterizations (e.g. C∞-diffeomorphisms) of the parameter space as

identical to each other, then the statistical model M can actually be viewed as a statistical

manifold. The key ideas are illustrated in Figure 2.

We consider the Gaussian distribution to fix ideas and indeed, this will be the core model

of our paper.

Example 1 (Univariate Gaussian distribution). Let Z be a univariate Gaussian distribution

with mean µ and standard deviation σ. Here, Z = R, p = (µ, σ) and Θ = R×R++. As it is

4We deliberately use the notation p to denote the parameter of a distribution function, rather than with
Greek letters like θ. Our notation emphasizes the geometric nature of our framework and furthermore agrees
with the conventions of differential geometry references.
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P(Z)

M

fp

Rm

ϕ(M) = Θ

ϕ

ϕ(fp) = p

Rm

x(Θ)

x(p)

x

ϕ−1 ◦ x−1

Figure 2: Statistical manifold. Let P(Z) define the space of probability density functions whose
support is Z (e.g. we assume that the distribution support is parameter invariant). In
particular, this means P(Z) := {f : Z → R : f > 0 and

∫
Z f(z)dz = 1}. The space

P(Z) is too big for our purposes, and hence we restrict to the subset M of parameterized
probability distributions. That is, let’s consider probability distributions of the form
f(z; p) where p ∈ Θ ⊆ Rm, and so M := {fp := f(·; p) : p ∈ Θ} and this is the
statistical model. Let’s consider the mapping ϕ : S → Rm given by ϕ(fp) = p. Thus the
mapping ϕ identifies the probability distribution fp = f(z; p) with its parameterization
p. Next, consider a C∞ diffeomorphism x : Θ → Rm and let ρ = x(p). The map x
can thus be seen as a reparameterization of the distribution in the sense that the set
{fϕ−1◦x−1(ρ) : ρ ∈ x(Θ)} agrees with the statistical model M .
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well known, its probability density function is

f(z; p) =
1√

2πσ2
exp

{
−(z − µ)2

2σ2

}
.

The moment parametrization p = (µ, σ) is fairly conventional in all elementary statistics

references.

However, there is nothing inherently intrinsic to using the parametrization p = (µ, σ) to

describe the Gaussian distribution. Indeed, consider the map x : Θ→ R2 given by,

x(p) =

(
µ/σ2

−1/(2σ2)

)
=

(
x1

x2

)
.

It is easy to verify that x is a C∞-diffeomorphism. Using this parameterization, we can

rewrite the density function as,

f(z; (x1, x2)) = exp

{
x1z + x2z2 −

(
−(x1)2

4x2
+

1

2
log(−π/x2)

)}
.

This is often called the canonical form of the Gaussian parameterization. Moreover, one can

even analogously consider the map y : Θ→ R2 given by,

y(p) =

(
µ

µ2 + σ2

)
=

(
y1

y2

)
,

and verify again that y is a C∞-diffeomorphism. This is often called expectation form of the

Gaussian parametrization.

Example 1 exemplifies that there is no “unique” way to describe the Gaussian distri-

bution (or really any general distribution). Moreover, any C∞-diffeomorphism x from one

parametrization to another parameterization can equally describe the same Gaussian dis-

tribution. In our information acquisition context, this means that if we are to model an

agent’s information mindset with Gaussian random variables, it must not be sensitive to

how it is written. Information must intrinsically represent itself and not depend on how it

is arbitrarily described or measured. The manifold formalism explicitly addresses the need

to describe objects intrinsically.
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4.2 Distance and geodesics on the statistical manifold

We introduce a notion of distance between two far points p, q ∈M , and discuss the trajectory

that connects them with minimal distance (minimal geodesics).

4.2.1 Distance and minimal cost of information acquisition

Recall our discussion of the relationship between Kullback-Leibler divergence and the Fisher

information metric in Lemma 2.1. As discussed, the Fisher information metric approximates

the KL divergence for two infinitesimally close random variables. Due to the nature of

infinitesimal approximation, the Fisher information metric really only provides an inner

product between the tangent vectors at a single point. Put simply, the Fisher information

metric only measures the angle between two directions of information acquisition at a given

point of knowledge p ∈M . The Fisher information metric does not directly yield our desired

distance between two distinct knowledge points p, q ∈ M . Again in our intrinsic theory of

information acquisition, the measure of distance between two knowledge points proxies the

cost of information acquisition from knowledge point p to knowledge point q.

Riemannian geometry provides a canonical way to resolve this problem. Let γ : [a, b]→
M be an arbitrary smooth trajectory in the statistical manifold M , meaning each t ∈ [a, b] ⊂
R is smoothly associated with a point γ(t) ∈ M . The velocity of the trajectory is defined

as γ̇(t). As mentioned, the Fisher information metric g is an inner product on the tangent

space, and the velocity γ̇(t) is a tangent vector at the point γ(t). This means we can define

the speed of the trajectory as ||γ̇(t)|| :=
√
gγ(t)(γ̇(t), γ̇(t)). Since the length of a trajectory is

the sum of its speed, we can define L(γ) :=
∫ q
p
||γ̇(t)|| dt. In our context, L(γ) represents the

cost of information acquisition from an initial knowledge p = γ(a) to a terminal knowledge

q = γ(b).

However, the agent is naturally interested in minimizing the cost of information acqui-

sition. To this end, the distance between two points p and q can be defined to the length

of the shortest trajectory between the two points. That is, the distance between p, q can be

defined as 5 ,

d(p, q) := inf{L(γ) : γ is a smooth curve in M with γ(a) = p and γ(b) = q }. (4.1)

5It can be easily shown that in R1 with the Euclidean Riemannian metric gij = δij , the distance function
between x, y ∈ R1 is d(x, y) = |x− y|, which is the usual Euclidean distance.

17



Thus, d(p, q) is the minimal information acquisition cost from knowledge point p to knowl-

edge point q.

4.2.2 Raison d’être of our information geometric setup

At this point, one might wonder whether it is worth all the trouble to define this distance

function d to just measure the distance between two random variables? Recall that to arrive

at (4.1), we had to approximate the Kullback-Leibler divergence to arrive at the Fisher

information matrix, argue that the Fisher information matrix can be used as a metric,

use this metric to measure angles between tangent vectors on the statistical manifold M ,

and then eventually push through several non-trivial arguments and definitions to define d.

This entire process is admittedly complex. Why go through all this trouble to describe the

distance between two knowledge points when the Kullback-Leibler divergence or even the

mutual information as used by Sims (2003) provide a similar qualitative answer?

The true payoff of (4.1) to us is actually not the value d(p, q), but rather its trajectory

solution: what exactly is that trajectory γ that solves the minimization problem infγ L(γ)?

This trajectory γ tells us geometric qualities like direction, speed, acceleration on how an

agent will acquire information from one point to another at minimal cost. These geometric

qualities are simply not available if we use the Kullback-Leibler divergence or mutual infor-

mation to just quantify the distance between two points of knowledge. As a result and to

the best of my knowledge, existing papers in economics that use entropy-related measures

are completely silent on the trajectories of information acquisition. These geometric quali-

ties on the trajectory of information acquisition are precisely why we pursue an information

geometric approach in this paper.

4.3 Geodesics: Solution to the minimal information acquisition

cost problem

A key component of our paper is the trajectory solution γ to the distance minimization prob-

lem (4.1). The trajectory solution to (4.1) actually plays a critical role in the development

of Riemannian geometry, and hence they deserve the special name of geodesics. Roughly

speaking, geodesics are “straight lines”.

In a Euclidean space, a straight line can be described by a “zero acceleration” condition;
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that is, if γ(t) is a trajectory in Rn, then γ is a geodesic (i.e. a straight line) if satisfies the

condition d2

dt2
γ(t) = 0. Furthermore, it is intuitive that the trajectory of the shortest distance

between two points on a flat space are straight lines. Thus, geodesics are the solution to the

minimum distance problem (4.1) in Rn.

Analogously, the solution to (4.1) on our statistical manifold M can be described by

geodesics. However, trajectories that satisfy a “zero acceleration” condition in our manifold

M is far more nuanced due to the presence of non-zero curvature (we postpone an intuitive

discussion of curvature to Section 4.4). Intuitively speaking, when a space is curved — as

opposed to a flat space like the Euclidean space with zero curvature — the shortest distance

between two points is not a “straight line” anymore. Geodesics on a general manifold

M cannot be described by the zero second derivative condition d2

dt2
γ(t) = 0. Unlike a flat

Euclidean space, non-zero curvature causes tangent spaces at different points on the manifold

to be incomparable. Instead of flat space differentiation d
dt

, we must develop the idea of

covariant differentiation ∇ to describe the zero acceleration condition in a curved manifold.

In all, the minimal geodesic γ that solves (4.1) is actually the solution to the geodesic

equation ∇γ̇ γ̇ = 0, and here γ̇(t) a tangent vector at the point γ(t) ∈ M . We have a more

technical overview of geodesics in Section A.3. Before we present the concrete solution to

(4.1), we will discuss the role of curvature in our context in Section 4.4.

4.4 Intuitive discussion of curvature

The heart of Riemannian geometry is curvature 6 . Indeed, essentially all of the results in

our paper are driven by the curvature of the agent’s statistical manifold. Unfortunately, it

is far beyond the scope of this paper to present a full technical discussion (see Lee (1997)

and Petersen (2016) for an introductory treatment). Here we will present two different

perspectives on curvature. In Section 4.4.1, we show that if relative entropy measures the

information processing cost between two different pieces of knowledge, then the curvature in

the agent’s statistical manifold arises because the cost is dependent on the agent’s current

knowledge position. As a result, the agent might find it more or less costly to turn to acquire

information in one knowledge direction versus another. It is this direction “turning” of

6Indeed, the heart of Einstein’s general theory of relativity is the curvature of spacetime. Einstein spent
eight years (from 1907 to 1915) to develop his theory. He struggled many of those years in connecting the
concept spacetime curvature to observable physical phenomenon.
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information acquisition generates curvature. In Section 4.4.2 we discuss how our information

geometric framework relates to a noisy signal extraction framework that’s used in many

applied economic theory models. In Section 4.4.3, we introduce the concept of information

capacity and present a more geometric perspective on curvature. Information capacity is the

amount of similar knowledge around a given point of knowledge. Information capacity is

high (low) when an econometrician can (cannot) easily infer the knowledge of an informed

agent. We show that high (low) curvature leads to low (high) information capacity. This

perspective on curvature thus lends to potential empirical implementations of our framework.

Finally, we note that for ease of exposition, all of the discussions of curvature in this

section are explicitly coordinate dependent. Recall our principles for an intrinsic theory of

information acquisition have emphasized that knowledge should not be dependent on the

coordinate system. We make clear that all of the discussions in this section can be made

precise in a coordinate invariant fashion using tensor calculus.

4.4.1 Knowledge dependent marginal cost

Mathematically, the curvature of a Riemannian manifold is entirely driven by its Riemannian

metric g, and in our case, the Fisher information metric. Economically, however, it might

seem a bit mysterious as to why curvature so prominently drives most of our information ac-

quisition results. In a nutshell, curvature arises because the speed and direction of acquiring

knowledge in one direction depends on the position of another piece of knowledge.

To give a better intuitive understanding of the source of curvature, let’s revisit the

Kullback-Leibler divergence and recall that in Lemma 2.1, the Fisher information metric is

the infinitesimal version of the KL divergence. Let N0 := N (µ0,Σ0) and N1 := N (µ1,Σ1)

be two m-dimensional Gaussian distributions. Then the KL-divergence between them is,

DKL(N1||N0) =
1

2

(
tr(Σ−1

0 Σ1) + (µ0 − µ1)>Σ−1
0 (µ0 − µ1) + log

(
det Σ0

det Σ1

)
−m

)
. (4.2)

As discussed in Section 2.1 and 2.2, this relative entropy between two states of knowledge

represents the distance of two states of knowledge for our agent.

For the sake of discussion, let’s intuitively regard “naive” comparative statics on (4.2)

as “change in knowledge” from knowledge state N0 to N (µ1 + dµ,Σ1 + dΣ). That is, let’s

regard ∂
∂(µ1)k

as the change in knowledge in the kth component in the µ1 direction, and regard
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∂
∂(Σ1)ij

as the change in knowledge in the (i, j)th component in the Σ1 direction. Holding

knowledge state N0 as fixed, it is clear that both the qualitative and quantitative effects

of ∂
∂(µ1)k

and ∂
∂(Σ1)ij

are generically different, and heavily depend on the current knowledge

state N0 value. This is to say, the effect of changing knowledge in the direction of the mean is

substantially different from changing knowledge in the direction of the variance-covariance.

To make this point even clearer, let’s consider m = 1 dimensional Gaussian distributions

with N = N (µ, v) (mean µ, variance v) and N1 = N (µ1, v1), and µ1 = µ+ dµ, v1 = v + dv.

Their KL divergence is

DKL(N1||N ) =
1

2

(
v1

v
+

(µ− µ1)2

v
+ log

v

v1

− 1

)
≈ 1

v
(µ− µ0)2 +

1

2v2
(v1 − v)2

=
1

v
dµ2 +

1

2v2
dv2 (4.3)

= ds2,

where the approximation is a second order Taylor expansion of (µ1, v1) around (µ, v). The

symbol ds is the standard notation for the infinitesimal length of a line element, and so ds2

is the squared line element. This notation enforces the geometric nature of our framework,

that measuring the distance between knowledge is akin to measuring the distance between

physical locations 7 .

We are ready to intuitively understand why curvature arises in our information geometric

framework. Thinking of the KL divergence or relative entropy as the cost of limited capacity

of information processing for an agent, we see from (4.3) that if the current knowledge is

(µ, v), then acquiring knowledge in the mean-only direction incurs a marginal cost of 1/v,

while acquiring knowledge in the variance-only direction incurs a marginal cost of 1/(2v2).

7It is useful to think about this notation in R3. In Cartesian coordinates, the distance between a point
(x, y, z) ∈ R3 and (x+dx, y+dy, z+dz) ∈ R3 is ds =

√
(x− (x+ dx))2 + (y − (y + dy))2 + (z − (z + dz))2 =√

(dx)2 + (dy)2 + (dz)2. As a matter of notation, it is customary to write dxdx as dx2, and not (dx)2.
Using this notation and rearranging, the squared line element in R3 under Cartesian coordinates is ds2 =
dx2 + dy2 + dz2. Here we see that there are no leading coefficients in the terms dx2,dy2,dz2. This is in
contrast to (4.3) where there are explicit leading coefficients present in front of dµ2 and dv2. This is not an
unique phenomenon to our setup. For instance, the same line element in R3 in spherical polar coordinates
(r, θ, φ) (radius, polar angle and azimuth) is ds2 = dr2 + r2dθ2 + r2 sin2 θdφ2, and the leading coefficients
are explicitly here.
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Observe that 1/v is larger (smaller) than 1/(2v2) for large (small) values of v. This implies

the marginal cost of acquiring knowledge in a particular direction is heavily dependent on

the position of the current knowledge. This is what generates curvature in information

acquisition trajectories — curvature is present because the agent will find it less costly to

acquire knowledge quicker or slower in one direction versus another. Moving in one direction

quicker or slower necessarily requires the agent to “turn directions”, resulting in curved

trajectories.

4.4.2 Relationship to noisy signal information acquisition frameworks

How does our framework relate to the conventional signal plus noise information acquisition

framework? See for instance Grossman and Stiglitz (1980) and many others for examples of

this framework. In that framework, an agent observes a signal U that is given by U = S+ ε,

where S ∼ N (0, 1) is the unobservable variable of interest, and ε ∼ N (0, v̂) is a noise

term with known variance v̂. Assume that S and ε are independent. The agent acquires

information S through the observation of signal U . How does the variance v̂ of the noise

term affect the agent’s signal S? Intuitively, the variable of interest S becomes more clearly

revealed to the agent when the variance v̂ of the noise is smaller, or when the precision

1/v̂ is higher. Let’s make this statement precise and see how it relates to our information

geometric framework. Since S and ε are Gaussian, it is straightforward to show that upon

seeing the signal U = u, the agent infers that the variable of interest is E[S|U = u] = 1
1+v̂

u.

Suppose the agent compares the signal U = u versus a small variation of it U = u + du.

Then the difference in inferring S between the two signal observations is ds = E[S|U =

u+ du]− E[S|U = u] = 1
1+v̂

du. This term ds = 1
1+v̂

du can be interpreted as the “distance”

between two nearby signal means, and we see that this distance is proportional to the known

precision 1/(1 + v̂) of the noise.

Our information geometric framework has an analogous counterpart to the aforemen-

tioned noisy signal framework. Suppose the variance v̂ of the truth information Ẑ is known

to the agent at t = 0. The agent only needs to acquire information of the mean µ. In this

case, the single element Fisher information matrix is gij(p) = [1/v̂]. This implies the line

element takes the form

ds2 =
1

v̂
dµ2, (4.4)
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or that ds = 1√
v̂
dµ. The distance between two pieces of mean information is proportional to

the known precision of the information. We see that up to a monotonic transformation on

the precision term, the distance between information in the above noisy signal framework

has a direct analogy to our information geometric framework.

The strength of an information geometric setup is that we can analyze information acqui-

sition when different types of knowledge are known or unknown. In the above two discussions

for the distance between information, a key assumption is that the precision is known. How-

ever, it is not straightforward to alter the noisy signal framework when the precision is also

unknown. In contrast, our information geometric framework is well suited to handle all

three possible cases in discussing the distance between information: (i) both the mean and

variance are unknown; (ii) the mean is unknown and the variance is known; and (iii) the

mean is known and the variance is unknown.

We had already shown case (i) in (4.3), and case (ii) in (4.4). For case (iii), suppose the

mean µ̂ of the truth information Ẑ is known to the agent at t = 0. The agent only needs

to acquire information of the variance v. In this case, the single element Fisher information

matrix is gij(p) = [1/(2v2)]. As a result, the line element is,

ds2 =
1

2v2
dv2. (4.5)

Interestingly, the known mean value µ̂ does not enter into the distance between knowledge

of the variance. In contrast, in the case (4.4) when the mean is unknown but the variance

is known, the distance between knowledge of the mean explicitly depends on the known

variance.

4.4.3 Information capacity

We present also a geometric argument to intuitively understand curvature. We will argue

a notion of information capacity in our economy is completely determined by the (scalar)

curvature of the statistical manifold.

In probability theory, the Jeffreys prior fJ is a non-informative (objective) prior distri-

bution of the statistical manifold at points p ∈M . It is defined to be fJ(p) ∝
√

det[gij(p)],

where the right hand side is the square root of the determinant of the Fisher’s informa-

tion matrix at p. In our context, it is useful to think of the Jeffreys prior to represent the
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knowledge states of an uninformed outsider who only knows an objective distribution of

the points p ∈ M , but not their exact location. It may also be convenient to think of this

uninformed outsider as an econometrician who has to statistically estimate and infer the

knowledge p ∈M of an agent based on observable data.

In Riemannian geometry and in coordinates, one defines the volume form

ω :=
√

det[gij(p)]dx
1 ∧ · · · ∧ dxm (4.6)

of an orientable manifold M , and where p = (x1(p), . . . , xm(p)). Thus, the Jeffreys prior is

directly proportional to the volume form fJ(p)dx1 · · · dxm ∝ ω. Let J be a random variable

with the probability density function fJ , and consider a small open (geodesic) ball BM(p, r)

at p with radius r. The probability P(J ∈ BM(p, r)) can be regarded the likelihood of an

uninformed outsider “guessing” correctly an informed agent’s knowledge at p ∈M within a

small window of error r. We make the following observation,

P(J ∈ BM(p, r)) =

∫
BM (p,r)

fJ(p) dx1 · · · dxm ∝
∫
BM (p,r)

ω = vol(BM(p, r)). (4.7)

From (4.7) and our identification of points p ∈ M as states of knowledge, the volume

vol(BM(p, r)) can be labelled as the information capacity at a point p with radius r. Infor-

mation capacity is high when an uninformed outsider has a high likelihood of guessing the

knowledge p with some error r. Conversely, information capacity is low when an uninformed

outsider has a difficult time of guessing the knowledge p possessed by an informed agent.

Now, we relate the information capacity to curvature. Gray (1974) shows,

vol(BM(p, r)) ≈ vol(BRm(r))

(
1− S

6(m+ 2)
r2

)
, (4.8)

where S is the scalar curvature of M at point p, and BRm(r) is a Euclidean ball 8 of radius r in

Rm. Equation 4.8 shows the volume of BM(p, r) is proportional to an m-dimensional volume

ball BRm(r) of the same radius in Euclidean space, but scaled by the factor 1 − S
6(m+2)

r2.

Naturally, the volume of BM(p, r) is dependent on the dimension m of the manifold M . But

8The volume of the Euclidean ball is invariant to its location, and indeed, vol(BRm(r)) = αmr
m/m, where

αm := 2Γ(1/2)m

Γ(m/2) , and Γ(z) :=
∫∞

0
tz−1e−t dt is the gamma function.
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importantly, S is the scalar curvature of manifold M at p, and it is a real valued scalar.

Hence, positive scalar curvature S > 0 decreases volume, zero scalar curvature S = 0 means

the volume in M is identical to that in Rm, and negative scalar curvature S < 0 increases

volume. In all, curvature is the concrete determinant of information capacity in our economy.
9

5 Gaussian information geometry

Having presented the intuitive background of differential geometry, Riemannian geometry

and information geometry, we now present the key application of these concepts in this paper

— the information geometry of the Gaussian distribution.

Let M be the manifold of associate with an n-dimensional Gaussian distribution. Since

an n-dimensional Gaussian distribution can be characterized by m = n+n(n+ 1)/2 number

of parameters, this means n-dimensional Gaussian distributions are associated with an m-

dimensional manifold M . Furthermore, pursuant to the motivations in Section A we equip

M with the Fisher information metric 10 as the Riemannian metric g.

At this point, we need to address an important issue of existence and uniqueness of the

geodesics γ that solves (4.1). These are actually deep and difficult questions in Riemannian

geometry. However, we can give the following result for the case of Gaussian statistical

manifolds, which will be the focus of application in our paper.

Proposition 5.1 (Minimizing geodesics in Gaussian statistical manifold). Let M represent

a Gaussian statistical manifold. Then there always exists a minimizing geodesic connecting

two points p, q ∈M .

9Some fundamental results in Riemannian geometry actually say a lot more about manifolds of constant
curvature. In our setup here, S need not be constant for all points p ∈ M . But if S is identically constant
on the manifold, then fundamental results in Riemannian geometry show that: when S = 0, the manifold
is isomorphic to the flat Euclidean space; when S > 0, the manifold is isomorphic to a high dimensional
sphere; and when S < 0, the manifold is isomorphic to a hyperboloid.

10As remarked earlier, this paper shares a lot of mathematical techniques used in general relativity. How-
ever, there is one important difference and it boils down to how one comes about the Riemannian metric. For
instance in general relativity, the metric on spacetime is a result from the famous Einstein’s field equations,
and these equations embed all the physical laws of interest. In our information geometric context, the metric
is given to be the Fisher information metric, of which the microeconomic foundations of this choice have
been discussed in Section A.
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Proof of Proposition 5.1. The full argument is a little bit nuanced (see Calvo and Oller

(1990) for details) but here we’ll sketch the main ideas. Firstly, there is a single global

atlas associated with an m-dimensional Gaussian statistical manifold M . In particular, let’s

pick that global atlas to have mean-variance-covariance coordinates (µ,Σ). Then M can be

embedded diffeormophically and isometrically into a manifold P of positive definite matrices

with the Siegel Riemannian metric. The manifold P with the Siegel metric is a geodesically

complete manifold. By the Hopf-Rinow theorem (see Lee (1997)), this means any two points

in P can be joined with minimal distance (with respect to the Siegel metric). Finally, since

P and M are diffeomorphic and isometric to each other, this means any two points in M

can be joined with minimal distance (with respect to d on M).

The important implication of Proposition 5.1 is that there always exist a trajectory of

minimal cost to acquire information from one point of knowledge to another. Notice however

the result does not claim uniqueness 11 .

Let’s begin with our discussion from an univariate Gaussian distribution and then general-

ize to multivariate Gaussian distributions. As we shall see, the dimensionality makes critical

qualitative and quantitative differences to how an agent acquires information. In this sec-

tion, we will interchange between mean-precision coordinates and mean-variance-covariance

coordinates in describing the Gaussian distribution, depending on which coordinate system

is more convenient for exposition purposes. In the economic applications of Section 6 and

Section 7, we will primarily use mean-precision coordinates for computational ease.

5.1 Univariate Gaussian distribution

We summarize the main geometric results for the statistical manifold of an univariate Gaus-

sian distribution.

Proposition 5.2 (Geometric properties of an univariate Gaussian statistical manifold).

Let an m = 2 dimensional manifold M represent the statistical manifold of an univariate

Gaussian distribution. Then in mean-precision coordinates, ϕ(p) = (x1, x2) = (µ, λ),

11As an illustration to see why uniqueness is generally not attainable, suppose one wants to travel from the
North pole of the earth to the South pole. Any great circle (aka. orthodome) connecting between the North
pole and the South pole will be of minimal distance. But there are infinitely many great circles between the
two poles.
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(i) The Fisher information metric g at point p ∈M is,

[gij(p)] =

(
λ

1
2λ2

)
=

(
x2

1
2(x2)2

)
, (5.1)

where the blank entries are zeros.

(ii) The geodesic equation on M is,

µ̈ = −2Γ1
21λ̇µ̇ = − λ̇µ̇

λ
, (5.2a)

λ̈ = −Γ2
11µ̇

2 − Γ2
22λ̇

2 =
λ3µ̇2 + λ̇2

λ
. (5.2b)

The Γkij are the Christoffel symbols, for i, j, k = 1, . . . ,m, and they are given by,

Γ1
21 =

1

2λ
, (5.3a)

Γ2
11 = −λ2, (5.3b)

Γ2
22 = −1

λ
, (5.3c)

and where all other non-displayed Γkij’s are equal to zero.

(iii) The explicit solution to the geodesics (5.2) is either (a):

µ(t) = c1,

λ(t) = exp{−
√

2t+ c0},

or (b):

µ(t) = c1 + 2c2 tanh(t/
√

2 + c0),

λ(t) =
cosh2(t/

√
2 + c0)

2c2
2

where c0, c1, c2 are real constants.
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(iv) For two points p = (µp, λp) and q = (µq, λq), the geodesic distance (4.1) is,

d(p, q) = dH

((
µp√

2
,

1√
λp

)
,

(
µq√

2
,

1√
λq

))
, (5.6)

where dH is the geodesic distance is on the Poincaŕe half-plane,

dH((x1, y1), (x2, x2)) = arcosh

(
1 +

(x2 − x1)2 + (y2 − y1)2

2y1y2

)
.

Proof of Proposition 5.2. The proof arguments in (i) and (ii) are general. The proof argu-

ments in (iii) and (iv) are special to the univariate Gaussian distribution.

Part (i) follows immediately from the definition of the Fisher information matrix,

gij(p) := Ep [(∂i log f(Z;x)|p) (∂j log f(Z;x)|p)] , (5.7)

where in this case Z is an univariate Gaussian distribution with mean µ and precision λ,

and f is the associated probability density function.

Part (ii) is an immediate application of the general formula (A.2) for the geodesic equation

in local coordinates.

Let’s see part (iii). We note that Calvo and Oller (1991) show the explicit solution for the

geodesics of multivariate Gaussians. The solution presented here is directly from Skovgaard

(1984).

Part (iv) is quite special to the univariate Gaussian distribution (or slightly more gener-

ally, multivariate Gaussian distribution with different mean elements, but identical variances

and zero correlation). Rather than solving the optimization problem (4.1) directly, we appeal

to a geometric argument. A direct calculation (see Amari and Nagaoka (2007) and Amari

(2016)) shows that the statistical manifold M for the univariate Gaussian distribution has

a scalar curvature of −1. From standard Riemannian geometry (see Lee (1997)), manifolds

with a scalar curvature of −1 can be identified with the hyperbolic geometry. In particular,

the Poincaŕe half-plane H2 := {(x, y) : x ∈ R, y ∈ R++} is the canonical two-dimensional

manifold with hyperbolic geometry. In all, this means up to coordinate transformations, the

geodesic distance properties of M is similar to that of H2.
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The Riemannian metric on H2 at a point p = (x, y),

[gij(p)]H =

[
1
y2

1
y2

]
.

From properties of H2, the geodesic distance dH between two points (x1, y1) and (x2, y2) is

dH((x1, y1), (x2, x2)) = arcosh

(
1 +

(x2 − x1)2 + (y2 − y1)2

2y1y2

)
= 2 log

√
(x2 − x1)2 + (y2 − y1)2 +

√
(x2 − x1)2 + (y2 + y1)2

2
√
y1y2

Compare the Fisher information matrix g in mean-standard deviation coordinates as

shown above, and the Riemannian metric on H2. We see that by considering a similarity

mapping F : M2 7→ H2 defined by F (µ, σ) = (µ/
√

2, σ), we obtain that,

d((µ1, σ1), (µ2, σ2)) = dH

(
(µ1/
√

2, σ1), (µ2/
√

2, σ2)
)
.

However, we are most interested in geodesic distance expressed in mean-precision variables.

And since (µ, σ) 7→ (µ, 1/
√
λ), the geodesic distance in mean-precision variables is given by,

d((µ1, 1/
√
λ1), (µ2, 1/

√
λ2)) = dH

(
(µ1/
√

2, 1/
√
λ1), (µ2/

√
2, 1/

√
λ2)
)
.

Corollary 5.3 (Geodesic connecting two points on univariate Gaussian manifold). Suppose

we have two points, starting at t = 0 with p = (µp, λp) and ending at t = T with q = (µq, λq)

expressed in mean-precision coordinates on an univariate Gaussian statistical manifold.

(i) If µp = µq, then the minimal geodesic that connects p to q follow case (a) in Proposi-

tion 5.2(iii) with constants,

c0 = log λp

c1 = µp

T =
1√
2

log
λp
λq
.

29



(ii) If µp 6= µq, then the minimal geodesic that connects p to q follow case (b) in Proposi-

tion 5.2(iii) with constants,

c0 = arcosh

(√
2λpc2

2

)
= c0(c2)

c1 = µp − 2c2 tanh(c0)

T =
√

2

[
arctanh

(
2c2 tanh(c0) + µq − µp

2c2

− c0

)]
,

and c2 is the real solution to,

0 = cosh2

(
arctanh

(
2c2 tanh(c0) + µq − µp

2c2

))
− 2c2

2λq.

Proof of Corollary 5.3. Let’s begin with part (i). Clearly, since µp = µq, then we must have

that µ(t) = c1 = µp for all t. At t = 0, we have that λp = λ(0) = ec0, and solving yield c0.

At t = T , we have that λq = λ(T ) = e−
√

2T+log λp . Solving, we get T as desired.

Let’s consider part (ii). Evaluating at t = 0 and t = T , we have the following four

equations to the boundary value problem,

µp = µ(0) = c1 + 2c2 tanh(c0) (5.8a)

λp = λ(0) =
cosh2(c0)

2c2
2

(5.8b)

µq = µ(T ) = c1 + 2c2 tanh(T/
√

2 + c0) (5.8c)

λq = λ(T ) =
cosh2(T/

√
2 + c0)

2c2
2

(5.8d)

Immediately, from (5.8b) we get c0, and from (5.8a) we get c1 as displayed. Substituting c1

into (5.8c), we get that,

T/
√

2 + c0 = arctanh

(
2c2 tanh(c0) + µq − µp

2c2

)
, (5.9)

and we solve for T and get the displayed expression. Substituting (5.9) into (5.8d), we get

the displayed expression for the equation for c2.
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From the Fisher information metric, and using the line element notation, we can write

ds2 = λdµ2+ 1
2λ2

dλ2 = x2d(x1)2+ 1
2(x2)2

d(x2)2. Notice that the line element in mean-precision

coordinates differs from (4.3) in mean-variance coordinates. All geometric information about

the manifold M is encapsulated in the Fisher information metric g. Indeed, the geodesic

equation (5.2) and the geodesic distance (5.6) can all be derived from knowing g alone.

Recall from Section 4.2, the geodesics on a statistical manifold M represent the optimal

information acquisition trajectory at minimal cost. The geodesic equations (5.2) are precisely

the trajectories that connect some initial knowledge point p ∈ M to a terminal knowledge

point q ∈M . See Figure 3 for an illustration.

As discussed in Section 4.4, curvature is the key geometric driver of our framework. The

Christoffel symbols Γkij’s of (5.3) have numerous important applications, but for our purposes,

these symbols allow us to explicitly quantity and concretely introduce curvature. Observe

that if the Γkij’s were equal to zero, then we have the geodesics µ̈ = 0 and λ̈ = 0. These of

course correspond to the Euclidean straight lines µ(t) = a0 + a1t and λ(t) = b0 + b1t.

As discussed in Section A.3, we can view geodesics both as straight lines or as the shortest

trajectory between two points. In the straight lines perspective, a unique description of

the geodesics is complete once we specify the initial position and initial velocity. In our

information context, this means once we fix the agent’s initial knowledge level (µ(0), v(0)),

and fix the agent’s initial direction of information acquisition (µ̇(0), v̇(0)), the agent’s future

t > 0 information acquisition trajectory is determined. The initial information acquisition

direction (µ̇(0), v̇(0)) can be thought of as the optimism or pessimism of information. For

instance, if µ̇(0) > 0 then the agent is optimistic about the mean of the information relative

to his initial knowledge, whereas if µ̇(0) < 0 then the agent is pessimistic. In this perspective,

we work with an initial value problem for the geodesics.

The alternative perspective that geodesics are the shortest trajectories between two points

will allow us to describe how the agent should learn the truth. This is the core motivation

of Lemma 2.3 and indeed, this is its proof. Suppose the agent is endowed with some initial

knowledge Z(0) that we represent on the manifold M as p = (µ(0), v(0)). News arrive slowly

to the agent. The agent must choose an information acquisition trajectory Z(t) to arrive

at the truth Ẑ at some terminal time T . Let’s represent the truth knowledge by the point

q = (µ̂, v̂) on the manifold. Then the trajectory {Z(t)}t∈[0,T ] satisfying (5.2) that starts at p
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Figure 3: Illustrations of the geodesics of an univariate Gaussian statistical manifold.
We numerically illustrate the equation solutions (5.2). For ease of presentation, we
define the trajectory σ(t) := 1/

√
λ(t). The top two figures are illustrated with pa-

rameter set (1): µ0 = 3, µ1 = 0.15, σ0 = 0.10, σ1 = 0.5. The bottom two figures are
illustrated with parameter set(2), and they are the same set parameters as (1), except
we replace the value µ0 = 0.20. The behavior of the geodesics can be quite different by
just changing the initial value.
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and ends at q is the optimal information acquisition trajectory. In this perspective, we work

with a boundary value problem for the geodesics.

5.2 Multivariate Gaussian distribution

The hard work for setting up the geometric structure of our framework truly pays off when

one compares the geodesics of a multivariate versus a univariate Gaussian distribution. In

vast majority of information economic models, the dimensionality of the signal in a Gaussian

context usually is not a deciding factor in driving the qualitative economic results. However

in our context, dimensionality matters significantly both qualitatively and quantitatively.

Again, let’s work with the mean and precision 12 coordinates for a point p as (µ,Λ) =

(x1, . . . , xm). Then it is easy to show that,

Ep
[
∂2 log f(Z; p)

∂µ∂µ>

]
= Λ,

Ep
[
∂2 log f(Z; p)

∂µ∂Λ

]
= 0,

Ep
[
∂2 log f(Z; p)

∂Λ∂Λ

]
=

1

2
Λ−1 ⊗Λ−1,

and here ⊗ denotes the Kronecker product.

To be concrete, let’s focus on a bivariate Gaussian distribution. Then a point p can be

written in local coordinates as (µ1, µ2, λ11, λ12, λ21, λ22) = (x1, x2, x3, x4, x5, x6). The Fisher

information matrix is 13

12Precision in this multivariate context is defined to be the inverse of the covariance-variance matrix.
13As we can see even in the bivariate case, parameterizing the Gaussian distribution in terms of precision

facilitates for a (relatively) clean expression of the Fisher information matrix. If we were to parameterize
using the covariance-variance matrix, the associated Fisher information matrix would be far more messy.
However, as we have emphasized throughout the paper, the Riemannian metric is tensorial and so its
geometric properties are invariant to coordinate choices. But in terms of practical computations, it may
easier using one particular coordinate system over another.
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[gij(p)] =



λ11 λ12

λ21 λ22

λ222
(λ12λ21−λ11λ22)2

− λ12λ22
(λ12λ21−λ11λ22)2

− λ12λ22
(λ12λ21−λ11λ22)2

λ212
(λ12λ21−λ11λ22)2

− λ21λ22
(λ12λ21−λ11λ22)2

λ11λ22
(λ12λ21−λ11λ22)2

λ12λ21
(λ12λ21−λ11λ22)2

− λ11λ12
(λ12λ21−λ11λ22)2

− λ21λ22
(λ12λ21−λ11λ22)2

λ12λ21
(λ12λ21−λ11λ22)2

λ11λ22
(λ12λ21−λ11λ22)2

− λ11λ12
(λ12λ21−λ11λ22)2

λ221
(λ12λ21−λ11λ22)2

− λ11λ21
(λ12λ21−λ11λ22)2

− λ11λ21
(λ12λ21−λ11λ22)2

λ211
(λ12λ21−λ11λ22)2


(5.10)

Proposition 5.4 (Multivariate Gaussian geodesics in mean-precision coordinates).

6 Portfolio choice

Having built up the necessary background on information and Riemannian geometries, we

are now ready to a concrete economic application. We illustrate our information geometric

framework through the classical problem of portfolio choice in a Gaussian setting with myopic

CARA utility investors.

Let’s describe our economy. Suppose there is a risk free asset with constant instantaneous

return rf and n risky assets. Let {R(t)}t∈[0,T ] represent the excess return knowledge of an

investor from time t = 0 to t = T . That is, the n-vector R(t) ∼ N (µ(t),Λ(t)) (i.e. mean

µ(t) and precision Λ(t)) is an investor’s best available information about the instantaneous

return of the n risky assets at time t. In our economy, all investors are myopic and have

CARA preferences with absolute risk aversion parameter η > 0. In particular, this means

investors will treat R(t) as the instantaneous return of the n risky assets at time t when

making portfolio allocations. In latter discussions where we have multiple investors with

heterogeneous knowledge, the R(t)’s could vary for different investors.

Let’s relate the return trajectory {R(t)} to our developed information acquisition frame-

work. On the one hand, we can simply think of R(t)’s as a sequence of arbitrary re-

turn beliefs of an investor; this could represent the information of an uninformed investor.

On the other hand, this return trajectory takes on a far more meaningful interpretation

when we incorporate information acquisition framework of Lemma 2.2; this could repre-

sent the information of an informed investor. At t = 0, an investor is endowed with the
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initial knowledge R(0) ∼ N (µ(0),Λ(0)) of the true return R̂, and the risk free rate rf

is known knowledge to the investor. The investor endogenously acquires information to

get from his initial knowledge to the terminal truth knowledge. Let {R(t)}t∈[0,T ], with

R(t) ∼ N (µ(t),Λ(t)), be an optimal Bayesian information acquisition trajectory, with

R(T ) = R̂ with µ(T ) = µ̂,Λ(T ) = Λ̂. Observe that each R(t) precisely represents the

best available information at time t of the truth return R̂, and the investor will use R(t) as

the instantaneous return to make portfolio allocations at time t. We emphasize that both

interpretations of the trajectory {R(t)} will play an important role in our equilibrium as-

set pricing discussions in Section 7. Indeed, the key strength of the information geometry

framework is the flexibility in understanding the trajectory {R(t)}.
Let’s summarize the portfolio allocation problem. Since the investor has myopic CARA

preferences, we may normalize his wealth to $1 at each point in time t. As discussed above,

we can think of the trajectory {R(t)} in two different perspectives. The first perspective is

that of an uninformed investor, who essentially arbitrarily selects a belief R(t) of the risky

asset returns. This uninformed investor has the portfolio allocation problem,

π(t) = arg max
π̃∈Rn

E[−e−η(rf+π̃>R(t))] =
1

η
Λ(t)µ(t), (6.1a)

subject to:

t 7→ (µ(t),Λ(t)) is a smooth curve in M , and (6.1b)

R(t) ∼ N (µ(t),Λ(t)). (6.1c)

On the other hand, from the perspective of an informed investor, his portfolio allocation

problem is,

π(t) = arg max
π̃∈Rn

E[−e−η(rf+π̃>R(t))] =
1

η
Λ(t)µ(t), (6.2a)

subject to:

p = (µ(0),Λ(0)) (6.2b)

q = (µ̂, Λ̂) (6.2c)

γ solves d(p, q), and γ(t) = (µ(t),Λ(t)) (6.2d)

R(t) ∼ N (µ(t),Λ(t)) (6.2e)
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where d is the distance function of (4.1).

The investor allocates the following instantaneous amount of wealth into the n risky

assets,

π(t) = arg max
π̃∈Rn

E[−e−η(rf+π̃>R(t))] =
1

η
Λ(t)µ(t). (6.3)

For the remainder of the paper, we will mostly work with mean-precision coordinates.

The advantage of mean-precision coordinates (as opposed to, say, mean-variance-covariance

coordinates) is that we have a bilinear expression in the optimal portfolio (6.3). But as em-

phasized throughout the paper, this choice of coordinates to represent knowledge is arbitrary.

If we use different coordinates, the analytical form of the portfolio π(t) will obviously differ.

However, all the subsequent portfolio and asset pricing geometric results are “equivalent”

up a diffeomorphism of the coordinate change. Finally as a technical remark, we are heavily

taking advantage of the fact that our portfolio map is from the space of probability distri-

butions to the Euclidean space. That is, while the investor’s knowledge lies on a statistical

manifold, the endogenous actions (e.g. portfolio choice) based on this knowledge belong in

the Euclidean space (i.e. an Euclidean manifold with the Euclidean Riemannian metric).

There are numerous special properties of the Euclidean space that we heavily exploit in this

paper when discussing the investor’s endogenous actions.

6.1 Portfolio geometry

Our framework naturally lends itself to several curve geometry inspired definitions.

Definition 6.1 (Portfolio geometry). In mean-precision coordinates and given a risky return

trajectory {R(t)}, the investor’s optimal portfolio choice is π(t) from (6.3). We define the

portfolio velocity as v(t) := d
dt
π(t) = π̇(t), and the portfolio acceleration as a(t) := v̇(t).

The portfolio speed is ||v(t)||. Here, ||·|| is the Rn Euclidean norm, and · is the Euclidean

inner product.

We define the unit tangent portfolio vector as T(t) := v(t)/ ||v(t)||. The scalar component

of portfolio acceleration along the velocity is,

aT (t) := compva =
v(t) · a(t)

||v(t)||
.
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Figure 4: Map from intrinsic knowledge to portfolio choice.

37



The vector component of portfolio acceleration along the velocity is,

aT (t) := projva = aT (t)T(t) =
v(t) · a(t)

||v(t)||2
v(t).

The vector normal component of portfolio acceleration is,

aN(t) := a(t)− aT (t).

The scalar component of portfolio acceleration is,

aN(t) :=

√
||a(t)||2 − aT (t)2 = ||aN(t)|| .

The following is a standard result in curve geometry.

Proposition 6.1 (Change in speed, change in acceleration). Let π(t) be a portfolio trajec-

tory. Then,

(i) The change in portfolio speed equals the tangential component of the portfolio acceler-

ation, d
dt
||v(t)|| = aT (t).

(ii) The change in portfolio direction equals the normal component of the portfolio acceler-

ation, d
dt
T(t) = 1

||v(t)||aN(t).

6.2 Single risky asset

Let’s first illustrate our framework with the single risky asset case.

Proposition 6.2 (Single risky asset portfolio geometry). Suppose there is only a single

n = 1 risky asset, and both the mean and the precision are unknown to the investor. Recall

the constants c0, c1, c2 from Proposition 5.2. Then:

(i) The portfolio position in the single risky asset at time t is,

π(t) =
cosh2

(
c0 + t√

2

)(
2c2 tanh

(
c0 + t√

2

)
+ c1

)
2c2

2
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(ii) The portfolio velocity at time t is,

π̇(t) =
1
2
c1 sinh

(
2c0 +

√
2t
)

+ c2 cosh
(
2c0 +

√
2t
)

√
2c2

2

(iii) The portfolio acceleration at time t is,

π̈(t) =
2c2 sinh

(
2c0 +

√
2t
)

+ c1 cosh
(
2c0 +

√
2t
)

2c2
2

Proof of Proposition 6.2. The results immediately follow from the closed form solution of

Proposition 5.2(iii) case (b), and differentiate.
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Figure 5: Portfolio trajectory of the single risky asset. We illustrate the portfolio trajectory
π(t) of the single risky asset along the optimal information acquisition trajectory. The
left panel illustrates parameter set (1) of Figure 3. The right panel illustrates parameter
set (2) of Figure 3.

6.3 Multiple risky assets

The case of multiple risky assets is actually far more interesting than the single risky asset

case. There are geometric concepts that only have a meaningful definition with multiple

risky assets that have no counterpart in the single risky asset case. We note that this phe-

nomenon is an interesting feature of our framework. In classical portfolio choice theory

(Markowitz (1952)), and in a gross oversimplification, the extension of a single risky asset
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portfolio selection to multiple risky asset portfolio selection can be done by rewriting scalar

quantities to vector and matrix quantities. The qualitative solution of the classical portfolio

choice problem is unchanged from the single risky asset case to the multiple risky asset case.

However, as we have discussed in Section 5, dimensionality significantly alters the qualita-

tive and quantitative properties of the information acquisition trajectories. The impact of

dimensionality carries over to the portfolio trajectories.

Consider again the portfolio vector π of (6.3). The key difference between the multiple

risky asset case compared to the single risky asset case is that with more risky assets, we can

meaningfully define the ideas of curvature and torsion. To fix ideas, let’s work with n = 3

risky assets (as we shall see, the case of n = 3 assets is more representative of the general n

risky asset case than that of the case of n = 2).

Let’s construct the Frenet vectors associated with the portfolio trajectory π. Let us

define,

e1 := e1(t) =
π̇

||π̇||
e2 := π̈ − (π̈ · e1)e1

e3 :=
...
π − (

...
π · e1)e1 − (

...
π · e2)e2

Observe that e1 is precisely the unit tangent vector and e2 is the unit normal vector. The

vector e3 is the unit binormal vector and it is orthogonal to both the unit tangent vector e1

and the unit normal vector e2.

We can define the portfolio curvature (first generalized curvature) as,

χ1 := χ1(t) =
ė1 · e2

||π̇||

Furthermore, we can define the portfolio torsion (second generalized curvature) as

χ2 := χ2(t) =
ė2 · e3

||π̇||
.
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7 Asset pricing

The portfolio choice results in Section 6 allow us to discuss several interesting asset pricing

implications.

7.1 Single risky asset

To fix ideas, let’s first work on the case when there is only a single n = 1 risky asset in

the economy. Let’s assume the risky asset is in unit net supply. Then by market clearing,

the market price of the risky asset is equal to the aggregate demand of the risky asset.

Suppose there are three types of investors in the economy: (i) uninformed of both the

mean and precision of the asset return; (ii) informed of the mean but uninformed of the

precision; and (iii) uninformed of the mean but informed of the precision. Let’s suppose

there are, respectively, w1, w2, w3 > 0 proportions of these agents in the economy, with

w1 + w2 + w3 = 1.

Let’s make clear on the knowledge set of investor types (i) to (iii). Following Section 6,

there is some truth distribution R̂ ∼ N (µ̂, λ̂) of the single risky asset.

The time t equilibrium price of the risky asset is,

P (t) :=
3∑
l=1

wkπk(t). (7.1)

From this, we can define the instantaneous time t (log) return of the risky asset,

r(t) :=
d

dt
logP (t) =

∑3
l=1 w

kπ̇k(t)

P (t)
. (7.2)

Furthermore, we can also define the velocity and acceleration of returns, respectively, as,

v := ṙ, (7.3)

a := r̈. (7.4)
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We can further define the signed curvature of returns as,

k :=
a

(1 + v2)3/2
, (7.5)

and also the curvature of returns as,

κ := |k| . (7.6)

Proposition 7.1 (Equilibrium return dynamics of single risky asset). Suppose there is a

representative investor in the economy and in addition to the risk free asset, the single risky

asset is in unit net supply. Recall the setup of Proposition 6.2. The equilibrium return r(t)

of the single risky asset then satisfies:

(i) The time t to t+ dt instantaneous return of the risky asset is,

r(t) =
sech2

(
c0 + t√

2

) (
c1 sinh

(
2c0 +

√
2t
)

+ 2c2 cosh
(
2c0 +

√
2t
))

√
2
(

2c2 tanh
(
c0 + t√

2

)
+ c1

)
(ii) The return velocity is,

v(t) =
1

2

sech2

(
c0 +

t√
2

)
+

c2
1 − 4c2

2(
2c2 sinh

(
c0 + t√

2

)
+ c1 cosh

(
c0 + t√

2

))
2



7.1.1 Empirical application

Easy and direct empirical applications are possible once we construct the empirical coun-

terpart to those theoretical constructs above. Let’s first recall the finite difference of a

smooth function f : R→ R. For sufficiently small h > 0, the first order backward difference

approximates the first derivative f ′,

f ′(x) ≈ f(x)− f(x− h)

h
, (7.7)
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Figure 6: Illustrations of the single risky asset instantaneous return r(t) and the return
absolute curvature κ(t). We illustrate the single risky return r(t) of Proposition 7.1
and the associated return absolute curvature κ(t) along the optimal information ac-
quisition trajectory. The top panel illustrates the parameter set (1) of Figure 3. The
bottom panel illustrates the parameter set (2) of Figure 3.
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while the second order backward difference approximates the second derivative f ′′,

f ′′(x) ≈ f(x)− 2f(x− h) + f(x− 2h)

h2
. (7.8)

Suppose we empirically observe returns r(1), r(2), . . . , r(T ) at equidistant increment h =

1. Then the empirical counterpart to velocity and acceleration can be constructed by v̂ and

â, where

v̂(t) := r(t)− r(t− 1), t ≥ 2, (7.9)

â(t) := r(t)− 2r(t− 1) + r(t− 2), t ≥ 3. (7.10)

Analogously, the empirical signed curvature and absolute curvature can be computed as,

k̂(t) :=
â(t)

(1 + v̂(t)2)3/2
(7.11)

κ̂(t) := |k̂(t)| (7.12)

Observe that there are several differencing schemes for numerically approximating a function

(e.g. forward and central differencing), but we deliberately focus on backward differencing.

This is so that the empirical quantities only depend on information up to time t, and does

not have statistical look ahead bias.

7.2 Multiple risky assets

The case of multiple risky assets is not a simple technical extension of the single risky asset

case. Indeed with multiple assets, we can define several interesting quantities that has no

counterpart in the single asset case. Let πl = (πl,1, . . . , πl,n) denote the portfolio allocation

into n risky assets of investor type l = 1, . . . , L.

Let’s assume all n risky assets are in unit net supply. By market clearing, the equilibrium

price of the i-th risky asset is,

P i(t) =
L∑
l=l

πl,i(t),
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Figure 7: Daily return absolute curvature of the Fama-French market factor. The daily
return absolute curvature variable is constructed using the daily return data of the
Fama-French market factor, and applied to the empirical counterpart to (7.6) using the
numerical derivative approximations (7.7) and (7.8). The shaded regions are NBER
recession dates.
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Model 1 Model 2 Model 3 Model 4 Model 5
(Intercept) 15.35∗∗∗ 12.68∗∗∗ 12.79∗∗∗ 13.39∗∗∗ 15.45∗∗∗

(0.22) (0.32) (0.31) (0.26) (0.22)
return curv 215.68∗∗∗ 114.82∗∗∗ 115.39∗∗∗ 62.47∗∗∗ 218.36∗∗∗

(11.13) (6.09) (6.05) (9.23) (11.35)
lag(return curv, 1) 66.49∗∗∗ 70.57∗∗∗ 56.51∗∗∗

(6.32) (5.74) (4.78)
lag(return curv, 2) 66.42∗∗∗ 65.82∗∗∗ 45.46∗∗∗

(6.42) (5.59) (5.34)
lag(return curv, 3) 111.28∗∗∗ 109.85∗∗∗ 80.70∗∗∗

(6.13) (6.00) (6.06)
mktrf −94.75∗∗∗ −105.43∗∗∗

(9.17) (12.55)
lag(mktrf, 1) −87.32∗∗∗ −84.31∗∗∗

(9.21) (11.91)
lag(mktrf, 2) −90.06∗∗∗ −90.29∗∗∗

(9.13) (13.29)
lag(mktrf, 3) −74.18∗∗∗ −59.91∗∗∗

(10.15) (14.38)
squared mktrf 3811.95∗∗∗

(607.02)
lag(squared mktrf, 1) 3793.88∗∗∗

(413.06)
lag(squared mktrf, 2) 2983.57∗∗∗

(452.58)
lag(squared mktrf, 3) 1035.35

(621.52)
R2 0.30 0.49 0.55 0.60 0.35
Adj. R2 0.30 0.49 0.55 0.60 0.35
Num. obs. 7053 7050 7050 7050 7050
RMSE 6.60 5.62 5.31 4.98 6.34
∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05

Table 1: Regression of daily VIX on return absolute curvature along with other con-
trols. We linearly regress the daily VIX level onto the return absolute curvature. This
variable is constructed using the daily return data of the Fama-French market factor,
and applied to the empirical counterpart to (7.6) using the numerical derivative approx-
imations (7.7) and (7.8). We also include the raw daily return, absolute daily return,
and squared daily return of the Fama-French market factor as control variables. The
parentheses show the Newey and West (1987) standard errors with 6 lags.

46



and like the single asset counterpart, the instantaneous return of the i-th risky asset is,

ri(t) :=
d

dt
P i(t).

Collecting all the n risky assets together, the return vector is r = (r1, . . . , rn). We can

likewise define the velocity and acceleration of the return vector, respectively, as v := ṙ and

a = v̇.

To fix ideas, let’s consider the case of n = 3 risky assets (as we shall see, the case of n = 3

is far more representative of the general n risky asset case than that of n = 2).

8 Information recovery

A large empirical literature is built around observing the portfolio holdings of institutional

fund managers. The implicit hope of these papers is that by observing the portfolio choices

of the institutional fund manager, the econometrician can infer the information set of these

supposed informed investors. To the best of our knowledge, few theory papers 14 discuss the

recovery of information from the observed actions or prices. Our framework can explicitly

attack this problem.

9 Generalization to general expected utility maximiza-

tion problems

10 Conclusion

This paper lays out the principles for an intrinsic theory of information acquisition: (P1) an

agent’s states of knowledge can be described by probability distributions; (P2) information

should be intrinsically and not extrinsically measured; and (P3) agent’s expected utility max-

imizing action choices should only depend on intrinsically measured information. We apply

tools from the information geometry literature to address principles (P1) and (P2). These

geometric concepts have not yet found applications in the economics and finance literature.

14The notable exception being Ross (2015).
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We illustrate the wide applicability of these tools in a finance context. Notions such as the

velocity, acceleration, curvature, and torsion of portfolio holdings and equilibrium returns

provide a new perspective in asset pricing. We provide suggestive empirical evidence to show

that geometric concepts on returns can shed new light in the empirical asset pricing liter-

ature. Finally, our framework is potentially applicable to all expected utility maximization

problems, where parameterized random variables can represent the knowledge state of an

agent.
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Appendices

A Overview of information geometry, differential ge-

ometry, and Riemannian geometry
This paper does not intend to be a treatise on information geometry (whose foundations depend on differential and Riemannian

geometry). However, these geometric concepts are not well known in the economics literature, so we need to devote some

considerable length for a brief intuitive overview of the key geometric ideas, and delegate the necessary technical details to the

Appendix.

A.1 Differential geometry
We now describe a manifold and how it is the key to intrinsically describe information. In our application, we will take M as

the statistical manifold, which represents the collection of all possible configurations of information in the economy.

The study of differential geometry is the study of smooth manifolds 15 . It will be hopeless to even attempt an in depth

description of differential geometry in this paper. The definition of a manifold can be intuitively described in Figure 8.

Simply put, a manifold is a space that is locally flat but globally not. See Figure 8 for an illustration. The most concrete

example of a manifold is earth itself. All local inhabitants (e.g. humans, ants, etc.) will physically feel they are living on a

flat surface, and yet the earth is actually a round sphere. One of the key defining characteristic of a smooth manifold is that

locally, the manifold resembles a flat Euclidean space, but globally it could take on fairly complex shapes. A cartographer can

use longitude and latitude coordinates to describe an inhabitant’s position on earth. One can equally use the azimuth and

elevation to describe the inhabitant’s position. Yet the inhabitant simply does not care how a cartographer describes his physical

presence. Thus any intrinsic physical description of the inhabitant’s behavior on earth should completely be independent of the

arbitrary coordinate system. In fact, we have already met this conundrum in Example 1. If we use the Gaussian distribution

to represent an agent’s information, then it should not matter the form of parameterization an observer uses to describe it.

Now that we have an intuitive understanding of a manifold, we can now describe the concept of a tangent vector at a point

p ∈M . See Figure 9 for an illustration of the tangent space TpM at a point p. It can be shown that the tangent space TpM of a

point is a vector space of the same dimension as the manifold M , and so one can find a basis ∂
∂x1

∣∣
p
, . . . , ∂

∂xm

∣∣
p
. For notational

ease, we will denote ∂i|p := ∂
∂xi

∣∣
p
. Intuitively, a tangent vector v ∈ TpM captures the idea of “change” or “direction”. As

stressed thus far throughout the discussion, our idea of change or direction must be intrinsic and independent of any specific

coordinate choice. Indeed, one may view the core building block of differential geometry as this intrinsic formalization of the

tangent vectors.

In our application to information acquisition, we will view these tangent vectors as the intrinsic direction of information

acquisition. In a particular coordinate choice, we will identity a basis tangent vector on a statistical manifold to the score

function ∂i|p :=
∂ log f(Z;p)

∂pi
. Section 5 discusses these issues in detail.

We remark one important aspect about tangent spaces of general manifolds that may be a source of confusion. On a

Euclidean space Rm, it can be shown the tangent space at each point is isomorphic to the Rm itself. In particular, this means

the tangent spaces at all points in Rm are identical to each other, and so one does not need to refer to a “tangent space at

a point”. This is not the case for a general smooth manifold M . The tangent space TpM at point p ∈ M and a tangent

15Actually, one really needs to make a distinction between a topological manifold versus a differential
manifold. Essentially a topological manifold only discusses the shapes of geometric objects, while a differential
manifold further endows a calculus structure on said objects. A Riemannian manifold provides the notion
of distance on geometric objects and is indeed the focus of our paper; we give an overview of Riemannian
manifolds in Section A.2.
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M
U

p

Rm

Û = ϕ(U)

ϕ(p)

ϕ

Figure 8: Smooth manifold. One of the key defining characteristic of a smooth manifold M is all
its small local open sets resemble an Rm dimensional open subset. A physical analogy
is that everything looks flat (e.g. Euclidean) for inhabitants living on the surface of
earth, but globally the earth is actually a sphere. Formally, a pair (U,ϕ) is called a
coordinate chart of a manifold M , where U is an open set of M and ϕ : U → Û is a
C∞-diffeomorphism called a smooth coordinate map, where Û = ϕ(U) ⊆ Rm. We can
represent a point p ∈ M on the manifold by its local coordinate representation ϕ(p) =
(x1(p), . . . , xm(p)) where xi is the ith component function. For general manifolds, one
needs a collection of coordinate charts (called an atlas) to cover the entire manifold. In
the most general theory, one needs to also discuss how to the overlapping coordinate
charts relate to one another. But in information geometry, we are actually endowed
with a global coordinate chart and hence we do not worry over this technicality here.
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M

U

p

TpM

v∂i
∣∣
p

∂j
∣∣
p

Rm

Û = ϕ(U)

Tϕ(p)M

ϕ(p)

dϕp(v)∂i|ϕ(p)

∂j|ϕ(p)

ϕ

dϕp

Figure 9: Tangent space at a point p and its coordinate representation. Given any point
p ∈ M in a smooth manifold, we can define its tangent space TpM at that point. We
will call an element v ∈ TpM as a tangent vector at the point p. Formally, a tangent
vector at p is a linear map v : C∞(M) → R that satisfies a formal product rule:
v(fg) = f(p)vg + g(p)vf for all f, g ∈ C∞(M). Furthermore, it is easy to that the
tangent space is a vector space of the same dimension as the manifold M , and thus we
can identity a basis ∂

∂x1

∣∣
p
, . . . , ∂

∂xm

∣∣
p
. For notational ease, we denote each basis vector

by ∂i|p := ∂
∂xi

∣∣
p

Given a coordinate chart (U,ϕ), we can use the differential dϕp to
represent the tangent space TpM with coordinates in Tϕ(p)M .
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space TqM at point q ∈M are in general different. With only a smooth structure on the manifold, it is not straightforward to

“compare” these two tangent spaces. The Riemannian manifold structure that we describe next will facilitate this discussion.

A.2 Riemannian geometry
Now that we have a notion of calculus on a smooth manifold, we now can discuss the idea of “distance” on a manifold. A

Riemannian manifold is a smooth manifold endowed with a collection of functions 16 gp defined on its tangent spaces. This g is

known as the Riemannian metric and takes a symmetric and positive definite form gp : TpM ×TpM → R for each point p ∈M .

In particular, with the Riemannian metric g we can make concrete the geometric notions of distance between points, angles,

lengths of curves, area, volume and curvature of the manifold. For instance, given two tangent vectors v, w ∈ TpM , we can

define their inner product by 〈v, w〉p := gp(v, w). Likewise, we can define the length of a tangent vector by ||v|| :=
√
gp(v, v).

Recall that ∂1|p, . . . , ∂m|p form a basis for TpM . Applying the Riemannian metric gp to this basis, we find that

gp = gij(p)dx
idxj , (A.1)

where gij(p) := g(∂i|p, ∂j |p) and the matrix [gij ] is symmetric, positive definite and smooth in p.

For our purposes towards an intrinsic framework of information acquisition, we are most interested with a special type

of curves (the “geodesics”) defined on the manifold and its relationship to curvature. Furthermore for the concrete economic

application of this paper, we are most interested in the Riemannian geometry of both the univariate and multivariate Gaussian

distributions of Section 5.

As a simple example, consider the Euclidean space M = Rm. We can identity 17 the basis tangent vector ∂i|p ∈ TpRm

with the standard basis vector ei = (0, . . . , 1, . . . , 0) ∈ Rm. The canonical Riemannian metric on a Euclidean space Rm is

gij(p) = 〈ei, ej〉 = δij for all p, and where δij = 1 if i = j, and 0 if i 6= j. We caution that although in the Euclidean space, ∂i|p
and ∂j |p for i 6= j are canonically orthogonal tangent vectors, this is definitively not true for general manifolds, and especially

not true for our information geometric setup. The most important Riemannian metric in our context is the Fisher information

metric, where gij(p) is given by (2.1). We will further develop these ideas in Section 5.

A.3 Geodesics
The concept of geodesics is of utmost importance for our intrinsic theory of information acquisition. Simply put, geodesics

describe “straight lines” on a curved manifold. In particular, we will use geodesics to model the concept of trajectory of

information acquisition, and also the shortest trajectory of information acquisition between some initial knowledge to some

terminal truth knowledge. The concept of geodesics will provide the concrete solution to the concept of Bayesian news acquisition

trajectory of Lemma 2.2.

There are two equally important perspectives to think about geodesics: (a) the shortest path perspective; and (b) the

straight line perspective. To solidify these ideas for our ultimate information acquisition application, it will be useful to take

two slight detours and think about simpler real world physics problems.

A.3.1 How to fly from New York to London?

Let’s begin with (a). Suppose an economist wishes to take a flight from New York to London. On a typical (Mercator projection)

world map that’s printed on a flat piece of paper, the shortest route will be a straight line. After the flight has landed safely

in London, the economist will realize that the actual flight trajectory as plotted on the flat world map paper is actually not

16Actually g is a 2-tensor field that is positive definite on the manifold M . Thus the Riemannian metric
is an intrinsic geometric object that is invariant to arbitrary coordinate choices.

17We remark that this identification of the tangent space TpRm to its manifold M = Rm is in general not
possible. Indeed, it can be shown that the only manifold that enjoys this property is the Euclidean space.
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straight but is curved, and indeed approaches the north pole. Why does the shortest route from New York to London approach

the north pole? This can be made concrete by inspecting the Riemannian metric on the sphere.

Let θ represent the angle around the equator (i.e. longitude), and let φ represent the angle from the north pole (i.e. similar

to latitude). It can be shown the line element is given by ds2 = r2dφ2 + r2 sin2(φ)dθ2, and where r is the radius of the earth.

This is equivalent to saying the Riemannian metric on the sphere is given by gφ,φ(p) = r2, gθ,θ(p) = r2 sin2(φ), gφ,θ(p) = 0,

where p = (θ, φ) is the point on earth. In contrast, the usual flat space R2 the line element is given by ds2 = dx2 + dy2. The

length of a trajectory between two points p and q is given by the line integral
∫ q
p

√
ds2 dt. We see that by inspecting the line

element ds2, the length of the trajectory decreases when sin(φ) → 0, which is equivalent to φ → 0 (e.g. north pole) or φ → π

(e.g. south pole). Since New York is located at north of the equator, this discussion shows, indeed, the shortest path to London

is to take a direction towards the north pole.

The properties of the Riemannian metric g contains significant (actually all) information to the minimal trajectory length

problem. As we shall see in our information acquisition context, the form of the Riemannian metric will tell us precisely the

optimal direction of information acquisition.

A.3.2 Detour: What is a straight line?

The next detour that we need is to think about what “straight lines” actually mean. On a flat Euclidean space, it is intuitively

clear that these three notions are equivalent: (a) a straight line between two points; (b) the trajectory with the shortest distance

between two points; and (c) a free particle travelling between two points experience zero acceleration on this trajectory. Let’s

focus on (c) and consider a particle on a flat space with position γ(t) ∈ Rm at time t. From elementary physics, we regard γ̇(t)

as the velocity and γ̈(t) as the acceleration of the particle at time t. If the particle’s equation of motion is given by γ̈(t) = 0

so that the particle experiences no acceleration at all times, then its trajectory must satisfy the equation γ(t) = p+ vt, where

p = γ(0) is the initial position of the particle, and v = γ̇(0) is its initial velocity. Using the standard Euclidean metric, it is

also immediate that the shortest distance between two points p, q ∈ Rm is a straight line. This means if our particle starting

at p = γ(0) wishes to reach to a point q = γ(T ) at some terminal time T , it simply needs to direct its initial velocity v = γ̇(0)

in the correct direction at the beginning. This shows that claims (a), (b) and (c) are equivalent.

A.3.3 Geodesic equation

“Straight lines” in a general manifold are called geodesics, and they are conveniently characterized by an analogous no ac-

celeration condition. In a Euclidean space, the no acceleration condition reads as 0 = d
dt
γ̇ = limh→0

γ̇(t+h)−γ̇(t)
h

. Here, the

subtraction γ̇(t+h)−γ̇(t) makes sense because the two tangent vectors live in the same vector space, γ̇(t+h) ∈ Tγ(t+h)Rm ∼= Rm,

and γ̇(t) ∈ Tγ(t)Rm ∼= Rm. However, as we have observed in Section A.1 and Figure 9, for a general manifold M , we know that

the two tangent vectors v ∈ TpM and w ∈ TqM do not live in the same vector space, and hence subtracting v from w does

not make sense. In place of the ordinary derivative d
dt

on Euclidean space, we use instead the covariant derivative Dt that,

intuitively, “error adjusts” for making computations between two different tangent spaces. The correct formulation of the no

acceleration condition using the covariant derivative is Dtγ̇ = 0; this is called the geodesic equation and its solution trajectories

γ are called geodesics. See Figure 10 for an illustration.

While the covariant derivative Dt is intrinsically geometrically sound, we still need an explicit coordinate representation

of the geodesic equation in order to make concrete computations. Let (U,ϕ) be a coordinate chart of M and let p ∈ M have

the coordinate representation ϕ(p) = (x1(p), . . . , xm(p)) ∈ U ⊂ Rm. This means any curve γ̃ : I →M , where I is an interval in

R, has the coordinate representation γ(t) = ϕ ◦ γ̃(t) = (γ1(t), . . . , γm(t)). From the definition of covariant differentiation, one

can show that the coordinate representation of the geodesic equation is the system of ordinary differential equations (ODE),

0 =
d2γk

dt2
+ Γkij

dγi

dt

dγj

dt
, (A.2)

where Γkij are the Christoffel symbols of the Riemannian metric g. Notice that if Γkij ≡ 0, then we recover exactly the no
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acceleration condition for a trajectory on a flat Euclidean space. The Christoffel symbols in coordinates are given by,

Γkij =
1

2
gkl(∂igjl + ∂jgil − ∂lgij), (A.3)

where [gij ] is the inverse of the matrix [gij ], so gmlg
lk = δkm. The Christoffel symbols are the key inputs to make precise the

intuitive notion of “curvature” on a manifold.

For our intrinsic information acquisition application, the concept of geodesics is the most important idea to draw from

information geometry, differential geometry and Riemannian geometry. However, to even give an intuitive non-rigorous definition

of a geodesic, one must have at least some intuitive notions laid out in Sections A.1 and A.2. Indeed, one may view (A.2) as the

true starting point of our paper, and everything before it simply lays its groundwork. We will be explicitly concrete in writing

down these geodesics in Section 5, and more importantly, explain the significance of those Christoffel symbols in our context of

intrinsic information acquisition.

But in order to facilitate a discussion of geodesics, we must first discuss the idea of parallel transport of tangent vectors.

As we have discussed in Section A.1, given that the tangent space at one point is not identical to the tangent space at another

point, a tangent vector v ∈ TpM cannot be compared to another tangent vector w ∈ TqM . An intuitively appealing idea to

compare a vector v ∈ TpM to w ∈ TqM is to “push” or “transport” the vector v to the tangent space TqM . Furthermore, one

wishes to transport a vector v in a “parallel” fashion.

A.4 Curvature

A.4.1 Jacobi field

The key idea in Section 4.1 is that the Fisher information metric provides a way to canonically measure the distance between

random variables. Thus, the Fisher information metric satisfies principle (a). However, the Fisher information metric still

inherently depends on the parameterization θ chosen for the distribution of a random variable. The ideas of Riemannian

geometry indeed show that the Fisher information metric is a Riemannian metric on the manifold of random variables. This

in particular implies that all objects discussed on the manifold are intrinsic to the manifold itself, and does not require an

“ambient space”, like an Euclidean space 18 .
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